CHAPTER 3

Alternatives

BACKGROUND AND ALTERNATIVES DEVELOPMENT AND SCREENING

PURPOSE OF THE CHAPTER

Information in the chapter is presented to provide the reader an understanding of steps taken to identify those alternatives ultimately studied in detail in the Final Environmental Impact Statement (FEIS). Table 3-1 provides a summary of topics, content, and intended benefits to the reader.

CONTEXT OF ALTERNATIVES IN THE EIS PROCESS

After a purpose and need has been established for the proposed action (see Chapter 1, Purpose and Need, a key step in the environmental impact statement (EIS) process is to identify a range of reasonable alternatives to be studied in detail in the FEIS (see sidebar, on this page, regarding the definition of a range of reasonable alternatives). This step is commonly referred to as an alternatives development and screening process. Its purpose is to identify reasonable alternatives to the proposed action to allow for meaningful subsequent comparison of how these alternatives may affect the human and natural environment (described in Chapter 4, Affected Environment, Environmental Consequences, and Mitigation).

ALTERNATIVES DEVELOPMENT AND SCREENING

Alternatives for a major transportation facility in the Study Area have been proposed and studied since the mid 1980s. Those proposals were not discarded, but rather were incorporated into the consideration, development, and study of alternatives for the EIS process, which began in 2002 following the clear determination of a purpose and need for the proposed action. Figure 3-1 illustrates the relationship of the Study Area for the proposed action to other transportation facilities and some of the communities in the region it would serve. Beginning with the initial agency and public scoping efforts, numerous alternatives were considered to determine the most appropriate transportation investment strategy. Alternatives considered included past freeway proposals as well as transportation system management (TSM)/transportation demand management (TDM), transit (e.g., commuter rail, light rail, expanded bus services), arterial street network improvements, land use controls, new freeways, and a No-Action Alternative.

Alternatives Development and Screening Process

The following text describes the process used to identify, develop, and screen action alternatives, concluding with identification of the action alternatives to be studied in detail in the FEIS. The screening process is summarized to facilitate readers’ understanding of the process and of the logic for actions taken by the project team (see sidebar on this page for a description of project team). More detail can be found in the Validation of the Alternatives Screening Process at the FEIS Stage (2014) (see sidebars on page 3-2).

Reconfirm the Purpose and Need for the Proposed Action

The first step in the alternatives development and screening process was to reconfirm the purpose and need for the proposed action, as presented in Chapter 1. In June 2013, the Maricopa Association of Governments (MAG) approved new socioeconomic projections for Maricopa County. The purpose and need analysis was updated and reevaluated using these new population, employment, and housing projections and corresponding projections related to regional traffic. The conclusions reached in the Draft Environmental Impact Statement (DEIS) were reconfirmed in the FEIS. The analysis described in Chapter 1, Purpose and Need, concluded a major transportation facility is needed in the Study Area to address increases in population, housing, and employment projected in the MAG region over the next 20-plus years. These socioeconomic factors are expected to increase steadily through 2035, and vehicle miles traveled (VMT) are expected to grow from 91 million to 147 million over the same period. Much of this growth will occur in areas that would be served by a major transportation facility in the Study Area. A major transportation facility is also needed to address projected increases in regional transportation demand and deficiencies in transportation system capacity. Although capacity deficiencies exist today, they are expected to worsen and cause even greater increases in travel times (delays) by 2035.

What is meant by a range of reasonable alternatives?

Federal regulations stipulate that an EIS shall “rigorously explore and objectively evaluate all reasonable alternatives” (40 Code of Federal Regulations § 1502.14). In 1983, the Council on Environmental Quality issued guidance stating “reasonable alternatives include those that are practical or feasible from a technical and economic standpoint” and “use[e] common sense.” When a large number of alternatives may exist, “only a reasonable number . . . covering the full spectrum of alternatives, must be analyzed and compared in the EIS’ (Federal Register 46:18026 [1981]).

Who is the project team?

The project team is a group of individuals who represent a comprehensive set of diverse viewpoints and have expertise relevant to environmental concerns, design requirements, traffic optimization goals, project costs, and concerns of local importance. The team includes local jurisdictions and federal, State, and regional agencies. (See Chapter 6, Comments and Coordination, for a list of project team members.)
Validation of the Alternatives Screening Process at the FEIS Stage

The screening process for the project, which began in 2001, included many stages and was updated and validated over a 13-year period. Over that time, change has occurred in the Study Area and region, which includes all of the Phoenix metropolitan area. Additionally, after the DEIS release, MAG approved new socioeconomic and traffic projections for the region. In response, the project team reviewed and validated the screening process, as documented in the Validation of the Alternatives Screening Process at the FEIS Stage memorandum (see sidebar on this page for information on how to review the memorandum). Within each step of the process the consensus points are identified along with reference to the original documentation or study that supports the screening process and validation of the analysis presented in the original documentation.

Table 3-1 Alternatives Content Summary, Chapter 3

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
<th>Highlights</th>
<th>Reader Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose of the Chapter</td>
<td>3-1</td>
<td>• Context of alternatives in the EIS process</td>
<td>• An understanding of the definition of a full range of reasonable alternatives and how they are assessed in the FEIS<sup>a</sup></td>
</tr>
<tr>
<td>Alternatives Development and Screening</td>
<td>3-1</td>
<td>• Alternative development and screening process overview • Development of screening criteria • Modal screening • Modes eliminated from further study • Corridor screening • Corridors eliminated from further study • Alignment alternatives screening (First Tier) • Alignments eliminated from further study • Creation of Western and Eastern Sections in the proposed action's Study Area • Technical alternatives screening (Second Tier) • Technical alternatives eliminated from further study • Design options and refinements (Third Tier) • Design options eliminated from further study • Design adjustments (Fourth Tier) • Design alternatives and footprint and alignment options eliminated from further study • Alignment screening and further design adjustments (Fifth Tier) • Alignment on Community land and alignment option eliminated from further study • Responsiveness of proposed freeway to purpose and need criteria • Additional benefits of the proposed freeway • Summary of screening process</td>
<td>• Orientation to the geography of the Study Area • Orientation to how alternatives and their environmental effects are presented in the FEIS • An understanding of how alternatives for the proposed action were developed, who (including the public) contributed to the development of alternatives, and what alternatives were considered • An understanding of the logical, sequential steps taken—and by whom—to determine which alternatives should be studied in detail in the FEIS • An understanding of why multiple disciplines, or factors, are considered when comparing alternatives • An understanding of why—individually—transit, rail, and other nonfreeway alternatives are not studied in detail in the FEIS • An understanding of logical termini and independent utility, regardless of alternative considered • An understanding of why some freeway alternatives were eliminated from detailed study in the FEIS • An understanding of adjustments made to alternatives to further reduce impacts before detailed study was undertaken • An understanding of beneficial outcomes related to the screening of alternatives • Identification of the action alternatives to be studied in detail in the FEIS • Introduction to the degree of regulatory interaction required for the proposed action • An understanding of why a freeway alternative would meet the purpose and need criteria of the project</td>
</tr>
<tr>
<td>Alternatives Studied in Detail</td>
<td>3-40</td>
<td>• No-Action Alternative • Descriptions of the action alternatives • Traffic operations of the alternatives</td>
<td>• A description of the No-Action Alternative and why it is studied • An understanding of design features of each action alternative, including alignment, profile, number of lanes, and ancillary design features • An understanding of conceptual costs and construction sequencing for each action alternative • An understanding of enhancement opportunities associated with the action alternatives • An understanding of how traffic would operate on each alternative in the future</td>
</tr>
<tr>
<td>Identification of a Preferred Alternative</td>
<td>3-62</td>
<td>• Process and reasons for the identification of the Preferred Alternatives in the Western and Eastern Sections</td>
<td>• Awareness of the Preferred Alternatives in the Western and Eastern Sections • An understanding that the identification of a Preferred Alternative is not final until the EIS process is complete • An understanding of ongoing coordination with the Community</td>
</tr>
<tr>
<td>Conclusions</td>
<td>3-70</td>
<td>• Summary of alternatives in the EIS process</td>
<td>• A summary of the process to screen alternatives, identify a range of reasonable alternatives, study alternatives in detail, and identify a Preferred Alternative</td>
</tr>
</tbody>
</table>

^a environmental impact statement ^b Final Environmental Impact Statement ^c Gila River Indian Community
The purpose of the proposed action—a major transportation facility—is to address the transportation needs described above. Constructing and operating such a facility may serve other purposes as well, including:

- Providing regional transportation system linkage as planned in the Regional Transportation Plan (RTP)
- Serving regional mobility needs (moving trips from lower-capacity to higher-capacity facilities)
- Meeting objectives adopted in regional and local long-range plans

These additional purposes of the proposed action are discussed in this chapter and in the Land Use section of Chapter 4, beginning on page 4-3.

Alternatives Development and Screening Process Described

A process was undertaken to develop a range of alternatives, screen those alternatives using a multidisciplinary set of criteria (see sidebar on the next page), and identify the alternatives to be studied in detail in the FEIS. Figure 3-2 schematically illustrates the process undertaken.

To define the process, a memorandum (Alternatives Development and Screening Process Memorandum [2002], see sidebar on page 3-2) was first created. The project team concurred with the approach outlined in the memorandum, specifically:

- The approach outlined would satisfy National Environmental Policy Act (NEPA) intent, Federal Highway Administration (FHWA) guidelines that implement NEPA, ADOT environmental policy, and related environmental policies and regulations.
- The criteria and related performance measurements were appropriate for the screening process and represented an objective multidisciplinary set of criteria.

The memorandum presented step-by-step guidance for development of alternatives and their subsequent screening. Steps were necessarily added or modified throughout the screening process at the request of the project team as new information became available, as additional investigation warranted, and/or as new discoveries about alignment or modal alternatives were made. The following summarizes the steps taken to identify action alternatives to be studied in detail in the FEIS.

Confirmation of Screening Criteria and Performance Measures

The multidisciplinary approach presented in the 2002 memorandum was reviewed by the project team. Team members conducting the review represented expertise associated with environmental, engineering, land acquisition, construction, and government standards and processes. Using a diverse group ensured screening would be consistent with NEPA intent to use a systematic, interdisciplinary approach when determinations may have an effect on the human and natural environment. The following general categories reflect the criteria established for the screening process (Alternatives Screening Report [2003], see sidebar on page 3-2):

- Ability to satisfy purpose and need, namely by improving operational characteristics of the region's transportation system
- Ability to minimize impacts on the human and natural environments
- Degree of public and political acceptability
- Consideration of overall conceptual cost estimates

Modal Screening

Modal screening is performed to analyze the potential of various transportation modes (either individually or in combination) to meet the purpose and need of a proposed action. To minimize environmental impacts, the modal screening strategy involves looking first at those modes that would create the least impact while meeting purpose and need criteria. If these criteria cannot be satisfied with the low-impact modes, others with greater impact but more capability of meeting the proposed action's purpose and need are examined. The process continues in this way until only those modes able to meet purpose and need criteria remain (or do so in concert with earlier-considered modes), thus satisfying these criteria while reducing impacts.

The project team considered a wide range of modal alternatives to improve transportation conditions in the Study Area (see also Table 3-2):

- **TSM** – Maximize the efficiency of existing transportation facilities
- **TDM** – Maximizing the efficiency of existing transportation facilities

The Study Area for the proposed action is in the southwestern portion of Maricopa County and is strategically positioned where a gap exists in the regional transportation system's loop freeway network. The study of viable alternatives was limited by the topographical constraints of the South Mountains and by the inability to study alternatives in detail on Gila River Indian Community land.
Identification of alternatives for detailed analysis followed logical steps, beginning with determination of the proposed action’s purpose and need and progressing to consideration of specific multidisciplinary criteria established prior to the screening process to guide determinations. A brief description of these alternatives and reasons for eliminating each from detailed study are presented in Table 3-2. Notable observations include:

- Even better-than-planned performance of transit/TDM strategies would not be sufficient to adequately address the projected 2035 capacity deficiency.
- TSM/TDM strategies would have limited effectiveness in reducing congestion along freeways and arterial streets in the Study Area.

Funding for the expansion of transit modes in the MAG region is included in the RTP. Modes being considered in the Study Area include light rail, commuter rail, bus routes, and van pools. By themselves, these modes were eliminated from further study because:

- Even better-than-planned performance of transit would not be sufficient to adequately address the 2035 capacity deficiency.

d	Met Demand	Unmet Demand
Without major transportation facility in the Study Area | 69% | 31%
With nonfreeway improvements performing better than planned | 69% | 3% 5% 5% 18%

Source: Maricopa Association of Governments, 2013c; extrapolated analysis

Even when incorporating the most optimistic scenario for adoption and performance of nonfreeway improvements, 31 percent capacity deficiency would be reduced by 13 percentage points, leaving an 18 percent systemwide capacity deficiency in 2035.

Even when incorporating the most optimistic scenario for adoption and performance of nonfreeway improvements, 31 percent capacity deficiency would be reduced by 13 percentage points, leaving an 18 percent systemwide capacity deficiency in 2035.
Table 3-2 Nonfreeway Alternatives Considered and Reasons for their Elimination from Further Study

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Element</th>
<th>Description</th>
<th>Reason for Elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSM/TDM<sup>5</sup></td>
<td>TSM</td>
<td>TSM attempts to maximize the safety and efficiency of the existing transportation network using auxiliary lanes, turning lanes, and Freeway Management System elements (electronic message signs, signals to meter traffic flow at on-ramps, closed-circuit television cameras, and vehicle detectors).</td>
<td>These alternatives alone would have limited effectiveness in reducing overall traffic congestion in the Study Area and, therefore, would not meet the purpose and need criteria; specifically, they would not adequately address projected capacity and mobility needs of the MAG region (see Table 1-2, Regional Transportation Plan Highlights, on page 1-10, and Figure 3-3, which describe the contributions of these improvements to meeting regional transportation needs). Elimination does not preclude the use of these elements in combination with the freeway mode, nor does it preclude them from being implemented in the future.</td>
</tr>
<tr>
<td>TDM</td>
<td>TDM encourages reductions in travel demand in the existing transportation network by promoting alternative modes of travel, excluding riding a bus, carpooling, vanpooling, walking, bicycling, using alternative work schedules and compressed work schedules to reduce trips, and telecommuting.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transit</td>
<td>Light rail</td>
<td>The first segment of the Central Phoenix/East Valley Light Rail Transit project has been completed through central Phoenix, northern Tempe, and northwestern Mesa. While expansion routes are being studied, none would link the western and eastern termini of the Study Area.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commuter rail</td>
<td>Commuter rail is designed to primarily meet the needs of regional commuters with service between suburbs and urban centers for the purpose of reaching activity centers, such as employment, special events, and intermodal connections. Commuter rail service would be provided only during peak times and in the peak direction. The MAG region is not currently served by commuter rail. All active heavy rail tracks in the region are used for freight.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bus routes/Van pools</td>
<td>Express bus routes generally provide service to and from “hubs” (e.g., park-and-ride lots, downtown city centers, major employment centers). Travel could be by freeway or arterial street. Park-and-ride lots permit commuters to park vehicles to take express buses. Van pools allow groups of commuters to use community vans to commute to and from work; these function similarly to express bus routes, but with fewer individuals participating.</td>
<td></td>
</tr>
<tr>
<td>Arterial Street Network Expansion</td>
<td>Add more lanes to existing arterial streets</td>
<td>Improvements to the arterial street network beyond those improvements as planned in the RTP<sup>6</sup> and municipal general plans would occur under this alternative.</td>
<td>Based on projected regional travel demand and the extent of mobility needs of the MAG region and in the Study Area, arterial street network improvements alone would not meet the needs of the MAG region (see Table 1-2, Regional Transportation Plan Highlights, on page 1-10, and Figure 3-3, which describe the contributions of these improvements to meeting regional transportation needs).</td>
</tr>
<tr>
<td></td>
<td>Improve intersections</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Create new arterial street routes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Use</td>
<td>Increase residential densities</td>
<td>The alternative proposes to alter planned land uses to reduce the region’s dependence on the use of single-occupancy vehicles and to reduce demand on and increase efficiency of the MAG region’s transportation network. In support, local governments could institute services to improve performance of transit-related components of the system.</td>
<td>Planned land uses and associated densities in the Study Area have remained relatively unchanged since the mid-1980s. A major transportation facility in the form of the South Mountain Freeway is generally consistent with the City of Phoenix General Plan, and planned land uses and transportation improvements are reflected in the plan. Although the City of Phoenix has a program to discourage longer trips in the region through the village planning concept and process, accommodation of regional travel is an integral element of the plan. The Land Use Alternative is not a viable alternative because no plans exist to alter planned land uses in the region, and components to support increased efficiency in the transportation network (e.g., transit, local arterial street network improvements) are already planned in the RTP.</td>
</tr>
<tr>
<td></td>
<td>Redistribute employment centers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Transportation system management *Transportation demand management *Maricopa Association of Governments *Regional Transportation Plan

> Two high-capacity transit corridors are being considered near the western and eastern extents of the Study Area: 1) Interstate 10 (I-10, Papago Freeway) extension from downtown Phoenix west to 79th Avenue and potentially north to the Glendale sports complexes and 2) Tempe South extension from State Route (SR) 202L (Red Mountain Freeway) to SR 202L (Santan Freeway). Both extensions are currently under study (see the Web site, <valleymetro.org/projects_and_planning/current_projects>, for more information). By themselves, such extensions would not adequately address the projected 2035 capacity deficiency.

> By themselves, such extensions would not adequately address the projected 2035 capacity deficiency.

> MAG completed a series of studies in 2010 to evaluate the feasibility of commuter rail in the region. One corridor, Yuma West, includes the Union Pacific Railroad (UPRR), which passes through the Study Area. The study results support the conclusion that, by itself, commuter rail would not meet projected regional capacity and mobility needs.

> Funding for expansion of the arterial street system in the MAG region is included in the RTP. Arterial street improvements were eliminated from further study because, by themselves:

> Even better-than-planned performance of arterial street improvements would not be sufficient to adequately address the projected 2035 regional capacity deficiency.
The only Study Area arterial street connection of southeastern Phoenix to southwestern Phoenix around the South Mountains is the combination of Riggs Road, Beltline Road, and 51st Avenue through the Gila River Indian Community (Community). As an alternative, this route would not be sufficient to adequately address the projected 2035 regional capacity deficiency. Expansion of 51st Avenue, Beltline Road, and Riggs Road within Community boundaries would require approval of the Community.

The City of Phoenix has indicated it will not extend an arterial street through Phoenix South Mountain Park/Preserve (SMPP) to improve connectivity between southeastern and southwestern Phoenix. The alternative was eliminated because it would not provide the capacity needed to meet the proposed action’s purpose and need criteria, result in impacts similar to those of the proposed action, and is not supported by the City of Phoenix.

Alteration of land use and land use controls could be used to reduce regional travel needs. The adopted City of Phoenix General Plan identifies goals and objectives to continue to promote development of primary and secondary cores, or villages, to centralize commercial and mixed use developments. First presented in the City’s General Plan in the mid-1980s, an integrated focus of the city’s 15 villages is to create hubs to promote the use of other modes of transportation such as transit, bicycle, and pedestrian travel. This alternative was eliminated from further study because:

- Although the City’s plan encourages local travel through its villages—in contrast to regional travel—accommodation of regional travel is an integral element of the plan.
- No plans exist to alter planned land uses in the region, and components to support increased efficiency in the transportation network (e.g., transit, arterial street network improvements) are already planned in the RTP.
- A freeway/light rail combination alternative would integrate a freeway and light rail system into a single transportation corridor. As considered, the light rail segment would be located within the freeway right-of-way (R/W), either within the freeway median or along the outside of the freeway main line. Integration of a freeway and a light rail system into a single transportation corridor is planned in the RTP at two locations: along I-10 (Papago Freeway) and along SR 51 (Piestewa Freeway). These two segments would connect to the light rail system currently in operation.
- With these two freeway/light rail segments already in planning stages in the RTP, members of the public identified what would appear to be a similar opportunity along the route of the proposed freeway. Most freeway/light rail combinations, however, radiate from a central demand generator (e.g., a central business district or major airport). Light rail along the alignments would be inconsistent with a radial transit model and would not be able to connect to existing light rail or the planned extension. While light rail segments are planned in the RTP near the western and eastern termini of the Study Area, no funds are available or anticipated to support a combined system through the Study Area. The additional R/W (light rail generally needs a 50-foot-wide corridor) for the alternative would generate substantial community impact (e.g., displaced residences and businesses, community character and cohesion, and parkland impacts). Therefore, the alternative was eliminated from further study. Such a system could be evaluated at a later time as a future transportation option.

The freeway mode for the proposed action was determined to be an appropriate response to the purpose and need criteria for the project in that it met the criteria while minimizing impacts (see the section, Responsiveness of the Proposed Freeway to Purpose and Need Criteria, beginning on page 3-27). The freeway mode resulted in additional benefits, including those related to system linkage, regional mobility, and consistency with regional and local long-range plans (see the section, Additional Benefits of the Proposed Freeway, on page 3-35). Combinations of nonfreeway and freeway alternatives were considered. Where appropriate, the freeway mode of the proposed action would incorporate aspects of nonfreeway alternatives to optimize traffic operational characteristics in the Study Area and to minimize impacts. For example, high-occupancy vehicle (HOV) and auxiliary lanes would be incorporated into the freeway mode design to optimize efficient traffic flow. Electronic messaging would alert motorists to important changes in travel and traffic conditions. Existing and potential park-and-ride lots would be strategically integrated into freeway-mode alignments and mass transit routing.

Corridor Screening

The first step after determining a freeway to be the suitable transportation mode was identification of broad corridors where distinct alignment alternatives could be developed, environmental screening criteria applied, and alignments’ operational performance could be compared. Each corridor was established as a large land area to:

- develop alignment alternatives based on past studies and input from agencies and the public
- identify design controls and avoid identified undesirable conflicts with environmental conditions
- compare the operational performance of alignment alternatives in the corridors in the context of purpose and need criteria and regional operation of the MAG transportation network

Figure 3-4 illustrates the location of the corridors within the Study Area. Notable observations are:

- Corridor H was located within Community land. A corridor along Pecos Road (Corridor G) followed an alignment consistent with previously published and adopted alignments since the mid-1980s. The other corridor (Corridor F) included alignments that would connect to I-10 north of the South Mountains.
- Five corridors (Corridors A–E) were established north of the Salt River, between the Agua Fria River to the west and 35th Avenue to the east. These were created because of possible differences in effects on the operational characteristics of I-10 (Papago Freeway).

Corridor Screening Results

Using the following criteria, a comparative analysis was conducted to determine whether any of the corridors could be eliminated from further study, because alignments in a given corridor would:
Based on a screening guided by the above criteria and traffic analyses, no alternatives were developed in Corridor A. Traffic analyses revealed a projected drop in traffic volumes on a proposed action connection to I-10 (Papago Freeway) west of SR 101L (Agua Fria Freeway) when compared with volumes in corridors east of Corridor A. Therefore, Corridor A was eliminated from further study.

Alignment Alternatives Screening (First Tier)

Alignments were generated from previous studies, project team input, and routes provided from public input. Numerous alignments were identified in an initial effort requesting public preferences for freeway alignments that would contribute to creating a comprehensive set of alternatives (see Chapter 6, Comments and Coordination, and the sidebar on page 6-26 for more information on how the public has influenced the project). Although public preference included alignments in Corridor A, none were carried forward in the screening process because of the corridor screening results. Alternatives screened were from the Western and Eastern Sections (see text box on the next page) and from outside the Study Area.
As shown in the map below, a common point is shared among the Study Area alignments of all action alternatives: east of 59th Avenue and south of Elliot Road. To evaluate and compare action alternatives, the Study Area is presented in two geographic sections: a Western Section and an Eastern Section. The Western Section covers the area north and west of the common point, generally from south of Elliot Road to I-10 (Papago Freeway) and from 43rd Avenue to Avondale Boulevard. The Eastern Section covers the area south and east of the common point, generally from south of Elliot Road onto Community land and between 59th Avenue and I-10 (Maricopa Freeway).

The common point between the Western and Eastern Sections permits combining action alternatives in the Western Section with action alternatives in the Eastern Section to best satisfy the purpose and need of the proposed action. Dividing the Study Area into two sections also allows for more specific comparative impact analyses among the alternatives.

Several major drivers and constraints affected alignment definition and viability and guided the comparative analysis:

➤ Historical Context of the Proposed Freeway – The South Mountain Freeway was originally included in the 232-mile Regional Freeway and Highway System proposed in 1985 (see the section, Historical Context of the Proposed Action, beginning on page 1-5, for further discussion of project-related history). At that time, the facility, designated as a portion of SR 202L, was designed as a high-speed, access-controlled freeway with a rolling profile (see sidebar on page 3-41), grade separations, and traffic interchanges.

The South Mountain Freeway has remained in updates to MAG transportation planning documents since the mid-1980s, including the RTP. The RTP notes that the location of the South Mountain Freeway would be determined through the design concept report (DCR/EIS study process, which is considering multiple options.

