

PRACTICE AND PROCEDURE DIRECTIVE

PPD No. 20b

EFFECTIVE DATE: January 29, 2026

SUBJECT: **Guidance on the use of Reclaimed Asphalt Pavement (RAP) in Asphaltic Concrete**

1. GENERAL

1.1. Reclaimed asphalt pavement (RAP) may be used in asphaltic concrete provided it is allowed per Specification.

1.2. This Practice and Procedure Directive was developed to provide guidance to those involved in the production of asphaltic concrete containing RAP. It assumes the reader has a general understanding of the requirements for mixtures which do not contain RAP.

2. TERMS

2.1. Asphaltic concrete with RAP consists of a mixture of virgin aggregate, virgin binder, RAP, and mineral admixture.

2.1.1. Virgin aggregate consists of mineral aggregate not previously used.

2.1.2. Virgin binder consists of asphalt cement not previously used.

2.1.3. RAP consists of salvaged, milled, pulverized, broken, or crushed asphalt pavement. For purposes of the Specifications, RAP is made up of two main components: RAP aggregate and RAP binder.

- (a) RAP aggregate consists of the aggregate portion of the reclaimed asphalt pavement.
- (b) RAP binder consists of the binder, or asphalt cement, portion of the reclaimed asphalt pavement.

2.2. When the term "aggregate" is used without being further described as "RAP" or "Virgin", the intended meaning is the total aggregate used in the mixture. Also note that the term "aggregate" is used interchangeably with "mineral aggregate".

2.3. When the term "binder" is used without being further described as "RAP" or "Virgin", the intended meaning is the total binder used in the mixture. Also note that the term "binder" is used interchangeably with "bituminous material", "asphalt cement", and "asphalt".

2.4. The Specifications are very deliberate in their use of the terms "RAP" and "Virgin" when describing aggregate or binder. Therefore, it is important that the user be familiar with these definitions and read the specifications carefully.

3. LIMITS OF RAP USAGE

3.1. **The** amount of RAP material allowed in asphaltic concrete is limited by both a maximum RAP aggregate contribution and a maximum RAP binder contribution to the mixture. In addition, production and testing requirements vary depending on the amount of RAP aggregate and RAP binder in the mixture.

3.1.1. A maximum of 25% RAP aggregate, by weight of total aggregate in the mix, may be used in mixes placed in a lower lift (minimum 2" below finished surface). A maximum of 20% RAP aggregate, by weight of total aggregate in the mix, may be used at all other locations.

3.1.2. A maximum of 25% RAP binder, by weight of total binder in the mix, may be used in mixes placed in a lower lift (minimum 2" below finished surface). A maximum of 20% RAP binder, by weight of total binder in the mix, may be used at all other locations.

3.2. When less than or equal to 15% RAP aggregate is used, by weight of the total aggregate in the mix, all RAP material must pass the 1 1/4 inch sieve.

3.3. When more than 15% RAP aggregate is used, by weight of the total aggregate in the mix, the RAP must be processed into uniform coarse and fine stockpiles meeting the gradation requirements of the specifications, and such that there will be a minimum amount of fines.

3.4. When less than or equal to 15% RAP binder is used, by weight of the total binder in the mix, no testing is required on the RAP binder properties during the mix design process.

3.5. When more than 15% RAP binder is used, by weight of the total binder in the mix, the RAP binder must be extracted, recovered, and tested during the mix design process. Depending on the results of these tests, the grade of virgin binder supplied to the project may need to be different than the grade specified in the bid documents. A different virgin binder grade may be required to ensure the blend of virgin and RAP binder meets the grade specified in the bid documents. The virgin binder grade delivered to the project shall be as specified in the approved mix design.

3.6. There are no specific restrictions on the source of RAP material for a project. However, the contractor is responsible to determine the suitability of the RAP proposed for use regardless of the source.

4. IGNITION FURNACE BINDER AND AGGREGATES CORRECTION FACTORS

Ignition furnace binder content and aggregate correction factors must be determined as contained in the Appendix per FLH Addendum to AASHTO T 308 Standard Method of Test for Correction Factors for Hot Mix Asphalt (HMA) Containing Recycled Asphalt Pavement (RAP) by the Ignition Method.

