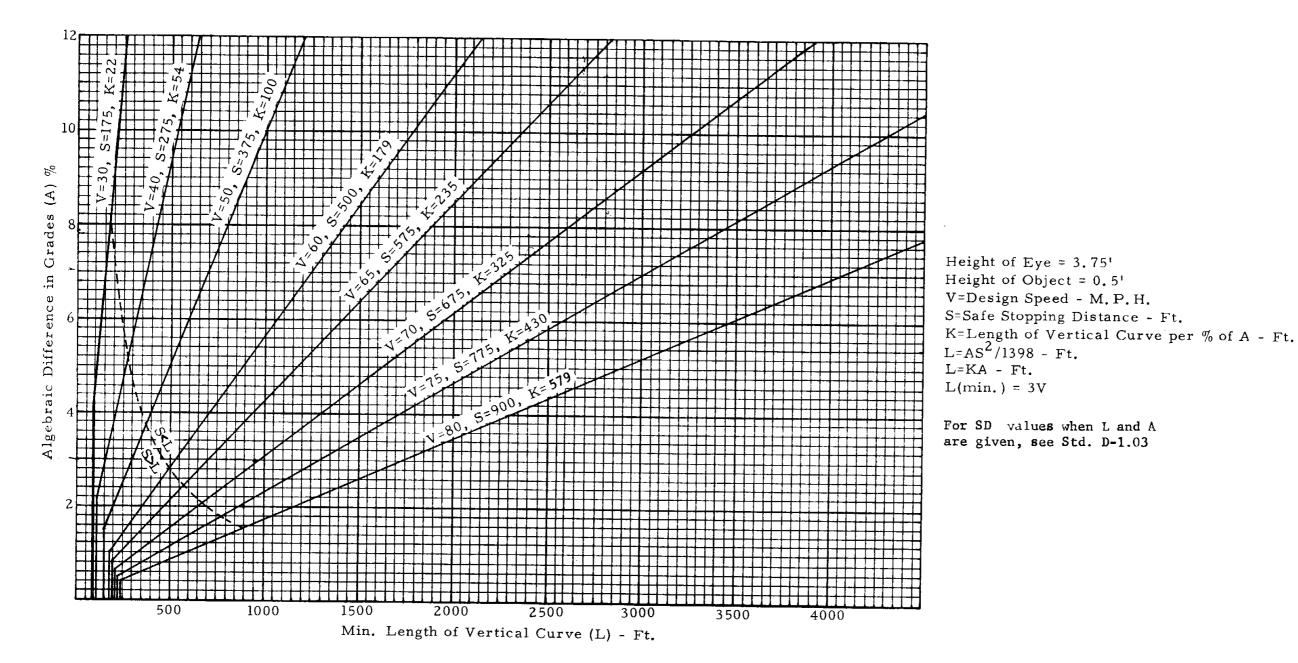


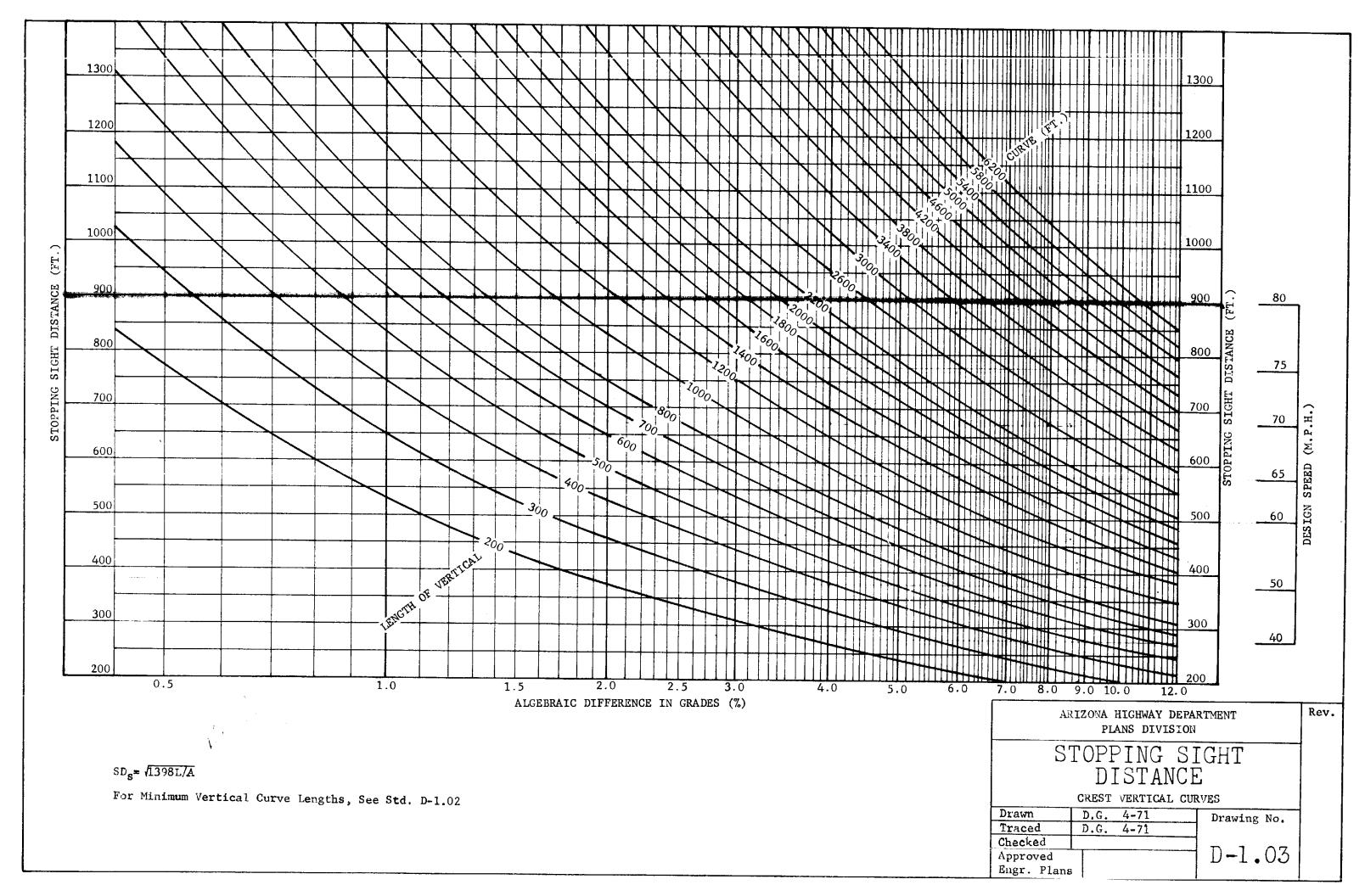
ARIZONA STATE HIGHWAY DEPARTMENT - PLANS DIVISION INDEX TO DESIGN STANDARDS

STOPPING & SIGHT DISTANCES STD. NO. SUBJECT DATE D-1.01 STOPPING DISTANCE 4-71 LENGTH STANDARDS (CREST VERTICAL CURVES) D-1.02 4-71 STOPPING SIGHT DISTANCE (CREST VERTICAL CURVES) D-1.03 4-71 LENGTH STANDARDS (SAG VERTICAL CURVES) D-1.04 4-71 PASSING SIGHT DISTANCE DESIGN CONTROL (CREST VERTICAL CURVES) D-1.05 4-71 STOPPING SIGHT DISTANCE (HORIZONTAL CURVES) D-1.06 4-71 ACCELERATION AND DECELERATION DISTANCES AND VISIBILITY @ NIGHT D 1-2 6-41 SIGHT RESTRICTIONS AND APPROACH SPEEDS AT NON STOP INTERSECT D 1-3 4-41 SIGHT RESTRICTIONS AND APPROACH SPEEDS AT STOP INTERSECTIONS D 1-4 4-41 UTILITIES D.8.01 4-12 0 4-1 CLEARANCE OF UTILITY POLE LINES AS RELATED TO HIGHWAYS 13-41 PRIVATE FACILITIES en i dan URBAN TYPE . 4-17-78 r. l. 1 BURAL TYPE + 4-17-78 5-41 DRAFTING D 7-1 SUMMARY SHEET STANDARD 10-68 D 7-2 PLAN AND PROFILE STANDARD SHEET 10-68 PLANS SYMBOLS (SEE CONSTRUCTION STANDARD C-1.01) PUBLIC AND TRAFFIC D 9-1 PARKING ON STATE HIGHWAYS 5-41 D 5210 Rural & Rural Characte Houys-Gras matric Pesign false 11 - Grenmetric Decan Sta DS230 Urban Hear -Geometric Desen Scleeting . . etric Design D52. 40 stal.

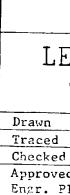

CUR	ATURE,		N & SUPERELEVATION	
	UPEREL	LVA HO	N G TRANSITIONS	
D-6.01	FULL TRANSI	TION SPIRA	AT,	1-71
D-6.02	PARTIAL TRA	NSITION SE	PIRAL	1-71
D-6.03	SPIRAL TRAN	SITION COM	IPOUND CURVES	1-71
D-6.04	SNOW & ICE	CONDITIONS	G (MAXIMUM SUPER = 0.06 ft/ft.)	2-71
D-6.05	SNOW & ICE	CONDITIONS	(MAXIMUM SUPER = 0.08 ft/ft.)	1-71
D-6.06	NO SNOW & I	CE CONDITI	ONS (MAXIMUM SUPER = 0.10 ft/ft.)	1-71
D-6.07	SUPERELEVAT	ION DISTRI	BUTTON	1-71
D-6.08	TRANSITION			
D-6.09	11	H H		2-71
D-6.10	11	11 fi		1-71
D-6.11	11	11 51	a = 1/2	1-71
D-6.12	Π	17 19	a = 2/3	1-71
D-6.13	11	• •	a = 3/4	1-71
D-6.14	11	17 11		1-71
D-6.15	#	11 11	a = 1 $a = 1 \frac{1}{4}$	1-71
D-6.16		11 11		1-71
D-6.17	H		$\frac{a = 1 \ \frac{1}{3}}{a = 1 \ \frac{1}{2}}$	1-71
D-6.18	11	tt ff	$a = 1 \frac{1}{2}$	1-71
D-6.19	**	17 1 7		1-71
D-6.20	11		a = 2 $a = 2 \frac{1}{2}$	1-71
D-6.21	11	FF 11		1-71
D-6.22	n	n 11	$a = 2 \frac{2}{3}$ a = 3	2-71
D-6.23	11	ft 11		1-71
	11		$a = 3 \frac{1}{3}$	1-71
D-6.24		11 11 11 11	$a = 3 \frac{1}{2}$	1-71
<u>D-6.25</u> D-6.26		11 11 11 11	a = 3 - 3/4	1-71
			a = 4	1-71
D-6.27 D-6.28		11 11 17 11	$a = \frac{4}{1/2}$	1-71
			a = 4 2/3	2-71
D-6.29	"	II II	a = 5	1-71
<u>D-6.30</u>	#	M H	$a = 5 \frac{1}{3}$	1-71
D-6.31	H	11 11	a = 5 1/2	2-71
D-6.32	11	ft ft	<u>a = 6</u>	1-71
D-6.33		<i>#1</i> 19	a = 6 1/4	1-71
D-6.34	II	<u>71</u> 14	$a = 6 \frac{1}{2}$	1-71
D-6.35		11 11	a = 6.2/3	2-71
D-6.36	H	H H	a = 6.7/8	1-71
D-6.37	ft	H H	a = 7	1-71
D-6.38	n	11 11	a = 7.1/2	1-71
D-6.39	11	11 11	a = 8 a = 8 1/8	1-71
D-6.40	M	11 11		2-71
D-6.41	H	II II	a = 8 3/4	2-71
D-6.42	11	11 11	a = 9	1-71
D-6.43	II	H H	<u>a – 10</u>	<u>1-71</u> 4-41
D 2-2	MIN. TURNING	SPACE, WI	DENING & CROWN TO SUPERELEVATION RUN-OFF	4-41
		······		

Design	Assumed Speed	Perception &	Brake Reaction	Coefficient	Braking Distance	Safe Stopping Distance (S)				
Speed	For Wet Pvmt. Condition	Time	Distance	of Friction	on Level	Computed	Rounded			
M.P.H.	M.P.H.	Sec.	Ft.	f	Ft.	Ft.	Ft.			
30	28	2.5	103	. 36	73	176	175			
40	36	2.5	132	. 33	131	263	275			
50	45	2.5	165	. 31	218	383	375			
60	54	2.5	198	. 30	324	522	500			
65	58	2.5	213	.30	374	587	575			
70	63	2.5	231	.29	456	687	675			
75	67	2.5	246	.28	534	780	775			
80	72	2.5	264	.27	640	904	900			

~


				1						
ARIZONA HIGHWAY DEPARTMENT ILANS DIVISION										
Ome										
210	PPINC	i DIS	TANCE							
	T									
vn	D.G.	9-70	Drawing No.							
ced	R.A.F.	9-70	_							
<u>ked</u>	870	10-70	D-1.01							
coved		(01.01							
c. Plan	ns Theider	le 10-70								

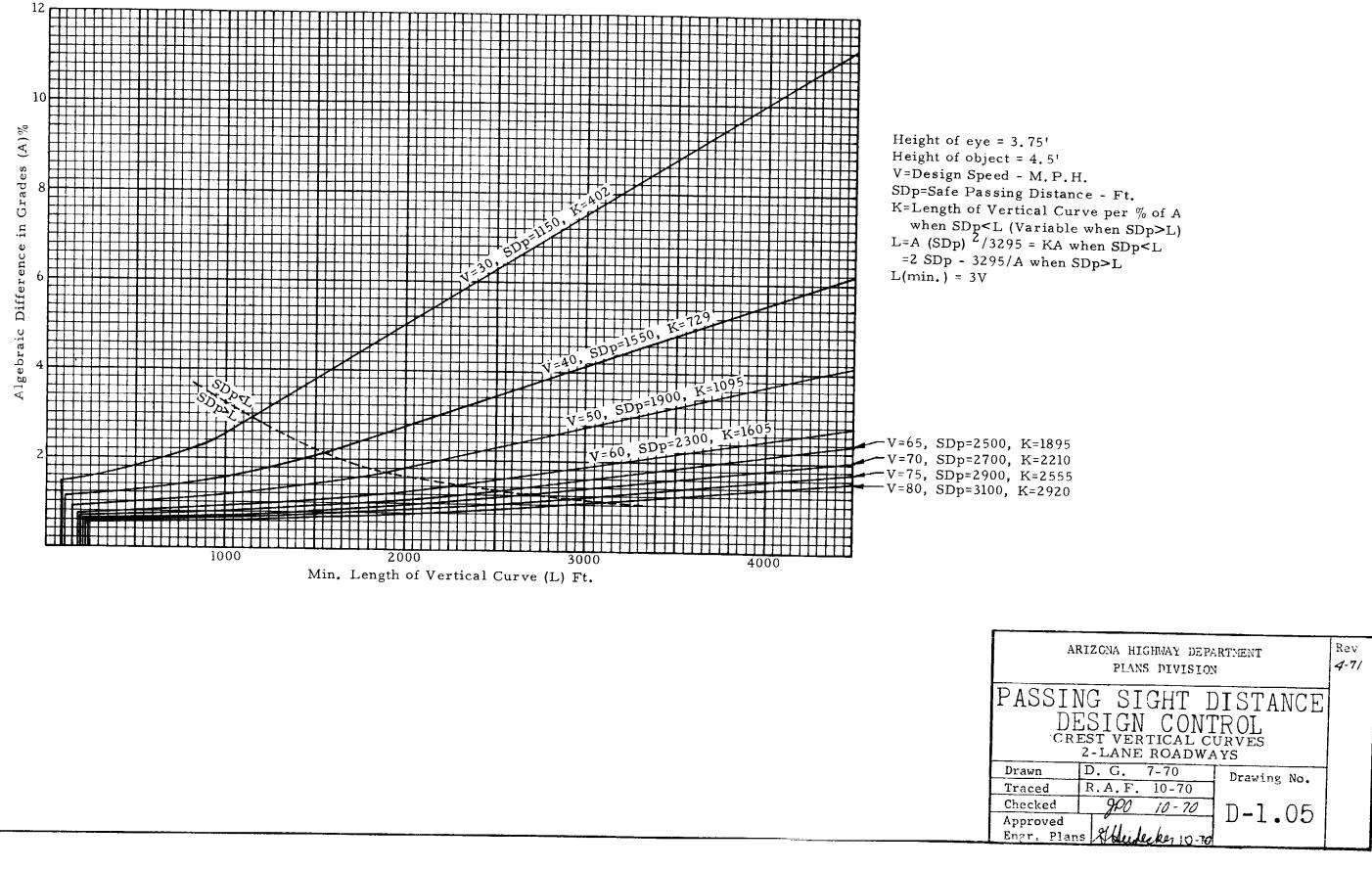
/

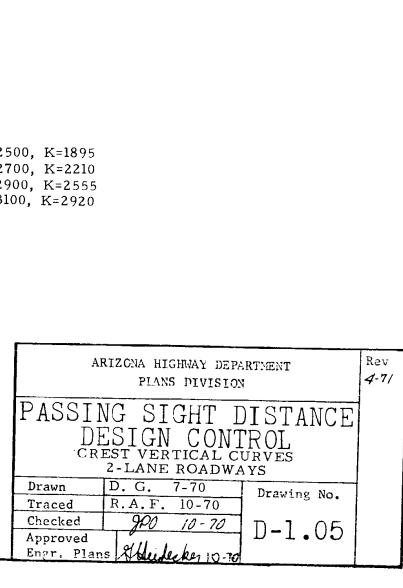

Drawn Trace Check Appro Engr.

ARIZONA HIGHWAY DEPARTMENT PLANS DIVISION								
LENGTH STANDARDS CREST VERTICAL CURVES								
n ed	D.G. 7-70 R.A.F. 9-70	Drawing No.						
ked oved	9PO 10-70	D-1.02						
	s Heidecker							

12 Algebraic Difference in Grades (A)%┝╶┼╫┼┼╋╫╋ 500 1 1000 1500 2500 2000 3000

Min. Length of Vertical Curve (L) Ft.