➤ Status of Gila River Indian Community Alternatives at the FEIS Stage – A key issue from the start of the EIS process has been whether ADOT and FHWA would be able to study alternatives in detail on Community land. While Chapter 2, Gila River Indian Community Coordination, discusses in detail the nature and extent of communication and coordination undertaken regarding the matter, this section summarizes the FEIS status of Community alternatives.

Although Figure 3-5 illustrates that the public presented numerous alternatives on Community land (within Corridor H, shown on Figure 3-4), none could be carried forward for further study.

No action alternatives under detailed study are on Community land. The Community has not granted permission to ADOT and FHWA to study alternatives in detail within its boundaries. See the discussion in Alignment Screening and Further Design Adjustments (Fifth Tier), beginning on page 3-24, of the project team’s preliminary analyses of an alignment—but not an action alternative—on Community land. As a sovereign nation, the Community must grant permission to the State and resocial Resolution GR-126-00 before any alternatives that would cross Community land can be developed. If permission were granted and (after being studied) an action alternative on Community land were subsequently identified as the Selected Alternative, the Community would have to grant additional permission to ADOT and FHWA to construct the alternative.

Despite the efforts to formally study an alternative in detail on Community land, ADOT and FHWA have determined that an alternative alignment on Community land is not feasible. The EIS process of evaluating the proposed action in locations other than on Community land will continue and, in so doing, the process maintains consideration of a range of reasonable alternatives.

➤ Treatment of the South Mountains as Resources Afforded Protection under Section 4(f) of the FEIS Stage – The geographic and regulatory relationship of the proposed action to resources of the South Mountains afforded protection under Section 4(f) of the Department of Transportation Act influences both the alternatives under study and Community coordination. Details can be found in Chapter 5, Section 4(f) Evaluation.

First-tier Screening Results

From the many alignments assessed with respect to termini, location, system operational performance, impact avoidance or reduction, and local access, the project team created alignment alternatives that:

➤ best fit the intent of the numerous alignment alternatives suggested
➤ conformed to design standards
➤ avoided major conflicts with known environmental constraints

The following are examples of how alignment alternatives were adjusted:

➤ Some alignment alternatives provided by the public would have the proposed action located in place of
Some alignment alternatives were placed down the main channel of the Salt River to avoid major conflicts with residential, commercial, and industrial uses. Such alignments would have substantial water-related impacts and be subject to regulation under Section 404 of the Clean Water Act (CWA) (see the section, Waters of the United States, beginning on page 4-116). Therefore, alignments were adjusted to avoid these potential effects.

Certain alignment alternatives would have affected SMPP. Because SMPP is a resource afforded protection under Section 4(f), alignments were adjusted to reduce impacts on the resource [see Chapter 5, Section 4(f) Evaluation, for additional detail].

Western Section

Figure 3-1 illustrates the location of the mountains relative to the Community boundary. The previous bullet described why alternatives could not be studied in detail on Community land. As such, any alignment alternative located within Corridor G (south of the mountains and north of the Community) would have to pass through the mountains to connect to Corridor F. Having an alignment through the mountains, though, would be consistent with what has been planned since the mid-1980s. In published regional and local planning documents and in updates to those documents since the mid-1980s, a freeway similar to the proposed freeway is clearly shown passing through the mountains.

Figure 3-6 illustrates the locations of the resulting nine alignment alternatives in the Western Section. As part of this step, a report (Alternatives Screening Report [2003], see sidebar on page 3-2) was developed to detail anticipated impacts for each of the nine technical alternatives using criteria relating to traffic performance, design, environmental considerations, and planning-level cost estimates. In the report, the alignment alternatives were referred to as Technical Alternatives T01 through T09 (see Figure 3-6). The project team, including key stakeholders, determined which alternatives best satisfied the screening criteria, and these alternatives were then carried forward for subsequent analysis and possible inclusion in the FEIS.

Eastern Section

Figure 3-6 illustrates the locations of the nine alignment alternatives in the Eastern Section carried forward into the next step of the screening process.

Other Alternatives Eliminated from Further Study

In this screening step, in addition to refining alignments in the corridors in the Western and Eastern Sections, alternatives identified outside the Study Area were subjected to a screening analysis. The Riggs Road Alternative and SR 85/Interstate 8 (I-8) Alternative were assessed using criteria presented for the corridor and Western Section First-tier screening processes. A description of each alternative and reasons for its elimination are provided below.

Riggs Road Alternative

The Riggs Road Alternative would replace 51st Avenue south of its connection to I-10 (Papago Freeway) for approximately 21 miles. It would then replace approximately 4 miles of Beltline Road in an easterly direction. At the Riggs Road/SR 347 intersection, the alternative would replace approximately 3 miles of Riggs Road before connecting to I-10 (Maricopa Freeway) at the existing I-10/Riggs Road service traffic interchange.

Nearly two-thirds of the alternative would be on Community land. While the Riggs Road Alternative would serve regional mobility needs, particularly of those living in the Maricopa area, meeting this travel demand would not address any specifically identified planning goals for an integrated regional transportation network. The RTP identifies the proposed action as a critical link in the Regional Freeway and Highway System, both in completing it and in optimizing overall system performance as well as that of specific existing links such as SR 202L (San Tan Freeway). The Riggs Road Alternative would not complete the loop system as part of SR 202L, thereby causing substantial out-of-direction travel for motorists. Therefore, the alternative would not meet the proposed action’s purpose and need criteria and was eliminated from further study.

SR 85/I-8 Alternative

The SR 85/I-8 Alternative would begin at I-10 approximately 32 miles west of downtown Phoenix and would either replace or widen SR 85 for approximately 33 miles south before connecting to I-8 in Gila Bend. It would then replace or widen I-8 for approximately 63 miles east before reconnecting with I-10 at Casa Grande, approximately 56 miles south of downtown Phoenix (see map on page 3-64). SR 85 is currently being reconstructed as a four-lane, divided highway with limited-access control, and I-8 is a four-lane, divided Interstate freeway with full access control. Existing signs at each terminus designate the route as a truck bypass of downtown Phoenix. This route would continue to be available for interstate and inter-regional travel, but it does not meet the proposed action purpose and need as part of a regional transportation network and, therefore, it was eliminated from further consideration.

Technical Alternatives Screening (Second Tier)

Western Section

The operational characteristics of the nine technical alternatives in the Western Section were compared to determine whether any of the technical alternatives could be eliminated from further study. Traffic modeling results were used to assess how simulated traffic would travel on the technical alternatives and how the traffic from the alternatives would interact with traffic on I-10 (Papago Freeway) (Alternatives Screening Report [2003], see sidebar on page 3-2).

The technical alternatives were based on an assessment of operational performance combined with consideration of other criteria (e.g., displacements and relocations, traffic performance, compliance with design standards, preliminary R/W requirements, and planning-level cost estimates).

Eastern Section

The nine Eastern Section alternatives were screened primarily on the severity of community-related impacts (e.g., displacements and relocations, community character and cohesion impacts). Other factors were also considered (e.g., operational characteristics, compliance with design standards, preliminary R/W requirements, planning-level cost estimates).
As a result of the First-tier screening, nine alternatives in the Western Section and nine alternatives in the Eastern Section were carried forward for further study.
Second-tier Screening Results

Western Section

Four of the nine technical alternatives were eliminated from further study based on the criteria above. Reasons for elimination of Technical Alternatives T05, T07, T08, and T09 are presented in Table 3-3. While none of the alternatives were completely unacceptable (sometimes referred to as “fatal flaws”), the four eliminated were determined to generate greater operational, environmental, and/or economic impacts than the remaining five alignment alternatives.

The remaining Technical Alternatives T01, T02, T03, T04, and T06 in the Western Section were renamed (see Table 3-4). A key observation from the table pertains to Technical Alternatives T02, T03, and T04: each represents an option associated with a single action alternative in the Western Section that would connect to I-10 at its interchange with SR 101L (Papago Freeway) at its interchange with State Route 101L (Agua Fria Freeway).

Eastern Section

All but one of the alignment alternatives in the Eastern Section were eliminated from further study. Reasons for elimination of the alternatives are presented in Table 3-5.

The remaining alternative, the Pecos Road Alignment (later referred to as the E1 Alternative), would do the most to avoid, reduce, or otherwise mitigate impacts on neighborhoods immediately north of Pecos Road. It would closely follow the published alignment first adopted in the 1980s.

Project Termini and Independent Utility

The Second-tier screening concluded that the three alignment alternatives in the Western Section and one alignment alternative in the Eastern Section, if combined, would connect major traffic generators and

Table 3-3 Western Section Alternatives Eliminated from Further Study, Second-tier Screening, Alternatives Development and Screening Process

<table>
<thead>
<tr>
<th>Location of Alternatives Eliminated</th>
<th>Alternative</th>
<th>Reason for Elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Section Technical Alternatives</td>
<td>T05</td>
<td>Operational failure experienced on I-10 (Papago Freeway) between 83rd Avenue and SR 101L because of two system traffic interchanges within 3 miles of each other</td>
</tr>
<tr>
<td></td>
<td>T07</td>
<td>Operational failure experienced on I-10 (Papago Freeway) between 43rd Avenue and I-17 because of two system traffic interchanges within 3 miles of each other</td>
</tr>
<tr>
<td></td>
<td>T08</td>
<td>Operational failure experienced on I-10 (Papago Freeway) between 43rd Avenue and I-17 because of two system traffic interchanges within 3 miles of each other</td>
</tr>
<tr>
<td></td>
<td>T09</td>
<td>Connection to SR 101L would require sharp curves that would limit the speeds allowed on the freeway to a maximum of 45 miles per hour</td>
</tr>
</tbody>
</table>

Table 3-4 Renaming of Action Alternatives, Western Section

<table>
<thead>
<tr>
<th>Technical Alternative Carried Forward from the Second-tier Screening Process</th>
<th>Alternative Name as Presented in the FEIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Alternative T01</td>
<td>W55 Alternative or W59 Alternative</td>
</tr>
<tr>
<td>Technical Alternative T02</td>
<td>W101 Alternative Western Option</td>
</tr>
<tr>
<td>Technical Alternative T03</td>
<td>W101 Alternative Central Option</td>
</tr>
<tr>
<td>Technical Alternative T04</td>
<td>W101 Alternative Eastern Option</td>
</tr>
<tr>
<td>Technical Alternative T06</td>
<td>W71 Alternative</td>
</tr>
</tbody>
</table>
provide access to the surrounding communities in the western and eastern portions of the MAG region. The potential termini of these alignments (see the text box on the next page) are consistent with the logical termini identified in the section, Project Location, Description, and Current Status, beginning on page 1-4.

Also, the combined alignments would have independent utility (see sidebar regarding independent utility on page 1-4) in that they would:

- not depend on other projects to serve the proposed freeway's purpose
- be usable even if no other transportation-related improvements were made in the Study Area

Table 3-5 Eastern Section Alternatives Eliminated from Further Study, Second-tier Screening, Alternatives Development and Screening Process

<table>
<thead>
<tr>
<th>Location of Alternative</th>
<th>Alternative</th>
<th>Reason for Elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ray Road</td>
<td>• Substantial impacts on traffic performance on I-10 (Maricopa Freeway) based on three system traffic interchanges within a 6-mile segment of I-10 (including I-10/SR 202L/Pecos Road, I-10/Ray Road Alternative, and I-10/US 60f)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Substantial impacts on existing residences, including hundreds of residential displacements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Substantial disruption to community character and cohesion, splitting Ahwatukee Foothills Village</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Loss of road network capacity due to loss of a portion of Ray Road</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Impacts on commercial frontage along Ray Road and developments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added costs to construct a new system traffic interchange and add capacity improvements along I-10 (in addition to what is already planned)</td>
</tr>
<tr>
<td></td>
<td>Chandler Boulevardg</td>
<td>• Substantial impacts on existing residences, including hundreds of residential displacements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Substantial disruption to community character and cohesion, splitting Ahwatukee Foothills Village</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Loss of road network capacity by unplanned loss of portions of Chandler Boulevard and Ray Road</td>
</tr>
<tr>
<td></td>
<td>Central Avenue Extension Tunnel</td>
<td>• Minimal improvement to traffic performance along I-10 (Maricopa Freeway) and regional mobility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Alternative would be an unplanned extension of Central Avenue and would not adequately address capacity deficiencies in the region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• A tunnel under SMPRA: up to 2.5 miles long and cost-prohibitive, undesirable for safety and emergency response, would result in direct use of a resource afforded protection under Section 4(f), and result in disproportionately high construction costs considering the percentage of vehicular trips served</td>
</tr>
<tr>
<td></td>
<td>US 60 Extension to I-10 (Papago Freeway)</td>
<td>• Would cause substantial traffic performance impacts on I-10 (Maricopa Freeway) between SR 202L (Santan Freeway) and US 60 (Superstition Freeway)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Increased undesirable congestion on US 60 (Superstition Freeway) and SR 101L (Price Freeway)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unintended underuse of SR 202L (Santan Freeway)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Would not address needs based on regional travel demand and existing and projected transportation system capacity deficiencies (would not adequately improve regional mobility by shifting traffic from arterial streets to freeways, would not adequately improve travel times)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Substantial impacts on existing residences and businesses, including thousands of residential displacements and over 100 business displacements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Substantial disruption to community character and cohesion, splitting South Mountain Village and constructing a barrier between schools, parks, and residences</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Would not be consistent with local or regional planning, which includes a freeway alternative that completes the loop system as part of SR 202L</td>
</tr>
</tbody>
</table>

Design Options and Refinements (Third Tier)

At this stage of the alternatives development and screening process, the level of design was limited to alignment locations for the proposed freeway. For project designers, however, other features associated with freeway design must be considered, such as:
What should the vertical profile of the freeway look like? Should it be aboveground or belowground? Or should it be a combination of both?

Where should traffic interchanges (see sidebar on page 3-14) with the local arterial streets be located? And how many should there be?

What should the interchanges look like? And what do drivers expect them to look like?

Should the arterial streets go over or under the freeway?

How will drainage for the freeway be treated?

Answers to these types of questions drive project designers to consider different options, weigh the benefits and disadvantages of each, and determine the appropriate option for each design-related issue. This section addresses those key design options and presents those options considered but eliminated from detailed study in the FEIS.

Third-tier Screening Results

Adjustments were made to the Western and Eastern Section alignment alternatives to avoid conflict with sensitive environmental resources (see sidebar on this page) and to optimize traffic performance through improvements in freeway-to-freeway interchange geometry and through local access to and from the alignment alternatives. Examples of adjustments made to the Western and Eastern Section alignment alternatives are shown in Figures 3-7 (see the next page) and 3-8 (see page 3-15), respectively. Design details of the action alternatives are presented in the section, Alternatives Studied in Detail, beginning on page 3-40.

The design options that were considered and eliminated from detailed study in the FEIS are presented in the following text.

South Mountains Avoidance Options

As proposed, the Pecos Road Alignment would pass through the southwestern edge of the South Mountains. This alignment, similar to that planned since the late 1980s, would follow existing terrain except where cuts to the hillside would be needed to pass through the ridgelines (Figures 5-9 and 5-10 on pages 5-16 and 5-17, respectively, illustrate features of the proposed ridgeline cuts).

Local residents and representatives from the City of Phoenix, Ahwatukee Foothills Village, the Community, and the South Mountain Citizens Advisory Team (SMCAT) expressed concerns that these cuts would substantially and adversely affect the South Mountains’ valued resources. In response, design options were developed in an effort to avoid and/or reduce impacts on the mountains. Design options considered fell into these categories:

➤ Build a bridge over the South Mountains.
➤ Build a tunnel under the South Mountains.

Assessment of these design options concluded:

➤ Options to build a bridge over the South Mountains were eliminated from further study because of incident management, constructability, and maintenance issues; future expansion limitations; substantially higher estimated construction costs; and undesirable intrusion-related impacts. (Additional information is provided in the section, Bridge Alternatives, beginning on page 5-20.)
Traffic would gain access to the proposed freeway using system and service traffic interchanges. System traffic interchanges are interchanges connecting a freeway with another freeway, such as the I-10/I-17 Stack in downtown Phoenix. Service traffic interchanges provide freeway access to and from the local arterial street network, such as I-10 at 7th Avenue in downtown Phoenix. The action alternatives would use two types of system traffic interchanges:

- Three-leg directional interchange
- Four-leg directional interchange
- Single-point urban interchange
- Diamond interchange
- Van Buren Street interchange was redesigned to avoid Tolleson High School recreational fields, a resource afforded protection under Section 4(f). (Estrella) City Services Complex-Estrella
- Lower Buckeye Road interchange was redesigned to avoid direct use of the Santa Marie Townsite, a resource afforded protection under Section 4(f).
- The Van Buren Street interchange design associated with the W55 Alternative was altered to reduce impacts on the fuel tank farm.
- The W101 Alternative would connect to I-10 (Papago Freeway) at proposed new interchange ramp configurations.
- The major challenge in designing system traffic interchanges is ensuring efficient and safe conveyance of traffic in various directions. Design options considered for the system traffic interchanges were vertical profiles, horizontal alignments, and existing service traffic interchange ramp configurations.
- The action alternatives in the Western Section (except for the W101 Alternative—see the next paragraph) would connect to I-10 (Papago Freeway) at proposed new system traffic interchanges, and existing service traffic interchanges would be reconfigured to minimize disruption of traffic operational performance on I-10. Several ramp configurations for each connection were evaluated for traffic operational characteristics. The results of this evaluation were used as the basis for eliminating ramp configurations from detailed study (Traffic Report [2007], see sidebar on page 3-2). Additional information is presented in the section, System Traffic Interchanges, on page 3-48, and Alternation of Existing Service Traffic Interchanges, on page 3-52.

The W101 Alternative would connect to I-10 (Papago Freeway) at the existing system traffic interchange with SR 101L. (Agua Fria Freeway). Design configurations varied in the following ways:

- removal of the existing system interchange to construct a new system traffic interchange to the west or partial reconstruction of the existing system traffic interchange
- retention of an at-grade profile or use of bridges to reduce community impacts
- replacement of a section of 99th Avenue or use of a location shifted ¼ mile east of 99th Avenue

Through an iterative process using multiple criteria (with a focus on impacts on Tolleson and Avondale), options were eliminated from detailed study (SR 202L/SR 101L Direct Connection Alternatives Screening Report [2003] and SR 202L/SR 101L Direct Connection Alternatives along 99th Avenue and ¼ Mile East Memorandum [2004], see sidebar on page 3-2). A description of the options carried forward for further study is presented in the section, System Traffic Interchanges, on page 3-48, and Alternation of Existing Service Traffic Interchanges, on page 3-52.
W101 Alternative – Alignment Options

Table 3-4 on page 3-11 notes the W101 Alternative has three alignment options (Western, Central, and Eastern) approaching its connection to I-10 (Papago Freeway). Alignment options were considered for the W101 Alternative Western Option near Tolleson. In this area, the alternative would have passed through the city, generally following the alignment of 97th Avenue (if it existed) or by replacing 99th Avenue. For each, various designs were considered in attempts to reduce impacts on land uses in the immediate vicinity. The design options that would have replaced 99th Avenue were eliminated from further study because of greater business impacts, undesirable traffic and access operational considerations, and greater comparative costs (W101 Options Screening Memorandum [2006], see sidebar on page 3-2).

E1 Alternative – Pecos Road Variations

As highlighted in Chapter 6, Comments and Coordination, local residents and representatives from the City of Phoenix, Ahwatukee Foothills Village, and the SMCAT expressed concerns that the Pecos Road Alignment of the E1 Alternative would degrade air quality and would introduce substantial visual and noise intrusions into Ahwatukee Foothills Village and its surroundings, adversely affecting the social characteristics of the community (see Table 4-9, Impacts on Community Character and Cohesion, Action Alternatives, beginning on page 4-24, regarding impacts on Ahwatukee Foothills Village). Ongoing requests to depress the freeway through the area led ADOT and FHWA to examine two design options for this segment of the proposed freeway. The first was to develop and examine depressed freeway options. The second was to place the freeway on the utility easement located immediately south of the Pecos Road R/W (E1 Alternative – Profile Variations along Pecos Road Memorandum [2009], see sidebar on page 3-2).

Depressed Freeway Options

As proposed, the E1 Alternative would have a rolling profile [see the section, E1 Alternative (Preferred Alternative), on page 3-48, for more information]. With the exception of the proposed freeway segments passing through ridgelines of the South Mountains, the freeway would be at or near existing ground level but would be elevated to pass over existing arterial streets. As a basis of understanding, a profile for a freeway—and its resulting dimensions (e.g., R/W width)—is generally controlled by considerations such as:

- **Drainage** – For driver safety, freeways are designed to allow stormwater runoff to cross. This can be accomplished in a number of ways. Examples are to provide:
 - culverts to allow the runoff to cross under the freeway where it would cross naturally
 - channels to intercept runoff and direct it to another location to cross the freeway
 - retention/detention basins to collect the runoff to either meter the flow of water or to redirect it to another location
 - a combination of the above

- **The size of these facilities is a function of “storm events.” Storm events are based on historic data used to predict worst-case storms during a given period. Based on historic data, a 50-year storm, for instance, is one that has a likelihood of occurring only once in 50 years. ADOT uses a minimum 50-year storm to gauge the size of drainage facilities needed for a project.**

- **Subsurface conditions** – For example, a high groundwater table would need special drainage design requirements for a depressed freeway that otherwise could be avoided by using an at-grade design. Also, underground utility lines can influence the profile design; relocation of major utility lines can be extremely costly and must be considered in the context of ADOT’s fiscal responsibility.
The South Mountains are a highly valued resource to Arizona communities (see text beginning on page 5-14 to learn more about the importance of the South Mountains). As designed, the proposed action would alter some of the mountain range’s natural landscape by converting it to a transportation use and by causing visual scars from the freeway cutting through mountain ridgelines (see the photo simulation on the left, next page). In addition, concerns have been expressed that the ridgelines (see the photo simulation on the left, next page) will generate other desirable or undesirable outcomes.

1. A tunnel’s dimensions and its distance below ground are dictated by existing geological conditions and available construction technology. When coupled with appropriate safety considerations, these factors basically determine a single tunnel’s size or tunnel conditions.

2. Once geologic and construction capabilities are determined, operational needs are considered, including the number of lanes, safe sight distances and safety features, maintenance features, and security issues. These considerations are used to determine whether the operational needs can be met with the tunnel conditions outlined or whether more than one tunnel (located adjacent to each other) would be needed.

3. Finally it is necessary to determine whether the tunnel(s) would be sufficiently deep and long to avoid or reduce impacts on the surrounding environment.

When considered together, these factors helped determine the minimum acceptable tunnel dimensions (height and width), distance below ground, number of adjacent tunnels to accommodate all of the freeway lanes, tunnel length and location, and possible construction techniques. In determining what type of tunnel could be built, ADOT and FHWA balanced traffic performance against existing technological capabilities. Tunneling options were also assessed to determine the feasibility of their construction and maintenance, to determine their effectiveness in avoiding or reducing impacts to the South Mountains, and to assess whether tunneling through the mountain range would generate other desirable or undesirable outcomes.

Three tunnel configurations were considered. All the configurations were located along the same alignment as the proposed freeway. The three graphics to the left illustrate the issues involved with each of these configurations. Based on the assessment, summarized below, tunneling options were eliminated from further detailed study. (Phoenix South Mountain Park/Preserve and Traditional Cultural Property Avoidance, Ridge Bridge – Tunnel Analysis Memorandum [2009], see sidebar on page 3-2)

Safety and Constructibility – Tunnel options would create undesirable safety issues. Emergencies would result in complex response planning for traffic control, fire detection, ventilation and exhaust, and fire safety systems. There are security concerns with tunnels on urban freeways being considered potential terrorist targets (American Association of State and Highway Transportation Officials [AASHTO] 2003). It is possible that the entire segment of the proposed action would have signs installed warning that transportation of hazardous cargo is prohibited. (For more information on the transport of hazardous materials, see page 4-166.)
Tunneling under the South Mountains (continued)

The proposed freeway is being constructed with eight lanes. In an ideal situation, all lanes of traffic moving in one direction would be in one tunnel (see “ideal,” in the top graphic). For the proposed freeway’s eight lanes, this would result in two tunnels, each approximately 92 feet wide. The four-lane tunnels would not be possible with current construction technology. A review of tunnels constructed in the United States and around the world indicates that 80 feet is the maximum practicable limit for tunnel excavation under ideal conditions, about 12 feet narrower than would be necessary for the ideal option.

The only option that appears constructible using current technology would use three or four tunnels, splitting HOV traffic into a single tunnel or individual tunnels (see “constructible” options A and B in the graphic to the left). The three-lane tunnels would require an 80-foot width, at the limit of constructibility for any known existing tunnels in the United States. Because of the variable nature of site-specific geology (including dangers that could arise from encountering fractured rock), it is not possible at this time to determine specific dimensions of a maximum feasible tunnel width.