5. OTHER CONSIDERATIONS

During production, the percent RAP aggregate shall be maintained to within plus 2 percent and minus 5 percent of the mix design values, not to exceed the maximum allowed by specification. When more than one RAP stockpile is used, this tolerance shall apply to the total percent RAP aggregate in the mixture, as well as the percent RAP aggregate from each stockpile.

The contractor shall provide daily documentation of the weight, determined by a belt scale, and proportion of material from each individual RAP stockpile incorporated into the mix. The percent moisture content of the RAP material from each stockpile shall also be determined and provided daily by the contractor.

A pre-activity meeting shall be held approximately two weeks prior to the start of paving. The agenda should include discussion items dealing with the production of asphaltic concrete containing RAP.

APPENDIX

FLH Addendum to AASHTO T 308 Standard Method of Test for
**Correction Factors for Hot Mix Asphalt (HMA)
Containing Recycled Asphalt Pavement (RAP)
by the Ignition Method**

FLH Designation: Addendum T 308

A1. ASPHALT BINDER AND AGGREGATE

A1.1. Asphalt binder content results may be affected by the type of virgin aggregate and RAP material in the mixture and the ignition furnace. Therefore, asphalt binder and aggregate correction factors must be established by testing a set of correction factor specimens for the job mix formula (JMF) containing RAP. Correction factor(s) must be determined before any acceptance testing is completed and repeated each time a change in the mix design occurs. Any changes greater than 5 percent in stockpiled aggregate proportions shall require new correction factors.

A1.1.1. *Asphalt binder correction factor*—Certain virgin aggregate types or RAP materials may result in unusually high correction factors (greater than 1.0 percent). Such mixes should be corrected and tested at a lower temperature as described in Subsection A2.11.1. Each ignition furnace will have its own unique asphalt binder correction factor determined in the location where testing will be performed.

A1.1.2. *Aggregate gradation correction factor*—Due to potential virgin and RAP aggregate breakdown during the ignition process, an aggregate gradation correction factor will be determined for each ignition furnace in the location where testing will be performed.

A2. CORRECTION FACTOR PROCEDURE

A2.1. Obtain samples of virgin aggregate and RAP in accordance with T 2.

A2.2. Obtain samples of asphalt binder in accordance with T 40.

Note A1—Include other additives that may be required by the JMF.

Note A2—If lime is included as a component of the mixture and it has not been previously added to the virgin aggregates, add the appropriate amount of lime per the mix design proportion. Add the lime to the virgin aggregates by making a lime slurry (lime and water mixture) and thoroughly mixing with the virgin aggregates prior to the oven-dry process.

A2.3. Oven-dry the virgin aggregate at a temperature of 230°F (110°C) and RAP at a temperature of 140°F (60°C) to a constant mass.

A2.4. Prepare an initial, or “butter mix” at the design asphalt binder content. Mix and discard the butter mix prior to preparing any of the correction specimens to ensure accurate asphalt binder content.

A2.5. Prepare two correction specimens at the JMF design asphalt binder content and virgin aggregate and RAP gradations. Virgin aggregate and RAP used for correction specimens shall be sampled from the stockpiles designated for use in production.

A2.6. Prepare a "blank" (virgin aggregate only) specimen at the JMF gradation. Determine the virgin aggregate gradation in accordance with T 30 on the "blank" specimen. Provide an additional gradation analysis on a representative sample of burned RAP aggregate.

A2.7. Mathematically compute the "calculated blank" gradation for the virgin aggregate and the burned RAP aggregate by combining the individual gradation analyses at the specified batch percentages for each material as determined in the JMF. Adjust the percentages of virgin aggregate and RAP aggregate accordingly to account for binder present in the RAP specimen.

A2.8. Place the freshly mixed specimens directly into the specimen basket assembly. If specimens are allowed to cool prior to placement in the specimen basket assembly, the specimens must be dried to constant mass at a temperature of $110 \pm 5^\circ\text{C}$ ($230 \pm 9^\circ\text{F}$). Do not preheat the specimen basket assembly.

A2.9. Test the specimens in accordance with Method A or Method B of the procedure.

A2.10. Once both of the correction specimens have been burned, determine the asphalt binder content for each specimen by calculation or from the printed oven tickets, if available.

A2.11. If the difference between the asphalt binder contents of the two specimens exceeds 0.15 percent, repeat Subsection A2.3 through A2.7 with two more specimens and, from the four results, discard the high and low result. Determine the correction factor from the two original or remaining results, as appropriate. Calculate the difference between the actual and measured asphalt binder contents for each specimen. The asphalt binder correction factor, C_r , is the average of the differences expressed as percentage by mass of the HMA.