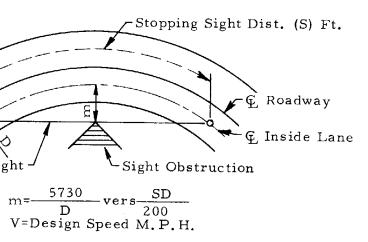

 $L = AS^2 + 400 + 3.5S$

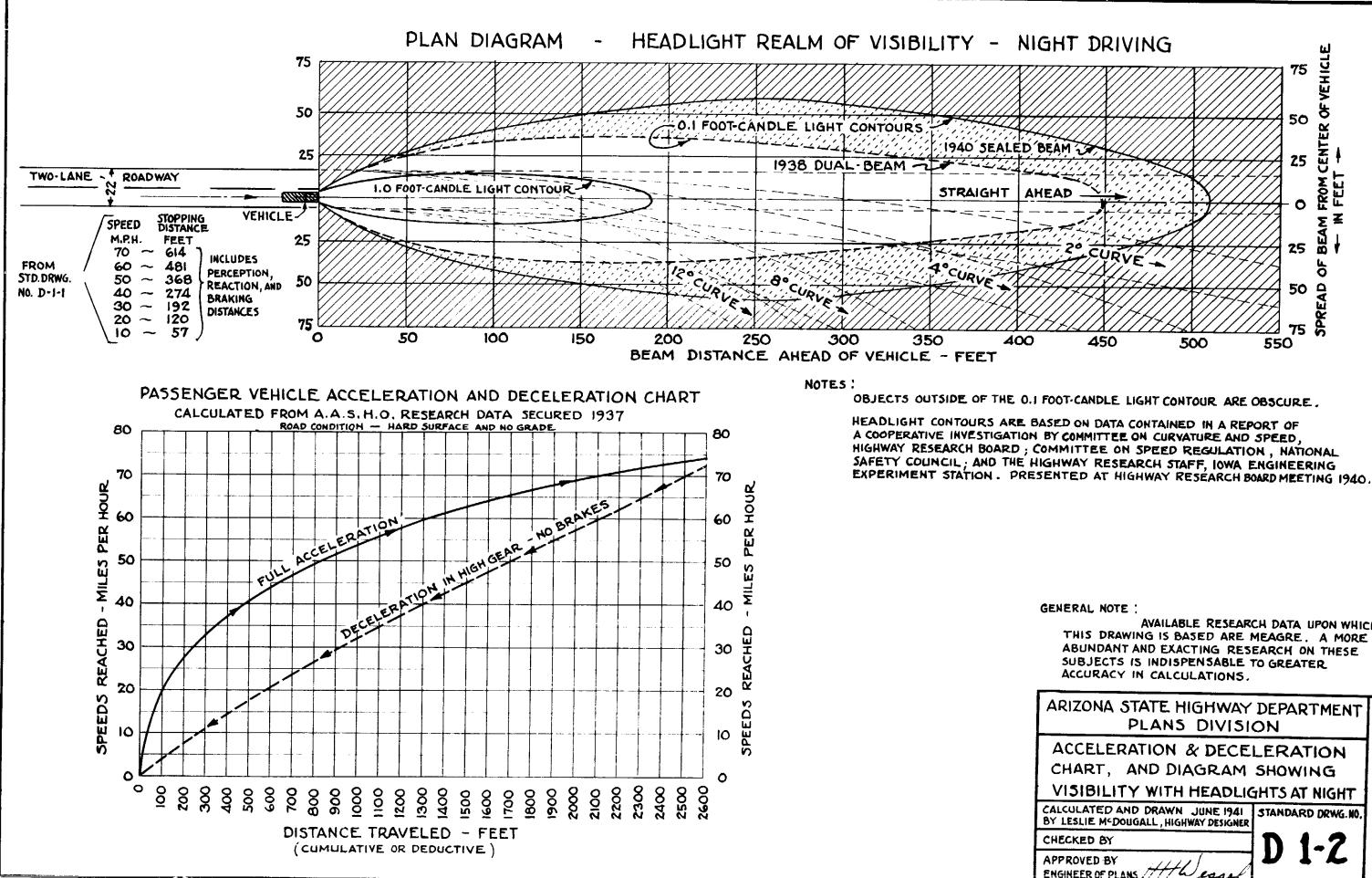

L=KA

L(min.)=3V

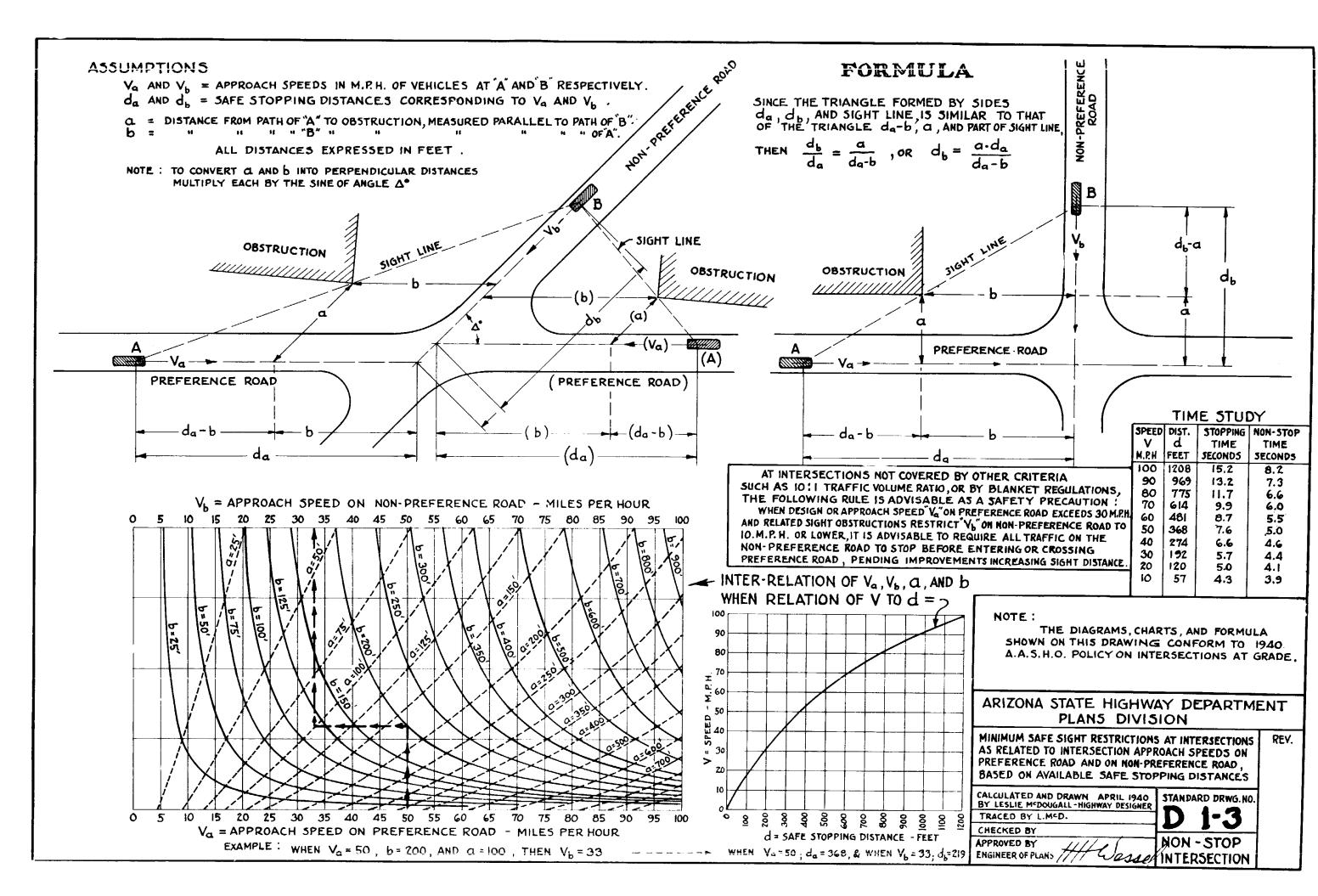
V=Design Speed - M.P.H. S=Safe Stopping Distance - Ft. =Light Beam Distance - Ft. K=Length of Vertical Curve per % of A - Ft. _ - Ft.

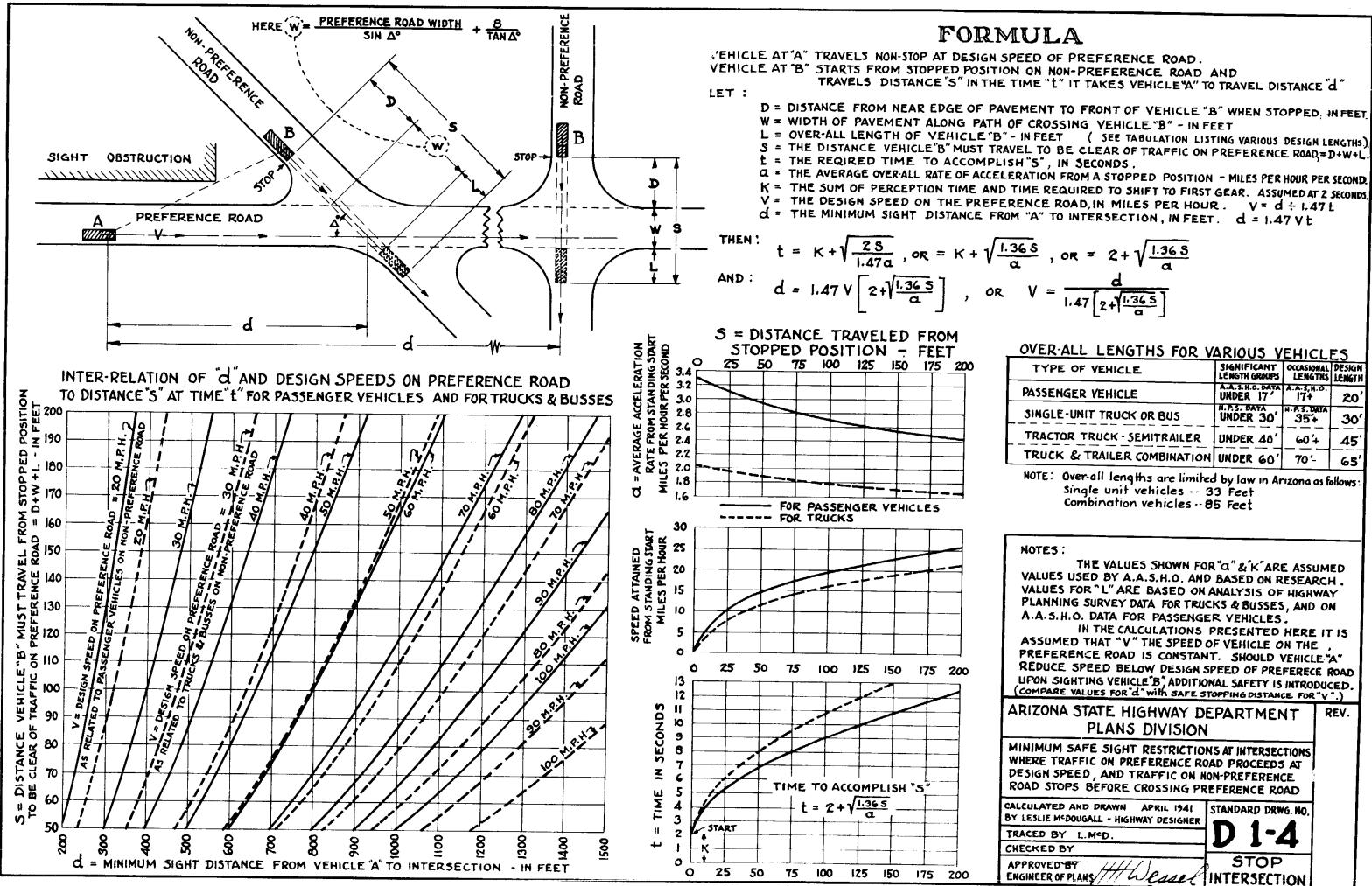
	the second s							
ARIZCHA HIGHWAY DEPARTMENT PLANS DIVISION								
ENGTH STANDARDS SAG VERTICAL CURVES								
D. G. 7-70 R. A. F. 10-70	Drawing No.							
ed Plans Hideideckey 10-70	D-1.04							





Checked Approved Engr. Pla


1155 F - 1- 105 C


		j							
ARIZONA HIGHWAY DEPARTMENT PLANS DIVISION									
ING SIGHT I HORIZONTAL CUR	1								
D.G. 7-70 During N									
R. A. F. 10-70	Drawing No.								
<u>9P0 10-70</u>	D-1.06								
ans Meidecky 10-70									

AVAILABLE RESEARCH DATA UPON WHICH THIS DRAWING IS BASED ARE MEAGRE. A MORE

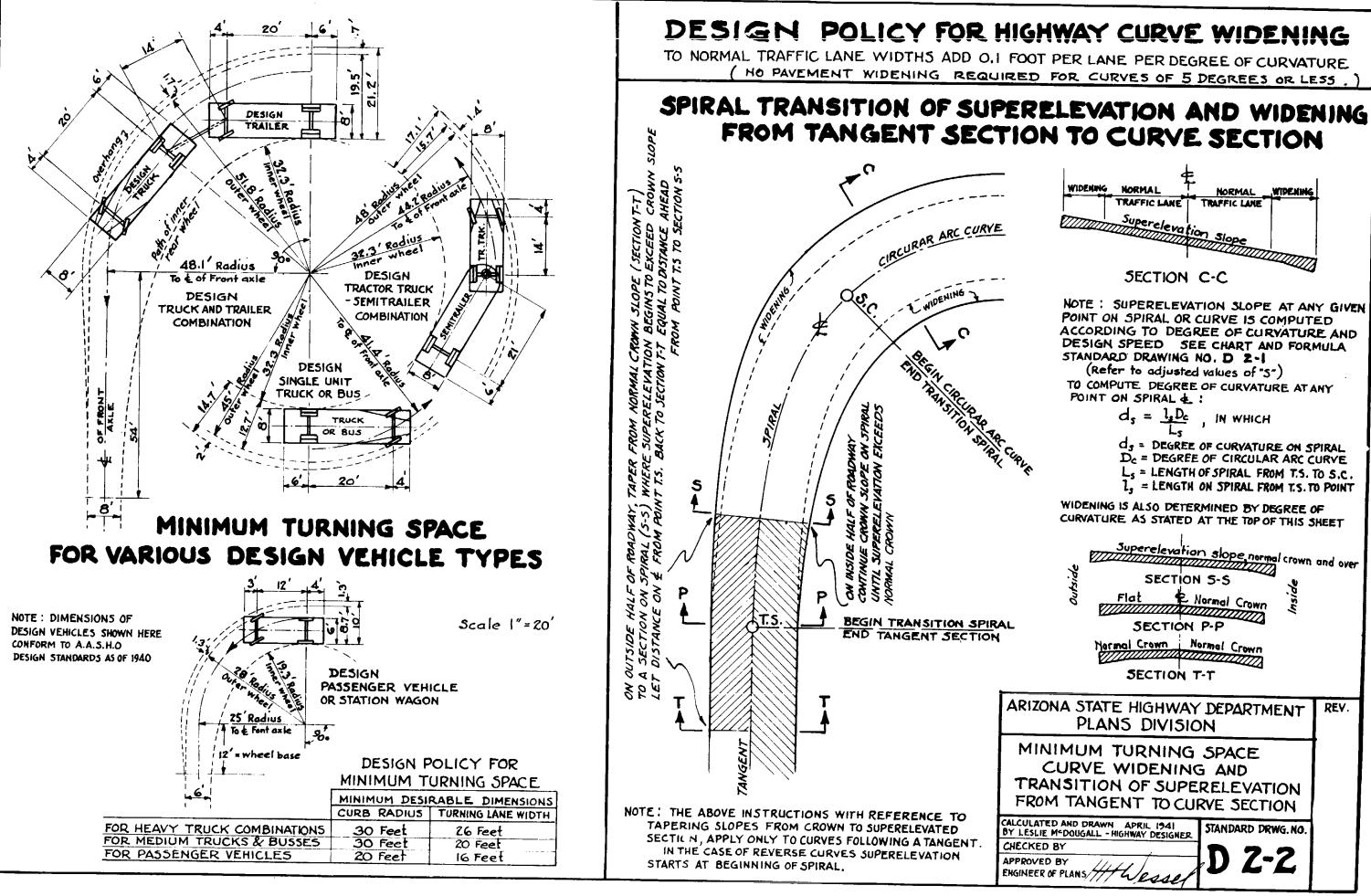
ZONA STATE HIGHWAY PLANS DIVISI	DEPARTMENT ON	REV.
CELERATION & DECE		
ART, AND DIAGRAM		
SIBILITY WITH HEADLIC		
JLATED AND DRAWN JUNE 1941 SLIE MCDOUGALL, HIGHWAY DESIGNER	STANDARD DRWG. NO.	
KED BY	D 1-2	
EER OF PLANS, HALL essel	DIL	

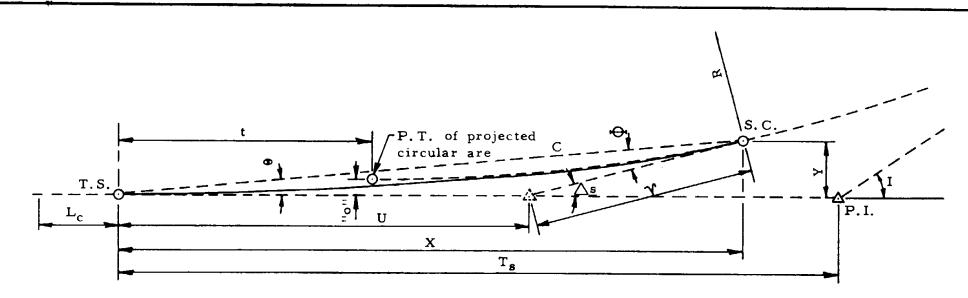
TRAVELS DISTANCE "S" IN THE TIME "L" IT TAKES VEHICLE "A" TO TRAVEL DISTANCE "d"

S = THE DISTANCE VEHICLE"B" MUST TRAVEL TO BE CLEAR OF TRAFFIC ON PREFERENCE ROAD=D+W+L

K = THE SUM OF PERCEPTION TIME AND TIME REQUIRED TO SHIFT TO FIRST GEAR. ASSUMED AT 2 SECONDS. V = THE DESIGN SPEED ON THE PREFERENCE ROAD, IN MILES PER HOUR . V = d + 1.47 t d = THE MINIMUM SIGHT DISTANCE FROM "A" TO INTERSECTION, IN FEET. d = 1.47 Vt

$$\frac{36 \text{ s}}{a}, \text{ or } = 2 + \sqrt{\frac{1.36 \text{ s}}{a}}$$
$$V = \frac{d}{1.47 \left[2 + \sqrt{\frac{1.36 \text{ s}}{a}}\right]}$$


OVER-ALL LENGTHS FOR VARIOUS VEHICLES

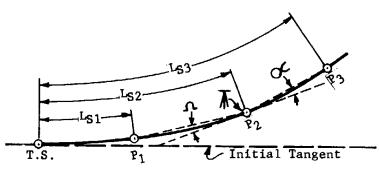

TYPE OF VEHICLE	SIGNIFICANT LENGTH GROUPS	OCCASIONAL LENGTHS	DESIGN LENGTH
PASSENGER VEHICLE	UNDER 17'	a.a.s,h.o. 17+	20'
SINGLE-UNIT TRUCK OR BUS	UNDER 30'	H.P.S. DATA 35+	30'
TRACTOR TRUCK - SEMITRAILER	UNDER 40'	60'+	45'
TRUCK & TRAILER COMBINATION	UNDER 60'	70'-	65'

NOTE: Over-all lengths are limited by law in Arizona as follows Single unit vehicles -- 33 Feet Combination vehicles - 85 Feet

NOTES :