Both ADOT and FHWA believe that an 80-foot tunnel option would result in unacceptable safety concerns, with diverging traffic and increased constructibility challenges. (As a side note, readers may have observed that the I-10 tunnel through downtown Phoenix accommodates more than five lanes in each direction. However, it is not actually a tunnel. Instead, it is an open cut, capped with a “deck” [a city park] supported by load-bearing concrete walls. This is why the structure is called the “Deck Park Tunnel.”)

Impacts - The desired effects from tunnel options—avoidance of the conversion of parkland to a transportation use, intrusion of an intensive use into a passive setting, avoidance of the conversion of parkland to a transportation property, and loss of habitat—would not be fully achieved. Tunneling under the South Mountains is not new. In the late 1980s, similar concerns regarding impacts on the South Mountains were expressed by the public, and tunnel options were studied as part of the design process undertaken in 1988 (ADOT 1988b). Reasons to eliminate the tunnel options from further study at that time are consistent with the conclusions reached in this study and presented in this document.

The assessment and its conclusions also have direct applicability to other federal regulations guiding the analysis of alternatives in the NEPA process, specifically to the evaluation of alternatives as outlined under procedures established to protect resources afforded protection under Section 4(f) of the Department of Transportation Act. [See Chapter 5, Section 4(f) Evaluation, for further discussion regarding the evaluation.]

Costs would include full-time personnel for operation and maintenance of ventilation equipment and drainage structures, rockfall protection maintenance at the portals, and tunnel rehabilitation. Annually, these costs are estimated to range from $1.5 million to $2 million. Further, regular maintenance would require tunnel closures lasting a weekend and would require undesirable traffic detour planning and routing.

Construction Cost - Preliminary construction costs for the tunnel options range from approximately $215 million to $1.9 billion, depending on length and excavation (see section, Tunnel Alternatives, beginning on page 5-18). The estimate for the same segment of the proposed action (open cut) is approximately $41 million. Considering that current technology does not allow for construction of tunnels that would meet the ideal characteristics and that tunnel options would not fully achieve the desired outcomes, ADOT and FHWA have determined the additional costs presented by tunnel options would not be warranted and, therefore, not justified. ADOT and FHWA would implement mitigation measures as outlined beginning on page 5-23 to reduce impacts from the proposed action on the South Mountains. For the reasons stated, the tunnel options were eliminated from further study. The study of tunnel options through the South Mountains is not new. In the late 1980s, similar concerns regarding impacts on the South Mountains were expressed by the public, and tunnel options were studied as part of the design process undertaken in 1988 (ADOT 1988b). Reasons to eliminate the tunnel options from further study at that time are consistent with the conclusions reached in this study and presented in this document. The assessment and its conclusions also have direct applicability to other federal regulations guiding the analysis of alternatives in the NEPA process, specifically to the evaluation of alternatives as outlined under procedures established to protect resources afforded protection under Section 4(f) of the Department of Transportation Act. [See Chapter 5, Section 4(f) Evaluation, for further discussion regarding the evaluation.]
Drainage design options

Drainage design for the depressed profile option included a number of concepts that have been implemented along freeways in the Phoenix area. The photos below provide examples.

➤ Surrounding environment – For example, public comments suggest a depressed freeway would be more effective than an at-grade rolling profile in reducing impacts on adjacent land uses that may be sensitive to the freeway's effects. It cannot be assumed, however, that a depressed freeway would reduce all noise and visual impacts. Noise walls, which could affect visual quality, would still be necessary on a depressed freeway.

Drainage served as the primary design constraint for the Pecos Road segment of the E1 Alternative. Runoff from the South Mountains follows mostly natural drainage patterns as it flows to the southwest through Ahwatukee Foothills Village, across Pecos Road, and onto Community land. The Community has documented concerns relating to the quantity, quality, and location of drainage released onto its land. These concerns have controlled drainage design on other Regional Freeway and Highway System segments such as SR 202L (Santan Freeway).

ADOT and FHWA employed these factors in considering a depressed profile option for the proposed freeway. Assessments were performed to determine constructibility and effectiveness in avoiding or reducing impacts and to evaluate whether a depressed profile would generate other desired or undesired outcomes. Based on the results of these assessments, further design options were developed and refined in attempts to reduce impacts on the adjacent community. The modifications incorporated alternative drainage designs, use of retaining walls, and other features to reduce R/W requirements.

Four drainage concepts were developed for a depressed profile through Ahwatukee Foothills Village and its surroundings: the use of linear channels, underground storage, off-site detention basins, and channels (see sidebar on this page).

To summarize the results presented in the ADOT technical memorandum, E1 Alternative – Profile Variations along Pecos Road (2009), see sidebar on page 3-2, the depressed freeway options would create:

➤ Drainage design complexities – The existing drainage facilities adjacent to and passing under Pecos Road are designed to accommodate a 10-year storm. According to ADOT guidelines, the drainage facilities for on-site flow (water falling on the proposed freeway) must accommodate a 10-year storm and facilities for off-site flow (water passing under the proposed freeway from upstream areas) must accommodate, minimally, a 50-year storm. It is assumed that outflow onto Community land would be maintained at the current flow and location. Using a rolling profile for the roadway, maintenance of the existing flow would need extension of the existing drainage structures and construction of small drainage basins at regular intervals.

➤ With a depressed freeway section, drainage facilities for both the on- and off-site flows would, at a minimum, have to accommodate a 50-year storm for driver safety. The depressed freeway section would sever the existing drainageways, resulting in the need to develop new and potentially larger facilities, including four to six pump stations. Because any drainage design option associated with a depressed freeway option would not be allowed to exceed existing outflows, more water would need to be stored upstream, resulting in the need to develop large drainage basins and, therefore, acquire more R/W. Also, redistributing the water to its original drainage pattern would be more difficult once it has been collected into a basin.

➤ Greater R/W needs than the at-grade rolling profile under study – Approximately 150 additional acres would be needed when compared with the at-grade rolling profile under study.

➤ More residential displacements – As a result of the increased R/W needed, between 152 and 326 more residences would be displaced, depending on the drainage design option considered when compared with the at-grade rolling profile.

➤ Increased costs – The total construction costs for the depressed freeway options would be nearly 50 percent higher when compared with the at-grade, rolling profile under study for this area of the proposed action. Costs would increase from $761 million for the at-grade, rolling profile option to $1.23 billion to $1.26 billion for the depressed freeway options.

The majority of the additional $469 million to $499 million is for R/W, approximately 90 percent, while the remaining 10 percent is for construction.

➤ Impacts on Ahwatukee Foothills Village – The public generally perceives that a depressed freeway would reduce and/or eliminate impacts on visual resources and freeway-related noise. Visual and noise-level impacts from operation of the proposed E1 Alternative would, however, still occur and would require mitigation, as would be the case for the at-grade rolling profile.

For these reasons, the depressed freeway options were not carried forward for further study. Instead, the rolling profile was carried forward. Maintaining the existing flows onto Community land with a rolling profile would require extension of the existing drainage structures and the construction of small drainage basins at regular intervals.

Utility Easement Options

Another option suggested to reduce impacts on Ahwatukee Foothills Village would be to locate the Pecos Road Alignment on the utility easement immediately south of Pecos Road. The concept would be to construct the freeway on the existing utility easement, as close to the Community boundary as possible, thereby providing additional separation from the neighborhoods north of Pecos Road in Ahwatukee Foothills Village. To achieve this design, the power lines would be relocated from the southern side of the proposed freeway to the northern side of the proposed freeway in the western portion of Ahwatukee Foothills Village, beginning west of 25th Avenue. The power lines would remain north of the freeway until approximately 32nd Street, where they would cross back to the southern side.

An assessment of the option revealed:

➤ Relocation of the power lines would require acquisition of additional R/W for a utility easement to replace the existing easement. This would result in essentially the same amount of R/W acquisition as would be required with the at-grade, rolling profile under study.

➤ This concept would locate overhead power lines immediately adjacent to residential neighborhoods,
an action that could be perceived as a negative impact.

- Relocation of the 500 kilovolt power lines would cost approximately $2 million per mile, or $15 million for the length considered for relocation, not including R/W costs and prior rights issues (see sidebar on this page).
- Indications from the utility companies are that the lines could not be relocated underground because of the ancillary equipment required (e.g., cooling facilities) and associated costs.

For these reasons, the utility easement option was not carried forward for further study.

Design Adjustments (Fourth Tier)

The action alternatives advanced from the Third-tier screening process were subjected to intensive engineering, cost, environmental, economic, and social analyses, and these action alternatives (along with the No-Action Alternative) were presented to the public for comment at numerous meetings and open houses between 2005 and 2009 (see Chapter 6, Comments and Coordination). During this period, an economic downturn gripped the nation, including Arizona.

According to the draft Annual Report on the Status of the Implementation of Proposition 400 (MAG 2009c), the half-cent sales tax approved through Proposition 400 has been the major funding source for the RTP and provided over half its revenues. Because sales tax receipts have declined (and are projected to continue declining), fiscal year 2008 (the MAG fiscal year begins July 1 and ends June 30) receipts from the one-half cent sales tax were 3.2 percent lower than in fiscal year 2007 (MAG 2009a). This period marked the first decline in the history of the one-half cent sales tax since its inception in 1985. The decline continued with fiscal year 2009 receipts, 13.6 percent lower than fiscal year 2008 receipts. Adding to transportation budget shortfalls, other revenues provided for the RTP have declined and are expected to continue to decline.

In response, MAG began evaluating methods of cutting project costs while still delivering the major RTP elements. The effort included methods to address public concerns (acquisitions of homes, etc.) and reduce costs, R/W needs, and other impacts for this project.

The effort, a Fourth-tier screening process, resulted in considering other alternatives to a freeway, reducing or “constraining” the freeway and its R/W, and making alignment adjustments. Each of these cost-cutting measures is further discussed below.

Alternatives to a Freeway

To reduce costs and impacts of the proposed freeway, the project team considered use of what is termed the Arizona Parkway as an alternative to an access-controlled freeway (see sidebar on this page). The parkway is a nonfreeway, restricted-access facility having greater capacity than major urban arterial streets. The parkway alternative, by design, would provide additional travel capacity without needing full grade separations at intersections with arterial cross streets. In the best-case scenario, average daily traffic (ADT) on the parkway would be approximately 105,000 vehicles per day (vpd), well below the ADT on the proposed freeway, which would range from 117,000 to 190,000 vpd. As a result, the Arizona Parkway would lack sufficient capacity to meet projected travel demand. The Arizona Parkway would not adequately address the projected transportation system capacity deficiency and would not remove a sufficient amount of traffic from the arterial street network and, therefore, would not meet the proposed project’s stated purpose and need. For these reasons, the Arizona Parkway was eliminated from further consideration.

This analysis reinforced that a freeway corridor was the appropriate infrastructure facility; means to reduce the R/W acquisition needs and other costs associated with a freeway facility were reviewed by MAG.

Constrained R/W Eight-lane Freeway

To continue in its efforts to undertake cost-cutting measures, MAG, in association with ADOT, examined design refinements that would reduce the R/W width proposed for the freeway without jeopardizing the ability to meet the purpose and need established for the proposed project. The action alternatives advanced from the Third-tier screening process were designed with a freeway cross section that provided three general purpose lanes in each direction and sufficient R/W to add an HOV lane and a general purpose lane in each direction in the median in the future when warranted by travel demand. In addition, the proposed freeway was designed to have side slopes based on ADOT design guidelines, thereby avoiding the need for retaining walls. The Fourth-tier evaluation included an alternative design with a reduced number of lanes (three general purpose lanes and one HOV lane in each direction) and a constrained R/W (see text box on the next page regarding constrained and unconstrained R/W).

The analysis assumed that while the freeway with a constrained R/W section would not preclude future expansion of the freeway, it would make any future widening much more expensive and considerably more disruptive to freeway operations when compared with the unconstrained cross section. Examples of these issues include:

- Widening the freeway through the South Mountains’ ridges would be highly challenging because the additional lanes could encroach on the rockfall containment ditches and could need additional excavation of the mountain ridges.
- Reconstructing on- and off-ramps while widening the freeway to the outside could be disruptive to motorists because the ramps may need to be closed for an extended period of time.
- Removing and reconstructing noise barriers and retaining walls to accommodate additional freeway lanes would be very costly.

The MAG regional travel demand model was used to compare the operational performance of the unconstrained R/W section (four general purpose lanes and one HOV lane in each direction [ten-lane freeway]) and constrained R/W section (three general purpose lanes and one HOV lane in each direction [eight-lane freeway]).

The analysis was conducted to determine whether the reduced number of lanes in the constrained R/W freeway would still meet the need of the proposed freeway.
Many of the recently completed segments of the Regional Freeway and Highway System have been constructed with sufficient R/W for three general purpose lanes in each direction and with the flexibility to accommodate an additional HOV lane in the median without having to acquire more R/W. Any additional general purpose lanes would require widening to the outside, which could trigger acquisition of more R/W and reconstruction of traffic interchanges along the freeway alignment.

Learning from the benefits and challenges of this design, the South Mountain Freeway typical section (number of lanes and R/W) initially considered in the FEIS would have allowed for widening to accommodate one general purpose lane and one HOV lane in the median, thus reducing future costs and community impacts associated with additional lanes. This typical section (a ten-lane freeway) would also have used desirable side slopes according to ADOT design guidelines in lieu of retaining walls.

In 2009, to reduce initial project costs and community impacts, the South Mountain Freeway typical section was reconfigured to three general purpose lanes and one HOV lane in each direction (an eight-lane freeway). In addition, the needed R/W for this section was further reduced by using retaining walls instead of side slopes where additional R/W cost savings would be realized.

The methods used for this analysis were identical to those presented in Responsiveness of the Proposed Freeway to Purpose and Need Criteria, beginning on page 3-27. It is important to note that with the reduction in number of lanes, the relative capacity of the freeway would be reduced by 20 percent. This loss in capacity would have its greatest effect during the peak commuting periods of the day, when the freeway would be operating at capacity. During off-peak times, the severity of the impact would be less because the demand would be less than the capacity of an eight-lane freeway. Although the analysis showed that there would be traffic-related consequences of reducing the number of lanes of the proposed freeway, the eight-lane freeway would still meet the purpose and need criteria, just not as well as the ten-lane freeway. The summarized results follow:

- The distribution of traffic between arterial streets and freeways (as shown in the cut-line analysis) would be about the same between the eight- and ten-lane freeways. This shows that there would be no reduction in the number of trips, just a redistribution of trips to fill the capacity of the freeway and arterial street network.
- In 2035, the daily traffic volume on the proposed action would decrease by 2,000 to 13,000 vpd with the eight-lane freeway when compared with a ten-lane freeway. This traffic would be spread across the region’s arterial street and freeway networks.
- Daily traffic volumes on other freeways in the region would vary by less than 2 percent (plus or minus) between the eight- and ten-lane freeways. This minimal change is explained by the fact that these other freeways would be operating at capacity; therefore, with the eight-lane freeway, motorists would likely shift to driving on arterial streets to avoid congestion on the region’s freeways.
- Daily traffic volumes on arterial streets in the region would vary by up to 10 percent (plus or minus depending on location) between the eight- and ten-lane freeways.
- According to the cut-line analysis, the ten-lane freeway would accommodate 84 percent of the unmet demand, while the eight-lane freeway would accommodate 80 percent. Therefore, the ten-lane freeway would meet 4 percentage points more of the unmet demand than would the eight-lane freeway. To match the capacity of the ten-lane freeway, two additional freeway lanes or six additional arterial street lanes would need to be constructed along with the eight-lane freeway.
- The differences in the duration of level of service (LOS) E or F on the region’s freeways (not including the proposed action) are depicted in Figures 3-9 and 3-10 for the morning and evening commute, respectively. Although some declines in operations would occur, no substantial changes in the operations of the region’s freeways would be caused by the reduction in the number of lanes on the proposed freeway. Similar to the observation regarding traffic volumes on the region’s freeways, with the eight-lane freeway, motorists would likely shift to driving on arterial streets to avoid congestion on the region’s freeways, which would be operating at capacity.
- At eight lanes, the proposed freeway would have areas of morning and evening LOS E or F for less than 2 hours (see Figure 3-10); these areas would have 0 hour of congestion with the ten-lane freeway. This additional congestion would result from reducing the number of lanes on the proposed freeway.
- The constrained R/W eight-lane freeway (see the section, Alignment Adjustments, beginning on page 3-23) would cost about $200 million less than the ten-lane freeway ($50 million less for construction and $150 million less for R/W). Most of the cost savings associated with the eight-lane freeway would be realized by building retaining walls (rather than slopes that take up a larger area) in areas where land is more expensive, allowing ADOT to avoid higher R/W acquisition costs. Reducing the number of lanes from ten to eight would narrow the freeway footprint by 24 feet.

From this analysis, it was concluded that the constrained R/W freeway (eight-lane freeway) would address the purpose and need criteria as described in Chapter 1, although the unconstrained R/W freeway (ten-lane freeway) would have better performance (less congestion) and would be easier and less expensive to expand in the future, if warranted by traffic demand. The eight-lane freeway, however, would sufficiently address capacity deficiency, would shift an appropriate amount of traffic from the arterial street network to the freeway network, would increase network capacity, and would do so with less R/W acquisition. For example, a ten-lane E1 Alternative would displace 317 residences.
Figure 3-9 Duration of Level of Service E or F on Eight-lane and Ten-lane Freeways, Morning Commute, 2035

Implementation of an eight-lane freeway instead of a ten-lane freeway would not cause major changes to the duration of LOS E or F conditions on the region’s freeways during the morning commute.
The proposed freeway would experience more areas of LOS E or F conditions and areas with longer duration of LOS E or F conditions with the eight-lane freeway than with a ten-lane freeway. This additional congestion would result from reducing the number of lanes on the proposed freeway. The eight-lane freeway, however, would not cause major changes to the duration of LOS E or F conditions on the remainder of the region's freeways during the evening commute.

Source: Maricopa Association of Governments, 2013c; extrapolated analysis
but an eight-lane E1 Alternative would displace 138 residences—a 56 percent reduction. Because the eight-lane freeway would meet the proposed project’s purpose and need and would do so with lower costs, less R/W acquisition, and fewer impacts than the ten-lane freeway, it was carried forward for further consideration. Accordingly, the ten-lane freeway was eliminated from further consideration.

Alignment Adjustments

In 2009, MAG suggested that a portion of the W55 Alternative (advanced from the Third-tier screening) could be shifted west onto 59th Avenue to take advantage of R/W owned by the City of Phoenix and to reduce cost and business displacements. Further analysis was conducted related to alignment, traffic operations, construction impacts, and environmental considerations (W59 Alternative Environmental and Engineering Overview, 2010), see sidebar on page 3-2.

As shown in Figure 3-7, this shifted alignment (called the W59 Alternative) would connect to I-10 (Papago Freeway) at 59th Avenue and offer the following advantages and disadvantages:

➤ would enable better I-10 traffic performance than would be achievable with the W55 Alternative
➤ would offer certain design advantages over the W55 Alternative such as perpendicular crossings of the canal, railroad, and I-10
➤ would be preferred from a security perspective because it would be farther from the petroleum storage facilities at 51st Avenue and Van Buren Street
➤ would not reconstruct the 51st Avenue Bridge at I-10
➤ would require the relocation of fewer businesses
➤ would require the relocation of utilities along 59th Avenue
➤ would cause increased disruption of traffic during construction along 59th Avenue
➤ would eliminate direct access from I-10 to 59th Avenue and vice versa (indirect access would be provided by a system of access roads connecting to 51st and 67th avenues)
➤ would require the relocation of more single-family residences and two apartment complexes

In developing the W59 Alternative, two location options and two drainage channel configuration options were considered between Van Buren Street and Lower Buckeye Road. The two location options considered a W59 Alternative to the west of 59th Avenue and to the east of 59th Avenue. The two drainage channel configuration options both needed the drainage channel to be located on the eastern side of the W59 Alternative to capture the surface water generally flowing from the east. However, the channel could be located either between the freeway and frontage road or east of the frontage road. Ultimately, through analysis of projected impacts, ADOT, MAG, and the City of Phoenix determined that the best location of a drainage channel for the W59 Alternative is west of 59th Avenue between Van Buren Street and Lower Buckeye Road and that the drainage channel would be located between the freeway and the frontage road. The other options were eliminated from further study.

Alignment Description

The W59 Alternative would follow the W55 Alternative alignment south of Lower Buckeye Road. North of Lower Buckeye Road, the W59 Alternative would remain parallel and adjacent to 59th Avenue on its western side. The W59 Alternative would use a portion of the existing 59th Avenue R/W owned by the City of Phoenix. In this area, approximately between Van Buren Street and the Roosevelt Irrigation District (RID) canal, existing 59th Avenue traffic would be carried on either side of the proposed freeway on frontage roads (see sidebar on this page). Southbound 59th Avenue traffic would be placed on a frontage road on the western side of the proposed freeway, and northbound 59th Avenue traffic would be located on a frontage road on the eastern side of the freeway. Access would be provided to and from 59th Avenue for the properties adjacent to the frontage roads. The frontage roads and the freeway would be separated by walls, with on- and off-ramps providing movement between the facilities, at approximately every mile. The frontage roads would be two lanes wide on each side of the W59 Alternative. The W59 Alternative would connect to I-10 (Papago Freeway) with a system traffic interchange. Connecting the proposed freeway to I-10 (Papago Freeway) would result in modifications to the existing service traffic interchanges (see Figure 3-29 on page 3-53).

Operational Comparison of W55 and W59 Alternatives

The W55 Alternative included service traffic interchanges that would have been close to the existing intersections of 59th Avenue with Buckeye Road and with Van Buren Street—leading to an undesirable situation along Buckeye Road and Van Buren Street where three major signalized intersections would have been located within a 14-mile distance. With the W59 Alternative, 59th Avenue would be incorporated into the freeway as a frontage road system. Therefore, there would be only two signals at each arterial street, and they would be coordinated to handle 59th Avenue and I-10 (Papago Freeway) ramp traffic.

According to a traffic sensitivity analysis using 2035 traffic projections, the intersections associated with the W55 Alternative would reach LOS F with lower traffic volumes than would the intersections associated with the W59 Alternative. This observation is consistent for both the morning and evening commutes as well as at both the Buckeye Road and Van Buren Street intersections. In summary, the W59 Alternative frontage road system would handle higher traffic volumes better than would the W55 Alternative with closely spaced intersections.

A microsimulation model was used to evaluate traffic conditions on I-10 at the connections with the W55 and W59 Alternatives. This model provides numerous measures of effectiveness for evaluating freeway-to-freeway connections. No single metric tells the entire story of the operational characteristics of the model. In this case, delay per vehicle and average travel time were chosen as measures of effectiveness for the analysis of the W55 and W59 Alternatives because they were distinguishing characteristics between the two alternatives.

The model showed that I-10 would function better with the W59 Alternative. This is because the W59 Alternative would have a more compressed system traffic interchange with I-10 that would provide better spacing between adjacent on- and off-ramps for the 67th Avenue and 51st Avenue traffic interchanges. Conversely, the W55 Alternative would have additional on- and off-ramps that would cause more issues with traffic weaving.
as drivers would try to get on and off I-10. Under the W59 Alternative, drivers would experience fewer delays and shorter average travel times. Additionally, the construction area along I-10 would be shorter with implementation of the W59 Alternative than with the W55 Alternative: 4 miles versus 5 miles (W59 Alternative Environmental and Engineering Overview [2010], see sidebar on page 3-2).

Construction Impacts

The W55 Alternative would have required a complex, skewed bridge where the freeway would have spanned both 59th Avenue and the R&D canal. Although design concepts were developed that would have accommodated these constraints, construction would have been more expensive than with a traditional bridge overpass and would have caused extensive disruption to local traffic along 59th Avenue. These complex design and construction methods would not be needed with the W59 Alternative.

The W59 Alternative would not reconstruct the 51st Avenue Bridge at I-10. The W59 Alternative would cross the UP RR tracks on a grade-separated structure. 59th Avenue traffic on the frontage roads would cross using two grade-separated structures: one for the northbound frontage road and one for the southbound frontage road. Coordination with UP RR would be required to determine the necessary design considerations and concerns.

Environmental Considerations

Environmental information was reviewed to determine whether the W59 Alternative or W55 Alternative offered any important advantages or constraints over each other. The major differentiators between the alternatives related to displacements and security. Table 3-6 summarizes the anticipated displacement effects of the W59 and W55 Alternatives.

During 2006, ADOT held numerous meetings with business owners, the City of Phoenix, and the Arizona Department of Homeland Security regarding the petroleum storage facilities at 51st Avenue and Van Buren Street. This tank farm provides the majority of fuel for Phoenix Sky Harbor International Airport and is considered by the City of Phoenix and the State of Arizona as a potential terrorist target. As a result of the stakeholder meetings, the W55 Alternative was considered viable if specific security measures were incorporated during construction. The measures included security barriers on the eastern side of the freeway and ramps. The barriers would reduce the potential of vehicles deliberately driving off the freeway and would reduce the tank farm’s visibility from the freeway. Additionally, security cameras would be installed to monitor the security barrier and property line. These precautions would not be necessary with the W59 Alternative.