A2.11.1. If the asphalt binder correction factor exceeds 1.0 percent, the test temperature should be lowered to $483 \pm 5^\circ\text{C}$ ($900 \pm 8^\circ\text{F}$) for correction type furnace. If there is no improvement in the correction factor, it is permissible to use the higher temperature.

Note A3—The temperature for determining the asphalt binder content of HMA specimens by this procedure shall be the same temperature determined for the correction specimens.

A2.11.2. For the direct IR irradiation-type furnaces, the DEFAULT burn profile should be used for most materials. The operator may select burn-profile OPTION 1 or OPTION 2 to optimize the burn cycle. Option 1 is designed for aggregate that require a large aggregate correction factor (greater than 1 percent)—typically very soft aggregate (such as dolomite). Option 2 is designed for samples that may not burn completely using the DEFAULT burn profile. The burn profile for testing HMA samples shall be the same burn profile selected for correction samples.

A2.12. Perform a gradation analysis on the residual aggregate in accordance with T 30, if required. The results will be utilized in developing an aggregate gradation correction factor and should be calculated and reported to the nearest 0.1 percent.

A2.12.1. From the gradation results, subtract the percent passing for each sieve from the percent passing each sieve on the "calculated" blank gradation results from Subsection A2.7.

A2.12.2. Determine the average difference for the two values. If the difference for any single sieve exceeds the allowable difference for that sieve as listed in Table A1, then aggregate gradation correction factors (equal to the resultant average differences) for all sieves shall be applied to all acceptance gradation test results determined by T 30, prior to final rounding and reporting. If the 0.075-mm (No. 200) sieve is the only sieve outside the limits in Table A1, apply the aggregate correction factor to only the 0.075-mm (No. 200) sieve.

Table A1—Permitted Sieving Difference

Sieve	Allowable Difference
Sieve larger than or equal to 2.36 mm (No. 8)	±5.0 percent
Sieve larger than 0.075 mm (No. 200) and smaller than 2.36 mm (No. 8)	±3.0 percent
Sieve 0.075 mm (No. 200) and smaller	±0.5 percent

APPENDIX

CALCULATION OF CORRECTION FACTORS FOR HMA CONTAINING RAP

(Example calculations follow data entries using form FHWA 1648)

1. ASPHALT BINDER CORRECTION FACTOR

Determine quantity of virgin asphalt binder required to achieve target asphalt content by mass of mix.

Table A2—Mix Design Parameters

Target binder content by mass of mix, %	6.20
Binder content of RAP by mass of mix, %	5.15
Mix composition, by mass of mix, %	
Virgin aggregate blend	80.0
RAP blend	20.0
Total sample mass (virgin aggregate + RAP), g	2001.2
Dry virgin aggregate mass, g	1601.0
Mass of RAP, g	400.2

1.1. Determine the amount of aggregate and binder present in the RAP portion:

$$1.1.1. \quad \text{Binder}_{gap} = \text{Mass}_{gap} \times \text{AC\%}_{gap}$$

Binder mass from RAP = 400.2 g x 5.15%

Binder mass from R.A.R. = 30.6 g

Bottom mass: 1000 KPA = 20.0 g Form FRWK 1040 (F)

$$1.1.2. \quad \text{Aggregate}_{R,AP} = \text{Mass}_{R,AP} - \text{dust}_{R,AP}$$

Aggregate mass from RAP = 400.2 g - 20.6 g

Aggregate mass from RAP = 379.6

combined:

$$1.2.1. \quad \text{Aggregate}_{\text{TOTAL}} = \text{Mass}_{\text{TOTAL}} - \text{Binder}_{\text{RAP}}$$

$$\text{Total aggregate in sample} = 2001.2 \text{ g} - 20.6 \text{ g}$$

$$\text{Total aggregate in sample} = 1980.6 \text{ g}$$

1.3. Determine the total weight of binder required to achieve the target binder content by mass of mix:

$$1.3.1. \quad \text{Binder}_{\text{TOTAL}} = \left[\left(\frac{100}{100 - \text{AC}_{\text{TARGET}}} \right) \times \text{Aggregate}_{\text{TOTAL}} \right] - \text{Aggregate}_{\text{TOTAL}}$$

$$\text{Total binder} = \left[\left(\frac{100}{100 - 6.0} \right) \times 1980.6 \right] - 1980.6$$

$$\text{Total binder} = 2111.5 \text{ g} - 1980.6 \text{ g} = 130.9 \text{ g} \quad \text{Form FHWA 1648 (I)}$$