NULLI										
THE VALUES SHOWN FO VALUES USED BY A.A.S.H.O. AN	R"a" & K"ARE ASSI									
VALUES FOR "L" ARE BASED ON	ANALYSIS OF UIGH									
PLANNING SURVEY DATA FOR TRU	CK5 & BUSSES AND									
A.A.S.H.O. DATA FOR PASSENG	ER VEHICLES									
IN THE CALCULATIONS	PRESENTED HERE	LIT 15								
ASSUMED THAT "V" THE SPEED OF VEHICLE ON THE										
PREFERENCE ROAD IS CONSTANT. SHOULD VEHICLE "A"										
KEDUCE SPEED BELOW DESIGN :	SPEED OF PREFERE	E POAD								
UPON SIGHTING VEHICLE B, ADDITK	NAL SAFETY IS INTRO	DUCED.								
(COMPARE VALUES FOR "d" with SAFE S		"v".)								
ARIZONA STATE HIGHWAY D	EPARTMENT	REV.								
PLANS DIVISION										
MINIMUM SAFE SIGHT RESTRICTIO WHERE TRAFFIC ON PREFERENCE R	NS AT INTERSECTIONS									
DESIGN SPEED, AND TRAFFIC ON N	DAU PROCEEDS AT									
ROAD STOPS BEFORE CROSSING PE	EFERENCE BOAD									
CALCULATED AND DRAWN APRIL 1941	STANDARD DRWG. NO.									
BY LESLIE MEDOUGALL - HIGHWAY DESIGNER	D 1_4									
TRACED BY L.MCD.	D 1-4									
CHECKED BY	CTOD									
APPROVED BY HALL	STOP									
ENGINEER OF PLANS MUCASEE	INTERSECTION									

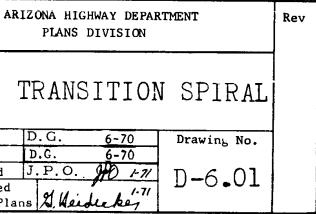
Determine values of L_s and a, for design speed and D, from Drwg. Nos. D-6.05 through D-6.11. These values may be checked by the following applicable formulae. $L_s(sta.) = Spiral distance from T.S. to S.C.=D/a$ a(degrees)=Rate of change in degree of curvature per 100' of spiral=D/Ls D(degrees)=Degree of curvature of circular curve =aL_s=5729.58/R R(ft.)=Radius of circular curve=5729.58/D "o"(ft.)=Radial offset=0.0727aL3 $t(ft.)=50L_{s}-0.000127a^{2}L_{s}^{2}$ $\Delta_{s}(degrees) = Full spiral deviation angle = \frac{1}{2}aL_{s}^{2}$ $=\frac{1}{2}DL_{s}=\frac{1}{2}(D^{2}/a)=L_{s}/2(D)$ $\Theta(degrees) = Full spiral deflection angle at T. S.$ $=(1/3\Delta_{s})^{\bullet}=1/6aL_{s}^{2\bullet}=1/6DL_{s}^{\bullet}=1/6D^{2}/a^{\bullet}$ (degrees)=Full spiral deflection angle at S.C. =∆<u>s</u>-⊖ $C(ft.)=100 L_{s}-0.00034a^{2}L_{s}^{5}$ $V(ft.)=Csin\Theta/sin\Delta_s$ $U(ft.)=Csin\phi/sin\Delta_s$ $X(ft.)=Ccos\Theta$ $Y(ft.)=Csin\Theta$ $T_{s}(ft.) = [(tan_{2}I)(R+"o")] + t$


SPIRAL FORMULAE

Reduce Θ formulae values by C_n according to the following table: $\Delta_{\rm s}$ Cn $\Delta_{\rm s}$ Cn 16° 0.2' 31° 1.6' 46° 5.1 17 0.3 32 1.7 47 5.5 18 0.3 33 1.9 48 5.8 0.4 34 19 2.1 49 6.2 20 0.4 35 2.3 50 6.6 21 0.5 36 2.5 51 7.0 22 0.6 37 2.7 52 7.4 23 0.6 38 2.9 53 7.9 24 0.7 39 3.1 54 8.3 25 0.8 40 3.4 55 8.8 26 0.9 41 3.6 56 9.3 27 1.0 42 3.9 57 9.8 28 1.2 43 4.2 58 10.3 29 1.3 44 4.5 59 10.8

• VALUES OF C_n IN Θ DETERMINATION FORMULAE

30 1.4 45 4.8 60 11.4

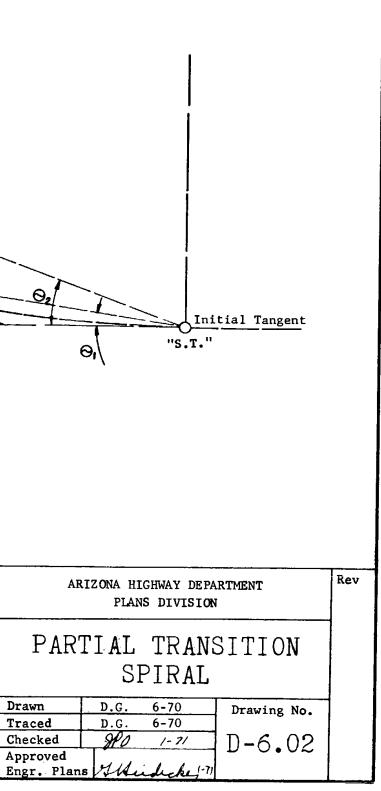

(C_n is negligible and may be ignored for Δ_s values less than 16°.)

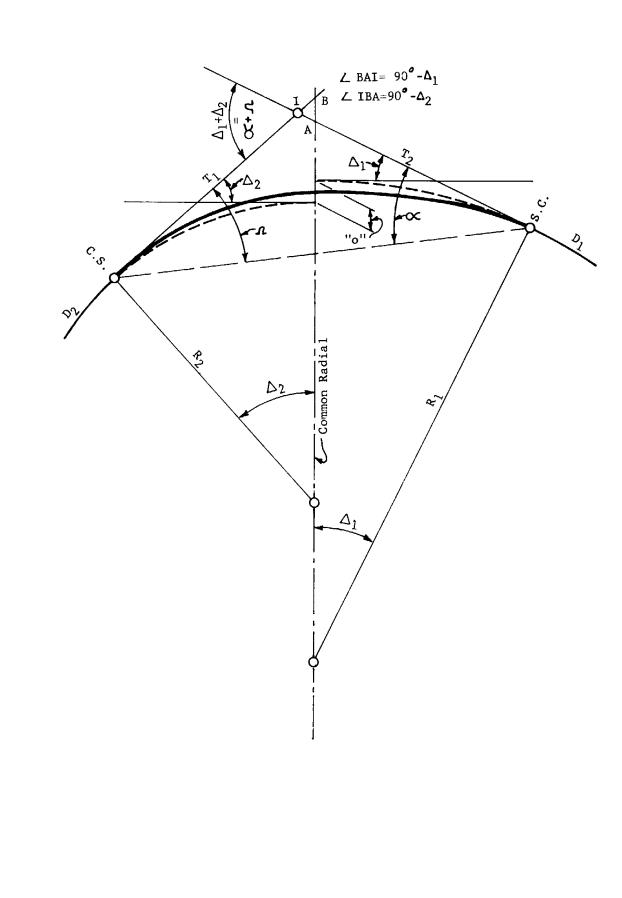
DEFLECTION ANGLE FORMULAE FOR SET-UP AT POINT ON SPIRAL

	FULL
	Drawn
	Traced
	Checked
	Approve
_	Engr. P

- $\propto = \frac{1}{2} a L_{S2} (L_{S3} L_{S2}) + 1/6a (L_{S3} L_{S2})^2$
- $n = \frac{1}{2} a L_{S2} (L_{S2} L_{S1}) \frac{1}{6a} (L_{S2} L_{S1})^2$

Select L_s and a from Drwg. No. D-6.05 through D-6.11 for the specified design speed and D=D2. These values may be checked by the applicable following formulae.


 $L_s(sta.)=Length of spiral from D_2 to S.T.=D_2/a$ a(degrees)=Rate of change in degree of curvature per 100' of spiral= $D_1/L_1=D_2/L_8$ $\Theta(\text{degrees}) = \text{Deflection for spiral having values of a and } L_s - L_1 = 1/6a(L_s - L_1)^2 L_1(\text{sta.}) = \text{Length of spiral from } D_1 \text{ to } S.T. = D_1/a L_s - L_1(\text{sta.}) = \text{Length of spiral from } D_2 \text{ to } D_1 = D_2 - D_1/a$ D_1 (degrees)=Culminating degree of curvature at $D_1=aL_1=D_2-a(L_s-L_1)$ $D_2(degrees) = Culminating degree of curvature at <math>D_2 = aL_8 = D_1 + a(L_8 - L_1)$ $\alpha(\text{degrees}) = \frac{1}{2}aL_1(L_s - L_1) + \frac{1}{6a}(L_s - L_1)^2 = \frac{1}{2}D_1\left[\frac{D_2 - D_1}{a}\right] + \frac{1}{6a}\left[\frac{D_2 - D_1}{a}\right]^2 = \frac{1}{2}D(L_s - L_1) + \Theta$ $\Lambda(\text{degrees}) = \frac{1}{2} a L_s (L_s - L_1) - 1/6a (L_s - L_1)^2$ = $\frac{1}{2} D_2 - D_3 - 1/6a (D_2 - D_3)^2$ $=\frac{1}{2}D_2\left[\frac{D_2-D_1}{a}\right]-1/6a\left[\frac{D_2-D_1}{a}\right]$ $=\frac{1}{2}D_2(L_s-L_1)-\Theta$


artial Spiral D2 (φ D,

Example:

Given: $D_1=2^\circ$, $D_2=3^\circ$ and design speed = 70 M.P.H. Find: Length of partial spiral $(L_s-L_1), \Theta$ and Λ . Solution: From Drwg. No. D-6.10; L =3.5 and a=0 51'25"=0.857 . $L_s - L_1 = 3 - 2/0.857 = 1.1669$ $L_1 = 2/0.857 = 2.3331$ $L_{g}^{1}=2.3331+1.1669=3.5$ (check). $\alpha = \frac{1}{2}(0.857)(3.3331)(1.1669) + \frac{1}{6}(0.857)(1.1669)^2 = 1.3616 = 1^{\circ} 21'42''.$ $\mathfrak{n} = \frac{1}{2}(0.857)(3.5)(1.1669) - \frac{1}{6}(0.857)\left[\frac{3-2}{0.857}\right]^2 = 1.5555 = \mathfrak{p}^2 33'20''$

> Drawn Traced Checked

= D_2 -(a)(distance in sta. from C.S. to point). = D_1 +(a)(distance in sta. from S.C. to point). a a 11 an 227 ARIZONA HIGHWAY DEPARTMENT PLANS DIVISION IRAL TRANSITION OMPOUND CURVES D.G. 6-70 Drawing No. D.G. 6-70 9PO 1-7: D-6.03

Intermediate Spiral Transition is basically the same as Partial Transition Spiral illustrated by Drwg. No. D-6.02. Select L_s and a from Drwg. No. D-6.05 through Drwg. No. D-6.11 for design speed and $D=D_1-D_2$. These values are applied throughout the following formulae. $L_{s}(sta.)=(D_{2}-D_{1})/a$ $a(degrees) = (D_2 - D_1)L_s$ $D_p(sta.)$ =Degree of curvature at any point on spiral. "o" (ft.)=0.0727(D₂-D₁) $\left(\frac{D_2-D_1}{D_2-D_1} \right) 2$ $(\text{degrees}) = 1/2 D_2 (\underline{D_2 - D_1}) - 1/6 a (\underline{D_2 - D_1})^2$ $\propto (\text{degrees}) = 1/2 D_1 \left(\frac{D_2 - D_1}{a} \right) + 1/6a \left(\frac{D_2 - D_1}{a} \right)^2$ To calculate deflections and spiral distance to any point on spiral, substitute D_p for D_1 or D_2

$$\Delta_{1} = (\text{degrees}) = D_{1}(L_{s}/2)$$

$$\Delta_{2} = (\text{degrees}) = D_{2}(L_{s}/2)$$

$$AB=R_{2} \text{ in feet (exsec. } \Delta_{2}) - R_{1} \text{ in feet (exsec. } \Delta_{1}) - "O$$

$$AI (ft) = AB \left[\frac{\cos \Delta_{2}}{\sin(\Delta_{1} + \Delta_{2})} \right]$$

$$BI(ft.) = AB \left[\frac{\cos \Delta_{1}}{\sin(\Delta_{1} + \Delta_{2})} \right]$$

$$T_{1}(ft.) = R_{1} \text{ in feet (tan } \Delta_{1}) + AI$$

$$T_{2}(ft.) = R_{2} \text{ in feet (tan } \Delta_{2}) = RI$$

SP
Drawn
Traced
Checked
Approved
Engr. Pla

ans & Weidecke, 1-71

Rev

								-			-																	
V=30 V=40							V=50				V=60				V= 65			V=70				V=80						
D	e	a	Lc	Ls	е	a	Lc	Ls	e	а	Lc	Ls	e	a	Lc	Ls	е	a	Lc_	Ls	е	а	Lc	Ls	е	а	Lc	Ls
0-15	NC	-	0	0	NC	-	0	0	NC	-	0	0	NC	-	0	0	NC	_	0	0	NC	_	0	0	RC	1/8	100	200
0-30	NC	-	0	0	NC		0	0	NC	-	0	0	RC	1/3	75	150	RC	1/3	75	100	RC	1/3	7.5	150	.023	$\frac{1}{1}$	100	
0-45	NC	-	0	0	NC	-	0	0	RC	1/2	50	150	.021	1/2	75		.023	1/2	75	150	.026	1/2	75	150	.033	1/3	100	
1-00	NC	-	0	0	RC	1	50	100	.020	2/3		150		2/3	7.5	150	.029	1/2	75	200	.033	1	75	200	.041	1/3	100	
1-30	RC	1 1/2	50	100	.020	1 1/2	50	100	.028	1	50	150		1	75	150	.040	3/4	75	200	.044	3/4	75	200	.053	1/2	100	
2-00	RC	2	50	100	.026	2.0	50	100	.035	1 1/3	50	150	.044	1	75	200	.048	1	75	200	.052	1	75	200	.059	2/3	100	
2-30	.020	2 1/2	50	100	.031	2 1/2	50	100	.040		50	150	.050	1 1/4	75	200	.053	1 1/4		200	.057	1	75	250	.060	2/3		375
3-00	.023	3	50	100	.035	2 1/2	50	120	.044		50		.054	1 1/2	75	200	.057	1 1/4		240	.060	1	75	300]			
3-30	.026	3 1/2	50	100	.038	$\frac{2}{2}\frac{1}{2}$	50	140	.048		50	175	.057	1 2/3	75	210	.059		75	280					Dı	max. = 2	° 30'	
4-00	.029	4	50	100	.041	2 2/3	50	150	.051	*	50	*	.059	1 2/3	75	240	.060	1 1/3	75	300	j D ma	ax. = 3°						
5-00	.034		50	100	.046	$\frac{3 1/3}{4}$	50	150		$\frac{2}{2}$ 1/2	50		.060	1 2	75	250	ļ		10									
6-00	.038	6	50	100	.050	4 2/3	50	150 150	.059	$\frac{3}{3 1/2}$	50	200		0			D	max. =	4									
7-00	.041	8	<u>50</u> 50	100	.054	4 2/3	<u> </u>	160	.000	5 1/2	50	200	ן די	max. = 5°														
9-00	.043	$\frac{8}{7 1/2}$	50	120	.058	5	50	180		max. = 7	0																	
10-00	,048	6 2/3	50	120	.059	5	50	200	D	max /																		
11-00	.050	6 7/8	50	160		5 1/2	+	200	1																			
12-00	.052	7 1/2	50	160		1 2 114		L 200	J																			
13-00	.053	8 1/8	50	160		max. = 1	l°																					
14-00	.055	8 3/4	50	160			-								NO TE	: Tab	oular Lo	c and L	s val	ues ar	e for a	1 or 2 1	ane r	oadway				
16-00	.058	10	50	160	1				llau und	and a hard	lors hu										t the con					e.		
18-00	.059	10	50	180						lrals bel ar curves		-	ine,										-		-			
20-00	.060	10	50	200]				U I L U U I È	ir curves	s abovi	е.				For Lc and Ls values for other lane multiples and for super distribution data, see Std. $D_{2}6$ D_{2}												

D max. = 20°

- a = Increase in degree of curvature per 100' of spiral
- D = Degree of curvature
- = Superelevation in ft./ft. e
- Lc = Normal crown runoff in feet
- Ls = Superelevation runoff in feet
- NC = Maintain normal crown
- RC = Remove adverse crown and superelevate to normal crown slope

CUR SUF Drawn Traced Checked Approved Engr. Pl

Use judgment combined with local climatic information in the choice of a maximum

distribution data, see Std. D-6.02

Interpolate for values not shown.

elevations.

superelevation for borderline roadway

For elevations over 6000'

ARIZONA HIGHWAY DEPA PLANS DIVISION		Rev
VATURE, SUPEREL: PERELEVATION IR		
SNOW & ICE CONDI MAX. SUPER = 0.06		
D. G. 2-71 R. A. F. 2-71	Drawing No.	
1 A. 2.71	D-6.04	
Jans J. Heiderley 2-71		