Fourth-tier Screening Results

Fourth-tier screening analyses led to the following conclusions:

➤ A freeway is still needed, and a lower-capacity facility (Arizona Parkway) would not meet the purpose and need for the proposed project.

➤ Reducing the number of through lanes by two (to result in an eight-lane freeway) and reducing the R/W needed for the proposed freeway would still meet the purpose and need established for the project at a lower cost and with fewer impacts.

➤ Although the constrained R/W for the eight-lane freeway would not preclude future expansion of the freeway, it would make any future widening considerably more disruptive to traffic and to nearby residents and businesses and would be much more expensive.

➤ Because the W59 Alternative would connect to I-10 at an existing service traffic interchange, I-10 (Papago Freeway) traffic would be less affected and have fewer ramp closures, which would be preferable to the greater I-10 operational impacts under the W55 Alternative.

➤ Although the W59 Alternative would cost approximately 3 percent more than the W55 Alternative, the project team determined the operational benefits to I-10 to be worth the additional expense.

Because of the factors discussed above, the W59 Alternative was carried forward and the W55 Alternative was eliminated from further consideration.

Table 3-6: Comparison of Displacements, W55 and W59 Alternatives

<table>
<thead>
<tr>
<th>Effect</th>
<th>Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business displacements</td>
<td>W55: 64</td>
</tr>
<tr>
<td></td>
<td>W59: 40</td>
</tr>
<tr>
<td>Single-family residential displacements</td>
<td>W55: 19</td>
</tr>
<tr>
<td></td>
<td>W59: 45</td>
</tr>
<tr>
<td>Multifamily residential displacements*</td>
<td>W55: 0</td>
</tr>
<tr>
<td></td>
<td>W59: 680</td>
</tr>
</tbody>
</table>

* numbers represent total number of residential units, not number of structures, and all units may not be occupied

Community Alignment

In January 2010, the ADOT Director received a letter from the Community Governor, who indicated that the Community was willing to assist in conducting a study of the proposed South Mountain Freeway on Community land. The Governor requested that the following concerns be addressed in developing a proposed alignment on Community land:

➤ mitigation of negative impacts of the freeway (noise, trash, etc.)

➤ avoidance of cultural sites and culturally important properties

➤ preservation of traditional routes and wildlife corridors between the Sierra Estrella and the South Mountains

➤ reduction of truck and commuter traffic on 51st Avenue and Beltline Road

In response, the project team conducted preliminary analyses of projected engineering issues, cultural resources impacts, natural resources, multiuse crossings, air quality impacts, noise level impacts, socioeconomic impacts, and Section 4(f) issues. The project team created preliminary designs for major features of the potential freeway alignment (termed the Community
Alignment, Figure 3-11), including proposed freeway cross sections, horizontal and vertical alignments, service traffic interchanges, modifications to local streets and intersections, drainage facilities, bridge structures, major utilities, maintenance needs, landscaping, and aesthetic components. The project team also developed traffic projections for the Community Alignment. The project team compiled a description of current conditions along the Community Alignment and briefly assessed the types of impacts the Community could expect from construction and operation of a freeway along the Community Alignment.

ADOT discussed the results of the preliminary analyses with the Community's Transportation Technical Team in the summer and fall of 2010 and delivered its report on these preliminary analyses in November 2010. Between December 2010 and March 2011, the Community conducted extensive outreach to its members regarding the proposed Community Alignment. After considering the project team's preliminary findings and the comments and concerns of its members, the Community Council approved Resolution GR-164-11 authorizing a referendum of Community members to favor or oppose the construction of the proposed South Mountain Freeway on Community land or to support a no-build option. The Community coordinated referendum occurred in February 2012, and Community members voted in favor of the no-build option. Therefore, the Community Alignment was not carried forward for further study and the E1 Alternative was carried forward as the only action alternative in the Eastern Section.

W59 Alternative Options through Laveen Village

In a letter dated July 18, 2010, the City of Phoenix requested that ADOT and FHWA reexamine the alignment of the W59 Alternative near Dobbins Road in Laveen Village (see Figure 3-11). The alignment presented to the public in 2005 generally followed 63rd Avenue between Dobbins and Elliot roads. This alignment (termed the 63rd Avenue Option) would avoid two historic properties in the area, the Hudson Farm and the Barnes Dairy Barn.
The 63rd Avenue Option would adversely affect the planned Laveen Village core and would conflict with City-approved zoning activities in Laveen Village that occurred in the latter part of the past decade.

The 63rd Avenue Option would not be consistent nor compatible with City of Phoenix long-range plans for the Laveen Village core. To support the creation of the Laveen Village core (as planned since the mid-1980s), the City of Phoenix plans to widen Dobbins Road from two lanes to four lanes (with a center turn lane) and has changed the area’s zoning to accommodate high-intensity commercial and residential land uses. The Laveen Village core is essentially “downtown” Laveen Village (City of Phoenix 2004a).

In the July 18, 2010, letter, the City of Phoenix supported shifting the alignment east approximately ¼ mile to be more consistent with the Laveen Village core plans. This alignment (termed the 61st Avenue Option), however, would affect a historic property in the area, the Hudson Farm.

A public meeting was held in Laveen in February 2011 to present the 61st Avenue Option and 63rd Avenue Option of the W59 Alternative and to gather input regarding local support for protecting the Hudson Farm.

On June 10, 2011, ADOT submitted a formal request to FHWA to consider an alignment on 61st Avenue (through the Hudson Farm property). FHWA, after serious consideration, concluded the agency could not support the 61st Avenue Option because of its impacts on the historic property.

As a result, examination of other potential avoidance alternatives (besides just the 63rd Avenue Option) was undertaken for the W59 Alternative. At the same time, the project team reevaluated the historic properties in the area. This reevaluation confirmed the importance and eligibility for protection from Section 4(f) of the Hudson Farm and Barnes Dairy Barn, but also determined that the Dobbins Road Streetscape was no longer eligible. This finding allowed for greater flexibility in locating freeway alignments in the area. With this new information, the project team evaluated alignments that would be located east of, west of, and between the 63rd Avenue Option and the 61st Avenue Option.

After extensive discussions with the City of Phoenix and MAG, FHWA and ADOT determined that the 62nd Avenue Option (located between the 63rd Avenue Option and the 61st Avenue Option) would avoid historic properties in the area and would not conflict with City-approved zoning activities in Laveen Village; therefore, the 62nd Avenue Option of the W59 Alternative was advanced for further study and the other options were eliminated from further consideration.

Fifth-tier Screening Results

Fifth-tier screening analyses led to the following conclusions:

➤ In January 2010, at the Community’s request, the project team developed an alignment on Community land. However, the Community rejected this freeway alignment. The Community Alignment, therefore, was not carried forward for further study.

➤ After discussions with the City of Phoenix and considering input from the public, the project team adjusted the alignment of the W59 Alternative in the Dobbins Road vicinity from 63rd Avenue eastward to 62nd Avenue. This design adjustment avoided historic properties in the area and better conformed to recent local zoning decisions and with the City of Phoenix’s General Plan with respect to Laveen Village.

Alternatives Development and Screening Process Conclusions

By conducting a multidisciplinary process to screen action alternatives, ADOT, FHWA, and stakeholders participated in an approach in which federal, State, and local agencies (and different departments within those agencies) reviewed and concurred with the alternatives development and screening process. Approaches to each step and findings of each step were reviewed. This led to certain beneficial outcomes in the consideration of the proposed action. Such effects included:

➤ a comprehensive set of alternatives including all modes was considered at the start of the EIS process

➤ a comprehensive set of diverse viewpoints and expertise relevant to pertinent determinations associated with environmental concerns, design requirements, traffic operation optimization goals, planning-level cost estimates, and concerns of local importance was represented

➤ a balanced comparison of the above criteria

➤ assurance that the screening process was an open process, with results of each step being shared with project team members, local jurisdictions, and the public in a timely manner (see Chapter 6, Comments and Coordination, for additional information regarding public disclosure)

The following conclusions were reached through the screening process:

➤ The purpose and need for the proposed action, as identified in Chapter 1, Purpose and Need, was confirmed.

➤ Nonfreeway alternatives (e.g., TSM/TDM, transit, local arterial street network improvements, Arizona Parkway) alone would not fully satisfy the purpose and need criteria of the proposed action.

➤ A common point in the Study Area located east of 59th Avenue and south of Elliot Road, as illustrated in the text box on page 3-8, allowed for the evaluation and comparison of action alternatives in two geographic areas: a Western Section and an Eastern Section.

➤ The South Mountains share a common boundary with—and actually extend onto—Community land for a distance west of the common point. Alternatives located south of the Community or north of the mountains would not be prudent and feasible (see section, Eastern Section, on page 3-9 and Table 3-5 on page 3-12). Therefore, any action alternative considered must use either a portion of the mountains, be located on Community land, or both. Because the Community has not allowed the detailed study of alternatives on Community land, there is no prudent and feasible alternative to avoid use of the resources of the South Mountains afforded protection under Section 4(f), including traditional cultural properties and SMPP as a public park and as a historic resource [supported in text presented in Chapter 5, Section 4(f) Evaluation]. Therefore, using a portion of the mountains is an unavoidable consequence of the E1 Alternative.
From EIS process inception for the proposed action, both ADOT and FHWA have worked to engage the Community to develop alternatives on Community land. No alternatives on Community land are studied in detail in the FEIS. To date, the Community has not permitted ADOT to study alternatives in detail on Community land. Despite the efforts to formally study an alternative in detail on Community land, ADOT and FHWA determined that an alternative alignment on Community land is not feasible. The EIS process of evaluating the proposed action in locations other than on Community land will continue.

A logical, sequential, step-by-step process using data and expertise from multiple disciplines (e.g., environment, design, traffic performance) was used to conclude which of many alignment alternatives represented a full range of reasonable alternatives and which should be eliminated from further consideration.

The action alternatives carried forward for detailed study in the FEIS represent a range of reasonable alternatives.

Compliance with Section 404(b)(1) Guidelines

Provisions set forth in Section 404(b)(1) of the CWA were the criteria used to evaluate alternatives that would involve discharge of dredged or fill material [see the section, *Waters of the United States*, beginning on page 4-116, for details regarding Section 404(b)(1)]. These guidelines require the U.S. Army Corps of Engineers (USACE) to permit only the least environmentally damaging, practicable alternative. An alternative is considered practicable if it is available or capable of being constructed, taking into account cost, logistics, and existing technology in light of the overall project purpose.

Alternatives described in the previous sections were developed in consideration of the provisions of Section 404(b)(1). Site-specific design criteria for any of the action alternatives would be incorporated to minimize impacts on jurisdictional waters, and compensatory mitigation would be provided for unavoidable impacts. Drainage flows would be maintained in the numerous wash crossings using corrugated metal pipe, concrete box culverts, or bridge structures, depending on engineering feasibility, environmental constraints, field reconnaissance data, and conceptual cost estimates. The section, *Biological Resources*, beginning on page 4-125, outlines measures such as multiuse wildlife crossings that would be implemented in association with natural drainages to mitigate project-related impacts.

Responsiveness of the Proposed Freeway to Purpose and Need Criteria

Previous text in this chapter described the process used to develop and screen various alternatives to 1) determine the types, or modes, of transportation improvements that could meet the established purpose and need criteria for the proposed action and 2) determine the best possible locations for these improvements. One tool used to support the screening process was a modeling analysis that forecast regional traffic conditions as reasonably foreseeable for 2035. Assessment of traffic volumes, traffic conditions, travel distribution, capacity deficiencies, and travel time provided the project team a basis to evaluate all alternatives considered in terms of responsiveness to purpose and need criteria. Determinations to eliminate nonfreeway alternatives from further study were based on analysis findings.

The results guided the project team in its assessment of operational characteristics of the future road network, with and without the proposed freeway in place, further confirming the determination that a freeway is the appropriate transportation mode for the Study Area.

Traffic Modeling Background Information

To conduct the analysis, the project team used the tools described in Table 3-7 and, in so doing, applied reasonable assumptions about future traffic characteristics.

Methodology

The traffic assessment for the Study Area employed the MAG travel demand model (TransCAD software platform). FHWA and the U.S. Environmental Protection Agency approved the air quality conformity determination that includes the MAG travel demand model. The model projects demand for multiple modes of travel, including automobile, bus, and light rail. Key model inputs used to forecast travel demand included:

- socioeconomic data based on the adopted general plans of MAG members, along with population and economic forecasts and the existing and planned transportation infrastructure as identified by MAG members
- the anticipated average number of vehicle trips within the region (including those to and from the region’s households) on a daily basis (this number is tracked regularly by MAG)
- the distribution of transportation modes used by travelers in the MAG region (also tracked regularly by MAG)
- the capacity of the transportation infrastructure to accommodate regional travel
- the future transportation infrastructure established using RTP-planned projects and improvements and from known arterial street network improvements assumed to be made by the County, Cities, and private developers

Key Traffic Modeling Definitions

- Level of Service Identifies the Operational Efficiency of the Regional Transportation Network – Existing and projected traffic volumes can

Table 3-7 Traffic Analysis Tools Used to Assess a Freeway’s Effect on Identified Needs

<table>
<thead>
<tr>
<th>Analysis Tool*</th>
<th>Tool Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Future Traffic Volume Projections (Travel Demand Analysis) (TransCAD)</td>
<td>Establish overall demand for and distribution of use of the future network and traffic volume on proposed action</td>
</tr>
<tr>
<td>Trip Redistribution (Cut-line Analysis)</td>
<td>Evaluate proposed action’s traffic redistribution effect on the network</td>
</tr>
<tr>
<td>Level of Service Analysis (TransCAD)</td>
<td>Determine quality of service of network resulting from proposed action and determine capacity needs of proposed action to operate at an acceptable level of service</td>
</tr>
<tr>
<td>Existing and Projected Travel Time and Congestion Analysis (TransCAD)</td>
<td>Determine proposed action’s effect on network delay and congestion reduction</td>
</tr>
<tr>
<td>Trip Distribution (Select Link Analysis)</td>
<td>Establish trip origins and destinations using the proposed freeway</td>
</tr>
</tbody>
</table>

* Analytical tools are further described in the section, *Key Traffic Modeling Definitions*, beginning on this page.

TransCAD is the travel demand modeling software platform used by the Maricopa Association of Governments.

* future planned transportation network analyzed with and without the proposed action
The travel model examined existing conditions and forecast travel demand for 2035 (updated for this project from the 2026 forecasts used for the RTP) with and without the proposed action. Important analytical assumptions were:

- Nonconstruction enhancements: System enhancements were made in the model to improve the operational characteristics of the existing road network without the proposed action in place. These were enhanced TSM measures.
- Mass transit enhancements: Additional capacity beyond what is planned in the RTP was assigned to bus service, light rail, and HOV lanes to reduce dependency on single-occupancy vehicles for travel in the MAG region.
- Existing network enhancements: Increased improvements beyond what is planned for the major arterial street network as identified in the RTP were considered in the model.

Together, the analysis assumptions result in lower regional travel demand for single-occupancy vehicles than would generally be forecast.

Why were these assumptions employed? The resulting “reduced” single-occupancy vehicle demand implies a lesser need for a major transportation facility, such as the proposed action, in the Study Area. In a way, the assumptions confirm that the investment for the proposed action would be warranted. The analysis assumptions and its results—by design, conservative—are intended to ensure that the facility is truly needed.

Key assumptions used in analysis of system capacity deficiency

The travel model examined existing conditions and forecast travel demand for 2035 (updated for this project from the 2026 forecasts used for the RTP) with and without the proposed action. Important analytical assumptions were:

- Nonconstruction enhancements: System enhancements were made in the model to improve the operational characteristics of the existing road network without the proposed action in place. These were enhanced TSM measures.
- Mass transit enhancements: Additional capacity beyond what is planned in the RTP was assigned to bus service, light rail, and HOV lanes to reduce dependency on single-occupancy vehicles for travel in the MAG region.
- Existing network enhancements: Increased improvements beyond what is planned for the major arterial street network as identified in the RTP were considered in the model.

Together, the analysis assumptions result in lower regional travel demand for single-occupancy vehicles than would generally be forecast.

Why were these assumptions employed? The resulting “reduced” single-occupancy vehicle demand implies a lesser need for a major transportation facility, such as the proposed action, in the Study Area. In a way, the assumptions confirm that the investment for the proposed action would be warranted. The analysis assumptions and its results—by design, conservative—are intended to ensure that the facility is truly needed.

Forecast Traffic Volumes — Freeways and Arterial Streets

In considering operational characteristics of traffic on the proposed freeway, anticipated ADT volumes on the freeway, if implemented, are critical. Also important is the forecast ADT on other Regional Freeway and Highway System segments and on arterial roads. Because the RTP is an integrated system, future operational characteristics of traffic on any one component will affect and will be affected by traffic on other components. The following text addresses these issues.

Effects of the Proposed Freeway on Other Regional Freeway Segments

Fourteen freeway locations were identified for use in determining the effects of the proposed freeway, as incorporated in the RTP, on freeway traffic volumes in the MAG region (the effects of operation of the proposed freeway on arterial street volumes are discussed later in this chapter). Figure 3-12 presents the forecast ADT volumes with and without the proposed action. Notable observations include:

The proposed freeway, when in operation in 2035, would function as planned in the RTP. As a link in the Regional Freeway and Highway System, the proposed freeway would increase regional volumes. The proposed freeway would increase the capacity of the region’s freeways to respond to the projected travel demand; in so doing, some of the traffic volume would be redistributed onto the proposed freeway, as described below.

- I-10 between 48th Street and Broadway Road (the Broadway Curve) would carry approximately 32,000 fewer vpd in 2035. This location currently experiences some of the highest daily traffic volumes and worst congestion in the region.

- SR 202L (Santan Freeway) between Priest Drive and Kyrene Road would carry approximately 42,000 additional vpd in 2035. Similarly, the proposed SR 30 freeway between 83rd and 75th avenues would carry approximately 60,000 additional vpd in 2035. Although these increases could result in additional congestion, without the proposed action, SR 202L (Santan Freeway) and SR 30 would be undersized relative to their planned performance in the context of the Regional Freeway and Highway System.

Effects of the Proposed Freeway on Arterial Street Traffic Volumes

Six cut lines were identified for use in assessing the possible effect of the proposed freeway on traffic volumes, using the arterial street network. Figure 3-12 presents the forecast ADT volumes on the arterial streets and on the freeways through the cut lines (shown in Figure 3-13), with and without the proposed freeway (volumes for the proposed freeway reflect the alignment as proposed in the RTP).

The analysis illustrates a shift in traffic volumes from the arterial street network to freeways if the proposed freeway were in operation in 2035. The traffic reduction on arterial streets is projected to be as high as 68,000 vpd across a single cut line and 274,000 vpd across all six cut lines. As explained in the previous section, this shift in ADT volumes from arterial streets to freeways would not adversely affect the performance of the Regional Freeway and Highway System.

Meanwhile, the shift would greatly reduce the pressure on the arterial street network. Such shifts are the intent of the Regional Freeway and Highway System.

Effects of the Proposed Freeway on Capacity Deficiency

Data from the cut-line analysis were used to calculate the capacity deficiency of the road network, assuming the network were to operate at LOS D on average throughout a given day. The analysis considered the capacity deficiency of the road network in the Study Area with and without the proposed freeway in operation in 2035 (see sidebar on this page). Capacity deficiency was calculated by comparing the total capacity and the total demand (projected 2035 volumes) of all of the roads that would cross the 41st Street cut line (see Figure 3-13). According to the assessment, without the proposed freeway in place the existing roads and RTP-planned roadway improvements would accommodate about 69 percent of the demand projected for 2035, leaving 31 percent of the anticipated demand unmet (capacity deficiency—congestion and delay). If better-than-planned scenarios for such modal alternatives as nonfreeway planned improvements (e.g., increases in funding, increases in the number of express bus routes, increases in ridership...
With the proposed freeway in operation, additional planned capacity would be added to the region’s freeway system. With the added capacity, freeway volumes would be redistributed, with most freeway segments experiencing reduced average daily traffic volumes. Demand on the arterial street grid would also shift; almost all sampled arterial street segments would experience reduced daily traffic volumes.

Note: Volumes include general and high-occupancy vehicle lanes; volumes for the proposed freeway reflect the alignment as proposed in the 2003 RTP. The proposed freeway would replace Pecos Road.

Figure 3-12 Projected Average Daily Traffic Volumes on Freeways and Arterial Streets with and without the Proposed Freeway, 2035

Source: Maricopa Association of Governments, 2013c; extrapolated analysis
Figure 3-13 Cut-line Analysis with and without the Proposed Freeway, 2035

<table>
<thead>
<tr>
<th>Cut line</th>
<th>Alternative</th>
<th>Volume (000s)</th>
<th>Split (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Freeways</td>
<td>Arterials</td>
</tr>
<tr>
<td>1</td>
<td>With proposed freeway</td>
<td>511</td>
<td>436</td>
</tr>
<tr>
<td></td>
<td>Without proposed freeway</td>
<td>482</td>
<td>387</td>
</tr>
<tr>
<td>2</td>
<td>With proposed freeway</td>
<td>1,031</td>
<td>769</td>
</tr>
<tr>
<td></td>
<td>Without proposed freeway</td>
<td>906</td>
<td>576</td>
</tr>
<tr>
<td>3</td>
<td>With proposed freeway</td>
<td>478</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>Without proposed freeway</td>
<td>398</td>
<td>279</td>
</tr>
<tr>
<td>4</td>
<td>With proposed freeway</td>
<td>502</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>Without proposed freeway</td>
<td>542</td>
<td>325</td>
</tr>
<tr>
<td>5</td>
<td>With proposed freeway</td>
<td>907</td>
<td>711</td>
</tr>
<tr>
<td></td>
<td>Without proposed freeway</td>
<td>868</td>
<td>618</td>
</tr>
<tr>
<td>6</td>
<td>With proposed freeway</td>
<td>963</td>
<td>707</td>
</tr>
<tr>
<td></td>
<td>Without proposed freeway</td>
<td>931</td>
<td>611</td>
</tr>
<tr>
<td>All six cut lines</td>
<td>With proposed freeway</td>
<td>4,392</td>
<td>3,335</td>
</tr>
<tr>
<td></td>
<td>Without proposed freeway</td>
<td>4,127</td>
<td>2,796</td>
</tr>
</tbody>
</table>

* Interstate 10 * State Route 143 * State Route 202L (Loop 202)

The total volume removed from the arterial street network for all six cut lines with the proposed freeway in place in the Study Area in 2035 would be 274,000 vehicles per day. Based on the arterial lane capacity from the Maricopa Association of Governments travel demand model, this equates to 33 arterial street-lanes of traffic being removed from the six cut-line locations. The cut-line analyses validate a purpose of the proposed action: to redistribute traffic appropriately based on travel needs.
for transit modes) were to occur, 13 percentage points of the 31 percent deficiency would be accommodated (Figure 3-14); the network would still maintain an 18 percent capacity deficiency.

The same analysis with the proposed freeway in operation in 2035 concluded that the met demand would increase to 80 percent; better-than-planned scenarios noted above, if achieved, would reduce network deficiency to 7 percent. The proposed action would capture over half of the capacity deficiency not captured by these other modes.

Forecast Traffic Volumes on the Proposed Freeway

In 2035, forecast ADT on the proposed freeway would vary depending on location. Projected ADT would range from 117,000 to 190,000 vehicles. These projected volumes are similar to volumes being experienced on other freeways in the MAG region (see sidebar on the next page). The projected volumes demonstrate:

Motorists would place a high demand on the proposed freeway in this area of the MAG region.

The proposed freeway, when in operation in 2035, would function as an integral part of the RTP.

Level of Service

The previous sections described how the proposed freeway, by adding capacity to the freeway system in the MAG region, would reduce traffic on some freeway segments and reduce traffic on the arterial street network. This section presents the results of the analysis to assess how these changes in traffic volumes would translate to system efficiency in terms of LOS.

Future travel and socioeconomic conditions were modeled in TransCAD (see Table 3-7, on page 3-27) to determine the duration of LOS E or F in 2035 with and without the proposed freeway during the morning and evening commute periods. Results of the analysis are illustrated in Figures 3-15 and 3-16. Notable observations from the analysis are:

For an urban area, such as the Phoenix metropolitan area, it is expected that freeways would operate at LOS E or F during some portion of the peak commuting periods. Demand to use the proposed freeway would be high (an intended outcome).

When the heavy congestion duration would last longer than 1 to 2 hours, the utility of the freeway would be reduced and regional mobility hampered.

The number of freeway segments operating at LOS E or F would be higher during the evening commuting period than in the morning commuting period.

During the evening commute, the freeways inbound to downtown Phoenix including eastbound I-10 (Papago Freeway), westbound I-10 (Maricopa Freeway) along the Broadway Curve, and westbound SR 202L (Red Mountain Freeway) would experience shorter durations of LOS E or F with the proposed freeway than without. Additionally, the inner loop freeways, I-10 and I-17, that encircle downtown Phoenix would experience shorter durations of LOS E or F with the proposed freeway than without.