1.4. Determine the amount of virgin binder required for the mix:

$$1.4.1. \quad \text{Binder}_{\text{VIRGIN}} = \text{Binder}_{\text{TOTAL}} - \text{Binder}_{\text{RAP}}$$

$$\text{Virgin binder} = 130.9 \text{ g} - 20.6 \text{ g}$$

$$\text{Virgin binder} = 110.3 \text{ g} \quad \text{Form FHWA 1648 (H)}$$

Note A4—Follow procedures indicated on Form FHWA 1648 for Hot Mix Asphalt Containing RAP to determine the asphalt binder correction factor for the proposed mix.

2. AGGREGATE GRADATION CORRECTION FACTOR

Determine the calculated "blank" gradation for the virgin aggregate and RAP blend using the individual gradations.

Table A3—Mix Design Parameters

Binder content of RAP by mass of mix, %	5.15
Mix composition, by mass of mix, %	
Virgin aggregate blend	80.0
RAP blend	20.0

Table A4—Individual Gradations

Sieve Size	Virgin Aggregate Gradation	Burned RAP Aggregate Gradation
1" (25.0mm)	100.0	100.0
3/4" (19.0mm)	100.0	100.0
1/2" (12.5mm)	87.3	100.0
3/8" (9.5mm)	68.5	78.7
#4 (4.75mm)	51.1	65.6
#8 (2.36mm)	37.5	55.9
#30 (600 μm)	32.3	43.2
#40 (425 μm)	16.7	25.1
#50 (300 μm)	13.4	19.4
#200 (75 μm)	6.5	9.8

2.1. Determine the mix composition by mass of aggregate, %.

NOTE A5—The percentages of virgin aggregate and RAP aggregate must be adjusted to account for the binder in the RAP specimen.

$$Aggregate_{RAP,\%} = Mass_{RAP,\%} - (Mass_{RAP,\%} \times Binder_{RAP,\%})$$

$$Aggregate_{RAP,\%} = 20.0 - (20.0 \times 0.0515)$$

$$Aggregate_{RAP,\%} = 19.0\%$$

$$Aggregate_{VIRGIN,\%} = 100 - Aggregate_{RAP,\%}$$

$$Aggregate_{VIRGIN,\%} = 100.0 - 19.0$$

$$Aggregate_{VIRGIN,\%} = 81.0\%$$

2.2. Determine the calculated "blank" gradation using the adjusted percentages of Virgin Aggregate and RAP aggregate and the individual gradations for each specimen.

$$Calculated\ "blank"\%_{sieve} = (Aggregate_{VIRGIN,\%} \times \%Passing_{VIRGIN\ sieve}) + (Aggregate_{RAP,\%} \times \%Passing_{RAP\ sieve})$$

$$Calculated\ "blank"\ for\ the\ 3/8"\ (9.5\ mm)\ sieve = (81.0\% \times 68.5) + (19.0\% \times 78.7)$$

$$Calculated\ "blank"\ for\ the\ 3/8"\ (9.5\ mm)\ sieve = 70.4\%$$

2.2.2. Repeat the calculation for each sieve to determine the calculated "blank" gradation.

3. EXAMPLE USING FORM FHWA 1648.

U.S. Department of Transportation
Federal Highway Administration
Federal Lands Highway

WORKSHEET FOR IGNITION FURNACE BINDER CORRECTION FACTOR AND AGGREGATE GRADATION CORRECTION FACTOR FOR MIXES INCLUDING RAP

Project: T 308 Addendum Example Project Date: _____
 Sample No.: 1 Tested by: XXX Test Temp, (°C) 238
 Target binder content, % by mass of Mix: 6.20 Binder content, RAP, % by mass of RAP: 5.15
 Ignition Furnace Manufacturer: Thermoline Serial #: 12345 Location of Furnace: _____