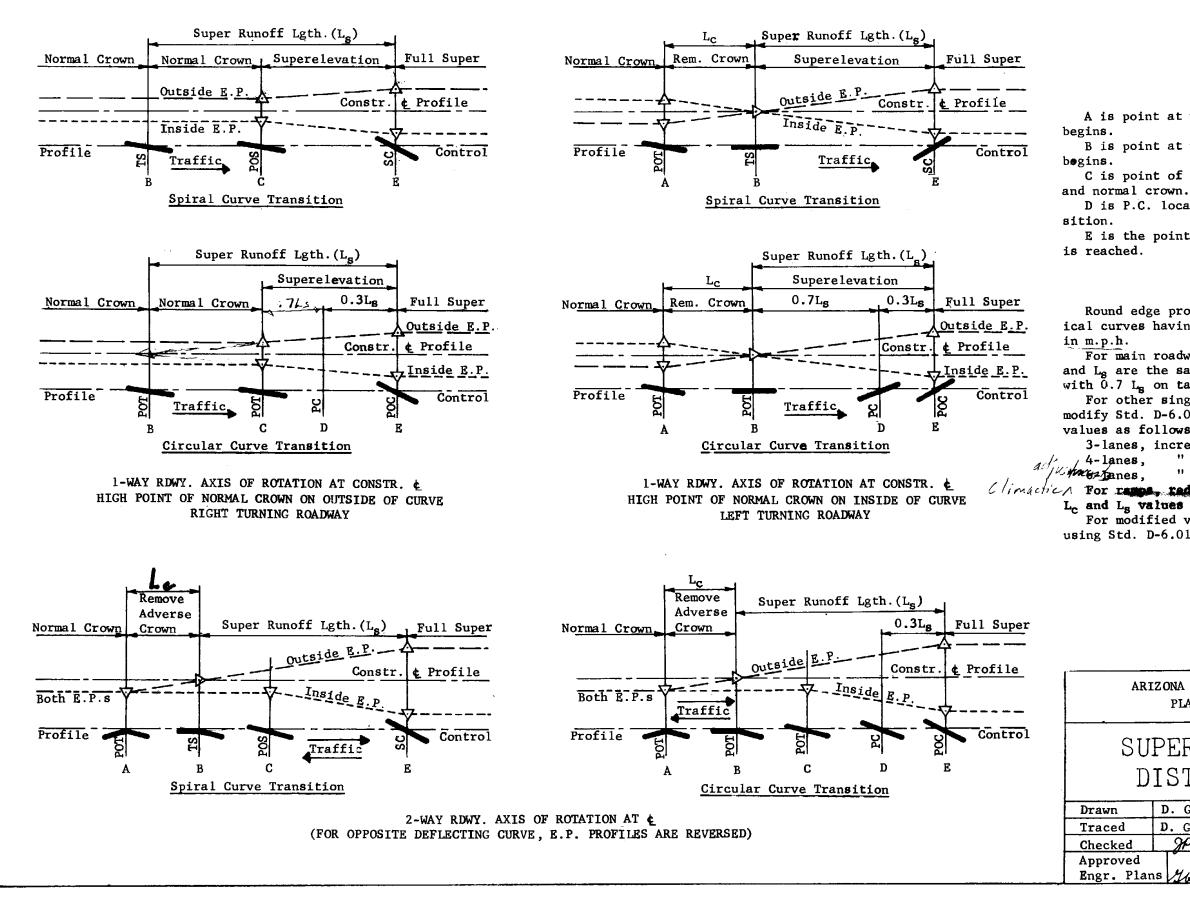
	,	V=30				V=40				V=50				V=60)			V=65	I			V=70				V=8	0
D	е	a	Lc	Ls	e	a	Lc	Ls	е	а	Lc	Ls	e	a	Lc	Ls	е	а	Lc_	Ls	е	а	Lc	Ls	е	а	Lc Ls
10	NC			_	NC				NG																DC	1/4	100 20
	NC		0	0	NC NC		0	0	NC NC	-	0	0	NC RC		0 75	0 150	<u>NC</u> RC	- 1/3	0 75	0 150	NC RC	- 1/3	<u> </u>	$\frac{0}{150}$		$\frac{1/4}{1/3}$	100 2
	NC	<u></u>		0	NC	-	0	0	RC	1/2	50	150	.022	$\frac{1/3}{1/2}$	75	150	.025	$\frac{1/3}{1/2}$	75	150	.029	1/2	75	150	.036	1/3	100 2
	NC	-	0	0	RC	1	50	100	.021	2/3	50	150	. 029	2/3	75	150	.033	2/3	75	150	.038	2/3	75	150	.047	1/3	100 30
30	RC	1 - 1/2	50	100	. 021	1-1/2		100	.030	1	50	150	.040	1	75	150	.046	1	75	150	.053	1	75	150	.065	1/2	100 3
-00	RC	2 .	50	100	.027	2	50	100	.038	1 - 1 / 3	50	150	.051	1-1/3	75	150	.057	1	75	200	.065	1	75	200	.076	2/3	100 3
-30	.021	2-1/2	50	100	.033	2-1/2	50	100	.046	1-2/3	50	150	.060	1-1/4	75	200	.066	1-1/4	75	200	.073	1	75	250	.080	2/3	100 3
-00	.025	3	50		.038	2-1/2		120	.053	2	50	150	.067	1-1/2	75	200	.073	1-1/3	75	225	.078	1	75	<u>300</u> 350			
-30	.028	3-1/2			.043	2-1/2		140	.058	2	50	175	.073	1-2/3		210	.077	1-1/4	75	280	.080	1	75	350	D	max. :	= 20-30'
-00	.032	4	50		.047	3-1/3	-	140	.063	2	50	200	.077	1 - 2/3		2 40	.079	1-1/3	75	300							
-00	.038	. 5	50		.055	3-1/3		150	.071	2-1/2	50	200	.080	1-2/3	75	300	.080	1-2/3	75	300		D max.	= 30-	30'			
-00	.043	5	50	States and states in succession.	.061	3-3/4		160	.077	3	50	200		-		2		-	-0								
-00	.048	5	50		.067	4	50	175	.079	3-1/3	50	210		D max	x. = 5			D max	<.=5 [™]								
00	.052	<u>5-1/3</u> 6		150	.071	4 4-1/2	50	200	.080	3-1/3	50	240	J														
- 00	.059	$\frac{6}{6-1/4}$		160	.075	5	50	200		max. =	00																
-00	.063	6-7/8			.079	5	50	220		IIIdX	0 -																
-00	.066	7-1/2	<u> </u>		.080	5		240	1																		
-00	.068	6-1/2		200		L		1	1																		
-00	.070	7	_	200	Dn	nax. = 1	12 ⁰										NC	DTE: I	abular	· Lc a	nd Ls v	values an	re for	alor	2 lan e 1	oadway	
-00	.074	8	50															W	ith the	e axis	of rota	tion at t	he cor	nstruct	tion C	or eithe	r edge.
-00	.077	9	50	200																							
)-00	.079	10		200						e spiral												es for ot			ltiples a	nd for s	Super
-00	.080	10	50	220					cir	cular cu	irves	above	•					d	istribu	ition d	lata, se	e Std. I	D-6. 02	2			
Ι) max.	= 22 ⁰																I	nterpo	late f	or valu	es not s	hown.				
																		1: 81	nformat	ion in vation	n the cl	d with le hoice of orderline	a max	imum	C		

- NC Maintain normal crown
- RC = Remove adverse crown and superelevate to normal crown slope

ARIZONA HIGHWAY DEPARTMENT PLANS DIVISION									
CURVATURE, SUPERELEVATION & SUPERELEVATION TRANSITION SNOW & ICE CONDITIONS MAX. SUPER = 0.08 ft./ft.									
Drawn	D. G. 12-70 Drawing No.								
Traced	R. A. F. 1-71								
Checked	9P0 1-71 D-6.05								
Approved									
Engr. Plan	ns [Weedeckey " 1]								

		V=30				V=40	.			V=50)			V=60				V=65				V=70			V=80			
D	e	a	Lc	Ls	е	a	Lc	Ls	е	а	Lc	Ls	e	a	Lc	Ls	е	a	Lc	Ls	е	a	Lc	Ls	е	a	Lc	Ls
)-15	NC	-	0	0	NC	_	0	0	NC	_	0	0	NC										1					+
) - 30	NC		0	0	NC	-	0	0	NC	-	0	0	RC	- 1/2	0 75	0 150	NC		0	0	NC	-	0	0	RC	1/4		200
-45	NC	-	0	0	NC	-	0	0	RC	1/2	50	150	.024	2/3	75	150	<u>RC</u> .027	$\frac{1/3}{1/2}$	75	150	RC	1/3	75	150	.024	1/3	100	
-00	NC	**	0	Û	RC	1	50	100	.023	And the second sec	50	150	.032		75		.027	1/2 2/3	75	150	.029	1/2	75	150	.036	1/3	100	
-30	RC	11/2	50	100	.021	1-1/2	50	100	.033		50	150	.046	1	75	150	.055	$\frac{2}{1}$	75	150 150	.039	2/3	75	150	.048	1/3	100	
-00	RC	2	50	100	.028	2	50	100	.042	1-1/3	50	150	.058	1-1/4	75	160	.066	1	75	200	.038	3/4	75	200	.071	1/2	100	
- 30	.021	2-1/2	50	100	.034	2-1/2	50	100	.051	1-2/3	50	150	.069	i man i na	75	200	.077	1	75	250	.086	1 1	75	250	* <u>.089</u>	2/3	100	30
-00	.025	3	50	100	.040	2-1/2	50	12.0	.059	2	50	150	.079	1-1/2	75	200	.087	1	75	300	.094	1	75	300	.100	2/3	100	37
-30	.029	3-1/2		100	.046	2-1/2	50	140	.067		50	175	.087	1-1/4	75	280	.093	1	75	350	.099	2/3	75	375	. 100 1		1100	140
-00	.033	4	50	100	.051	3-1/3	50	140	.073		50	200	.093	1-1/3	75	300	.098	1	75	400	.100	1	75	400		max. =	30	
-00	.040	<u> </u>	50	100	.061	3-1/3	50	150		2-1/2	50	200	.099	1-2/3	75	300	,100	1	75	500			<u> </u>	100		IIIdA	5	
-00 -00	.046	5	50	120	.070	3-3/4	50	160		2-1/2	50	240	.100	1-2/3	75	360					D	max. =	4 ⁰					
-00	.055	<u>5</u> 5-1/3	50 50	140	.077	4	50	175	Statement and statements and statements	2-1/2	50	280					Dn	nax. = 5	0				_					
-00	.064	6	50	150 150	.084	4 4-1/2	50	200	.100	2-1/2	50	320	Dn	hax. = 6	0													
0-00	.068	6-1/4	50	$150 \\ 160$.089	<u>4-1/2</u> 5	50 50	200 200	D	nax. = 8	0																	
-00	.073	6-7/8	50	160	.097	5	50	220	Dn	$\max = \delta$																		
2-00	.077	7-1/2	50	160	.099	5	50	240																				
3-00	.080	6-1/2	50	200	.100	5	50	260																				
4-00	.083	7	50	200				200		Use sp	virals	below	heavy	line		NO	TE: Ta	т		,	,			_				
6-00	.089	8	50	200	Dm	ax. = 13	0			circula				,		NO		E: Tabular Lc and Ls values are for a 1 or 2 lane roadway with the axis of rotation at the construction \bigoplus or either edge.										
3-00	.093	9	50	200		•											w.											
0-00	.097	10	50	200													For Lo and Lo values for other la later and											
2-00	.099	10	50	220													For Lc and Ls values for other lane multiples and for super											
4-00	.100	10	50	240													distribution data, see Std. D-6.02											
5-00	.100	10	50	250													Interpolate for values not shown.					own.						

 $D max. = 25^{\circ}$


- = Increase in degree of curvature per 100' of spiral а
- = Degree of curvature D
- = Superelevation in ft./ft. е
- Lc = Normal crown runoff in feet
- Ls = Superelevation runoff in feet
- NC = Maintain normal crown
- RC = Remove adverse crown and superelevate to normal crown slope

Use judgment combined with local climatic information in the choice of a maximum superelevation for borderline roadway elevations.

CURX SUI NG M
Drawn
Traced
Checked
Approved Engr. P

For elevations under 4000'

ARIZONA HIGHWAY DEPA PLANS DIVISION		2ev
VATURE, SUPERELE PERELEVATION TRA O SNOW & ICE CONE MAX. SUPER = 0.10 ft	ANSITION DITIONS	
D. G. 12-70 R. A. F. 1-71 990 /-7/ ed Plans Mideideckey 1-71	Drawing No. D-6.06	

A is point at which adverse crown removal

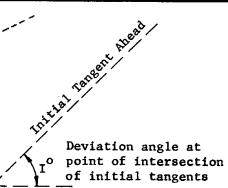
B is point at which superelevation transition

C is point of equality between superelevation d normal crown. D is P.C. location for circular curve tran-

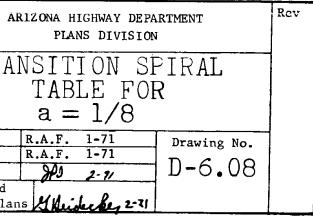
E is the point at which full superelevation reached.

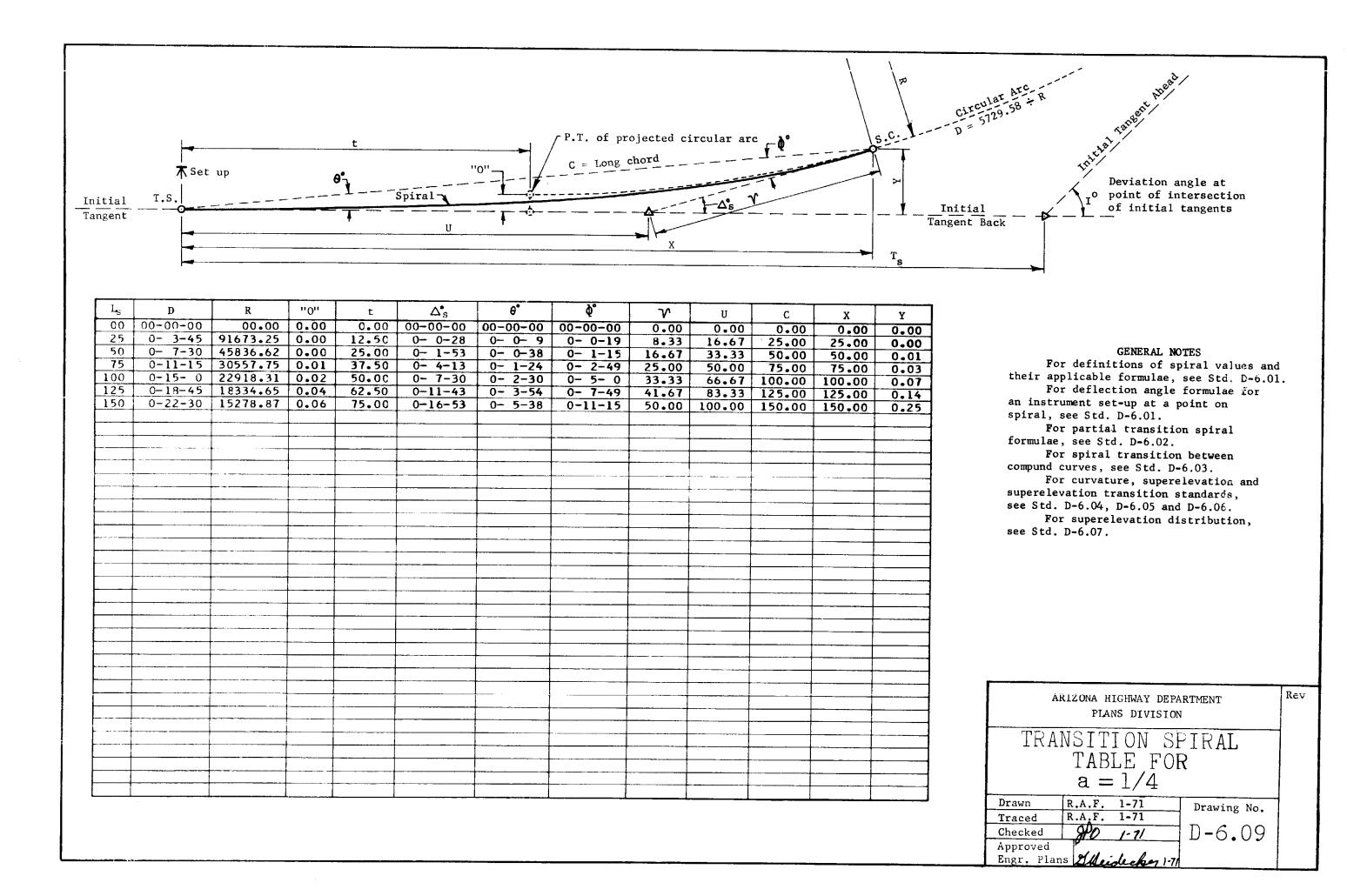
GENERAL NOTES

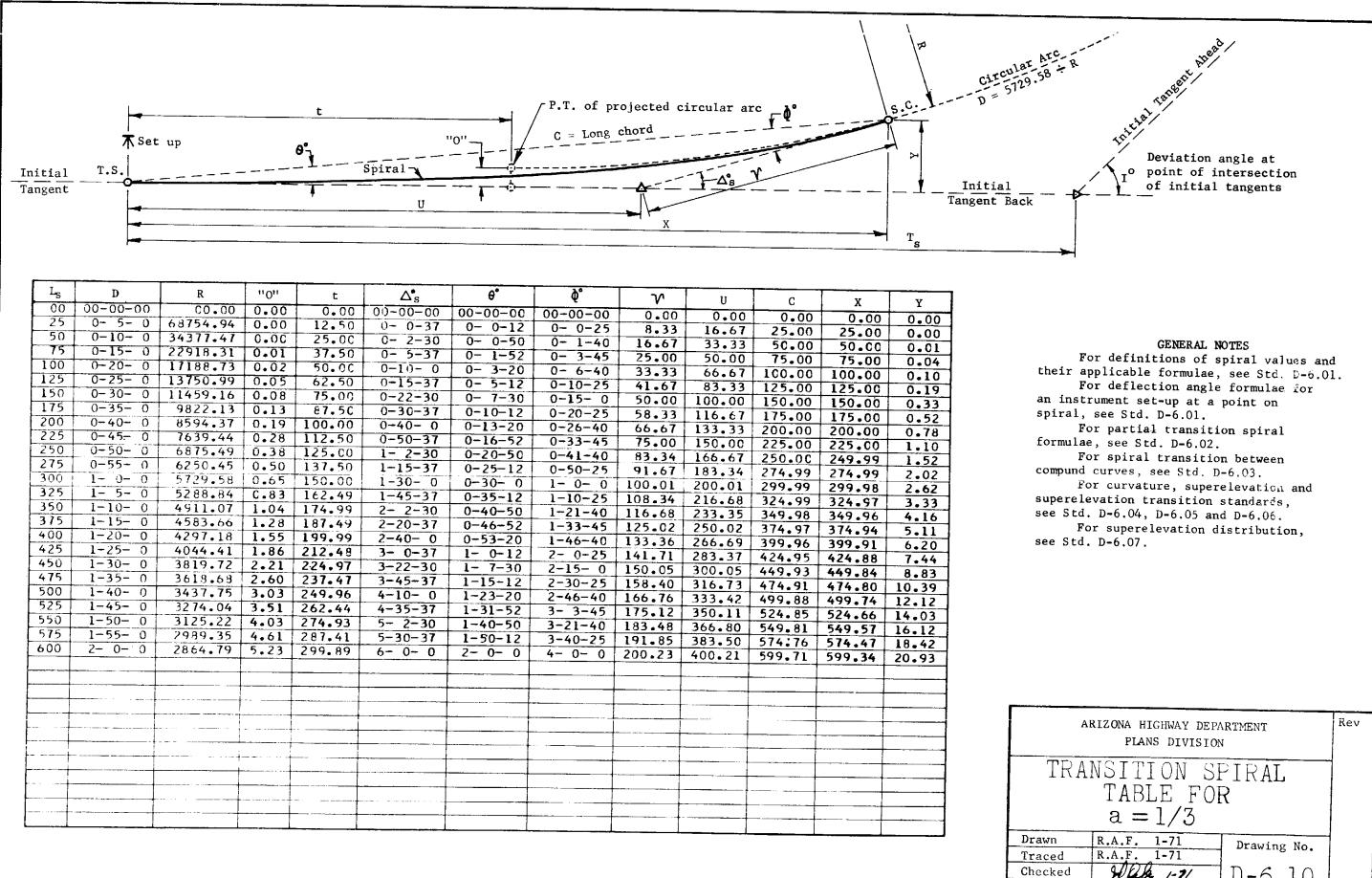
Round edge profile intersections with vertical curves having length in feet equal to V in m p h