During the evening commute, portions of planned SR 30 and SR 202L (San Tan Freeway) would experience a longer duration of LOS E or F with the proposed freeway than without the proposed freeway. This demonstrates that the freeways would be in high demand and would work as intended as a part of the loop freeway system.

During the evening commute, almost all of the region’s freeways would experience long periods of LOS E or F, including the proposed freeway. Because most of the freeways providing service outbound from downtown Phoenix would experience over 3 hours of LOS E or F, it is difficult to identify substantial differences between the evening conditions with and without the proposed freeway. However, when comparing other measures of effectiveness, such as capacity deficiency and travel time, conditions with the freeway would still be better than conditions without the freeway during the evening commute.

Figure 3-14 Met and Unmet Demand with and without the Proposed Freeway, 2035

![Figure 3-14](image)

*Unmet demand means delays and congestion for travelers on the Maricopa Association of Governments (MAG) transportation network.
*Data are extrapolated from the 41st Street cut-line analysis (see text and Figure 3-13) to characterize performance for the entire MAG transportation system.
*The analysis assumes that the MAG Regional Transportation Plan is fully implemented.
*Improvements that could occur in the better-than-planned scenario (see sidebar on page 3-28).
*Throughout the region’s demand management strategy.
*Transportation network management.

Implementation of the freeway would not completely solve the regional systemwide capacity deficiency in 2035. The proposed freeway’s additional operating capacity would alleviate about 61 percent (see red bar) of the projected 18 percent regional system capacity shortfall when incorporating the most optimistic scenario for adoption and performance of nonfreeway improvements.

Projected Travel Time

Within the Study Area, existing traffic congestion has decreased travel speeds during many of any given day on the region’s freeways or on its arterial street network. The amount of time a motorist spends driving each day to and from the same origin and destination continues to increase. Travel time is important to most drivers; further, increases in travel time translate to further congestion and congestion-related impacts (as certainly would be the case under the No-Action Alternative). It is important, therefore, to examine representative travel times in different locations and project to 2035 what travel times would be with and without the proposed action.
During the morning commute, there would be little or no congestion on the proposed freeway. On adjacent freeways, the following notable observations were made:

Location A: Minor traffic operational improvements would occur.
Location B: I-10 (Maricopa Freeway) at the Broadway Curve would be entirely congested for over 3 hours without the proposed freeway, but would have a few segments with 2 or 3 hours or less than 2 hours of congestion with the proposed freeway.
Location C: Minor traffic operational improvements would occur.
Location D: SR 202L (Red Mountain Freeway) between I-10 and SR 101L (Pima Freeway) would experience shorter durations of congestion with the proposed freeway than without the proposed freeway.

Source: Maricopa Association of Governments, 2013c; extrapolated analysis
During the evening commute, almost all of the region’s freeways would experience long periods of LOS E or F conditions. In some cases, the congestion would occur in both directions of travel. Because most of the system would experience travel demand in excess of the threshold for over 3 hours of LOS E or F conditions, it is difficult to identify substantial differences between the evening conditions with and without the proposed freeway. However, when comparing individual freeway segments using measurements other than duration of LOS E or F (such as volume-to-capacity ratios, hours of delay, travel time), the most congested areas were examined to make the following observations:

Location A: Westbound I-10 (Papago Freeway) between I-17 and SR 101 (Agua Fria Freeway) would experience similar levels of delay.

Location B: Eastbound I-10 (Maricopa Freeway) between SR 51 and US 60 would experience shorter durations of congestion and fewer congested segments with the proposed freeway than without the proposed freeway.

Location C: Eastbound I-10 (Maricopa Freeway) between US 60 and SR 202 (Santan Freeway) would experience shorter durations of congestion and fewer congested segments with the proposed freeway than without the proposed freeway.

Location D: Minor traffic operational improvements would occur.

Note: Segments without a color operate at LOS D or better during the evening commute.

Source: Maricopa Association of Governments, 2013c; extrapolated analysis
Travel times were calculated using the TransCAD model results based on the road type and projected LOS. The two trips presented in Figure 1-13, on page 1-20, were incorporated into the 2035 forecast conditions. The results for the two trips for conditions with and without the proposed freeway are presented in Figure 3-17. Additional trips were identified to represent a regional perspective. As depicted in Table 3-8, motorists undertaking regional trips would also experience shorter travel times with the proposed action.

Travel time savings indicated in Figure 3-17 and Table 3-8 are based on an individual vehicle for a specific trip. When travel time savings are considered cumulatively for all vehicles traveling in the region with the proposed freeway in operation, the reader can begin to see the aggregate time savings realized. Further, a monetary savings can be assigned to the time savings: the region would realize a savings of approximately $200 million annually once the freeway were to become
Based on the assessment of projected 2035 traffic volumes, LOS, capacity deficiency, and travel time, the following conclusions are reached:

- Nonfreeway alternatives, separately or in combination, would capture only a small percentage of the capacity deficiency of the region’s transportation network.
- The proposed freeway would serve as a planned link in the Regional Freeway and Highway System, causing traffic on the region’s freeways to be redistributed. In most cases, the proposed freeway would remove traffic from some segments of freeways, while other segments would experience RTP-intended increases in daily volumes. The proposed freeway would increase the capacity of the region’s freeways in response, in part, to projected regional travel demand.
- The proposed freeway would appropriately shift a substantial portion of travel demand from the arterial street network to the freeway network in 2035. Within the Study Area, travel demand would remain relatively the same with or without the proposed freeway, demonstrating that the proposed freeway would absorb the majority of volume projected in the Study Area.
- The proposed freeway would increase projected 2035 network capacity by capturing over one-half of the projected 2035 deficiency (see Figure 3-14).
- Travel times during the morning and evening commuting periods at representative locations of the regional transportation network would be shorter with the proposed freeway in operation in 2035 than without the proposed freeway.
- Motorists would place a high demand for the proposed freeway in the Study Area.

The freeway alternative is the appropriate solution to the regional transportation need identified in the Study Area. The freeway alternative would serve as a planned link in the loop system in the Regional Freeway and Highway System, optimize overall Regional Freeway and Highway System performance, and redistribute traffic as intended between the arterial street and freeway networks.

Additional Benefits of the Proposed Freeway

Identification of the freeway mode as the preferred mode for the proposed action would result in additional benefits related to the purposes for a major transportation facility in the Study Area and would also provide system linkage, improve regional mobility, and be consistent with local and regional planning. (See Chapter 1, Purpose and Need, regarding FHWA guidance for determining a proposed project’s purpose and need.)

System Linkage

The Regional Freeway and Highway System, a major component of the RTP, addresses the region’s transportation needs. The Regional Freeway and Highway System was designed to function as part of an integrated surface transportation network comprising an arterial street network, a system of loop freeways, and major freeways connecting to cities outside the region. System continuity is critical in optimizing:

- the effectiveness of individual network segments
- the use of transit
- freeway management strategies

The RTP-planned improvements for the Regional Freeway and Highway System assumed that a freeway would be located in the Study Area in the foreseeable future. If a freeway were not built to provide this capacity, future traffic distributions and volumes would vary from those used to plan and design other major facilities. Because of these discrepancies, recent improvements could be oversized (e.g., too many lanes), undersized (e.g., too few lanes), and/or could operate in a manner that would not satisfy the intended uses.

As an example, the freeway was planned as a portion of SR 202L, in part to accommodate longer trips in the MAG region and to reduce demand on other parts of the regional freeway, Interstate, and arterial street networks. Without the connecting link created by the proposed freeway, SR 202L (Santan Freeway) would be underused in 2035. Because I-10 (Maricopa Freeway) would not have the capacity to accept the full traffic volume the Santan Freeway could deliver to it, motorists who might have used the Santan Freeway may choose other available but already congested routes.

The proposed freeway would also serve as an important link to planned transportation facilities in the region. Two transportation projects in initial planning stages and adjacent to the Western Section Preferred Alternative would be affected if the No-Action Alternative were to be the Selected Alternative: SR 30 and Avenida Rio Salado (ARS)/Broadway Road. Both projects have been planned to address important east–west travel demand and to provide motorists with alternatives to using the heavily congested I-10 (Papago Freeway).

The proposed SR 30, part of the Regional Freeway and Highway System and RTP, would construct a new freeway between SR 303L and the proposed action (connecting south of Broadway Road), in the interim, with future plans to ultimately extend SR 30 farther west to SR 85. The proposed ARS project, being planned by the City of Phoenix as a part of the RTP Arterial Streets Program, would involve developing new east–west arterial street capacity south of the Salt River to provide better access to and from downtown Phoenix and to connect to the Regional Freeway and Highway System. The proposed ARS project would widen, improve, and extend Broadway Road from 7th Street to, in the interim, 51st Avenue, with future plans to ultimately connect to the proposed action and to SR 30. More information about SR 30 is available at <azdot.gov/projects/phoenix-metro-area> and about the ARS project is available at <avenidadiosalado.com/about.php>.

If the No-Action Alternative were the Selected Alternative, both SR 30 and ARS would need to be reassessed in terms of purpose and need, logical termini, and traffic performance. If a system traffic interchange were not provided at the eastern terminus of SR 30 with the proposed freeway, eastbound freeway–volume traffic would enter a local road network designed for—at most—arterial-street traffic loads: an unworkable configuration. The length and alignment of SR 30 would likely have to be altered. Therefore, the proposed freeway mode plays an important role in relation to operation of the region’s existing and planned freeway systems.
Regional Mobility

As presented in Chapter 1, Purpose and Need, the Study Area for the proposed action is located such that it would serve an area that would experience almost 50 percent of the projected increases in population, housing, and employment between 2010 and 2035 for the entire MAG region.

As an important component of the loop route function of the Regional Freeway and Highway System, the proposed freeway would help to address east–west regional mobility needs. Figure 3-18 illustrates the results of a select link analysis. In this analysis, the origins and destinations of all vehicles forecast to be on the proposed action through SMPP were plotted. A projected 75 percent of travelers anticipated to use the proposed action would be involved in trips beginning or ending in the Study Area itself or in the areas immediately surrounding it. Seventy-five percent of travelers anticipated to use the proposed action would be involved in trips beginning or ending in the Study Area itself or in the areas immediately surrounding it.

By estimating where travelers in a given location are coming from and where they are going, the project team was able to project 1) the types of trips future users of the proposed freeway might undertake and 2) the distribution of these trips. Seventy-five percent of travelers anticipated to use the proposed action would be involved in trips beginning or ending in the Study Area itself or in the areas immediately surrounding it.

Legislation – Regional and Local Planning

Regional Planning Context

When county voters passed Proposition 300 in 1985, public and local planning agencies expected the Regional Freeway and Highway System would be implemented as planned. STB approval of the South Mountain Freeway alignment in 1988 reinforced that expectation. What essentially is now the proposed freeway has been included in MAG transportation planning documents since 1985 and is included in the RTP. Therefore, a freeway in the Study Area is consistent with voter mandate, regional planning objectives, and public expectations.

Local Planning Context

The proposed action is directly or indirectly referenced in municipalities’ long-range planning efforts.

Avondale

The proposed action is not mentioned specifically in the adopted Avondale General Plan 2030 (2012). The circulation (transportation) element of the plan, however, identifies “promote Avondale in regional transportation issues” as a goal. In addition, one of the policies in the plan’s land use element is to “coordinate with Goodyear, Phoenix, Litchfield Park, Tolleson, and Maricopa County regarding land use and transportation along Avondale’s borders.” The proposed action is not inconsistent with the Avondale General Plan 2030.

Chandler

Only a small portion of Chandler is located in the Study Area. This portion is designated for employment uses. The City of Chandler General Plan (2008) does not specifically discuss the proposed action, but does show the South Mountain Freeway as a proposed freeway on the Regional Context Map.

Phoenix

The proposed action is included in the City of Phoenix General Plan, Circulation Element (City of Phoenix 2001). As stated in the voter-approved and formally adopted 2002 update, “the Circulation Element discusses how to reduce the rate of increased traffic congestion, which is increasing faster than population growth.”

Goal 1 of the Circulation Element states:

An effective multi-modal transportation system should be developed that will allow the movement of goods and all people safely and efficiently throughout the city, especially into, and between, the urban village cores.

Several policies are outlined to implement this goal, one of which is Policy 7:

Encourage timely construction of the freeways and expressways in the adopted Maricopa Association of Governments Plan. One of the freeways identified in the plan is the South Mountain Parkway.

Another policy of the Circulation Element is to “plan and design the city’s transportation system to help implement the Land Use Element’s goals while assuring that new transportation facilities are available concurrently with changes in land use.” The proposed action is an integral component in two area land use plans for Phoenix neighborhoods traversed by the 1988 alignment. The two plans are the Southwest Growth Study/Loop: A Guide for Development (City of Phoenix 1998) and the Estrella Village Plan (City of Phoenix 1999). In both plans, urban village planning areas show village cores developed around a “South Mountain Freeway.” Based on these plans, development, zoning, and residential and commercial location determinations in the past several
years have been made assuming a “South Mountain Freeway” generally near the 1988 alignment.

Tolleson
The 2005 Tolleson General Plan established a goal to maintain and enhance streets to retain Tolleson’s community character. A strategy to attain this goal was to “maintain assertive leadership to prevent freeways and major highways (such as Highways 101 and 202 Extensions) from bisecting Tolleson.” The plan states that “a 99th Avenue corridor alignment would pose extreme hardship on the City of Tolleson due to vast amounts of right-of-way that would be needed.” A 99th Avenue Growth Area is denoted in the plan, in which a preference for commercial land uses is stated. In addition, the plan states that both Phoenix and Tolleson support and prefer an alignment for the proposed freeway near “55th Avenue” (most similar to the W59 Alternative).

Conclusions Regarding Appropriateness of the Proposed Freeway as the Modal Alternative

In the 1980s, a phased transportation network (the Regional Freeway and Highway System) was proposed and adopted to serve the region’s transportation demands (see the section, Historical Context of the Proposed Action, beginning on page 1-5) resulting from growth in employment, housing, and population. The South Mountain Freeway was determined to be a key link in the Regional Freeway and Highway System. At the onset of the EIS process, the transportation network was reexamined to determine whether a major transportation facility was still needed and, if so, what mode would be an appropriate method of meeting the identified need. The need to serve the transportation demands of a growing region was still applicable. It was further determined that the freeway mode was an appropriate response to this need. The proposed freeway was also determined necessary to serve future transportation demand from continuing job, housing, and population growth in the area that would be served by the proposed freeway. The proposed freeway was refined to provide system linkage and regional mobility and to address regional and local transportation planning efforts. Based on these efforts, it was determined the proposed freeway was needed even more now than in the past and that the proposed freeway would address the identified need. Some of the results of the analyses described in the previous sections are presented in Table 3-9, along with a summary of the proposed freeway’s ability to meet the purpose and need criteria.

The proposed freeway clearly meets the purpose and need criteria of the project. When considering the historical context of the proposed freeway, its context in regional transportation planning, and analyses of existing and projected regional transportation demand and capacity, the proposed freeway is a needed element of the integrated transportation infrastructure network in the MAG region because:

➤ The rationale for identifying the Study Area as the location for a major new transportation facility is supported by:

➤ The proposed action has a historical identification as an important part of the planned integrated regional transportation infrastructure and loop freeway systems to support citizens of the MAG region.

➤ Almost 50 percent of the projected increases in population, housing, and employment between 2010 and 2035 for Maricopa County is expected to occur in the southwestern and southeastern portions of the Phoenix metropolitan area.

➤ The analytical results presented in Chapter 1, Purpose and Need, and in this chapter identify a need for a major transportation facility and present reasons that the proposed freeway is the facility to meet that need:

➤ The quality of current operating conditions during peak operating periods on the regional transportation facilities in the Study Area and its surroundings is poor, with much of the network congested.

➤ Travel within the MAG region is projected to increase by approximately 50 percent between 2012 and 2035.

➤ Performance of the majority of region’s freeways and arterial streets is projected to be poor—at LOS E or worse without the proposed action in operation in 2035.

➤ Operation of the proposed freeway would appropriately redistribute projected traffic onto the remaining Regional Freeway and Highway System, Interstate freeways, and arterial street network when compared with the projected traffic volumes without the proposed freeway in operation.

➤ Without the proposed freeway, the RTP’s planned facility improvements would accommodate about 69 percent of the total 2035 projected demand (operating at LOS D), leaving 31 percent of the anticipated demand unmet.

➤ Better-than-planned performance of nonfreeway modal transportation improvements, including transit, TDM/TSM, and other expanded arterial street network improvements, alone or cumulatively, would not be sufficient to adequately address the projected 2035 capacity deficiency.

➤ Travel time during peak periods would increase between 2012 and 2035, with or without the proposed freeway; such travel times would, however, not increase as much with the proposed freeway in operation.

➤ The proposed freeway is a major component in the Regional Freeway and Highway System, which is intended to function as an integrated freeway network. The system linkage provided by the proposed freeway would further optimize system continuity and the effectiveness of individual network segments, which are important to overall Regional Freeway and Highway System operation.

➤ The proposed freeway is an important component of past, current, and known future planning efforts. Maricopa County, Phoenix’s villages (Laveen, Estrella, and Ahwatukee Foothills), Tolleson, and Avondale have all made transportation, land use, and economic planning determinations in a context of the proposed freeway operating in the Study Area.

➤ The proposed freeway would function as planned and intended in the RTP.
Table 3-9 Implementation of the Proposed Freeway as the Appropriate Modal Alternative to Satisfy Purpose and Need Criteria, 2035

<table>
<thead>
<tr>
<th>Criterion</th>
<th>With the Proposed Freeway</th>
<th>Without the Proposed Freeway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who would use the proposed freeway?</td>
<td>• 75 percent of drivers using the proposed freeway would be coming from or traveling to the area surrounding the proposed freeway; this area is projected to experience almost 50 percent of the growth in Maricopa County by 2035</td>
<td>• Travelers would continue to use existing routes such as I-10a and Baseline Road, which would become more and more congested</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Increased congestion and travel time would occur because no other high-capacity facilities (e.g., freeways) are planned in the area</td>
</tr>
<tr>
<td>How would the proposed freeway affect the average traveler?</td>
<td>• By reducing congestion, travel times would improve within the region, resulting in an estimated $200 million annual savings in travel time</td>
<td>• Trip times and traffic congestion would worsen without the proposed freeway</td>
</tr>
<tr>
<td>What effects would the proposed freeway have on the regional freeway system?</td>
<td>• Would improve the regional transportation network as planned for during the past 25 years, increasing the efficiency of other existing and planned freeways</td>
<td>• Freeways would not experience congestion relief provided by proposed freeway</td>
</tr>
<tr>
<td></td>
<td>• Would remove traffic from congested freeways and arterial streets</td>
<td>• If the connections were not provided, the need for other planned freeways would have to be reassessed and realigned in terms of traffic performance</td>
</tr>
<tr>
<td></td>
<td>• Would optimize use of adjacent freeways such as SR 202L (Santan Freeway) and the proposed SR 30c</td>
<td>• Segments of the regional freeway system, such as SR 202L (Santan Freeway) and SR 30, would be underused</td>
</tr>
<tr>
<td>What effects would the proposed freeway have on the area’s arterial street network?</td>
<td>• Proposed freeway would reduce traffic on arterial streets by 274,000 vpd, which equates to 33 arterial street-lanes of traffic being removed from the system</td>
<td>• Street widening and intersection improvements would be needed to address increased congestion, but these improvements are not planned or funded and obtaining the right-of-way for these improvements would be difficult</td>
</tr>
<tr>
<td>What effects would the proposed freeway have on area-wide continuity and connectivity?</td>
<td>• Would complete the freeway loop system (as part of SR 202L)</td>
<td>• Freeway loop system would be incomplete; SR 202L would be incomplete and underused</td>
</tr>
<tr>
<td></td>
<td>• Would increase mobility and access by connecting freeways such as SR 202L (Santan Freeway) in the east to SR 30, SR 101a, and SR 303L in the west</td>
<td>• An alternative connection between the eastern and western portions of the Phoenix metropolitan area would not be provided</td>
</tr>
<tr>
<td></td>
<td>• Would carry approximately 11 percent more traffic without the proposed freeway and would experience a greater degradation of traffic performance</td>
<td>• Motorists on the local arterial street network would have to drive longer distances on these congested streets before being able to gain access to Interstate and regional freeways</td>
</tr>
<tr>
<td></td>
<td>• During the morning commute, the Broadway Curve would experience longer duration of LOS E or F conditions</td>
<td>• During the morning commute, the Broadway Curve would experience longer duration of LOS E and F conditions</td>
</tr>
<tr>
<td>What effects would the proposed freeway have on the area’s overall transportation capacity deficiency?</td>
<td>• 20 percent of the travel demand in 2035 would remain unmet (see Figure 3-14, on page 3-31); 11 percent less than without the proposed freeway, which would make a substantial difference for the area’s overall transportation network</td>
<td>• 31 percent of the travel demand in 2035 would remain unmet (see Figure 3-14, on page 3-31)</td>
</tr>
<tr>
<td>Would the proposed freeway affect traffic in the Broadway Curve area of I-10?</td>
<td>• Proposed freeway would reduce daily traffic volumes by 32,000 vpd on this portion of I-10 and to the south on I-10 between Baseline and Elliot roads, more than any other segments of the region’s freeways</td>
<td>• Would carry approximately 11 percent more traffic without the proposed freeway and would experience a greater degradation of traffic performance</td>
</tr>
<tr>
<td></td>
<td>• During the morning commute, the Broadway Curve would experience shorter duration of LOS E or F conditions</td>
<td>• During the morning commute, the Broadway Curve would experience longer duration of LOS E and F conditions</td>
</tr>
<tr>
<td>What effects would the proposed freeway have on SR 202L (Santan Freeway)?</td>
<td>• Would increase use on the segment near the proposed freeway by 42,000 vpd</td>
<td>• Freeway loop system would be incomplete; SR 202L would be incomplete and underused</td>
</tr>
<tr>
<td></td>
<td>• Would optimize operation of the remainder of the SR 202L system</td>
<td>• An alternative connection between the eastern and western portions of the Phoenix metropolitan area would not be provided</td>
</tr>
<tr>
<td>Would the proposed freeway affect traffic using 51st Avenue through Community land?</td>
<td>• Would reduce traffic from 9,200 vpd in 2012 to 8,100 vpd in 2035, preventing an increase in unwanted traffic cutting through the Community</td>
<td>• Motorists on the local arterial street network would have to drive longer distances on these congested streets before being able to gain access to Interstate and regional freeways</td>
</tr>
<tr>
<td></td>
<td>• Traffic volumes would increase to 11,800 vpd in 2035</td>
<td>• During the morning commute, the Broadway Curve would experience longer duration of LOS E and F conditions</td>
</tr>
<tr>
<td>What other general transportation effects would the proposed freeway have?</td>
<td>• Would reduce projected traffic volumes on the remaining regional freeway system, Interstate freeways, and local road network</td>
<td>• SR 202L near the proposed freeway would remain underused</td>
</tr>
<tr>
<td></td>
<td>• Would provide opportunities for freeway-dependent transit services</td>
<td>• Additional opportunities for regional freeway-dependent transit services, transportation system management, and transportation demand management would not occur</td>
</tr>
<tr>
<td></td>
<td>• Would provide additional opportunities for transportation system management and transportation demand management</td>
<td></td>
</tr>
<tr>
<td>What effects would the proposed freeway have on the area’s transportation planning efforts?</td>
<td>• Would fulfill the planning efforts of numerous governmental entities</td>
<td>• Lack of the proposed freeway would be inconsistent with the planning efforts of numerous governmental entities</td>
</tr>
<tr>
<td></td>
<td>• Would be an integral element and enhance operation of other planned improvements in the Regional Transportation Plan</td>
<td>• Would not complete the planned improvements in the Regional Transportation Plan</td>
</tr>
</tbody>
</table>

a Interstate 10
b State Route 202L (Loop 202)
c State Route 30c
d Vehicles per day
e State Route 101b (Loop 76)
f State Route 303L (Loop 303)
g The Broadway Curve is the area of Interstate 10 between 48th Street and Broadway Road, it is the most congested stretch of freeway in the Phoenix metropolitan area
h level of service
i Gila River Indian Community
Summary of Screening Process Results – Alternatives Eliminated and Alternatives Carried Forward

Based on the content in Figure 3-2, Figure 3-19 presents the specific outcomes of the screening process, highlighting those action alternatives carried forward and those eliminated from further study. Prior to issuance of the FEIS, the alternatives development and screening process was reviewed considering changes in existing and forecast population, housing, employment, and traffic. The alternatives development and screening process was validated. As a result of this systematic, multidisciplinary process, three action alternatives (including design options) in the Western Section and one action alternative in the Eastern Section were carried forward for detailed study in the EIS. The combinations of action alternatives from the Western and Eastern Sections represent a range of reasonable alternatives for detailed consideration. The No-Action Alternative was also carried forward.