	Trial No. 1	Trial No. 2
(A) Initial "buttered" bowl mass, g	2674.0	2675.0
(B) Final bowl mass ¹ , g	2674.9	2675.0
(C) Bowl mass difference, (B - A), g	0.0	0.0
(D) Mass of RAP, g	400.2	400.2
(E) Mass of RAP Aggregate, g (D - D ² (RAP/100))	179.6	179.6
(F) Mass of RAP Binder, g (D ² (RAP/100))	20.5	20.5
(G) Dry Virgin Aggregate mass, g	1501.0	1501.0
(H) Virgin Binder mass ²	110.3	110.3
(I) Total Binder mass, (F+H), g	130.9	130.9
(J) Corrected binder mass, (I - C), g	130.9	130.9
(K) Actual binder content by mixture mass, (J / (D + G + H)) * 100, %	6.20	6.20
(L) Sample basket assembly mass, g	3245.7	3249.7
(M) Sample basket assembly & mix mass ³ , g	3561.2	3561.2
(N) Mix mass ⁴ , (M - L), g	2111.5	2111.5
(O) Ignition furnace binder content by mass of mix, %	6.34	6.46
(P) Correction factor, (O - K), %	P1 0.14	P2 0.20
(Q) Average correction factor ⁵ , ((P1 + P2) / 2), %	Average 0.20	
(R) Difference in correction factor ⁶ , P1 - P2 , %	Difference 0.12	

¹ Scrap the bowl until the final mass is within ± 0.5 grams of the initial "buttered" mass.

For guidelines to determine required virgin aggregate content see the FHWA Addendum AA-MNTO T 308, Correction Factors for Hot Mix Asphalt (HMA) Containing Recycled Asphalt Pavement (RAP) Example 1.

² After placing the basket assembly and mix into the ignition furnace verify that the displayed mass and the mass recorded in (M) agree within ± 5 grams.

³ Be certain to move (N), the mix, mass into the ignition furnace control panel prior to initiating the burn cycle.

⁴ If the correction factor exceeds 1.0%, lower the test temperature to 402 °C and repeat the test. Use the correction factor at 402 °C even if it exceeds 1.0%.

⁵ If the difference is greater than ± 0.15 percent, run two more samples and discard the high and low test results.

Remarks:

U.S. Department of Transportation
Federal Highway Administration
Federal Lands Highway

**WORKSHEET FOR IGNITION FURNACE BINDER CORRECTION FACTOR AND
AGGREGATE GRADATION CORRECTION FACTOR FOR MIXES INCLUDING RAP**

Project: T 308 Addendum Example Project Date: _____

Sample No.: 1 Tested by: XXX Test Temp. (°C): 38

Target binder content, % by mass of Mix: 6.20 Binder content, RAP, % by mass of RAP: 0.15

Ignition Furnace Manufacturer: Thermoline Serial #: 12345 Location of Furnace: _____

Mix Composition, % mass of Mix: Virgin Agg: 80 RAP: 20

Mix Composition, % mass of Agg.: Virgin Agg: 81.0 RAP Agg: 19.0

English Metric

Aggregate Gradation Correction Factor (AASHTO T 30, Sieve Analysis, % Passing)

Sieve Size	Trial #1	Trial #2	Virgin Agg. Gradation "blank"	Burned RAP Agg. Gradation "blank"	Calculated "blank"	Trial #1 Difference	Trial #2 Difference	Average Difference	Allowable Difference
1 inch	100.0	100.0	100.0	100.0	100.0	0.0	0.0	0.0	±5.0
3/4 inch	100.0	100.0	100.0	100.0	100.0	0.0	0.0	0.0	±5.0
1/2 inch	86.5	89.5	87.3	100.0	89.7	3.2	0.2	1.7	±5.0
3/8 inch	69.1	72.1	68.5	78.7	70.4	1.1	1.7	0.3	±5.0
No. 4	52.1	55.6	51.1	65.6	53.9	1.8	1.7	0.1	±5.0
No. 8	38.5	42.3	37.5	55.0	41.0	2.5	1.3	0.6	±5.0
No. 30	32.7	37.0	32.3	43.2	34.4	1.7	-2.6	-0.5	±3.0
No. 40	16.1	17.9	16.7	25.1	18.3	2.2	0.4	1.3	±3.0
No. 50	12.6	13.4	13.4	19.4	14.5	1.9	1.1	1.5	±3.0
No. 200	6.8	7.4	6.5	9.8	7.1	0.3	-0.3	0.0	±0.5

Remarks:

Form FHWA-1648 (Rev 01-11 dmf)

Page 2 of 2