DESIGN NOTES:

1. The maximum number and types of signal heads mounted on span wire for a given span length shall be in accordance to the "Maximum Number of Signals" table on T.S. 15-1-10 of 6. For steel pole design, and T.S. 15-1-14 of 6.1 for wood pole design, 8 or 4 faces may be substituted for 0, 2, 4 faces for wood pole design. Other substitutions shall be made.

2. The maximum number of span wire mounting signs shall be 8:
 a. Two 48 inch x 48 inch aluminum signs and mounting hardware.
 b. One 10 inch by 10 inch aluminum street sign name and mounting hardware.

3. No other items shall be mounted on span wire.

4. No more than the following shall be mounted on each strain pole:
 a. Two vehicular signals and mounting hardware.
 b. Two pedestrian signals and mounting hardware.
 c. Two pedestrian push button housing assemblies and mounting hardware.
 d. Two aluminum signs, maximum size 24 inch x 36 inch, and mounting hardware.
 e. One luminaire "steel pole only"
 i. The luminaire fixture mounting height shall be no more than 8 feet and no less than 3 feet above the finished roadway.
 ii. The luminaire fixture shall weigh no more than 60 pounds and have an Effective Projected Area (EPA) of no more than 2.1 square feet.
 iii. The luminaire shall be the type shown in T.S. 4.24 and T.S. 4.29.
 iv. The video detection unit with a maximum 5 foot riser may be mounted on the luminaire arm.

5. No luminaire shall be mounted on a wood strain pole.

7. Span wire and supports selection procedure:
 a. The size of messenger wire shall be selected from the "Messenger Wire Selection" table on T.S. 15-1-10 of 6.1 for steel strain pole span wire supports. The messenger, guy, and tether wire sizes for wood poles shall be selected from the "Messenger, Guy, and Tether Wire Selection" table on T.S. 15-1-14 of 6.1. The tension span present in the traffic signal support system, as indicated in the sign plan, shall be used to size all wires and poles. The "Span" shall be taken as the chord distance in the plan view between the centerlines of poles or either side of the roadway for a given span.
 b. The vertical distance for the Messenger Attachment Height (MAH) is measured from the finished grade at the centerline of a given pole and the level of the highest messenger wire attachment to the pole clamp. For cases where different MAH values are calculated at different poles in the span wire support system, the largest MAH value shall be used to select the design variables. MAH shall be calculated such that the minimum vertical clearance over the roadway shown on the drawings is obtained after the installation of all pertinent features, including wires, signs, signal heads, conductor cables, luminaire arm and luminaires, and miscellaneous mounting hardware.
 c. The steel strain pole size shall be selected from the "Pole Sizing Table" table on T.S. 15-1-14 of 6.1. The steel strain pole size shall be selected from the "Wood Pole Selection" table on T.S. 15-1-14 of 6.1. The steel strain pole size shall be selected from the "Wood Pole Selection" table on T.S. 15-1-14 of 6.1.
 d. The steel strain pole foundation design variables shall be determined using the pole size selected in "C" above, from the "Steel Pole Foundation Design Variables" table on T.S. 15-1-12 of 6.

The use of this standard drawing on projects on the National Highway System (NHS) is not allowed, as this structure was not designed using the 2013 AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals, 6th Edition, (2013) (LTS-6). For use on the NHS, manufacturers shall design the structure per the requirements of LTS-6.

TRANSPORTATION
J. ALTUBE
SUPERINTENDENT OF TRAFFIC
M. HANNA
SUPERINTENDENT OF OPERATIONS
INFRASTRUCTURE DELIVERY & OPERATIONS SYSTEM
AZ DEPARTMENT OF TRANSPORTATION
PROJECT NO. 15-1-10
SPAN WIRE SIGNALS AND LIGHTING GENERAL NOTES

15-1-10 10 OF 10