Figure 3-19 Summary of Action Alternatives Considered and Eliminated

<table>
<thead>
<tr>
<th>Action alternatives carried forward</th>
<th>Modal Screening</th>
<th>Corridor Screening</th>
<th>Alignment/Technical Alternatives Screening</th>
<th>Design Options and Refinements</th>
<th>Design Adjustments</th>
<th>Alignment Screening and Further Design Adjustments</th>
<th>Action Alternatives Carried Forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway</td>
<td>Conduct screening of transportation modes</td>
<td>Eliminate modes and present reasons</td>
<td>Eliminate corridors and present reasons</td>
<td>Refine remaining alignments</td>
<td>Adjust remaining alignments to reduce impacts and costs</td>
<td>Further refine remaining alignments and evaluate new alignment</td>
<td>Eliminate certain alignments and design features and present reasons</td>
</tr>
<tr>
<td>Corridors B, C, D, E, F, G, and H</td>
<td>TSM, TDM, Transit, Arterial Streets, Land Use</td>
<td>Corridor A</td>
<td>Alignments located in Corridor H</td>
<td>SR 85/1-8 Riggs Road Alternative</td>
<td>W01 Options</td>
<td>W99 Option</td>
<td>E1 (Pecos Road Alignment)</td>
</tr>
<tr>
<td>Nine alternatives in Western Section</td>
<td>T01 (W55 Alternative)</td>
<td>T02 (W101 Alternative)</td>
<td>T04 (W71 Alternative)</td>
<td>System Traffic Interchange Option</td>
<td>Rolling profile – above existing ground</td>
<td>Constrained R/W design (three general purpose lanes plus one HOV lane in each direction)</td>
<td>W59 Options through Laveen</td>
</tr>
<tr>
<td>Eight alternatives in Eastern Section</td>
<td>T06 (W71 Alternative)</td>
<td>System Traffic Interchange Option</td>
<td>Pecos Road (F1 Alternative)</td>
<td>E1 Alternative (Pecos Road variations)</td>
<td>Unconstrained R/W design (four general purpose lanes plus one HOV lane in each direction)</td>
<td>Community Alignments of the Pecos Road Design Concept</td>
<td>W59 Options through Laveen</td>
</tr>
<tr>
<td>First Tier</td>
<td>W55 and W71 local access with braided ramps and 2 miles of access road</td>
<td>W101 Partial and Full Reconstruction Options</td>
<td>West Central East</td>
<td>Rolling profile – above existing ground</td>
<td>Constrained R/W design (three general purpose lanes plus one HOV lane in each direction)</td>
<td>62nd Avenue Option</td>
<td></td>
</tr>
<tr>
<td>Second Tier</td>
<td>Central Avenue Access Road</td>
<td>System Traffic Interchange Option</td>
<td>Pecos Road</td>
<td>Rolling profile – above existing ground</td>
<td>Constrained R/W design (three general purpose lanes plus one HOV lane in each direction)</td>
<td>62nd Avenue Option</td>
<td></td>
</tr>
<tr>
<td>Third Tier</td>
<td>SR 85/1-8 Riggs Road Alternative</td>
<td>T01 Options</td>
<td>W101 Options</td>
<td>W99 Option</td>
<td>Utility easement options</td>
<td>62nd Avenue Option</td>
<td></td>
</tr>
<tr>
<td>Fourth Tier</td>
<td>System Traffic Interchange Option</td>
<td>System Traffic Interchange Option</td>
<td>W101 Options</td>
<td>E1 Alternative (Pecos Road variations)</td>
<td>Unconstrained R/W design (four general purpose lanes plus one HOV lane in each direction)</td>
<td>Community Alignment of the Pecos Road Design Concept</td>
<td>W59 Options through Laveen</td>
</tr>
<tr>
<td>Fifth Tier</td>
<td>Eastern Section Alignments</td>
<td>Eastern Section Alignments</td>
<td>W59 Options through Laveen</td>
<td>W59 Options</td>
<td>Unconstrained R/W design (four general purpose lanes plus one HOV lane in each direction)</td>
<td>63rd Avenue Option</td>
<td></td>
</tr>
</tbody>
</table>

* Refers to modes for technical alternatives in the Western Section (see Tables 3-3 and 3-4)*
* Refers to Western Section alternatives*
* Refers to Eastern Section alternatives*
* High-occupancy-vehicle *transportation system management*
* Transportation demand management*
* Interstate Route 85
* Interstate 10
* U.S. Route 60
* Pima Freeway
* South Mountain Freeway/Preserve
* Early alternative roughly aligned with 99th Avenue
* Gila River Indian Community

In accordance with the National Environmental Policy Act, a range of reasonable action alternatives to carry forward for further analysis was determined through application of multidisciplinary criteria in a logical, step-wise progression. At the end of each step, modes, corridors, alignments, or options were either eliminated or advanced to the next step. This process was validated prior to issuance of the Final Environmental Impact Statement (see sidebar on page 3-2).
How detailed are the designs of the action alternatives?

The level of design when discussed in the context of freeway design is typically addressed in percentages. For example, “100 percent plans” imply the engineering is complete and a contractor can begin freeway construction based on the plans. Any value less than 100 percent indicates that engineers and designers are still formulating design features of the project.

The action alternatives studied in an FEIS must have sufficient design and engineering completed for ADOT to:

- Know the proposed action could be constructed
- Allow analysis to meaningfully assess and compare impacts that would occur from any of the action alternatives
- Allow determinations to be made about the proposed action

At the same time, the level of design should not (for use in the FEIS) inhibit engineers and designers from making minor changes later in the project development process that could lead to optimized performance, project savings, and/or impact reductions.

ALTERNATIVES STUDIED IN DETAIL

NO-ACTION ALTERNATIVE

The No-Action Alternative is included for detailed study in accordance with NEPA requirements to compare beneficial and adverse impacts of the action alternatives with those benefits and consequences (adverse impacts) of not proceeding with one of the action alternatives. The No-Action Alternative would not extend SR 202L (Santan Freeway) west of I-10 (Marcopica Freeway); however, it would include all other projects included in the RTP. Traffic on the existing segment of SR 202L (Santan Freeway) as well as along I-10 would need to use existing Interstate and Regional Freeway and Highway System facilities or the local street network. As described in Chapter 1, Purpose and Need, regional traffic volumes are projected to increase substantially. VMT are projected to increase by 50 percent between 2012 and 2035, and the No-Action Alternative would not alleviate projected increases in traffic volumes and congestion on the Interstate and regional freeway systems nor on the arterial street network by the design year 2035. Implementation of the No-Action Alternative would result in:

- Further difficulty in gaining access to adjacent land uses
- Increased difficulty in gaining access to Interstate and regional freeway systems from the local arterial street network
- Increased levels of congestion-related impacts
- Continued degradation in performance of regional freeway-dependent transit services
- Increased trip times and higher user costs

Impacts of the No-Action Alternative are described in Chapter 4, Affected Environment, Environmental Consequences, and Mitigation. They are appropriately presented in that chapter to facilitate a comparison of impacts with the action alternatives.

Further, as described in Table 3-9, an important link in the Regional Freeway and Highway System would not be constructed, thereby resulting in increased congestion on completed segments of the Regional Freeway and Highway System. The No-Action Alternative would be inconsistent with MAG and local jurisdictions’ long-range planning and policies. For example, both SR 30 and ARS would need to be reassessed in terms of purpose and need and logical termini and be reanalyzed in terms of traffic performance. The No-Action Alternative would not adequately serve transit opportunities because it would preclude future development of HOV lanes, express bus service, and park-and-ride lots adjacent to the proposed action.

The No-Action Alternative would not satisfy the purpose and need of the proposed action (refer to Chapter 1, Purpose and Need). Identification of the No-Action Alternative as the Selected Alternative would not preclude a project similar to the proposed action from being proposed.

ACTION ALTERNATIVES

This section presents freeway alternatives studied in detail in the FEIS. It describes design, operational, and cost characteristics of each action alternative to the extent possible, given the level of design conducted for each of the action alternatives (see sidebar regarding design detail, on this page). The same design concepts, principles, standards, and assumptions were applied to all action alternatives.

Horizontal and Vertical Alignments

Figures 3-20 through 3-25 illustrate horizontal and vertical alignments (or profiles) of the action alternatives. The following text supports the information depicted in the figures.

Western Section

In the Western Section, alignment descriptions for the action alternatives begin at their western terminus with I-10 (Papago Freeway) and proceed east to the common point among all action alternatives. Table 3-11 presents additional data pertaining to the Western Section action alternatives (see page 3-48).

W59 Alternative (Preferred Alternative)

Horizontal Alignment: The W59 Alternative would connect to I-10 (Papago Freeway) with a system traffic interchange, which would replace the existing service traffic interchange at 59th Avenue and would convert the existing 59th Avenue to two-lane northbound and southbound frontage roads approximately between Van Buren Street and the RDR canal. From I-10 (Papago Freeway), the W59 Alternative would proceed south along the eastern side of 59th Avenue, crossing Roosevelt and Van Buren streets, then shift to the western side, crossing the UPRR tracks and Buckeye Road before making a slight western shift approximately ½ mile north of Lower Buckeye Road. The W59 Alternative would then travel south, crossing Lower Buckeye Road, Broadway Road, the Salt River, and Southern Avenue before making a slight shift to the east. The W59 Alternative would continue south, approximately ⅓ mile west of 59th Avenue, and would cross Baseline and Dobbins roads. It would continue south and then make a curve transition from the southern to the southeastern direction to cross Elliot Road and connect with the E1 Alternative at the point common to all action alternatives on an alignment parallel and adjacent to the Community boundary.

Vertical Alignment: Beginning at a new system traffic interchange with I-10 (Papago Freeway) at 59th Avenue, the W59 Alternative would start as an elevated facility. The alternative’s vertical alignment would be a rolling profile, passing over all arterial streets, railroad tracks, canals, and the Salt River (for additional information, see sidebar on the next page discussing the rolling profile). Between these features, the W59 Alternative would descend toward the existing grade. All arterial streets would remain at their existing elevations, with minor variations. South of the Salt River, the profile would pass over Southern Avenue, Baseline Road, the Laveen Area Conveyance Channel, Dobbins Road, and Elliot Road before connecting to the E1 Alternative.

W71 Alternative

Horizontal Alignment: The W71 Alternative would proceed from a new system traffic interchange with I-10 (Papago Freeway) at 71st Avenue to the south-southeast, crossing Roosevelt Street, Van Buren Street, and the UPRR tracks before turning to the southwest, crossing Buckeye Road at approximately 71st Avenue. In its southwestern direction, the W71 Alternative would curve around the western side of Santa Maria Middle School,
would pass over Southern Avenue, Baseline Road, and the Laveen Area Conveyance Channel. The profile would then dip below the existing grade approximately 10 feet at Dobbins Road (which would be elevated to pass over the freeway). The W71 Alternative would then rise above the existing grade and pass over Elliot Road before connecting to the E1 Alternative.

W71 Alternative and its Options

Horizontal Alignment: Unlike the W59 and W71 Alternatives, the W101 Alternative, as studied in the FEIS, has three horizontal alignment options (see Table 3-10).

Vertical Alignment: The options associated with the W101 Alternative would all have similar vertical alignments. Generally, while the horizontal alignment of SR 101L (Agua Fria Freeway) would be modified beginning at Thomas Road, its vertical alignment would match its existing condition. SR 101L (Agua Fria Freeway) would continue to travel along the existing grade and cross over I-10 approximately 25 feet above grade.

South of I-10, the W101 Alternative and its Options would have a rolling vertical alignment that would pass over all arterial streets, railroad tracks, canals, and the Salt River. As with the other action alternatives, between these features, the W101 Alternative would descend toward the existing grade. All arterial streets would remain at their existing elevations, with minor variations. South of the Salt River, the profile would pass over Southern Avenue, Baseline Road, and the Laveen Area Conveyance Channel. The profile would then dip below the existing grade approximately 10 feet at Dobbins Road (which would be elevated to pass over the freeway). The W101 Alternative would then rise above existing grade and pass over Elliot Road before connecting to the E1 Alternative. Table 3-11 on page 3-48 presents additional data pertaining to the action alternatives in the Western Section.

Table 3-10 Horizontal Alignments, W101 Alternative and Options, Western Section

<table>
<thead>
<tr>
<th>Alternative Option†</th>
<th>Horizontal Alignment Description</th>
<th>I-10 Connection Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Option</td>
<td>The Western Option would proceed from a new system traffic interchange with I-10 (Papago Freeway) and SR 101L (Agua Fria Freeway) in a southerly direction across Roosevelt Street, Van Buren Street, UPRR tracks, Buckeye Road, and Lower Buckeye Road before transitioning to an east-southeasterly direction. After crossing 91st Avenue just south of Broadway Road, the Western Option would head southeasterly to cross the Salt River, Baseline Road, the Laveen Area Conveyance Channel, Dobbins Road, and Elliot Road on an alignment parallel and adjacent to the Gila River Indian Community boundary. The Western Option would connect to the E1 Alternative at the point common to all action alternatives.</td>
<td>Each alignment option (Western, Central, or Eastern) for the W101 Alternative would connect to I-10 (Papago Freeway) at the I-10/SR 101L (Agua Fria Freeway) system traffic interchange. For each option, the connection would be made by partially reconstructing the existing traffic interchange or by fully reconstructing the interchange. One design difference between the Partial Reconstruction and Full Reconstruction variants of any of the options relates to horizontal alignment of a segment of the proposed action. The Partial Reconstruction variant would cross approximately 230 feet west of the existing interchange location; the Full Reconstruction variant would cross approximately 700 feet west of the existing interchange location (W101 Alternative, Partial Reconstruction or Full Reconstruction of the Existing System Interchange Memorandum, 2006), see sidebar on page 3-2.</td>
</tr>
<tr>
<td>Central Option</td>
<td>The Central Option would proceed from a new system traffic interchange with I-10 (Papago Freeway) and SR 101L (Agua Fria Freeway) in a southerly direction along the same alignment as the Western Option until just south of Van Buren Street. South of Van Buren Street, the Central Option would turn to the southeast, crossing the UPRR tracks and Buckeye Road, and then turn south after crossing 91st Avenue. Prior to reaching Broadway Road, the Central Option would turn to the southeast across Broadway Road. The Central Option would then follow the same alignment as the Western Option until connecting with the E1 Alternative at the point common to all action alternatives.</td>
<td></td>
</tr>
<tr>
<td>Eastern Option</td>
<td>The Eastern Option would proceed from a new system traffic interchange with I-10 (Papago Freeway) and SR 101L (Agua Fria Freeway) in a southerly direction along the same alignment as the Western Option until just south of Van Buren Street. South of Van Buren Street, the Eastern Option would turn to the southeast, crossing the UPRR tracks, Buckeye Road, 91st Avenue, Lower Buckeye Road, 83rd Avenue, and Broadway Road. South of Broadway Road, the Eastern Option would follow the same alignment as the Western Option until connecting with the E1 Alternative at the point common to all action alternatives.</td>
<td></td>
</tr>
</tbody>
</table>

† Each W101 Alternative option would require SR 101L (Agua Fria Freeway) realignment for approximately 1.25 mile between Thomas Road and Interstate 10 (Papago Freeway).
‡ Interstate 10 †† State Route 101L (Loop 101) †‡ Union Pacific Railroad

Why use a rolling profile?

The use of the “rolling” profile is evident in other existing freeways in the MAG region. Good examples of the profile can be seen on portions of SR 101L (Agua Fria and Pima freeways). The concept can:

- be cost-effective
- balance costs associated with the export and import of fill materials
- provide operational benefits because it is a common feature on the region’s freeways and drivers are, therefore, familiar with it

Rolling profiles are also beneficial in that they permit efficient drainage solutions and reduce the amount of land acquisition needed.
Physical features (e.g., railroads, canals, the Salt River, arterial streets, groundwater levels) and the desire to balance earthwork and limit impacts on existing streets resulted in a rolling profile for the W59 Alternative. (The bulges and other irregular shapes depicted for the alternative’s otherwise-linear footprint reflect projected right-of-way needed for drainage basins and channels, interchanges, etc.)
Like the W59 Alternative, physical features (e.g., railroads, canals, the Salt River, arterial streets, groundwater levels) and the desire to balance earthwork and limit impacts on existing streets resulted in a rolling profile for the W71 Alternative. At Dobbins Road, the profile would be “depressed” below existing ground; because of terrain slope, water—when on the freeway—would flow toward the Salt River without requiring a pump station. (The bulges and other irregular shapes depicted for the alternative’s otherwise-linear footprint reflect projected right-of-way needed for drainage basins and channels, interchanges, etc.)
The same physical features associated with the W59 and W71 Alternatives (e.g., railroads, canals, the Salt River, arterial streets, groundwater levels) and the desire to balance earthwork and limit impacts on existing streets resulted in a rolling profile for the W101 Alternative Western Option. At Dobbins Road, the profile would be “depressed” below existing ground; because of terrain slope, water—when on the freeway—would flow toward the Salt River without requiring a pump station.

(The bulges and other irregular shapes depicted for the alternative’s otherwise-linear footprint reflect projected right-of-way needed for drainage basins and channels, interchanges, etc.)
The same physical features associated with the W59 and W71 Alternatives (e.g., railroads, canals, the Salt River, arterial streets, groundwater levels) and the desire to balance earthwork and limit impacts on existing streets resulted in a rolling profile for the W101 Alternative Central Option. At Dobbins Road, the profile would be “depressed” below existing ground; because of terrain slope, water—when on the freeway—would flow toward the Salt River without requiring a pump station. (The bulges and other irregular shapes depicted for the alternative’s otherwise-linear footprint reflect projected right-of-way needed for drainage basins and channels, interchanges, etc.)
The same physical features associated with the W59 and W71 Alternatives (e.g., railroads, canals, the Salt River, arterial streets, groundwater levels) and the desire to balance earthwork and limit impacts on existing streets resulted in a rolling profile for the W101 Alternative Eastern Option. At Dobbins Road, the profile would be depressed below existing ground; because of terrain slope, water—when on the freeway—would flow toward the Salt River without requiring a pump station. (The bulges and other irregular shapes depicted for the alternative’s otherwise-linear footprint reflect projected right-of-way needed for drainage basins and channels, interchanges, etc.)
3-47

Figure 3-25 Horizontal and Vertical Alignments, E1 Alternative, Eastern Section

The E1 Alternative would follow a rolling profile, similar to the Western Section action alternatives, for its entirety. Through the mountainous areas, the profile would be elevated to allow natural washes to flow under, for possible wildlife crossings, and for access to the mountains (see text box on page 4-137). A “depressed” profile (below existing ground) when replacing Pecos Road would not be reasonable (see related text beginning on page 3-15). (The bulges and other irregular shapes depicted for the alternative’s otherwise linear footprint reflect projected right-of-way needed for drainage basins and channels, interchanges, etc.)
Eastern Section

The alignment of the one action alternative in the Eastern Section is described below. Figure 3-25 is a graphic representation of its horizontal and vertical alignment.

E1 Alternative (Preferred Alternative)

Horizontal Alignment: At the point common among all action alternatives, the E1 Alternative would travel to the southeast parallel and adjacent to the Community boundary, crossing over Estrella Drive, 51st Avenue, and Ivanhoe Street. In this direction, the action alternative would pass through three ridges of the South Mountains (two of which are in SMP) before turning to the east. Traveling to the east, the E1 Alternative would follow and replace the Pecos Road alignment north of and adjacent to the Community boundary, and would cross over 17th Avenue, Desert Foothills Parkway, 24th Street, 32nd Street, and 40th Street. The E1 Alternative would then connect to the existing I-10 (Maricopa Freeway)/SR 202L (Santan Freeway)/Pecos Road system traffic interchange. Table 3-11 presents additional data pertaining to the E1 Alternative.

Vertical Alignment: The E1 Alternative would have a rolling profile similar to those typical of the Western Section action alternatives and would pass over all arterial streets. Between arterial street overpasses, the E1 Alternative would descend toward the existing grade. In the mountainous region, the profile would remain adequately elevated to facilitate possible wildlife passage through proposed multispecies crossings (see the section, *Biological Resources*, beginning on page 4-125, for more details) and to avoid interrupting the natural drainage. All arterial streets would remain at their existing elevations, with minor variations. Three cut sections would be required where mountain ridges exist (one ridge is outside SMP) (see the section, *Topography, Geology, and Soils*, beginning on page 4-121, and the section, *Measures to Minimize Harm*, beginning on page 5-23). Between 17th Avenue and 24th Street near Ahwatukee Foothills Village, other cut sections would also be required. The E1 Alternative would end near 46th Street.

The E1 Alternative would have no depressed sections, except through the cut sections mentioned above (see section, *E1 Alternative – Pecos Road Variations*, beginning on page 3-45, regarding Pecos Road profile options).

Other Alignment Features

Table 3-11 provides a comparison of alignment features of the action alternatives. For action alternatives in the Western Section, primary differences focus on the connections to I-10 (Papago Freeway) and related improvements that would be required on I-10 (operational differences are presented later in this chapter). The same design concepts and principles were applied to all action alternatives. Options to change the profile of the E1 Alternative along Pecos Road (e.g., to depress the portion of freeway below the existing grade) were examined. The profile depicted was found to represent the best balance between cost and impact on the surrounding environment.

Traffic Interchange Configurations

Two types of traffic interchanges (see sidebar on page 3-14) are included as part of the action alternatives:

- **System traffic interchanges** are interchanges connecting a freeway with another freeway, such as the I-10/I-17 system traffic interchange in downtown Phoenix.
- **Service traffic interchanges** are interchanges providing freeway access to and from the local arterial street network, such as I-10 at 7th Avenue in downtown Phoenix.

The footprint of a system traffic interchange is typically much larger than that of a service traffic interchange.

System Traffic Interchanges

Two connections to existing freeways would occur, one at each end of the proposed action and representing the logical termini.

System Traffic Interchange at the Western Terminator

The proposed action (using the W59, W71, or W101 Alternative) would connect to I-10 (Papago Freeway) at one of three locations and would represent the proposed action’s western terminus. Proposed configuration concepts for each connection to I-10 (Papago Freeway) follow.

W59 Alternative (Preferred Alternative) and W71 Alternative – System Traffic Interchange

The W59 and W71 Alternatives would each tie into I-10 (Papago Freeway) using a similarly configured system traffic interchange and are, therefore, described together. Figure 3-26 illustrates the system traffic interchange.

Table 3-11 Alignment Features, Action Alternatives

<table>
<thead>
<tr>
<th>Alignment Feature</th>
<th>Action Alternative</th>
<th>Western Section</th>
<th>E1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>W59</td>
<td>W101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W71 West</td>
<td>Central</td>
</tr>
<tr>
<td>Length (miles)</td>
<td>8.5</td>
<td>9.0</td>
<td>11.3</td>
</tr>
<tr>
<td>Crossings</td>
<td>10</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>Railroads</td>
<td>All alternatives would cross UPRR facilities.</td>
<td>Not applicable</td>
<td></td>
</tr>
<tr>
<td>Natural features</td>
<td>All would cross the Salt River.</td>
<td>Three mountain ridgelines</td>
<td></td>
</tr>
<tr>
<td>Canal/Drainages</td>
<td>All would cross Roosevelt Canal and Laveen Area Conveyance Channel.</td>
<td>Numerous natural washes</td>
<td></td>
</tr>
<tr>
<td>I-10' improvements</td>
<td>From 43rd to 75th avenues</td>
<td>From 51st to 91st avenues</td>
<td>From 75th Avenue to Dysart Road</td>
</tr>
<tr>
<td>SR 101Ls (Agua Fria Freeway)</td>
<td>None required</td>
<td>I-10 (Papago Freeway) to Bethany Home Road</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

* Each of the W101 Alternatives and Options includes proposals to either reconstruct the Interstate 10/State Route 101L system traffic interchange to connect the proposed action or to construct a new system traffic interchange approximately 700 feet to the west of the existing interchange (which, for this proposal, would include demolition of the existing interchange).
* When Western and Eastern Section action alternatives are combined, the entire length of the proposed action (Western and Eastern Sections) would be between 21.6 and 24.4 miles.
* Refer to Figures 3-20 to 3-25 for specific arterial street crossings.
* Union Pacific Railroad
* Interstate 10
* Most improvements to I-10 (Papago Freeway) in the Western Section would occur within its existing right-of-way (see Figures 3-29 through 3-31).

* State Route 101L (Loop 101)
concept for the W59 and W71 Alternatives. Additional information in support of Figure 3-26 includes:

➤ For either alternative, the interchange would include four freeway-to-freeway ramps connecting the proposed action to I-10.

➤ For northbound traffic on the proposed action, four lanes would be provided approaching the system traffic interchange. The lanes would diverge, with two lanes forming the northbound-to-eastbound interchange ramp and two lanes forming the northbound-to-westbound interchange ramp.

➤ For traffic heading south on the proposed action from I-10, an eastbound-to-southbound ramp and a westbound-to-southbound ramp would be provided. For eastbound-to-southbound traffic, two I-10 eastbound lanes would diverge, forming a ramp, and for westbound-to-southbound traffic, two I-10 westbound lanes would diverge to form another ramp. Similarly, the southbound movement of the proposed action would be four lanes wide.