For main roadway curves without spirals, L_c and L_g are the same as for spiraled curves but with 0.7 L_g on tangent and 0.3 L_g on curve. For other single axis main roadway widths, modify Std. D-6.04 and D-6.05 tabular L_c and L_g values as follows:

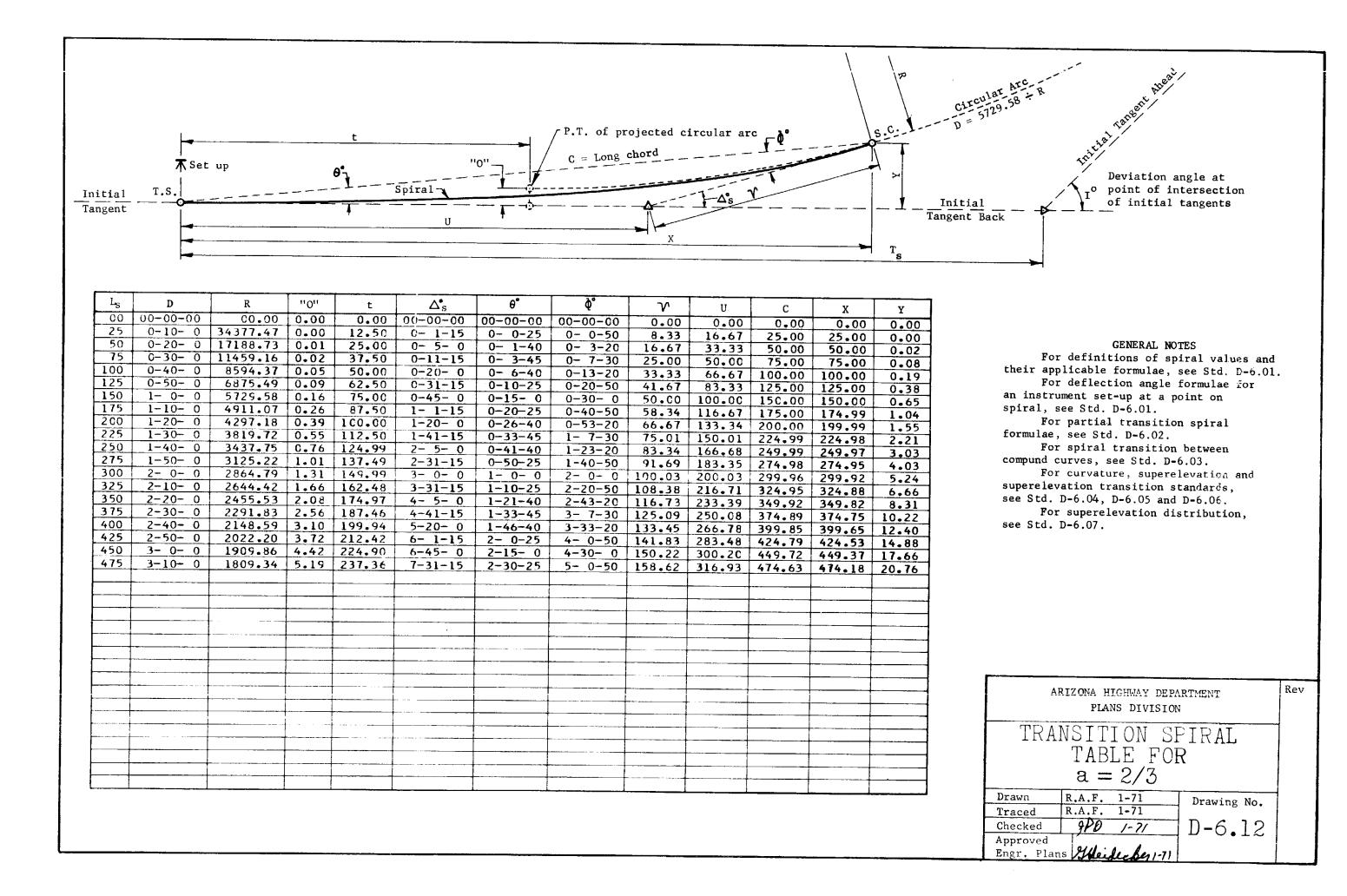
3-lanes, increase 20% to nearest 25'. 4-lanes, "50%"""". 50%""".

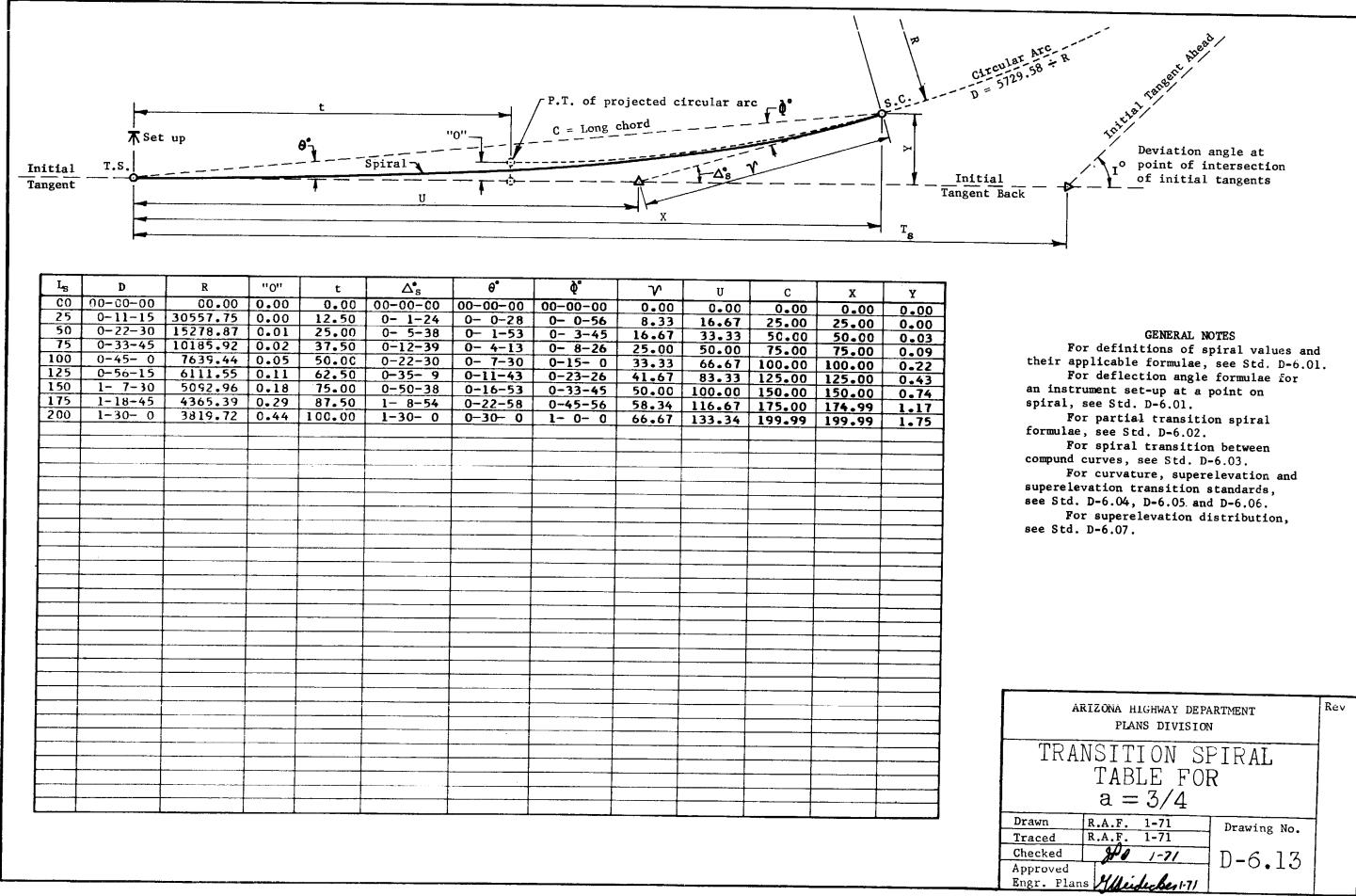

Climathich For range, reduce Std. D.6.04 and D-6.05 L_c and L_s values by 30% to nearest 10'. For modified values, compute spiral variables using Std. D-6.01 formulae.

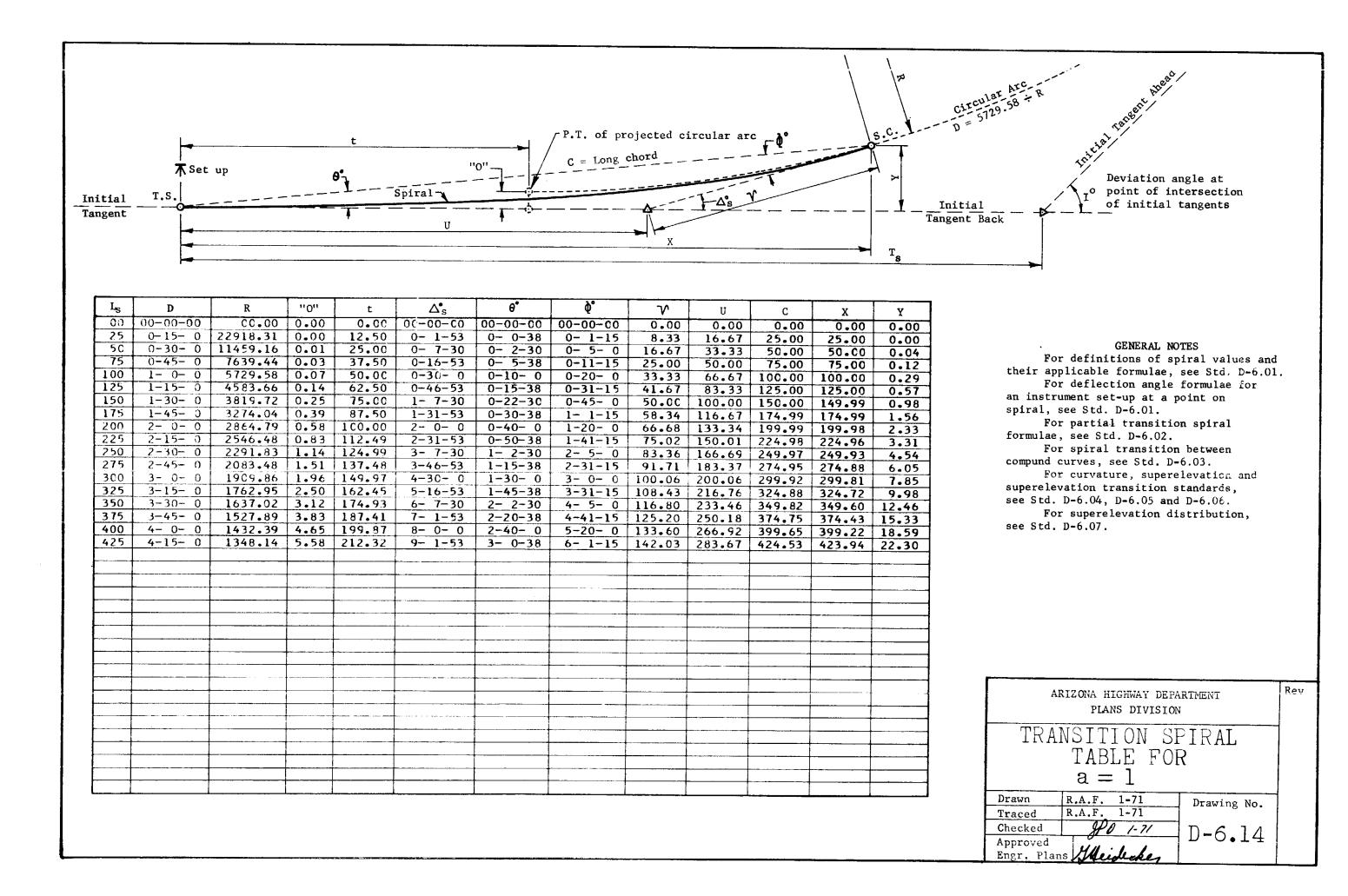

ARI	ZONA HIGHWAY DEPAR PLANS DIVISION	TMENT	Rev
-	PERELE VA T ISTRIBUTI		
	D. G. 1-71	Drawing No.	
d	D. G. 1-71		
ed	SPO 1-71	D-6.07	
ved Plan	15 Milidecker 1-71		

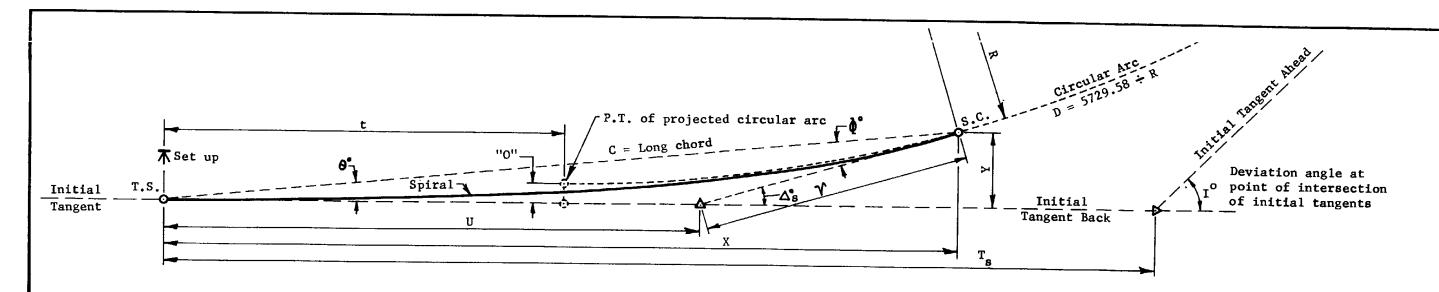

		5	<u></u>	rcular arc		P.T. of pro	2"		t		up	↓ ▼ Set	
Initial Cangent Back					X		 ₩\$	U U				T.S.	tial gent
1	Y	x	с	U	<u>י</u> ע	\$ °	θ•	Δ_{s}^{\bullet}	t	"0"	R	D	Ls
	0.00	0.00 25.00 50.00	0.00	0.00 16.67 33.33	0.00 8.33 16.67	00-00-00 0- 0- 9 0- 0-37	00-00-00 0- 0- 5 0- 0-19	$\begin{array}{r} -3 \\ 0 \\ -0 \\ 0 \\ -0 \\ -14 \\ 0 \\ -0 \\ -56 \end{array}$	0.00 12.50 25.00	0.00	00.00 183346.49 91673.25	00-00-00 0- 1-53 0- 3-45	00 25 50
t	0.02	75.00 100.00 125.00	75.00 100.00 125.00	50.00 66.67 83.33	25.00 33.33 41.67	$\begin{array}{r} 0 - 1 - 24 \\ 0 - 2 - 30 \\ 0 - 3 - 54 \end{array}$	0- 0-42 0- 1-15 0- 1-57	0- 2- 7 0- 3-45 0- 5-52	37.50 50.00 62.50	0.00	61115.50 45836.62 36669.30	0- 5-38 0- 7-30 0- 9-23	75 100 125
a: S;	0.12 0.19 0.29	150.00 175.00 200.00	150.00 175.00 200.00	100.00 116.67 133.33	50.00 58.33 66.67	$\begin{array}{r} 0 - 5 - 38 \\ \hline 0 - 7 - 39 \\ \hline 0 - 10 - 0 \end{array}$	0- 2-49 0- 3-50 0- 5- 0	0- 8-26 0-11-29 0-15- 0	75.00 87.50 100.00	0.03 0.05 0.07	30557.75 26192.36	0-11-15 0-13-8 0-15-0	150 175 200
f. ci		200.00	200.00			• • • •							200
S1 S1												······································	
8							· · · · · · · · · · · · · · · · · · ·						
1								·					
												· · · · · · · · · ·	


GENERAL NOTES or definitions of spiral values and opplicable formulae, see Std. D-6.01. or deflection angle formulae for rument set-up at a point on see Std. D-6.01. or partial transition spiral e, see Std. D-6.02. or spiral transition between curves, see Std. D-6.03. or curvature, superelevation and evation transition standards, . D-6.04, D-6.05 and D-6.06. or superelevation distribution, . D-6.07.

