GENERAL NOTES:
1. All materials and construction shall conform to the requirements of the
 Specifications. However, these 1's drawings supersede any
 conflicting requirements specified in the original 2008 edition of the
 Specifications or any subsequent version thereof or standard which
 has not been revised to include advancements specified in these
 drawings.
2. Span wire structures have been designed in accordance with the 2008 (4th)
 edition of the AASHTO Standard Specifications for Highway Signs, Luminaires,
 and Traffic Signal and Interiors (see note for use on the National Highway
 System).
3. All welding shall be performed in accordance with the American Welding
 No field welding shall be permitted on any part of the pole.
4. All traffic signals shall be placed vertically and horizontally in accordance
 with the MUTCD.
5. The bottoms of all signal heads and signs on each approach shall be plumb
 and horizontally aligned with the stop line.
6. Traffic signal conductor cables shall be lashed to the messenger wire
 with insulated outdoor type (black) or stainless steel lashing rod.
7. Each signal head shall have an individual number traffic signal conductor
cable.
8. Hardware used to anchor messenger, guy or tether wires, except the
 "offsets" on tether wires, shall develop the full breaking strength of the
 wire. Pole clamps shall be rated for a minimum breaking strength of 30,000
 lbs.
9. Each pole clamp shall connect a single messenger wire to a pole. For box
 spans where adjacent messenger wires connect to the same pole, each
 wire shall have its own pole clamp. The clamp shall be positioned
 vertically on the pole such that one is directly on top of the other and so
 that they are in contact with each other. Tether wires in adjacent spans
 may connect to a pole using the same pole clamp. Pole clamps shall be
 installed according to manufacturer's instructions. Messenger wire pole
 clamps in a single span wire traffic signal support system shall be at the
 same final elevation with an allowed tolerance of ±1. In box span wire
 or components, all messenger wires connect to pole clamps at the
 same final elevation, with a tolerance of ±1.
10. All span wire traffic signal and sign mounting hardware shall be aluminum
 with stainless steel hardware and bushings.
11. Span wire hardware shall be functionally equivalent to that shown in this
 drawing set and shall be approved by the Engineer.
12. All traffic signal support shall conform to the design criteria and details
 shown on these drawings unless noted otherwise on the plans or as
 approved by the Engineer.
13. A one-piece strain pole shall be used where a stub is required.
14. Dimensions shall not be scaled from the drawings.

FOUNDATION NOTES:
1. The foundations are designed based on the following conservative soil
 criteria which cover the great majority of soil types found in arizona.
 Classification: cohesionless (sand)
 Friction angle: 30 degrees
 Unit weight: 100 pounds per cubic foot
 SPI Blow count: 10
2. Only in cases where the designer considers the soil type at the specific
 site location to have lesser strength properties shall an analysis be
 required. Upper baring, SPI borings or SPI soundings may be utilized as
 needed to verify the assumed soil properties and, in relatively uniform
 sites, a single boring or sounding may cover several foundations.
 Furthermore, borings in the area that were performed for other
 purposes may be used to confirm the assumed soil properties.
3. Foundation concrete for drilled shafts shall be Class "F" with minimum
 28-day compressive strength of 3500 psi and shall be placed within
 undisturbed materials or compacted embankment. The top of the drilled
 shaft shall be formed to 12" below the ground surface. Compacted backfills
 shall be in place prior to driving the pile. Foundation concrete for wood
 poles shall be Class "G" with minimum 28-day compressive strength of
 3500 psi and shall be placed against undisturbed earth or compacted
 embankment.
4. Once the pole installation is completed, the open space between the base
 plate and the foundation shall be grouted with non-shrink, high
 early-strength, great non-ferrous with a minimum compressive
 strength of 5000 psi.
5. A bolt template shall be provided during the installation of anchor bolts,
 similar to the anchor plate details, and shall be machined to each base
 The bolt template shall be fabricated of a 1/8 thick minimum steel plate,
 plate.
6. Reinforcing steel shall conform to ASTM A416 or A416, Grade 50, a
 minimum bar length of 36" bar diameters shall be used unless noted otherwise.
7. All bars and steel shall meet the requirements of AASHTO LRFD Article
 5.4.2. All bend dimensions for reinforcing steel shall be cut to fit the
 center of the bars unless noted otherwise.
8. 3/8" Dia or 3/4" Dia spiral shall be cold drawn steel wire conforming
 to AASHTO M136 except the minimum tensile strength shall be 65,000 psi.
 There shall be 3/4 turns tapped at the top and the bottom of each
 spiral.

The use of this standard drawing on projects on the National Highway
System (NHS) is not allowed, as this structure was not designed using
the 2013 AASHTO Standard Specifications for Structural Supports
(LTS-6). For use on the NHS, manufacturers shall design the structure
per the requirements of LTS-6.