➤ All freeway-to-freeway ramps would have two lanes with left and right shoulders.

➤ Access to and from existing service traffic interchanges on I-10 east and west of the system traffic interchange location would be altered by either action alternative (additional information regarding how local access on I-10 would be altered is provided in the section, Alteration of Existing Service Traffic Interchanges, on page 3-52).

➤ I-10 east and west of the system traffic interchange would be widened to accommodate additional traffic from the connection to the proposed freeway.

Under any of the system traffic interchange connections between the proposed action and Interstate 10 (Papago Freeway), ramp configurations would be designed to ensure acceptable traffic operational characteristics on the freeways in the vicinity of the interchange.
An HOV direct connection ramp between I-10 and the proposed freeway would be provided for traffic traveling north-to-east and west-to-south.

W101 Alternative and its Options – System Traffic Interchange

The W101 Alternative would tie into I-10 (Papago Freeway) and SR 101L (Agua Fria Freeway) using a system traffic interchange. Under the options being considered, the existing I-10/SR 101L (Agua Fria Freeway) system traffic interchange would be either partially reconstructed or fully reconstructed. Although the impacts and issues are different for each type of traffic interchange, they each have pros and cons. There were not significant enough differences related to traffic operations, costs, impacts, etc., to eliminate one or the other. Leading into the 2006 identification of the preliminary preferred alternative in the Western Section, ADOT preferred the partial reconstruction because it would keep most of the existing interchange in place. Figure 3-26 depicts schematics of the system traffic interchange concepts for the W101 Alternative and its Options. The main advantage of the connection to I-10 at the existing system traffic interchange is its ability to convey north-south traffic directly onto SR 101L (Agua Fria Freeway) without having it merge onto and then off of I-10 (Papago Freeway). Additional information in support of the concepts shown in Figure 3-26 includes:

- The configurations would include eight freeway-to-freeway ramps, four connecting the existing SR 101L (Agua Fria Freeway) to I-10 (Papago Freeway) and four connecting the proposed action to I-10.
- Northbound traffic on the proposed action would travel on seven general purpose lanes and one HOV lane approaching the system traffic interchange. Four lanes would diverge from the main line: two lanes to form the northbound-to-eastbound ramp and two lanes to form the southbound-to-eastbound ramp. The remaining three general purpose lanes and one HOV lane would continue through the system traffic interchange to connect with the main line of the proposed action.
- As with the W59 and W71 Alternatives, each freeway-to-freeway ramp to and from the proposed action would have two lanes with left and right shoulders.
- Two concepts relative to constructing the system traffic interchange are being considered:
 - One concept would modify the existing I-10/SR 101L system traffic interchange (a partial reconstruction).
 - The other concept would construct a new system traffic interchange to the west of the existing system interchange and would remove the existing system traffic interchange (a full reconstruction).
- Access to and from existing service traffic interchanges on I-10 (Papago Freeway) east and west of the system traffic interchange location and on SR 101L (Agua Fria Freeway) north of I-10 to the SR 101L/Thomas Road service traffic interchange would be altered (additional information regarding how local access on I-30 would be altered is provided in the section, Alteration of Existing Service Traffic Interchange).
- I-10 east and west of the system traffic interchange would be widened to accommodate additional traffic from the connection to the proposed freeway.

System Traffic Interchange at the Eastern Terminus

The proposed action (under the E1 Alternative) would connect to the existing I-10 (Maricopa Freeway)/SR 202L (Santan Freeway)/Pecos Road system traffic interchange (the E1 Alternative would replace the Pecos Road connection). The system traffic interchange was constructed in 2000–2002 to accommodate the western leg of SR 202L—the proposed action—as depicted in Figure 3-27. ADOT recently completed construction of a direct HOV connection between I-10 (to and from the north) and SR 202L (Santan Freeway) (to and from the east) along with HOV lanes along the SR 202L (Santan Freeway) corridor. The HOV lanes for the proposed action would be extended to connect to the HOV lanes along SR 202L (Santan Freeway).

As a result of traffic analyses coordinated among the RTP-planned projects associated with the system traffic interchange, the northbound-to-westbound and eastbound-to-southbound ramps would be widened from one to two lanes in each direction to accommodate projected 2035 traffic. The E1 Alternative includes...
provisions for the proposed ramp widening, which would be constructed as a part of a future project.

System Traffic Interchange at SR 30
The proposed action would be designed to accommodate a future system traffic interchange to be located in the Western Section near Broadway Road. The interchange would connect SR 30 and ARS to the proposed action. The specific location of the interchange would be determined based on the action alternative identified in the Western Section for the proposed action and on final determinations made for the design and location of SR 30, which is under study. The design and operational characteristics of the system traffic interchange and the potential benefits and adverse impacts of the interchange will be reported in the project studies when made available to the public.

Service Traffic Interchanges – Proposed Action Main Line
The action alternatives would include the construction and operation of service traffic interchanges to provide access between the arterial streets and the proposed freeway. Figure 3-28 illustrates the locations and access proposed for the service traffic interchanges. Additional information in support of the concepts shown in Figure 3-28 includes:

- Service traffic interchanges were generally spaced at 1-mile intervals along the arterial street grid. The spacing is consistent with other freeway facilities in the MAG region. Some locations were not conducive to the 1-mile spacing because of geographic features, operational characteristics, or design limitations (e.g., the arterial street crossing location did not conform to the 1-mile grid).
- Members of the public and local jurisdictions influenced the locations, configuration concepts, and access of some of the service traffic interchanges (see Figures 3-7 and 3-8).
- Environmental, operational, and/or design considerations would determine the level of access to be provided at each service traffic interchange. Most service traffic interchanges would provide full access (ramps in all four directions). Half-diamond (half-access) interchanges would be used near system traffic interchanges to avoid undesirable operational conflicts.
- The diamond interchange configuration (see sidebar on page 3-14) was used to evaluate service traffic interchange needs. The configuration has been commonly used for other freeway facilities in the MAG region. The actual configuration(s) of the service traffic interchanges would be determined during the design phase of the Selected Alternative, if an action alternative were to be identified. Designers would assess whether other configurations (e.g., the single-point urban interchange, collapsed diamond interchange, or split diamond interchange) would be more cost-effective, have smaller R/W needs, and/or have less impact while providing adequate or better operational benefits than the diamond configuration. R/W needs for the proposed action, as calculated in the FEIS and as presented in the section, Right- of-way Needed for Action Alternatives, beginning on the next page, would consider sufficient area to accommodate other service traffic interchange types, should public benefit be derived from changing the configurations during the design phase.
Calculations to determine total acreage for R/W acquisition were taken from concept-level plans (see sidebar regarding the level of design, on page 3-8. See text box, Creation of Western and Eastern Sections for the FEIS for the proposed action on page 3-40). Total R/W requirements would be subject to modification during the final design phase.

Additional right-of-way (R/W) along State Route 101L.

<table>
<thead>
<tr>
<th>Location</th>
<th>Action Alternative</th>
<th>Western Section</th>
<th>Eastern Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-10 (Papago Freeway) to Buckeye Road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W59</td>
<td>1844</td>
<td>1555</td>
<td></td>
</tr>
<tr>
<td>W71</td>
<td>2496</td>
<td>2806</td>
<td>2786</td>
</tr>
<tr>
<td>E1</td>
<td>Does not apply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buckeye Road to Southern Avenue</td>
<td>332</td>
<td>352</td>
<td>465</td>
</tr>
<tr>
<td>W1014</td>
<td>411</td>
<td>411</td>
<td>428</td>
</tr>
<tr>
<td>Southern Avenue to common point4</td>
<td>598</td>
<td>597</td>
<td>598</td>
</tr>
<tr>
<td>Common point to 17th Avenue</td>
<td></td>
<td></td>
<td>5034</td>
</tr>
<tr>
<td>17th Avenue to I-10 (Maricopa Freeway)</td>
<td></td>
<td></td>
<td>380</td>
</tr>
<tr>
<td>Total</td>
<td>935</td>
<td>1,061</td>
<td>1,131</td>
</tr>
</tbody>
</table>

* Acreage is needed for the Partial Reconstruction Option, which would use 5 more acres than the Full Reconstruction Option because of additional rights-of-way (R/W) along State Route 101L.

* Interstate 10

* Calculations to determine total acreage for R/W acquisition were taken from concept-level plans (see sidebar regarding the level of design for the proposed action on page 3-40. Total R/W requirements would be subject to modification during the final design phase.

* See text box, Creation of Western and Eastern Sections for the FEIS, on page 3-8.

> On- and off-ramps at the service traffic interchanges would include one lane with left and right shoulders. Additional lanes as warranted by traffic projections would be provided to accommodate turning movements at the crossroad.

> Access control would be maintained along the arterial street to ensure desirable traffic performance.

> To avoid traffic operational problems, two-lane on- and off-ramps would not be used at closely spaced service traffic interchanges.

Alteration of Existing Service Traffic Interchanges

Each action alternative in the Western Section would introduce a large system traffic interchanges to a segment of I-10 (Papago Freeway) that now has a series of service traffic interchanges at 1-mile intervals. The size of the system traffic interchange would affect access to and from I-10 from neighboring service traffic interchanges. As a result, modifications to local access would adversely affect nearby businesses, emergency response times, bus routes, arterial street operational characteristics, and freeway conditions. Conversely, local access by way of service traffic interchanges located too close to a system traffic interchange would adversely affect the operational and safety characteristics of the freeway main lines. Because of these potential impacts, various concepts using half-diamond interchanges connected to adjacent half- or full-diamond interchanges with access roads were developed to examine the balance between local access and main line operation.

Figures 3-29 and 3-30 illustrate the local access concepts determined for the W59 and W71 Alternatives, respectively. Figure 3-31 on page 3-35 depicts the concepts applied to the Partial and Full Reconstruction Options for the W101 Alternative and its Options. Effects of the local access concept for each action alternative on local businesses are presented in the section, Economic Impacts, beginning on page 4-56. In summary, for each concept, the effects of different combinations of ramp configurations (e.g., braided ramps), ramp lengths, access roads (parallel to I-10), and modifications to the service traffic interchange ramps were examined.

Alteration of Existing Local Street Network

Each action alternative would affect several segments of the existing local street network (accounted for in the R/W presented in Figures 3-20 to 3-25). Alteration of the local street network (principally immediately adjacent to the action alternatives) would be subject to modification during design refinement in future project development phases. An example of how the local street network could be reconfigured using the W59 and E1 Alternatives (Preferred Alternative) is shown in Figures 3-32 and 3-33, respectively (see pages 3-56 and 3-57). A similar approach was used in determining the needed R/W for the W71 Alternative and the W101 Alternative and its Options.

Various approaches could be used in the reconfiguration of the local street network. Examples of these approaches are:

> **Removed street** – As shown in Detail B of Figure 3-32, Latham Street would be removed. No additional reconfiguration would be needed.

> **Newly constructed street** – As shown in Detail B of Figure 3-32, 62nd Avenue would be removed from its existing location and reconstructed farther west. 62nd Avenue would continue to connect Encinias Lane, Wood Street, and Pueblo Avenue.

> **Existing street remaining below freeway** – As shown in Detail A of Figure 3-32, Roosevelt Street would remain in its existing location and bridges would be constructed over it.

> **Newly constructed street** – As shown in Detail C of Figure 3-33, construction of Chandler Boulevard between approximately 27th and 19th avenues would be completed as a part of this project.

Right-of-Way Needed for Action Alternatives

Table 3-12 presents the R/W needed for the action alternatives. Information to support the Table 3-12 presentation includes:

> The typical R/W width would vary throughout the project area, but would normally be less than 500 feet wide, except at interchange locations (see the section, *Typical Freeway Sections*, on page 3-58).

> Where service traffic interchanges would be constructed, additional R/W would be provided for the interchange ramps. Based on the angle at which the proposed action would cross the arterial street, additional R/W width for service traffic interchange ramps and lanes would vary between approximately 850 and 2,200 feet.

> R/W and access control would be needed along arterial streets when additional lanes were needed at the service traffic interchanges (the additional R/W needs on the arterial streets have been accounted for in the impact analyses presented in Chapter 4, *Affected Environment, Environmental Consequences, and Mitigation*).

R/W would also be needed for the system traffic interchange connecting the proposed action to I-10 (Papago Freeway) in the Western Section.

Between 1,818 and 2,203 acres would be converted from existing land uses to a transportation use to construct the
proposed action, depending on which action alternative were to be identified, if any. Total R/W requirements would be subject to modification during the concept-level design phase. The conversion by land use type to a transportation use (the proposed action) for each action alternative is presented in the section, Land Use, beginning on page 4-3.

The acreage of new R/W needed for the action alternatives is typical for a project of this magnitude; R/W needed for the 17-mile portion of SR 202L (Red Mountain Freeway) from SR 87 (Beeline Highway) to US 60 (Superstition Freeway) was approximately 1,200 acres. ADOT began acquiring land for the original alignment R/W in 1988. Between 1988 and 2001, ADOT acquired approximately 293 acres. Most of this land (258 acres) is located in the Eastern Section along Pecos Road. In 2006, ADOT began protective and hardship land acquisition in the alignment R/W footprint for the W59 and E1 Alternatives. Between 2006 and October 2013, ADOT purchased 326 acres (303 in the Western Section and 23 in the Eastern Section).
As with the W59 Alternative (see Figure 3-29), signs would be installed to provide motorists with information regarding how to gain access to local arterial streets from Interstate 10 (Papago Freeway) resulting from modifications caused by the W71 Alternative system traffic interchange.

Other Major Design Features Common to Action Alternatives

Design Criteria

The design criteria used to develop the action alternatives meet standards and guidelines in use by ADOT, FHWA, and AASHTO as set forth in:

- Roadway Design Guidelines (ADOT 2012a)
- Interim Auxiliary Lane Design Guidelines (ADOT 1996)
- A Policy on Geometric Design of Highways and Streets (AASHTO 2011a)

Deviation from design standards is not expected for any of the action alternatives.
The Partial Reconstruction Option would keep intact much of the existing connection between Interstate 10 (Papago Freeway) and State Route 101L (Agua Fria Freeway) and the existing local access to McDowell Road and Thomas Road. The Full Reconstruction Option would replace the existing connection and remove the local access that exists now at McDowell Road. Either option (Partial or Full Reconstruction) would look and operate similarly to other major interchanges in the region such as the Interstate 17/State Route 101L (Pima Freeway) interchange.
The W59 Alternative would affect the existing local street network. Approaches for reconfiguring the local street network include removing streets, constructing new streets, constructing the proposed freeway over existing streets, or dead-ending existing streets. Final design of local streets would be coordinated with emergency service providers, local jurisdictions, and other appropriate agencies and would continue through final design stages.
The E1 Alternative would affect the existing local street network. Approaches for reconfiguring the local street network include removing streets, constructing new streets, constructing the proposed freeway over existing streets, or dead-ending existing streets. Final design of local streets would be coordinated with emergency service providers, local jurisdictions, and other appropriate agencies and would continue through final design stages.
The proposed action would be readily accessible to and usable by individuals with disabilities and would comply with the applicable provisions set forth in the Americans with Disabilities Act. For example, the reconstruction and construction of new curb ramps and sidewalks at proposed service traffic interchanges would satisfy the relevant requirements.

Typical Freeway Sections

Figure 3-34 depicts typical freeway sections for all action alternatives. The freeway main line would have three 12-foot-wide general purpose lanes and one HOV lane in each direction, separated by a median barrier with left shoulders adjacent.

Auxiliary Lanes

An auxiliary lane is a lane located to the outside of freeway through-lanes (see sidebar on the next page). Located between successive on- and off-ramps associated with service traffic interchanges, auxiliary lanes are used by vehicles entering and exiting the freeway main line. Common to Regional Freeway and Highway System segments, auxiliary lanes reduce the degree of conflict between traffic merging onto and exiting a freeway and minimize disruption to on- and off-ramps. By reducing conflict, auxiliary lanes typically improve overall traffic performance. Auxiliary lanes would be 12 feet wide and maintain a 12-foot-wide right shoulder, similar to the freeway main line. Auxiliary lanes would be used where warranted in accordance with ADOT’s *Interim Auxiliary Lane Design Guidelines* (1996). Impacts associated with auxiliary lanes are accounted for in the analysis.

Traffic Control Devices and Illumination

Signs, lighting, traffic signals, and pavement marking would be designed to meet current guidelines and standards referenced under the section, *Design Criteria* on page 3-59, as well as in the *Manual on Uniform Traffic Control Devices for Streets and Highways* (FHWA 2009a).

Any freeway lighting installed would be designed to reduce illumination spillover onto sensitive light receptors (such as residential and natural areas). Lighting needs would also include underdeck lighting on bridges where appropriate. The use of municipal or ADOT standard traffic control devices and illumination at arterial streets would be determined during the design phase.

Earthwork

To construct the proposed action, material would either need to be removed (cut) from the existing grade or added (fill) to the existing grade to accommodate the vertical alignments of the action alternatives. During design, efforts would be made to optimize the freeway profile to minimize the potential deficit (borrow). Earthwork quantities for each action alternative are presented in Figure 3-35. The sidebar on page 3-41 pertaining to rolling profile provides additional information regarding this topic.

Drainage

Drainage structures would be designed to meet standards and guidelines in use by ADOT, FHWA, and the Flood Control District of Maricopa County (FCDMC) as set forth in:

- Roadway Design Guidelines (ADOT 2012a)
- Standard Specifications for Road and Bridge Construction (ADOT 2008)
- Drainage Design Manual for Maricopa County, Arizona: Hydrology (FCDMC 2009)
- municipal standards as appropriate

Coordination between ADOT and such agencies as applicable—including the City of Phoenix, FCDMC, the Bureau of Reclamation, the Bureau of Land Management (BLM), the Natural Resources Conservation Service, the Community, and local irrigation districts—regarding drainage canal crossings within the Study Area would continue during the design phase and construction. Arterial cross streets would be designed according to the standards of the relevant jurisdictions, in coordination with their staff, during the design phase.

Where appropriate, the defined R/W includes a drainage channel (see Figure 3-34 and the sidebar on this page) and drainage basins. Final configuration of drainage features would be determined during the design phase. The size and location of drainage facilities could change based on additional design efforts, adjacent development plans, and changes in rainfall or drainage patterns.
Pavement Treatment

According to ADOT policy, new freeways constructed in the MAG region will be overlaid with rubberized asphalt. See the section, Noise, beginning on page 4-88, for more information regarding the use of rubberized asphalt.

Planning-level Cost Estimates

Figure 3-36 summarizes overall planning-level cost estimates for each action alternative. When the Western and Eastern Sections are combined, total freeway costs would range from $2 billion to $2.6 billion (in 2012 dollars), including design, R/W acquisition, and construction. Costs would be updated during the design phase and reflected in the RTP update process. Updating costs is critical to account for cost fluctuations for materials, land acquisition, and design refinements.

Before the record of decision (ROD) is published, a formal cost estimate review will be conducted in accordance with Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users guidelines. The official review that will occur between publication of the FEIS and ROD will determine a probability and range for the cost of the Selected Alternative (should it be an action alternative). Additionally, the review will escalate the current dollar estimates to provide the future cost in the expected year of expenditure.

Construction Sequencing and Schedule

For a project such as the proposed action, typically upon completion of the EIS process, and if the Selected Alternative is an action alternative, ADOT would begin the design phase. Upon completion of the initial design phase, the final R/W acquisition process and other “early construction” tasks such as utility relocations would begin. Also, the corridor would be divided into multiple final design segments to establish a construction implementation plan. The termini of these segments would be determined through consideration of several factors, including:

- traffic performance and continuity
- off-site drainage considerations

A cost-effective goal in constructing the freeway would be to balance the cut and fill along the project. The estimated quantities shown in the figure are not atypical of freeway projects of this magnitude.

What are auxiliary lanes?

Auxiliary lanes, typically located on the periphery of general through-lanes, facilitate drivers’ access to or egress from through-lanes. Highway designers often place auxiliary lanes between successive on- and off-ramps associated with service traffic interchanges. In the graphic and photo shown below, an auxiliary lane is provided between the entrance and exit ramps to allow an extended area for safe acceleration or deceleration. This reduces the degree of potential conflict between through-traffic and travelers merging onto or exiting a freeway.

Source: Arizona Department of Transportation, 2010a
Estimating costs for a project like the proposed action is an iterative process as design evolves from conceptual design to final design plans and specifications to be used by the project builder. At the EIS process phase, estimates are typically based on conceptual design, meaning estimates will regularly be revisited and updated as design proceeds. Therefore, the planning-level estimates provided in the FEIS are based on design concepts for major items of the freeway and are expected to change over the life of the project as the design is refined. The assumptions used in developing the estimates were applied equally to all action alternatives studied in detail in the FEIS. For example:

- A contingency percentage was included in the estimates to account for changes as the project would evolve from concepts to construction and because of the uncertainty of future R/W and material costs.

How Are Planning-level Cost Estimates Developed?

Through the South Mountains, and end at approximately 51st Avenue. Finally, these two reaches would be connected by constructing the remaining freeway segments between Baseline Road and 51st Avenue. The duration of construction under this typical design-bid-build process is anticipated to be 5 to 6 years. Construction sequencing and duration could change based on several factors, including funding availability, traffic volumes, coordination with other major freeway projects, earthwork balancing, utility relocation schedules, and regional priorities.

In summer 2013, ADOT received an unsolicited public-private partnership (P3) proposal to construct the South Mountain Freeway from a group of private companies. Constructing the freeway as a toll road was not considered in the proposal. A P3 is a contractual agreement between a public agency and a private sector entity that allows the private sector entity to assume all of the risks and responsibilities while gaining the opportunity to profit from more efficient construction methods.

The unsolicited proposal identified potential benefits to using a P3 to build the freeway:

- construct the entire corridor as one P3 project to reduce cost and duration of construction
- use private sector investment and financial solutions to maximize the use and allocation of limited public funds (with no tolling or user fees)
- offer flexibility to adapt to changes in the freeway concept (with no involvement in the environmental process or selection of the freeway alignment)
- provide significant subcontracting and job opportunities for local contractors to ensure the greatest benefit to the local economy and taxpayers

ADOT would continue to evaluate options for building the freeway. The ultimate approach to building the freeway would not affect potential impacts or proposed mitigation presented in the FEIS or ROD.

Enhancement Opportunities

Construction and operation of any of the action alternatives would create opportunities for ADOT and local jurisdictions to identify additional enhancements. Examples of enhancements are both procedural and project-specific. A procedural enhancement could include the engagement of select members of the public to participate in the design phase or through public art projects in the corridor. A project-specific example might be the result of excess R/W that may be suitable for other public infrastructure projects such as park-and-ride lots or bicycle/multiause paths. During the design phase, ADOT, local municipalities, the Community, Valley Metro, and MAG would work together to identify and create enhancement opportunities. MAG policy would determine how enhancements would be funded.

TRAFFIC ANALYSIS

Traffic-related analysis has been previously presented for the comparison of the existing conditions and future conditions without a major transportation facility in the Study Area (see the section, Need Based on Regional Transportation Demand and Existing and Projected Transportation System Capacity Deficiencies, on page 1-13) as well as the comparison between future conditions with and without a major transportation facility in the Study Area (see the section, Responsibilities of the Proposed Freeway to Purpose and Need Criteria, on page 3-27).

The following text expands on the analysis of future conditions by presenting the differentiating traffic-related characteristics among the alternatives studied in detail (No-Action Alternative and action alternatives). Because the E1 Alternative is the only action alternative in the Eastern Section, it is logical to assume that it will be common to each action alternative in the Western Section. Therefore, it is included within this discussion, from logical terminus to logical terminus.

2035 Forecast Traffic Conditions in the Study Area and Immediate Surroundings

Figure 3-37 presents future ADT volumes for the No-Action Alternative and action alternatives for freeways and arterial streets in and around the Study Area. When comparing traffic performance of the action alternatives with traffic performance under the No-Action Alternative, a number of intended outcomes can be observed:

- Nearly all segments of I-10 (Maricopa Freeway) between I-17 and SR 202L (Santan Freeway) would experience reduced traffic volumes with the action alternatives. The reduction would be approximately 32,000 vpd between Baseline and Elliot roads (see location 8 in Figure 3-37) and between 48th Street and Broadway Road (see location 9).
- The reduced volumes would result in better traffic conditions along this section of I-10.

The action alternatives would provide a necessary link in the system, resulting in more desirable traffic distributions. With identification of the No-Action Alternative as the Selected Alternative, segments of SR 202L (Santan Freeway) and the proposed SR 30 adjacent to their connections with
In most cases, representative segments of freeways and arterial streets would experience more daily traffic with the No-Action Alternative than with implementation of any of the action alternatives.
the proposed freeway would be underused. A six-lane freeway is intended to carry approximately 165,000 vpd. With the No-Action Alternative, these freeways would carry only 115,000 vpd or less.

- Overall, the action alternatives would result in lower traffic volumes on the arterial street network within and around the Study Area. This represents an intended outcome from the RTP—the redistribution of regional traffic from arterial streets to regional freeways.