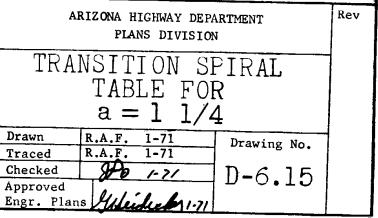


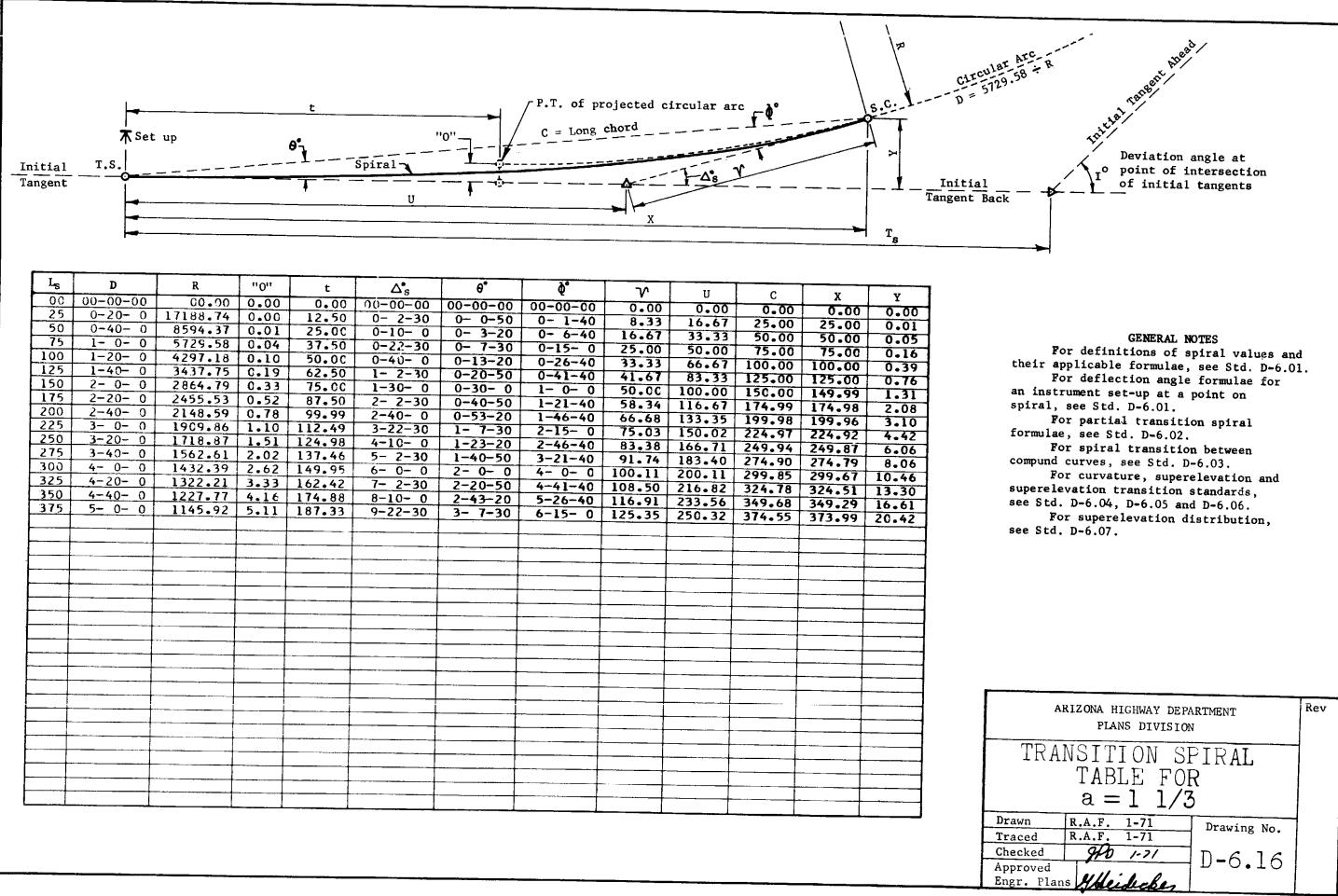

Alaby 1-71 D-6.10 Approved LA. Engr. Plans


Approved Engr. Pl

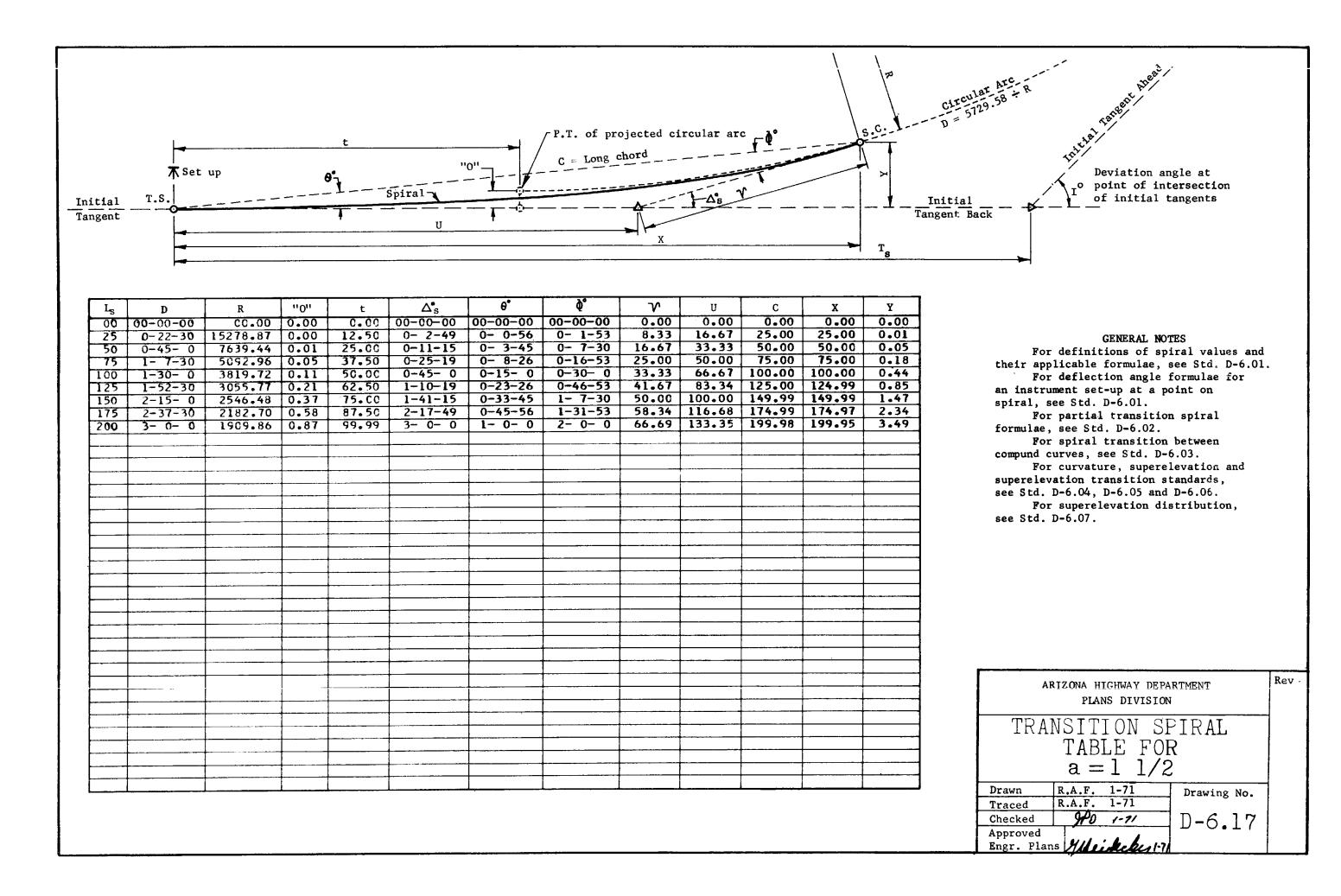

ARIZONA HIGHWAY DEPARTMENT PLANS DIVISION								
ANSITION SI TABLE FOR a = 1/2								
R.A.F. 1-71 R.A.F. 1-71 <i>SPD</i> /-7/	Drawing No.							
ans Mileidecker 1-71	D-0.11							

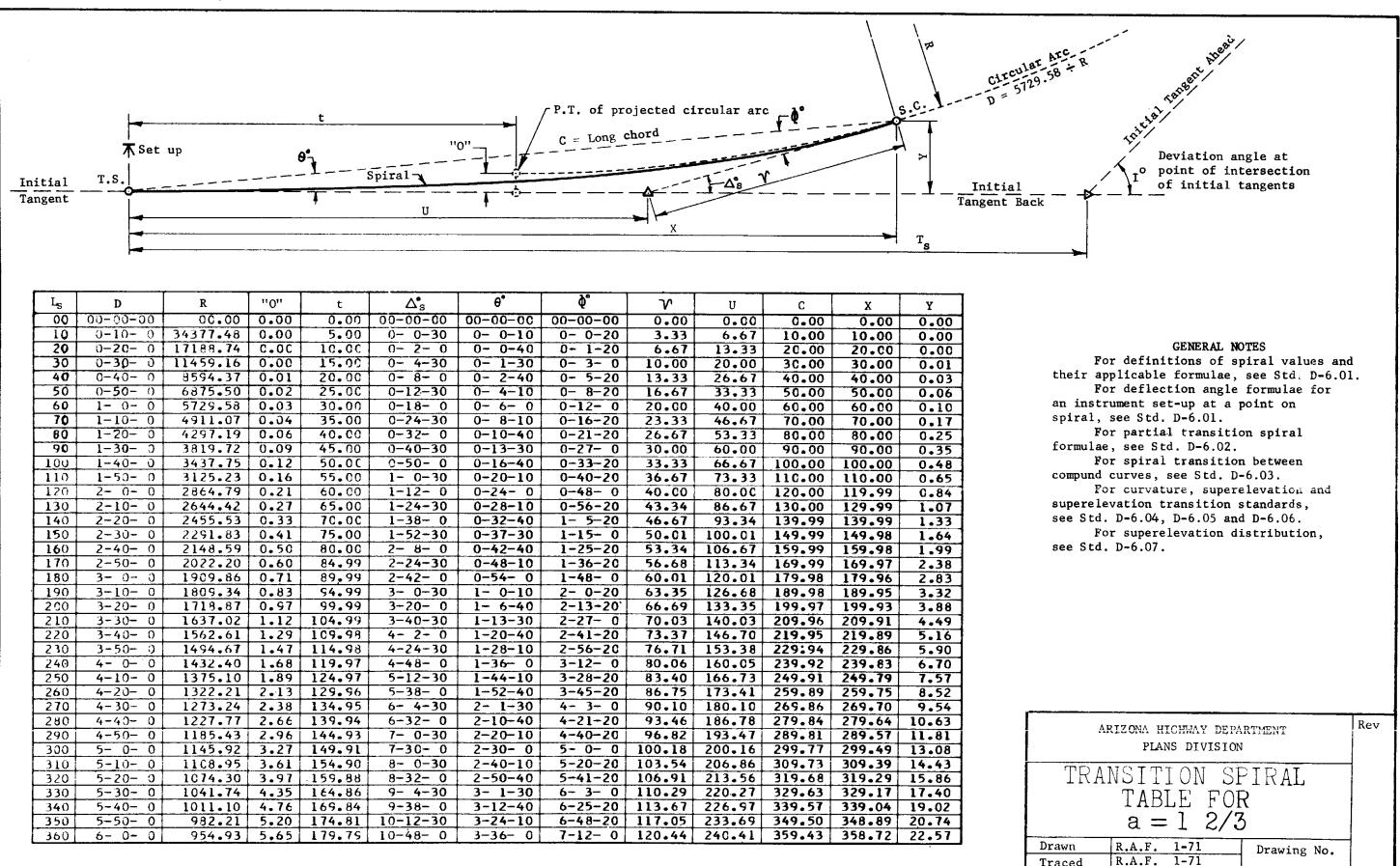
Appro	ved
Fnar	P1



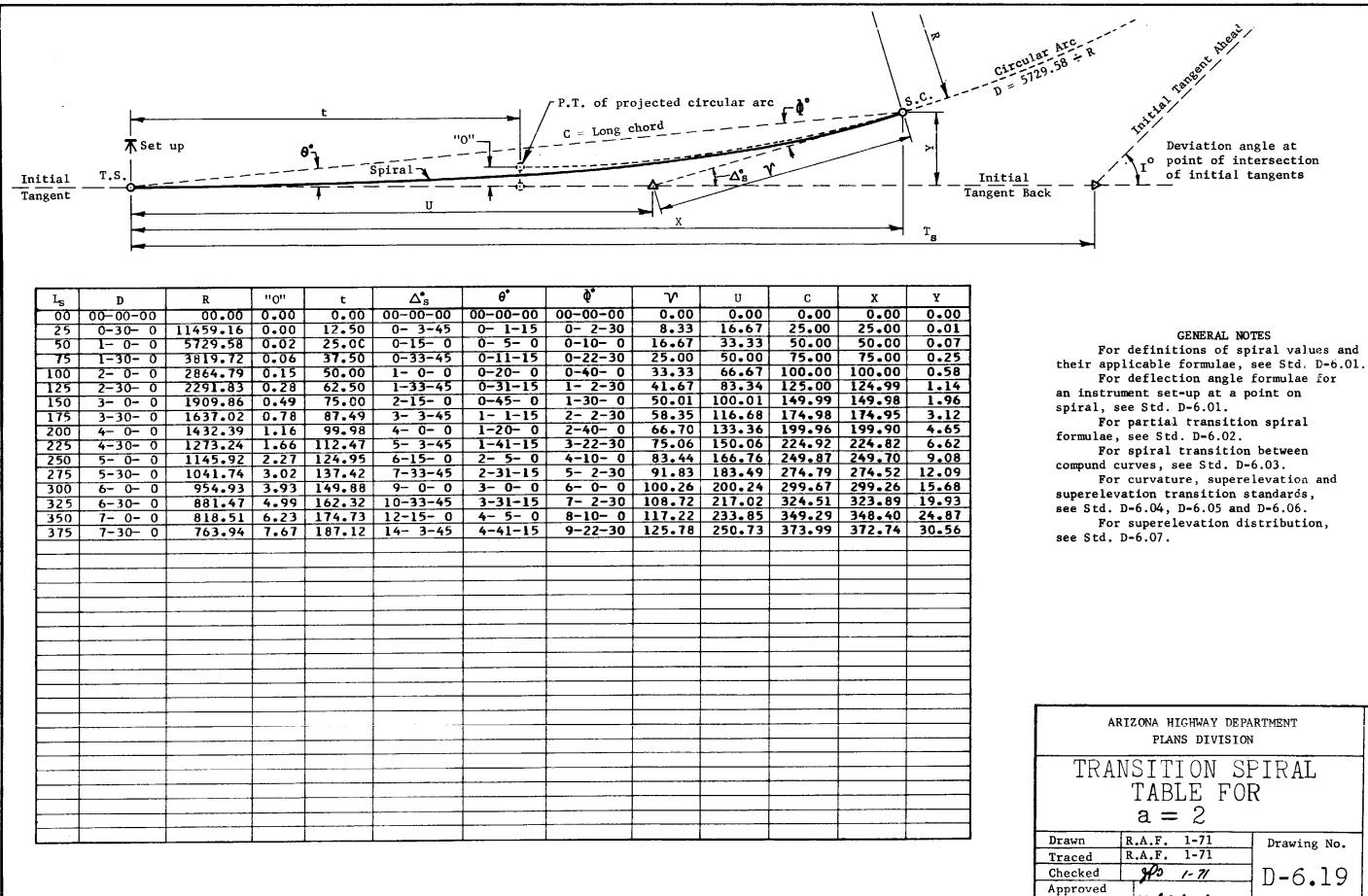


$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	· · · · ·	1	T	1		····	·····							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ls		R	"0"	t	Δ_{s}^{\bullet}	θ*	¢° (Ŷ	U	C	x	v	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					0.00	00-00-00	00-00-00	00-00-00	0.00	L				i
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0.00	5.00		0-0-8		the second s		+			(
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							0- 0-30	0-1-0						J
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							0-1-8	0-2-15	10.00					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							0-2-0	0-4-0						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					the second s		0-3-8	0- 6-15	16.67				the second se	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							0- 4-30	0-9-0	20.00					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0-6-8	0-12-15	23.33	46.67				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0-8-0	0-16- 0	26.67		a second s			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								0-20-15	30.00					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0-12-30	0-25- 0	33.33					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								0-30-15						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							0-18- 0	0-36- 0						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	140						0-24-30	0-49- 0						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					75.00	1-24-23	0-28-8	0-56-15						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	160				80.00	1-36- 0	0-32- 0	1-4-0						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	170				85.00	1-48-22	0-36- 8							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	180			0.53	90.CC	2- 1-30	0-40-30							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.62	95.00	2-15-22		1-30-15						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200					2-30- 0	0-50-0							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	210			0.84	104.99	2-45-22	0-55- 8							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	220			0.97	109.99	3- 1-30								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	230	2-52-30	1992.90	1.11	114.99	3-18-22		2-12-15						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	240		1909.86	1.26	119.98	3-36- 0	1-12- 0	2-24- 0						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	250		1833.46	1.42	124.98	3-54-23	1-18-8	2-36-15						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	260					4-13-30								
	270			1.79		4-33-22	1-31- 8							
Image: state of the state	280	3-30- 0	1637.02	1.99	139.97	4-54- 0								
Image: series of the series														
Image: Section of the section of th														
Image: Section of the section of th									†					
Image: Section of the section of th														
Image: Second se Image: Exact second seco														
										·····				
							i			_ +			.	


Drawn Traced Checked Approved

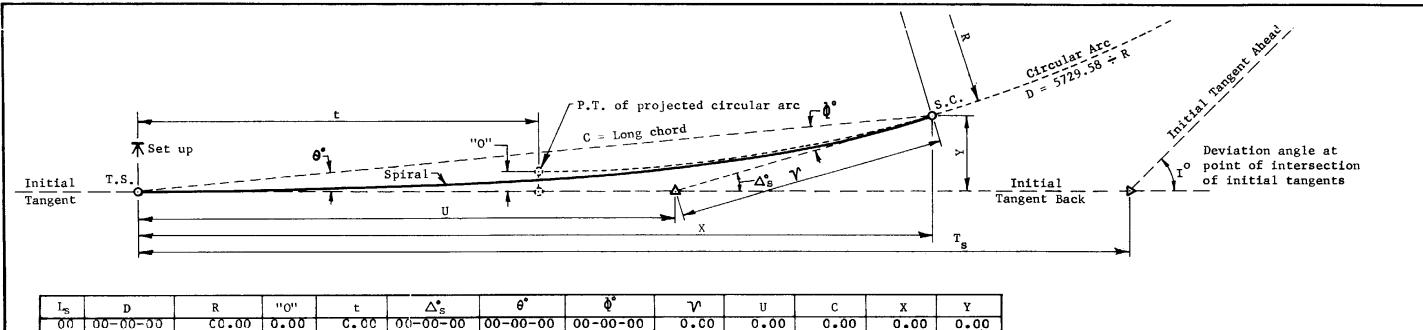

GENERAL NOTES For definitions of spiral values and their applicable formulae, see Std. D-6.01. For deflection angle formulae for an instrument set-up at a point on spiral, see Std. D-6.01. For partial transition spiral formulae, see Std. D-6.02. For spiral transition between compund curves, see Std. D-6.03. For curvature, superelevation and superelevation transition standards, see Std. D-6.04, D-6.05 and D-6.06. For superelevation distribution, see Std. D-6.07.

ļ	Approv	/ed
	Engr	D1


Traced F Checked Approved Engr. Plans

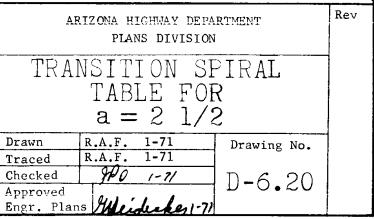
Ho.