When comparing traffic operational characteristics of the action alternatives, a number of differences can be observed:

- SR 101L (Agua Fria Freeway), between Camelback and Bethany Home roads (see location 4), would experience greater traffic volumes with implementation of the W101 Alternative than with any of the other action alternatives because of the direct connection between the freeways. This illustrates one of the strengths of the W101 Alternative—it would complete the loop system in the southwestern portion of the Phoenix metropolitan area without causing any overlap on I-10 (with the W59 or W71 Alternatives, drivers would have to get on I-10 to reach SR 101L).

- The proposed SR 30 would be used more with the W59 Alternative than would be the case with the W71 or W101 Alternatives (see location 14). Also, I-10 would experience a small decrease in traffic volumes between 115th and 107th avenues (see location 12) with the W59 Alternative. These points illustrate one of the benefits of the W59 Alternative: it would optimize the long-term system of freeways planned in the southwestern portion of the Phoenix metropolitan area. However, this benefit would not be realized until construction of SR 30 and additional portions of SR 303L. Both of these facilities remain in the RTP, but are currently programmed in the years beyond the current one-half cent sales tax funding horizon.

Additional discussion of how the differences in traffic volumes would affect traffic conditions on the adjacent freeway system can be found in the following sections.

2035 Forecast Traffic Performance, by Action Alternative

Figure 3-38 illustrates the forecast traffic volumes on the action alternatives. Figure 3-39 on page 3-65 illustrates the sections where the action alternatives would operate at LOS E or F, and for how long (see text box on page 1-14 regarding LOS). The mix of vehicles (i.e., passenger cars, light trucks, heavy trucks) would be the same regardless of alternative (see text box on page 3-64 regarding related topics).

Notable observations from this information include:

- In general, traffic volumes on the proposed freeway would not vary substantially among the action alternatives. One exception is the W101 Alternative, which would experience higher volumes approaching I-10 (Papago Freeway) because of traffic connecting directly to SR 101L (Agua Fria Freeway).

- The highest traffic volumes for the W59 and W71 Alternatives would be between Broadway Road and Southern Avenue, just south of the proposed SR 30 connection. The highest volumes for the W101 Alternative would be between the proposed SR 30 connection and I-10 (Papago Freeway).

- The traffic volumes in the Eastern Section would not vary substantially by alternative and would generally be near 130,000 vpd.

- During the morning commute, all of the action alternatives would experience some segments with less than 2 hours of LOS E or F conditions.

- During the evening commute, all of the action alternatives would experience some segments with less than 2 hours of LOS E or F conditions.

Figure 3-38 illustrates the forecast traffic volumes on the action alternatives. Figure 3-39 on page 3-65 illustrates the sections where the action alternatives would operate at LOS E or F, and for how long (see text box on page 1-14 regarding LOS). The mix of vehicles (i.e., passenger cars, light trucks, heavy trucks) would be the same regardless of alternative (see text box on page 3-64 regarding related topics).

Notable observations from this information include:

- The No-Action Alternative would result in the greatest number of sections along I-10 that would operate at LOS E or F, and for the longest duration.

- When comparing the action alternatives during the morning commute, all would result in over 3 hours of LOS E or F on eastbound I-10 from 91st Avenue to I-17.

- During the evening commute, all of the action alternatives would result in over 3 hours of LOS E or F on westbound I-10 from I-17 to approximately 67th Avenue. On I-10 from 67th Avenue to SR 101L (Agua Fria Freeway), they would result in varying lengths of segments with between 2 to 3 hours and less than 2 hours of LOS E or F.

- The W71 and W101 Alternatives would provide the best access to destinations west and north of downtown Phoenix.

- As noted previously, I-10 traffic conditions would be greatly improved with construction of the proposed SR 30. Without construction of SR 30, however, the traffic conditions associated with any of the action alternatives would be worse than what are shown by this analysis.

IDENTIFICATION OF A PREFERRED ALTERNATIVE

A preferred action alternative in the Western and Eastern Sections has been identified.

Identification of a Preferred Alternative in the Western Section (W59 Alternative)

This section summarizes the alternatives screening process and factors considered for the identification of a Preferred Alternative in the Western Section. It begins with the identification of a preliminary preferred alternative, the W55 Alternative, and then discusses the shift to the
South Mountain Freeway (Loop 202) FEIS and Section 4(f) Evaluation
Chapter 3 - Alternatives

Figure 3-38 Projected Traffic Volumes, Action Alternatives, 2035

<table>
<thead>
<tr>
<th>Western Section</th>
<th>Eastern Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>W59 Alternative</td>
<td>E1 Alternative</td>
</tr>
<tr>
<td>W71 Alternative</td>
<td></td>
</tr>
<tr>
<td>W101 Alternative</td>
<td></td>
</tr>
<tr>
<td>W101 Alternative</td>
<td></td>
</tr>
<tr>
<td>W101 Alternative</td>
<td></td>
</tr>
<tr>
<td>W71 Alternative</td>
<td></td>
</tr>
<tr>
<td>W59 Alternative</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Volumes include general and high-occupancy vehicle lanes. Traffic volumes for the W101 Alternative Western Option only are displayed in the bar graphs because the forecast traffic volumes for the three W101 Alternatives are projected to be essentially the same.

The daily traffic forecasts for any of the action alternatives would be comparatively equal and comparable to those of other freeways in the region. Information regarding the operational characteristics of traffic on the action alternatives can be found in Figure 3-39.

W59 Alternative. The concluding discussion focuses on the reasons that ADOT and FHWA identified the W59 Alternative, and not the W71 or W101 Alternative, as the Preferred Alternative in the Western Section. A side-by-side comparison of the factors used in the alternatives screening process for each action alternative is presented in Figure 3-41 on page 3-67. Additional detail regarding the impacts associated with each action alternative is presented in Chapter 4, Affected Environment, Environmental Consequences, and Mitigation, and is summarized in Table S-3, beginning on page S-10 of the Summary chapter.

In the summer of 2006, ADOT, with FHWA concurrence, identified the W55 Alternative as the preliminary preferred alternative in the Western Section. The public announcement in 2006 of the W55 Alternative as the preliminary preferred alternative prior to issuance of the DEIS was in response to increasing requests by officials of affected municipalities and land developers to allow better land planning in the rapidly developing Western Section. The announcement was grounded in the following context:

- Identification of the preliminary preferred alternative applied only to the Western Section of the proposed action corridor.
- Identification of the W55 Alternative as the preliminary preferred alternative in the Western Section was independent of a similar identification to be made regarding a Preferred Alternative in the Eastern Section.
- Because of outstanding issues at the time (2006) regarding Community coordination and the South Mountains, ADOT and FHWA elected to postpone a similar identification of a preliminary preferred alternative in the Eastern Section to continue Community coordination efforts.
- ADOT and FHWA have sought permission to develop alternatives on Community land. Coordination among ADOT, FHWA, and the Community regarding permission has occurred.
Many public comments have been received suggesting the proposed action would function primarily as a bypass for trucks and as a portion of the CANAMEX Trade Corridor. Chapter 1, *Purpose and Need*, does not have a truck bypass as being a goal of the proposed action. To understand trucking in the MAG region, it is important to start by looking at travel on all the national and state highways. The efficient movement of goods and delivery of services are paramount to the vitality of the national economy, and the nation’s (including Arizona’s) freight system is based on trucking. Nationally, trucks transport 71 percent of the nation’s freight by value (86 percent in Arizona [ADOT 2007b]), 69 percent by weight (76 percent in Arizona [ADOT 2010b]), and 40 percent by ton-miles (Margenta, Ford, and Dipo 2009). On average, for-hire truck shipments—freight carried by trucks for a fee—traveled 599 miles while private truck shipments—freight carried by a truck owned by the shipper—averaged 57 miles (Margenta, Ford, and Dipo 2009).

Approximately one-third of the nation’s freight passes through Arizona, but more than 62 percent of that freight (as measured in freight tonnage—direct correlation to the actual number of trucks is not possible) simply passes through without creating any direct economic benefit to Arizona (MAG 2010c). Almost all trucks passing through Arizona either start or end their trips at the major ports in Southern California. Three interstate highways (Interstate 40, Interstate 15, and I-10) serve as the through-routes for nearly all this traffic.

Truck traffic within Arizona is associated with the import, export, and internal distribution of freight. Trucks using I-10 are likely headed to or from the greater Phoenix metropolitan area as a destination. Bringing freight into the state for eventual distribution throughout the state happens primarily in Maricopa County. Just under half of the outbound shipments (as measured in value—correlation to the actual number of trucks is unavailable) from Maricopa County are destined for other parts of Arizona (Arizona Department of Commerce 2004). Freight terminals, warehouses, intermodal centers, and trucking companies concentrated in the Phoenix metropolitan area hold freight until it is ready for shipment to other parts of the state (MAG 2004).

Trucking-related facilities include:

- 43 large freight terminals concentrated in western Phoenix, near the UP RR corridor and near Phoenix Sky Harbor International Airport
- 58 warehouses along the BNSF Railway Company and UP RR corridors, the I-10/I-17 corridors, and on the western side of Phoenix (between 135th and 59th avenues, south of I-10)
- 8 truck intermodal facilities near the BNSF Railway Company and UP RR corridors
- Primary trucking companies concentrated on the western side of Phoenix (south of I-10 between 35th and 75th avenues), near Phoenix Sky Harbor International Airport, and along the I-10 and I-17 corridors in central Phoenix

The freight centers are expected to grow (MAG 2004), with a highly concentrated area of transportation, distribution, and wholesale trade employment to occur in the existing I-10 commercial and industrial corridor, and along the I-10 and I-17 corridors in central Phoenix. While trucks dominate the freight market, they may also “appear” to dominate the nation’s highways... but they do not. The following examples reflect this:

- Nationally, commercial trucks accounted for about 7 percent of highway VMT (FMWA 2004).
- On I-10 near the proposed action, trucks represent 8 percent of total traffic during peak travel periods and 15 percent in off-peak hours.
- Nationally, truck VMT doubled between 1980 and 2003, but commercial trucks’ share of total highway VMT increased only 0.4 percent over the same period (U.S. Department of Transportation Bureau of Transportation Statistics 2006).
- In Arizona, the number of registered passenger cars and noncommercial vehicles increased from 1998 to 2010 by 46 percent, much faster than did registrations for commercial vehicles (35 percent) (ADOT 2010c). So why would trucks “appear” to dominate the nation’s highways? It is a difficult question to answer, but to drivers in passenger vehicles, trucks can be imposing:
 - Trucks are simply bigger and more visible than passenger vehicles.
 - They attract and demand attention of other drivers because they are harder to maneuver and require more space.
 - Their cargo can appear “threatening.”
 - They can “kick up” dirt and debris from pavement.
 - They are louder than passenger vehicles.
 - Because they burn diesel fuels, exhaust from trucks appears “dirtier” than exhaust from passenger vehicles.

Commercial trucks would use the proposed action. As with all other freeways in the MAG region, the truck use for the through-transport of freight, for transport to and from distribution centers, and for transport to support local commerce. And with all travel on all other freeways in the MAG region, the primary users of the proposed action would be automobiles. Latest vehicle classification counts available from ADOT for 2007 show passenger vehicles and other nontruck make up 90 percent of all traffic on the freeway system, and it is expected this percentage would not vary with the proposed action.

Further, it is not expected that the entire 21 percent of through-traffic (by tonnage) using I-10 would divert from I-10 to use the proposed action. The trucking industry heavily depends on the efficient and fast movement of freight and on travel time savings. Trucking destinations in the Phoenix metropolitan area (either distribution centers or for local commerce) would require trucks to enter congested areas. Choosing to travel on the proposed action versus I-10 would not translate to any substantial travel time benefits (ADOT 2001). Therefore, it is expected that “true” through-traffic (not having to stop in the metropolitan area) would continue to use the faster, designated, and posted bypass system of I-18 and SR 85.

The CANAMEX Trade Corridor was defined by Congress in the 1995 National Highway Systems Designation Act (Public Law 104-59). The CANAMEX Corridor is a high-priority route traversing Arizona, Nevada, Utah, Idaho, and Montana, and linking to the Canadian province of Alberta and the Mexican states of Sonora, Sinaloa, Nayarit, and Jalisco. Development of the Corridor is advanced through a multisector coalition that includes public and private sector representatives selected by the governors of the five U.S. states.

Within the United States, the Corridor is intended to be a strategic investment in infrastructure and technology to advance a focused agenda to increase competitiveness in global trade, create jobs, and maximize economic potential within the five-state region. The transportation component calls for the development of a continuous four-lane roadway from Mexico, through the U.S. CANAMEX states, and into Canada.

In the Maricopa County area, the ADOT- and MAG-preferred route for the CANAMEX Corridor is to follow I-10 from Tucson to I-8 near Casa Grande, I-8 west to SR 85 near Gila Bend, SR 85 north to I-10 northwest of Buckeye, I-10 west to Wickenburg Road, Wickenburg Road to Vulture Mine Road west of Wickenburg, and then connect with the planned US 60/LS 60 Wickenburg Bypass. Recent studies completed by MAG, including the Interstate 10/Hassayampa Valley Roadway Framework Study (MAG 2008b) and the Interstates 8 and 10/Hidden Valley Transportation Framework Study (MAG 2009d) have further defined the long-range planning for the CANAMEX corridor in Arizona.

Some public concern has focused on 1) air pollution from trucks using the proposed CANAMEX Corridor that would reach the Study Area and 2) international truckers who would choose to use the proposed freeway to shorten their connection to the CANAMEX Corridor west of Phoenix. The proposed freeway would not offer shorter travel times. The CANAMEX Corridor’s proposed routing avoids any congestion associated with the Phoenix metropolitan area.
Figure 3-39 Modeled Level of Service, Action Alternatives, 2035

2035 Morning LOS E or F

The action alternatives would perform well during the morning commute. Traffic on short segments of the action alternatives would operate at LOS E or F during the evening commute in the Western and Eastern Sections. Figure 3-38 presents the corresponding daily traffic volumes of the segments for the action alternatives.
For any of the action alternatives in the Western Section, the Interstate 10/Interstate 17 system traffic interchange would function as a “bottleneck,” causing traffic to back up to the west into the Study Area. The Highway Capacity Manual (Transportation Research Board 2000), which provides criteria for determining levels of service (LOS), states that LOS E or F occurs when more than approximately 2,100 vehicles per hour per lane are present on a freeway.

Figure 3-40 Modeled Level of Service, Interstate 10, Western Section, 2035

level of service
South Mountain Freeway (Loop 202) FEIS and Section 4(f) Evaluation

Chapter 3 • Alternatives

3-67

R/W cost: $910 million
Lowest construction and design cost: $625 million
Total project cost: $1.54 billion
Displaced businesses: 26
High-priority hazardous material sites affected: 4
Displaced residential properties: 839
No impact on City of Tolleson or City of Avondale annual total tax revenues
Greatest reduction in City of Phoenix annual total tax revenues of $4.9 million
No BLM reclassification required

Highest construction and design cost: $924 million
R/W cost: $800–$950 million
Highest total project cost: $1.72–$1.87 billion
Lowest number of high-priority hazardous material sites affected: 1
Displaced businesses: 14–30
Greatest number of displaced residential properties: 940–1,318 single-family
Reduction in City of Avondale annual total tax revenues of $387,600
No BLM reclassification required

Lowest R/W cost: $427 million
Construction and design cost: $805 million
Lowest total project cost: $1.23 billion
Greatest number of displaced businesses: 42
Lowest number of displaced residential properties: 727
Greatest number of high-priority hazardous material sites affected: 5
No impact on City of Tolleson or City of Avondale annual total tax revenues
Reduction in City of Phoenix annual total tax revenues of $3.9 million
Optimizes use of SR 30 and provides best access to downtown

Resolution supporting an alternative near 55th Avenue (now closely represented by the W59 Alternative) and opposing the W101 Alternative: City of Tolleson, 12/13/05
City of Tolleson, 3/23/04
City of Avondale, 3/20/06
City of Phoenix, 12/17/03
City of Litchfield Park, 4/06/06
City of Buckeye, 4/18/06
Town of Gila Bend, 4/25/06

Note: Alternatives and documented impacts continue south to the common point at 59th Avenue.
since project inception; however, despite those efforts, ADOT and FHWA have determined that an alternative alignment on Community land is not feasible. (Issues relevant to Community coordination are presented in Chapter 2, Gila River Indian Community Coordination.)

- Identification of the W55 Alternative as the preliminary preferred alternative in the Western Section of the corridor would not preclude the No-Action Alternative from being the Selected Alternative later in the EIS process.
- Identification of the W55 Alternative as the preliminary preferred alternative would not represent a final determination by ADOT and FHWA.

In identifying the preliminary preferred alternative, ADOT concluded the W55 Alternative would best balance fiscal responsibility, regional mobility needs, community sensitivity, and additional considerations such as consistency with long-range planning goals, economic and environmental impacts, and public and agency input. The SMCAT, formed specifically to evaluate the proposed action, was empowered to consider many of the same parameters as ADOT examined and, in doing so, to recommend a preliminary preferred alternative to ADOT for its consideration. As presented in Chapter 6, Comments and Coordination, the SMCAT evaluation resulted in its recommending the W101 Alternative. In doing so, the SMCAT emphasized the importance of addressing long-term regional mobility issues, but also expressed concern regarding possible impacts on community character and cohesion. ADOT shared SMCAT concerns about both long-term regional mobility and community sensitivity. These concerns, when combined with ADOT’s concern for potential reduction in community services, in Tolleson in particular, ultimately contributed to ADOT’s 2006 identification of the W55 Alternative—and not the W101 Alternative—as the preliminary preferred alternative. ADOT’s determination was reached after:

- consideration of overall transportation needs in the region as identified in the RTP as adopted by Maricopa County voters
- consideration of consistency with clearly established long-range regional planning goals
- comparison of environmental and societal impacts expected from each of the alternatives and assessment of the ability to mitigate impacts
- a comparative examination of operational performance among the three action alternatives in the Western Section
- estimation of project costs in the context of fiscal responsibility to overall regional transportation infrastructure costs
- consideration of more than 4 years of public and agency input, including comments received at more than 200 formal and informal information exchanges with the public (through public meetings, the project Web site, and project telephone log, as well as recognition of resolutions passed by local communities and the SMCAT recommendation)

In 2009, MAG suggested that a portion of the W55 Alternative could be shifted west onto 59th Avenue to take advantage of the existing R/W and reduce cost and business displacements. This shifted alignment (called the W59 Alternative) would connect to I-10 (Papago Freeway) at an existing service traffic interchange. After further analysis was conducted related to alignment, traffic operations, construction impacts, and environmental considerations, the following advantages and disadvantages were identified:

- would enable better I-10 traffic performance than would be achievable with the W55 Alternative
- would offer certain design advantages over the W55 Alternative
- would be preferred from a security perspective because it would be farther from the petroleum storage facilities at 51st Avenue and Van Buren Street
- would not construct the 51st Avenue Bridge at I-10
- would require the relocation of fewer businesses
- would require the relocation of utilities along 59th Avenue
- would cause increased disruption of traffic during construction along 59th Avenue
- would eliminate direct access from I-10 to 59th Avenue and vice versa (indirect access would be provided by a system of access roads connecting to 51st and 67th avenues)
- would require the relocation of more single-family residences and two apartment complexes

Believing that the advantages outweighed the disadvantages, ADOT and FHWA identified the W59 Alternative as the preliminary preferred alternative in the Western Section. The process and factors leading to identification of the W59 Alternative as the preliminary preferred alternative in the Western Section mirror those considered by ADOT and FHWA in 2006 to identify the W55 Alternative as the preliminary preferred alternative.

In preparing the FEIS for the proposed action, ADOT and FHWA identified the W59 Alternative as the Preferred Alternative in the Western Section and reconfirmed the following:

- Identification of the W59 Alternative as the Preferred Alternative in the Western Section does not preclude the No-Action Alternative from being the Selected Alternative later in the EIS process.
- The issues and factors leading ADOT and FHWA to identify the W39 Alternative as the Preferred Alternative remain applicable and well-founded. (However, identification of the Preferred Alternative in the FEIS does not represent a final determination by ADOT and FHWA; identification of a Preferred Alternative could change.)

In undertaking the process leading to this identification, ADOT and FHWA compared performance between the W39, W71, and W101 Alternatives. This process is described below.

When comparing action alternatives in the Western Section, the W71 Alternative was considered the least desirable of the three action alternatives because:

- The duration and extent of congested conditions on I-10 would be the least desirable of the alternatives considered.
Consistency with Regional and Long-range Planning Goals

- The W59 Alternative would result in less land being converted to freeway use, thereby optimizing opportunities for planned development.
- Since the mid-1980s, City of Phoenix land use planning has progressed in recognition of the planned location of the proposed freeway near the W59 Alternative. Related land use planning for the Phoenix Villages of Estrella and Laveen has been consistent with the City's long-range land use planning.

Environmental and Societal Impacts

- The W59 Alternative would be consistent with the Rio Salado Oeste joint use project planned by the City of Phoenix, USACE, and FCDMC.
- The W59 Alternative would avoid impacts on the planned expansion of the City of Tolleson wastewater treatment facility.

Operational Differences

- The W59 Alternative would provide a direct connection to SR 101L (Agua Fria Freeway), thus completing the loop system without any overlap on I-10.
- The W59 Alternative would provide more direct access to downtown Phoenix.
- The W101 Alternative would provide better access to destinations west and north of downtown Phoenix.
- The W59 Alternative would optimize the long-term system of freeways planned in the southwestern portion of metropolitan Phoenix. However, these benefits would not be realized until SR 30 and SR 303L, south of I-10, are completed.
- The W59 Alternative would avoid the skewed arterial street interchange configurations that would be needed for the W101 Alternative to connect with the planned SR 30, ARS, and several arterial streets.

Estimated Costs

- The total cost of the W59 Alternative would be $490 million to $640 million less than the W101 Alternative (see the section, Planning-level Cost Estimates, on page 3-59).

Regional Support and Public Input

- Resolutions passed by the City/Town Councils of Avondale, Buckeye, Gila Bend, Goodyear, Litchfield Park, Phoenix, and Tolleson supported an alternative near 55th Avenue (now closely represented by the W59 Alternative) and opposed the W101 Alternative.
- Public input was split in support of either the W55 (now closely represented by the W59 Alternative) or W101 Alternative. The SMCAT supported the W101 Alternative, but expressed concern about its impacts on the communities surrounding the proposed freeway.

After considering the above points, ADOT, with concurrence from FHWA, identified the W59 Alternative as its Preferred Alternative in the Western Section.

Identification of a Preferred Alternative in the Eastern Section (E1 Alternative)

The E1 Alternative is the only action alternative developed for the Eastern Section. ADOT and FHWA sought permission to study alternatives in detail on Community land, but the Community decided such alternatives would not be in the Community's best interest (see Chapter 2, Gila River Indian Community Coordination). Therefore, ADOT, with concurrence from FHWA, identified the E1 Alternative as its Preferred Alternative in the Eastern Section. In reaching its determination, ADOT sought to balance its responsibilities to address regional mobility needs while being fiscally responsible and sensitive to local communities.
CONCLUSIONS

Upon confirming the purpose and need for the proposed action, a multidisciplinary process was undertaken to identify a range of reasonable alternatives to be studied in detail in the FEIS. The process involved identifying, comparatively screening, and eliminating alternatives based on:

➤ input from the public
➤ a comparison of modal choices
➤ a multidisciplinary set of criteria evenly applied
➤ the historical context of the proposed action
➤ projected conditions with and without the alternatives being considered

Prior to issuance of the FEIS, the alternatives development and screening process was reviewed considering changes in existing and forecast population, housing, employment, and traffic. The alternatives development and screening process was validated. As a result of the alternatives development and screening process, the following conclusions were reached:

➤ The geographic limits of the proposed action serve as logical termini, do not constrict meaningful consideration of other reasonably foreseeable alternatives, permit study of alternatives of a sufficient length, and allow for independent utility of the proposed action.

➤ The three identified action alternatives in the Western Section (W59, W71, and W101), one action alternative in the Eastern Section (E1), and the No-Action Alternative represent a range of reasonable alternatives that were the subject of detailed study in the FEIS.

The design concepts of each action alternative, as presented in this chapter, were developed to a level to facilitate meaningful comparison of operational performance and assessment of impacts.

If new alternatives are presented for ADOT/FHWA consideration prior to the issuance of a ROD, the agencies will determine whether those alternatives are reasonable and should be considered in the EIS process.

ADOT and FHWA have identified the W59 Alternative as the Preferred Alternative in the Western Section and the E1 Alternative as the Preferred Alternative in the Eastern Section. The identification—while not a final determination, and one that can be changed—was based on the data and conclusions presented throughout the FEIS. The identification of the W59 Alternative and E1 Alternative as the Preferred Alternatives, in summary, rests on a balanced consideration of overall transportation needs; consistency with regional and long-range planning goals; environmental, economic, and societal impacts; operational differences; estimated costs; and regional support and public inputs.