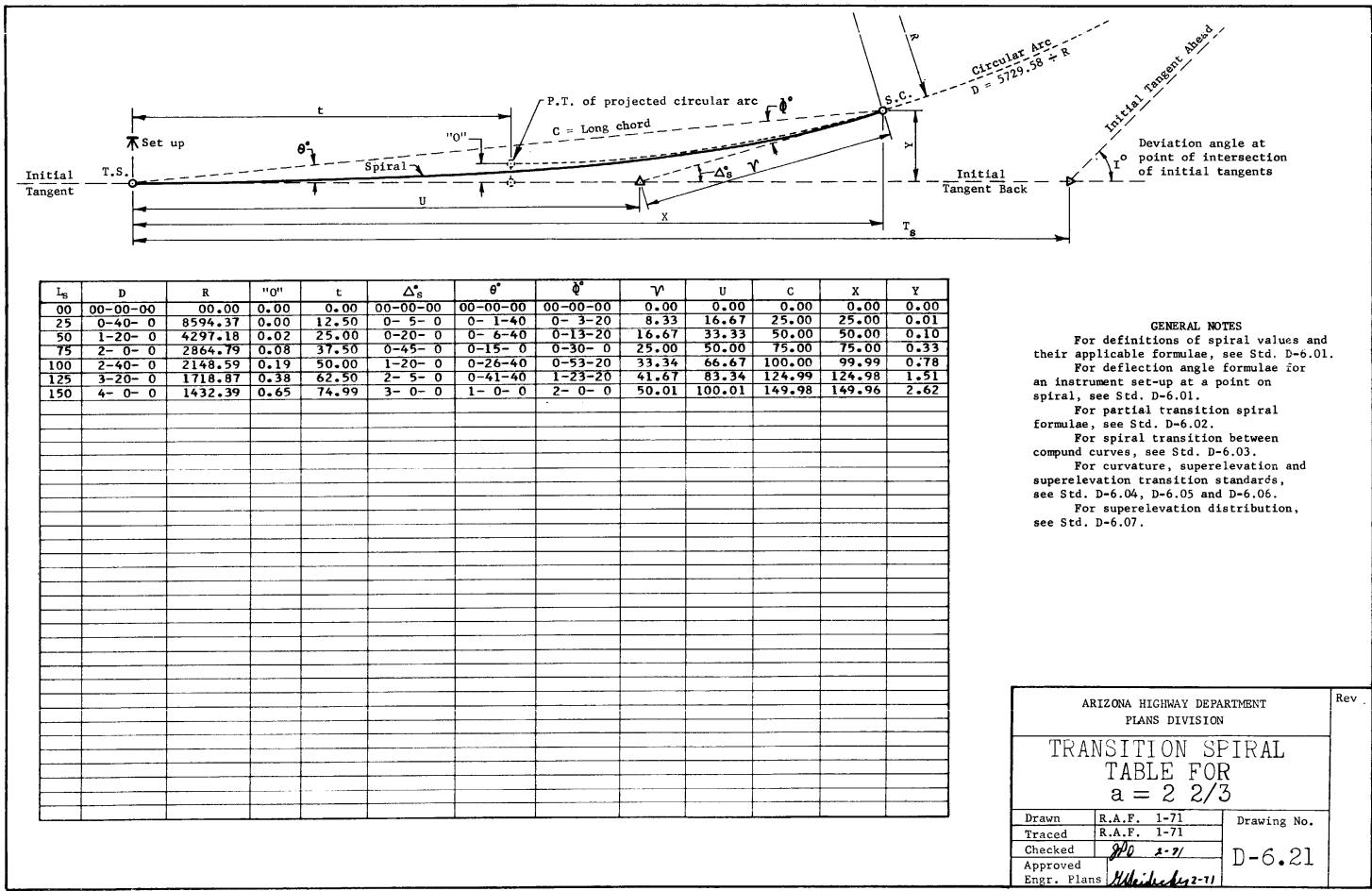
1-71

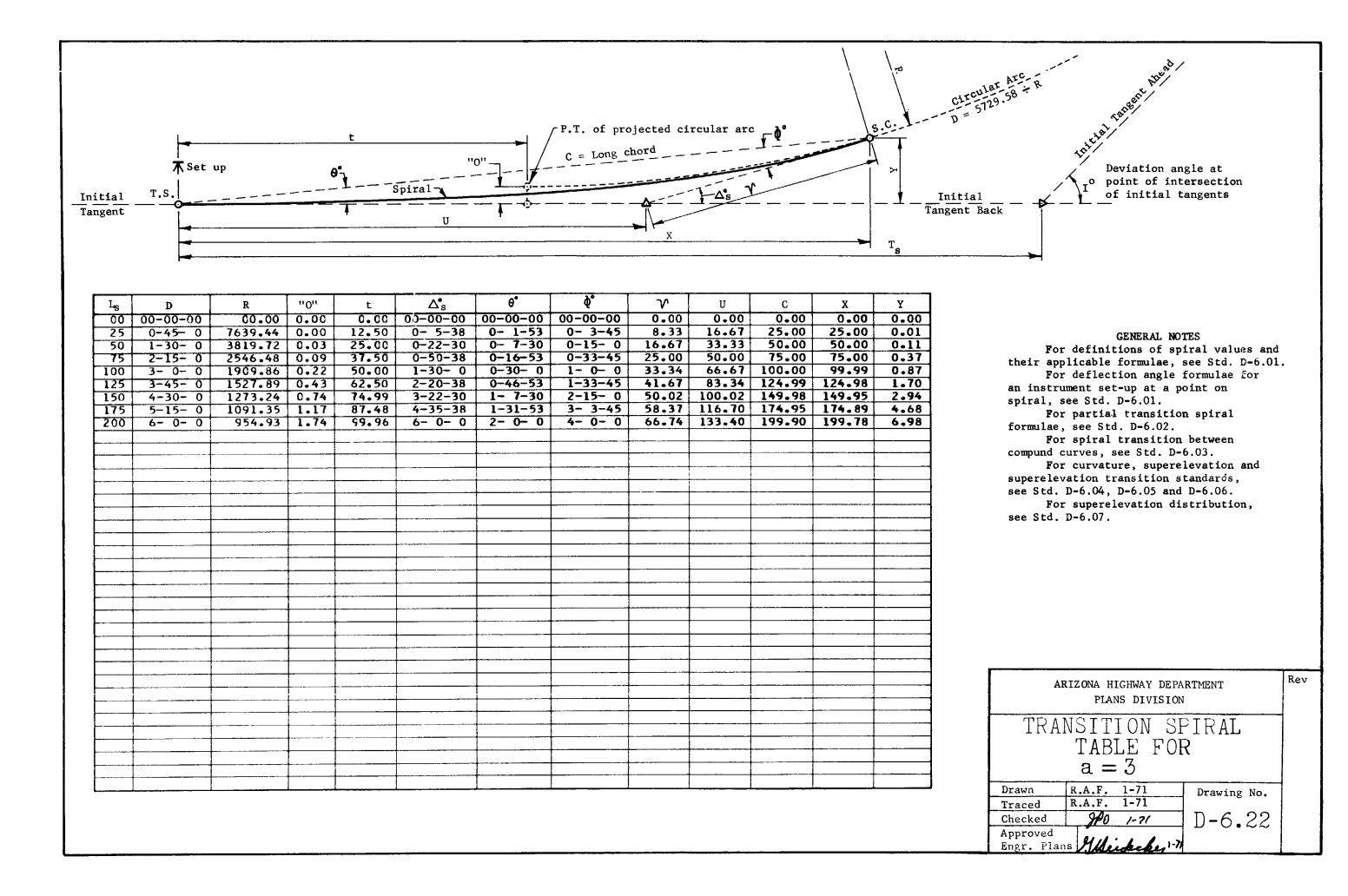

Alleidecker"

D-6.18

For definitions of spiral values and For deflection angle formulae for For curvature, superelevation and

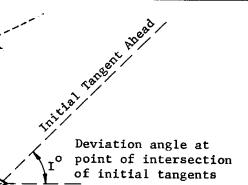

AR	RIZONA HIGHWAY DEPA PLANS DIVISION		Rev
TRAI	$\begin{array}{l} \text{NSITION SITION SITION SITUDE TABLE FOR } \\ \textbf{a} = 2 \end{array}$		
Drawn	R.A.F. 1-71	Drawing No.	:
Traced	R.A.F. 1-71	J. A	
Checked	9P3 1-71	D-6.19	
Approved Engr. Plan	5 Heiderber 1-71		

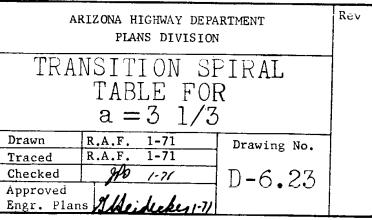



s	D D			j -	Δs		1 T	•	Ų	U U	л	4
00	00-00-00	CC.00	0.00	C.00	00-00-00	00-00-00	00-00-00	0.00	0.00	0.00	0.00	0.00
10	0-15- 0	22918.31	0.00	5.00	0- 0-45	0- 0-15	0- 0-30	3.33	6.67	10.00	10.00	0.00
20	0-30- 0	11459.16	0.00	10.00	0-3-0	0-1-0	0-2-0	6.67	13.33	20.00	20.00	0.01
30	0-45- 0	7639.44	0.00	15.00	0- 6-45	0- 2-15	0- 4-30	10.00	20.00	30.00	30.00	0.02
40	1-0-0	5729.58	0.01	20.00	0-12-0	0-4-0	0-8-0	13.33	26.67	40.00	40.00	0.05
50	1-15-0	4583.66	0.02	25.00	0-18-45	0- 6-15	0-12-30	16.67	33.33	50.00	50.00	0.09
60	1-30- 0	3819.72	0.04	30.00	0-27- 0	0-9-0	0-18- 0	20.00	40.00	60.00	60.00	0.16
70	1-45- 0	3274.04	0.06	35.00	0-36-45	0-12-15	0-24-30	23.33	46.67	70.00	70.00	0.25
80	2-0-0	2864.79	0.09	40.00	0-48- 0	0-16- 0	0-32- 0	26.67	53.33	80.00	80.00	0.37
90	2-15-0	2546.48	0.13	45.00	1- 0-45	0-20-15	0-40-30	30.00	60.00	90.00	90.00	0.53
100	2-30- 0	2291.83	0.18	50.00	1-15- 0	0-25- 0	0-50- 0	33.33	66.67	100.00	100.00	0.73
110	2-45- 0	2083.48	0.24	55.00	1-30-45	0-30-15	1- 0-30	36.67	73.34	110.00	109.99	0.97
120	3-0-0	1909.86	0.31	60.00	1-48- 0	0-36- 0	1-12- 0	40.00	80.00	119.99	119.99	1.26
130	3-15-0	1762.95	0.40	65.00	2- 6-45	0-42-15	1-24-30	43.34	86.67	129.99	129.98	1.60
140	3-30- 0	1637.02	0.50	70.00	2-27- 0	0-49- 0	1-38- 0	46.68	93.34	139.99	139.97	2.00
150	3-45- 0	1527.89	0.61	74.99	2-48-45	0-56-15	1-52-30	50.01	100.01	149.98	149.96	2.45
160	4-0-0	1432.39	0.74	79.99	3-12- 0	1- 4- 0	2-8-0	53.35	106.68	159.98	159.95	2.98
170	4-15- 0	1348.14	0.89	84.99	3-36-45	1-12-15	2-24-30	56.69	113.35	169.97	169.93	3.57
180	4-30- 0	1273.24	1.06	89.99	4-3-0	1-21- 0	2-42- 0	60.03	120.03	179.96	179.91	4.24
190	4-45- 0	1206.23	1.25	94.98	4-30-45	1-30-15	3- 0-30	63.37	126.70	189.95	189.88	4.99
200	5- 0- 0	1145.92	1.45	99.97	5-0-0	1-40- 0	3-20- 0	66.72	133.38	199.93	199.85	5.81
210	5-15-0	1091.35	1.68	104.97	5-30-45	1-50-15	3-40-30	70.07	140.06	209.91	209.81	6.73
220	5-30-0	1041.74	1.94	109.96	6-3-0	2-1-0	4-2-0	73.42	146.75	219.89	219.75	7.74
230	5-45- 0	996.45	2.21	114.95	6-36-45	2-12-15	4-24-30	76.77	153.43	229:86	229.69	8.84
240	6-0-0	954.93	2.51	119.94	7-12- 0	2-24- 0	4-48- 0	80.13	160.12	239.83	239.62	10.04
250	6-15- 0	916.73	2.84	124.92	7-48-45	2-36-15	5-12-30	83.49	166.82	249.79	249.53	11.35
260	6-30-0	881.47	3.19	129.91	8-27-0	2-49- 0	5-38- 0	86.86	173.51	259.75	259.43	12.76
270	6-45- 0	848.83	3.58	134.89	9- 6-45	3- 2-15	6- 4-30	90.24	180.22	269.70	269.32	14.29
280	7-0-0	818.51	3.99	139.86	9-48- 0	3-16- 0	6-32- 0	93.62	186.93	279.63	279.18	15.93
290	7-15- 0	790.29		144.84	10-30-45	3-30-15	7- 0-30	97.00	193.65	289.56	289.02	17.70
300	7-30- 0	763.94	4.91	149.81	11-15- 0	3-45- 0	7-30- 0	100.40	200.37	299.48	298.84	19.59
310	7-45- 0	739.30	5.41	154.77	12- 0-45	4- 0-15	8- 0-30	103.81	207.10	309.39	308.64	21.60
320	8-0-0	716.20	5.96	159.73	12-48- 0	4-16- 0	8-32- 0	107.22	213.85	319.29	318.40	23.75
330	8-15-0	654.49	6.53	164.69	13-36-45	4-32-15	9- 4-30	110.65	220.60	329.17	328.14	26.04
340	8-30-0	674.07	7.14	169.64	14-27- 0	4-49- 0	9-38- 0	114.08	227.36	339.03	337.84	28.47
350	8-45-0	654.81	7.79	174.58	15-18-45	5- 6-15	10-12-30	117.54	234.14	348.88	347.50	31.04
360	9-0-0	636.62	8.48	179.52	16-12- 0	5-24- 0	10-48- 0	121.00	240.93	358.72	357.12	33.76

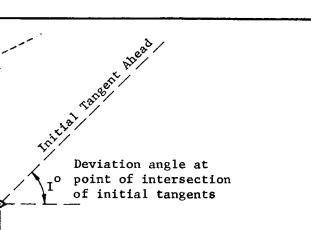
TR
Drawn
Traced

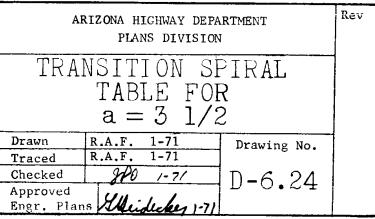
GENERAL NOTES For definitions of spiral values and their applicable formulae, see Std. D-6.01. For deflection angle formulae for an instrument set-up at a point on spiral, see Std. D-6.01. For partial transition spiral formulae, see Std. D-6.02. For spiral transition between compund curves, see Std. D-6.03. For curvature, superelevation and superelevation transition standards, see Std. D-6.04, D-6.05 and D-6.06. For superelevation distribution, see Std. D-6.07.

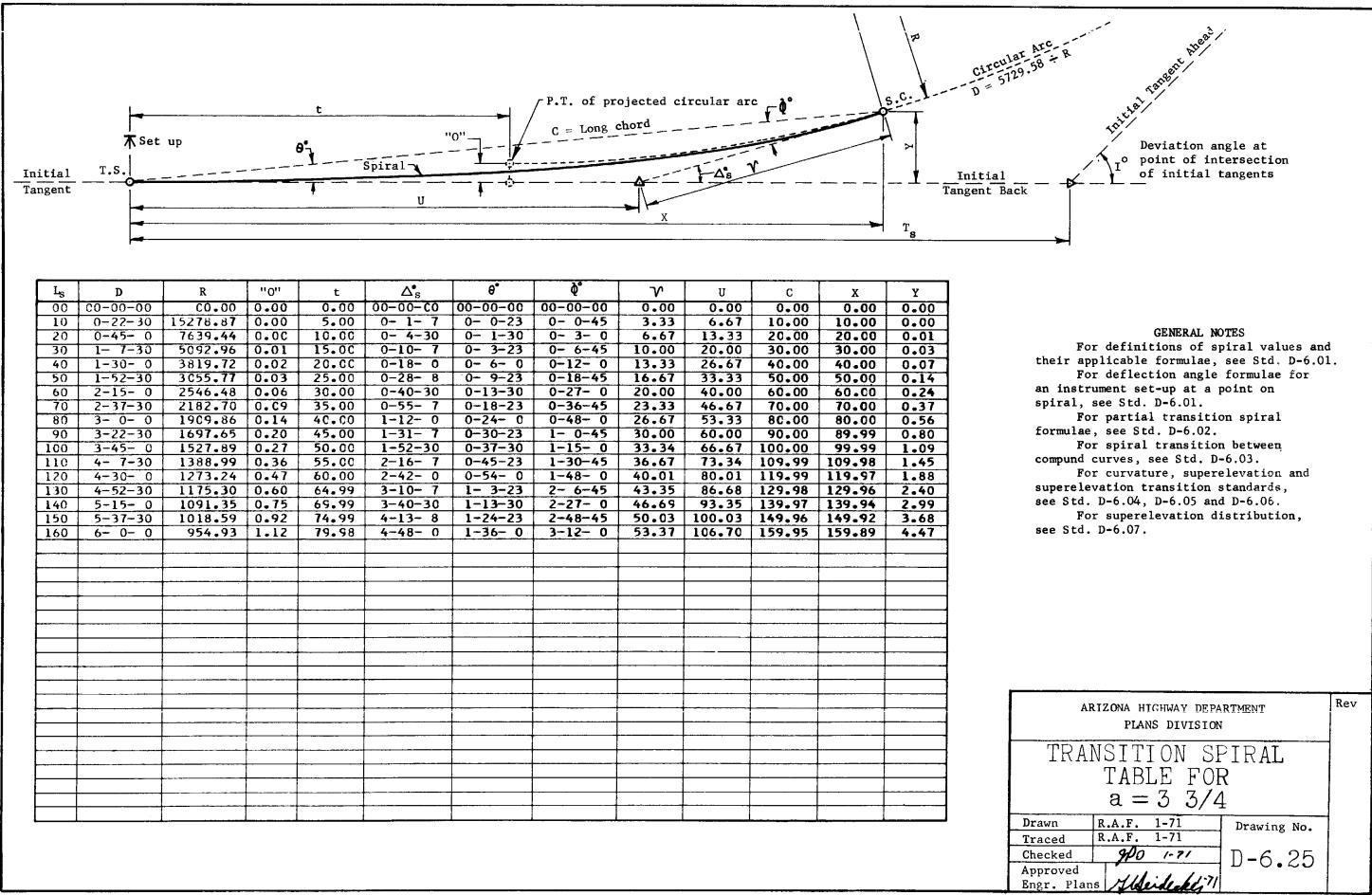


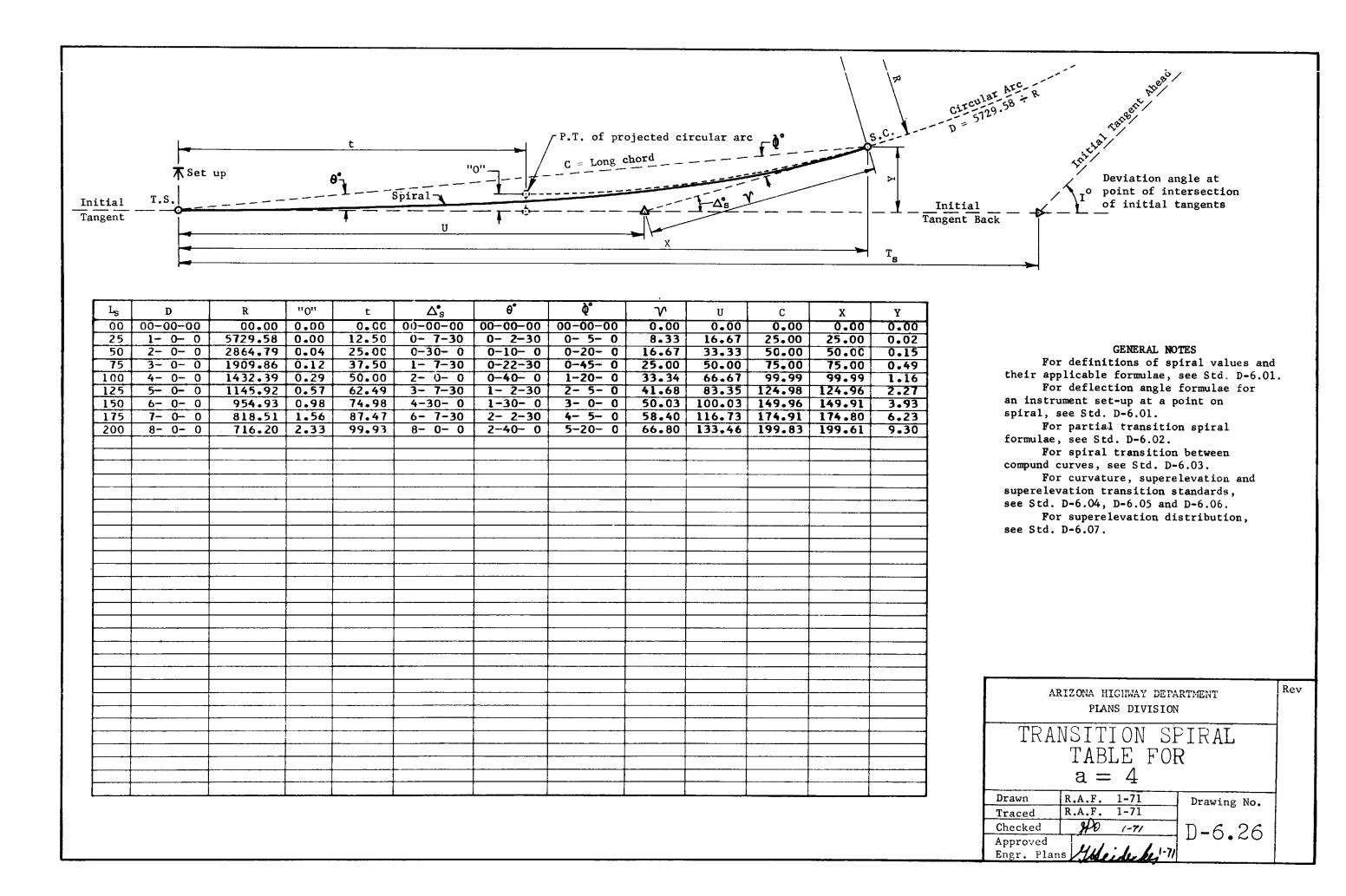


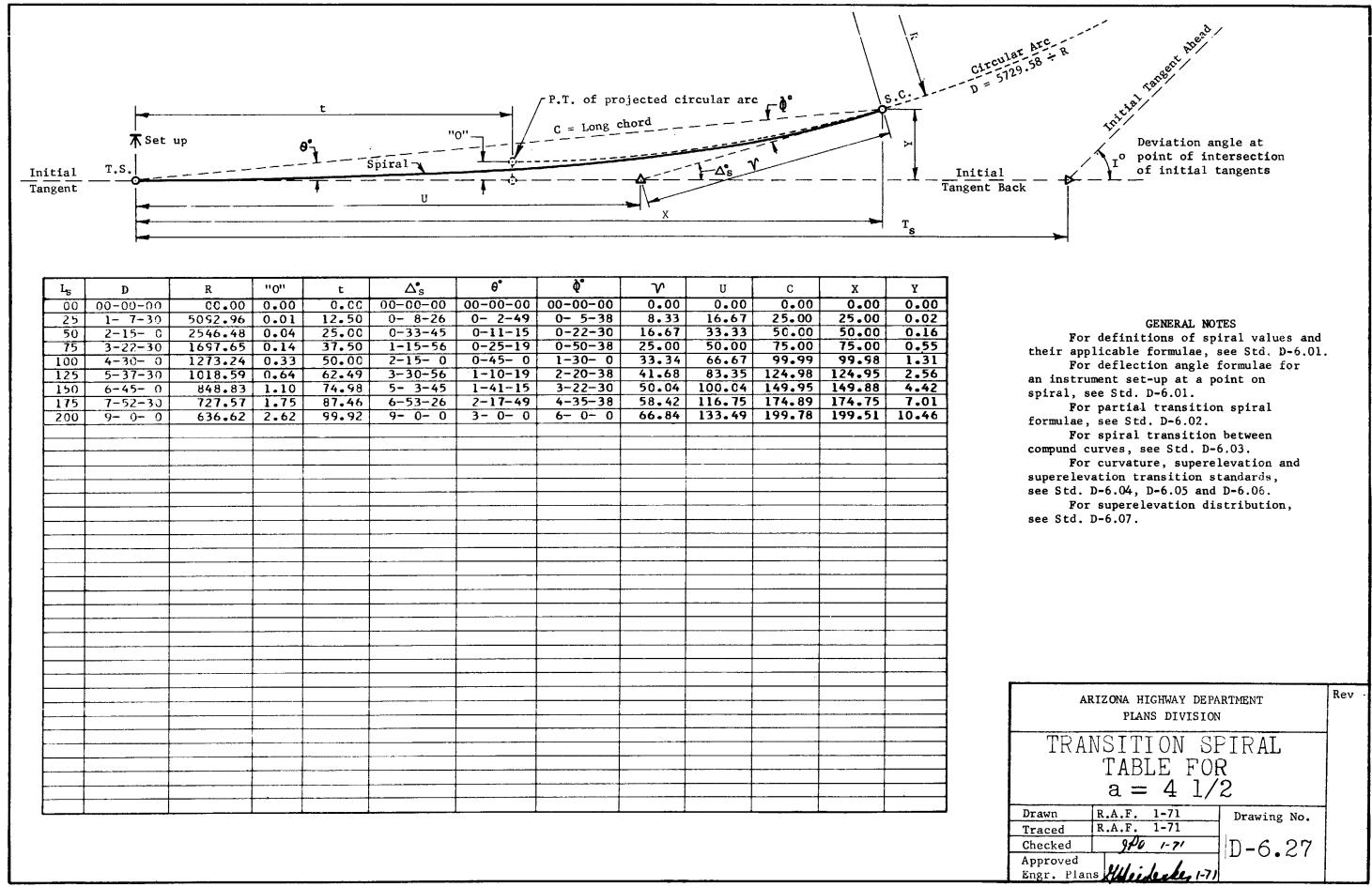
	⊢			t P.T. of projected circular arc S.C								8.C.	$\frac{c_{ircular}}{D} = 5129.58$		
	 T Se	t up			T	'0'' /	C = Long	chord							
	л зе 	ic up		0 ⁻ 7					المستعققات	The second		~ ~			
nitial	т.s.				Spiral				-1-A's_	r		4	Initial		
angent	l l			T									Tangent Back		
	 ⊸-		<u> </u>		<u> </u>		<u></u>	X							
		· · · · · · · · · · · · · · · · · · ·						^			>	T _s			
	•				r			-							
L _S	D	R	"0"	t	Δ_{s}^{\bullet}	θ*	¢°	Υ	U	С	Х	Y	1		
00	00-00-00		0.00	0.00	00-00-00	00-00-00	00-00-00	0.00	0.00	0.00	0.00	0.00	1		
20	0-40-(0.00	10.00	$\begin{array}{rrrr} 0 - 1 - 0 \\ 0 - 4 - 0 \end{array}$	0- 0-20	0- 0-40 0- 2-40	3.33	6.67 13.33	10.00	10.00	0.00	4		
30	1- 0- 0	5729.58	0.01	15.00	0-9-0	0-3-0	0-6-0	10.00	20.00	30.00	30.00	0.01	1.		
40	1-20- 0		0.02	20.00	0-16- 0	0- 5-20	0-10-40	13.33	26.67	40.00	40.00	0.06	th th		
60	1-40-0 2-0-0		0.03	25.00	0-25- 0 0-36- 0	0- 8-20 0-12- 0	0-16-40 0-24- 0	16.67 20.00	33.33	50.00 60.00	50.00	0.12	an		
70	2-20- 0		0.08	35.00	0-49- 0	0-16-20	0-32-40	23.33	46.67	70.00	60.00 70.00	0.21	- sp		
80	2-40- 0	2148.59	0.12	40.00	1- 4- 0	0-21-20	0-42-40	26.67	53.33	80.00	80.00	0.50	1		
90	3 - 0 - 0 3 - 20 - 0		0.18	45.00	1-21-0	0-27-0	0-54-0	30.00	60.00	90.00	89.99	0.71	fo		
110	3-20-0		0.24	50.00	1-40-0 2-1-0	0-33-20	1- 6-40 1-20-40	33.34 36.67	66.67 73.34	100.00	99.99 109.99	0.97	co		
120	4- 0- 0	1432.39	0.42	60.00	2-24- 0	0-48-0	1-36- 0	40.01	80.01	119.99	119.98	1.68	4		
130	4-20- 0		0.53	64.99	2-49- 0	0-56-20	1-52-40	43.34	86.68	129.99	129.97	2.13	su		
140 150	<u>4-40- 0</u> 5- 0- 0		0.66	69.99 74.99	3-16-0 3-45-0	1 - 5 - 20 1 - 15 - 0	2-10-40 2-30- 0	46.68	93.35 100.02	139.98	139.95	2.66	se		
160	5-20- 0		0.02	79.99	4-16- 0	1-25-20	2-50-40	53.36	106.70	149.97 159.96	149.94	3.27 3.97	se		
170	5-40- 0		1.19	84.98	4-49- 0	1-36-20	3-12-40	56.71	113.37	169.95	169.88	4.76			
<u>180</u> 190	<u>6-0-0</u> 6-20-0			89.97 94.97	5-24- 0 6- 1- 0		3-36-0	60.06	120.05	179.93		5.65	-		
200	6-40- 0			99.95	6-40- 0	2- 0-20 2-13-20	<u>4- 0-40</u> 4-26-40	<u>63.41</u> 66.76	126.73 133.42	189.91 199.88	189.79 199.73	<u>6.65</u> 7.75	Ą		
210	7-0-0	818.51	2.24	104.94	7-21- 0	2-27- 0	4-54- 0	70.12		209.85	209.65	8.97	1		
220	7-20- 0			109.93	8-4-0	2-41-20	5-22-40	73.48		219.81	219.56		1		
230	<u>7-40- 0</u> 8- 0- 0			<u>114.91</u> 119.89	<u>8-49-0</u> 9-36-0	2-56-20 3-12- 0	5-52-40 6-24- 0	80.23	153.51 160.22	229:76 239.70	229.45	<u>11.78</u> 13.38			
250	8-20- 0			124.86	10-25- 0	3-28-20	6-56-4C		166.93	249.63	249.17	15.12	1		
260	8-40- 0			129.83	11-16- 0	3-45-20	7-30-40	87.01	173.66	259.55	258.99	17.00			
270	<u>9-0-0</u> 9-20-0				$\frac{12-9-0}{13-4-0}$	4-3-0	8-6-0		180.39	269.46.		19.03	l		
290	9-20-0				$\frac{13-4-0}{14-1-0}$	<u>4-21-20</u> 4-40-20	8-42-40 9-20-40	97.27	187.13	289.23	278.54 288.26		4 1		
300	10- 0- 0	572.96	6.54	149.66	15- 0- 0	5- 0- 0	10- 0- 0	100.71	200.66	299.08	297.94] [
	10-20-0				16-1-0		10-40-40		207.45	308.92	307.58	28.74	1 J		
	$\frac{10-40-0}{11-0-0}$				$\frac{17-\ 4-\ 0}{18-\ 9-\ 0}$		<u>11-22-40</u> 12- 6- 0	107.65	214.25 221.07	318.73 328.52	317.16 326.69	31.59			
	11-20- 0				19-16- 0		12-50-40			338.28	336.16	37.84			
350	11-40- 0				20-25- 0		13-36-40		234.77	348.02		41.24			

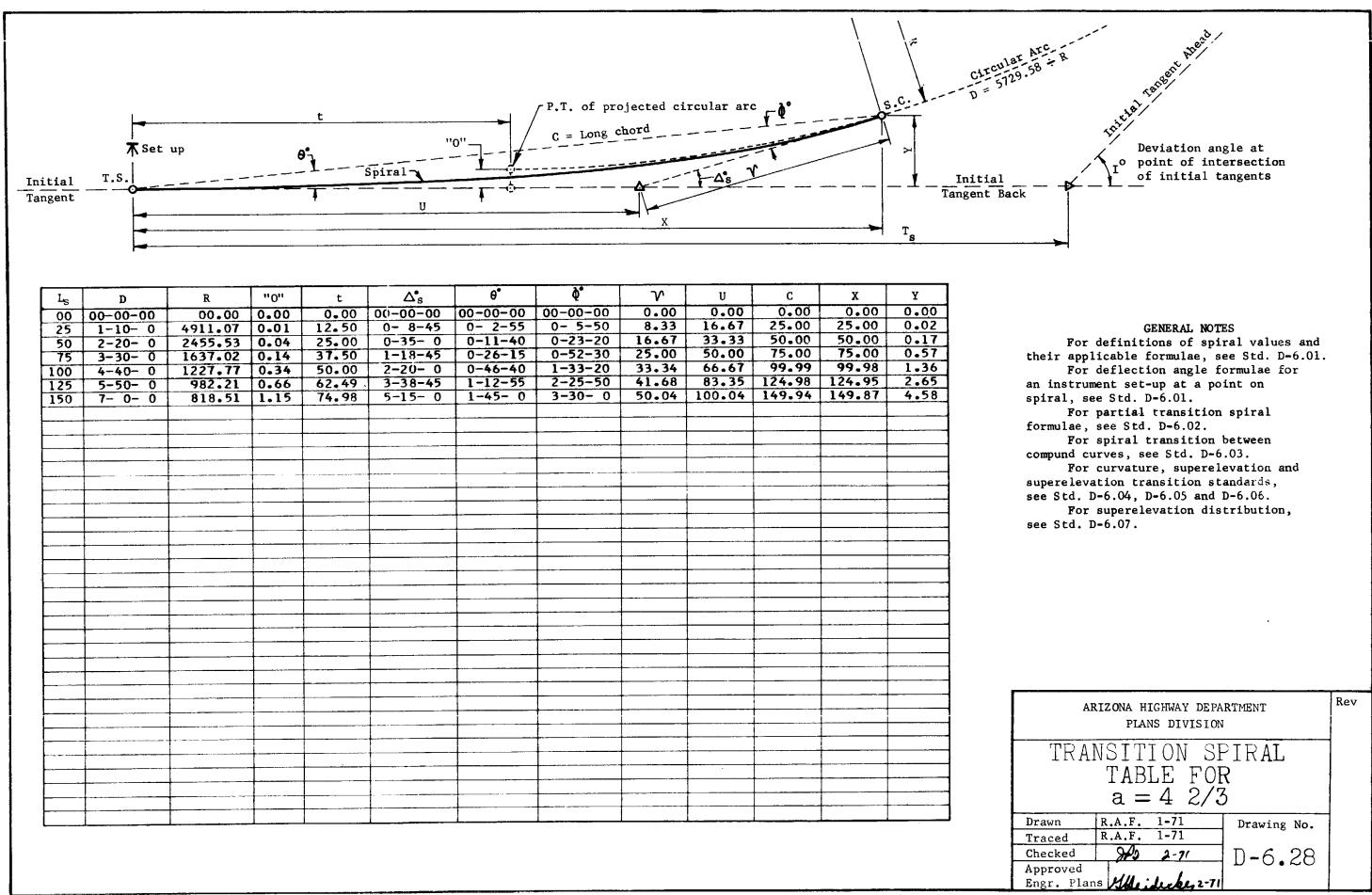

Traced Checked Approved

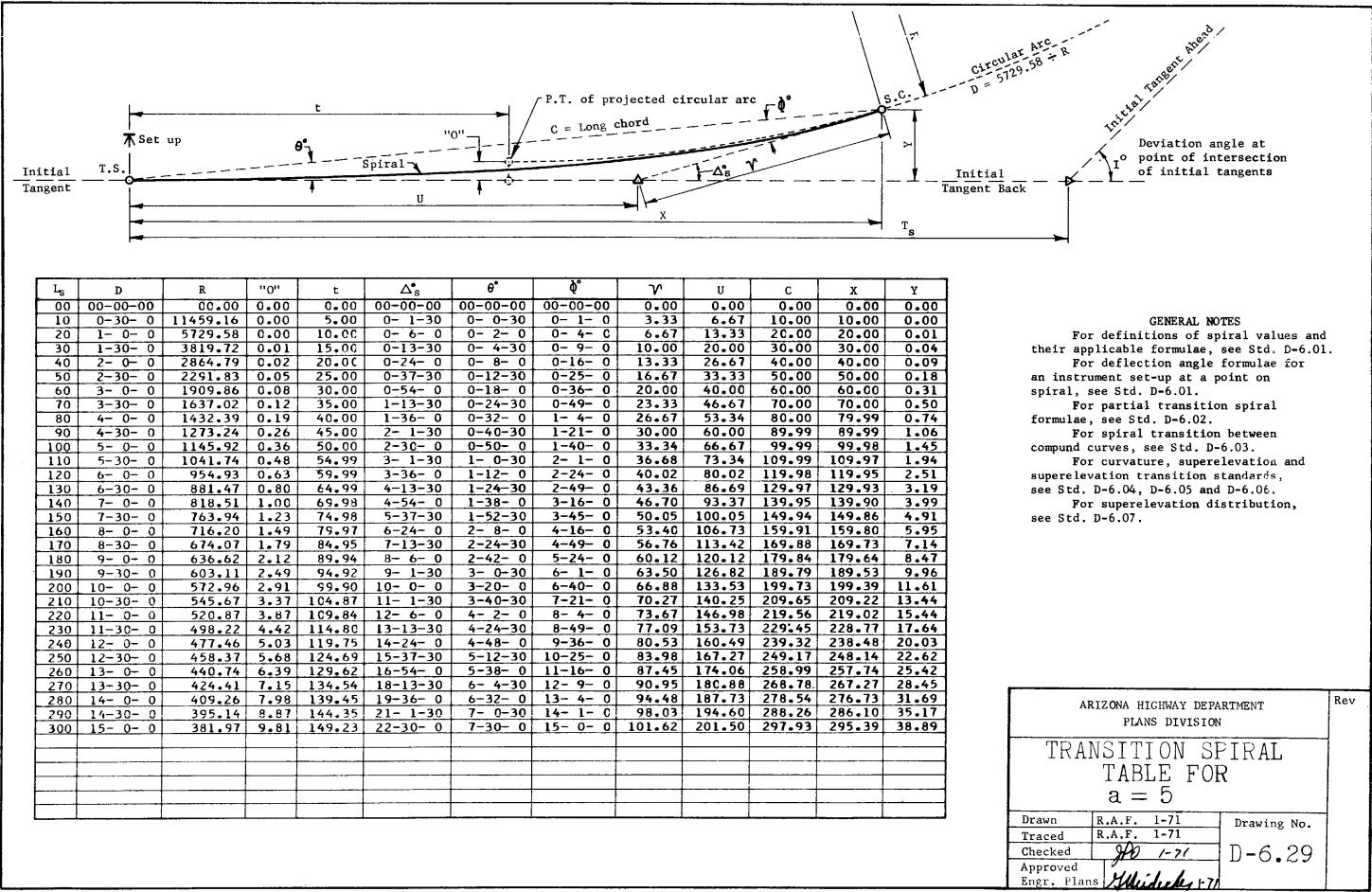

GENERAL NOTES For definitions of spiral values and applicable formulae, see Std. D-6.01. For deflection angle formulae for trument set-up at a point on see Std. D-6.01. For partial transition spiral ae, see Std. D-6.02. For spiral transition between curves, see Std. D-6.03. For curvature, superelevation and levation transition standards, I. D-6.04, D-6.05 and D-6.06. For superelevation distribution, I. D-6.07.

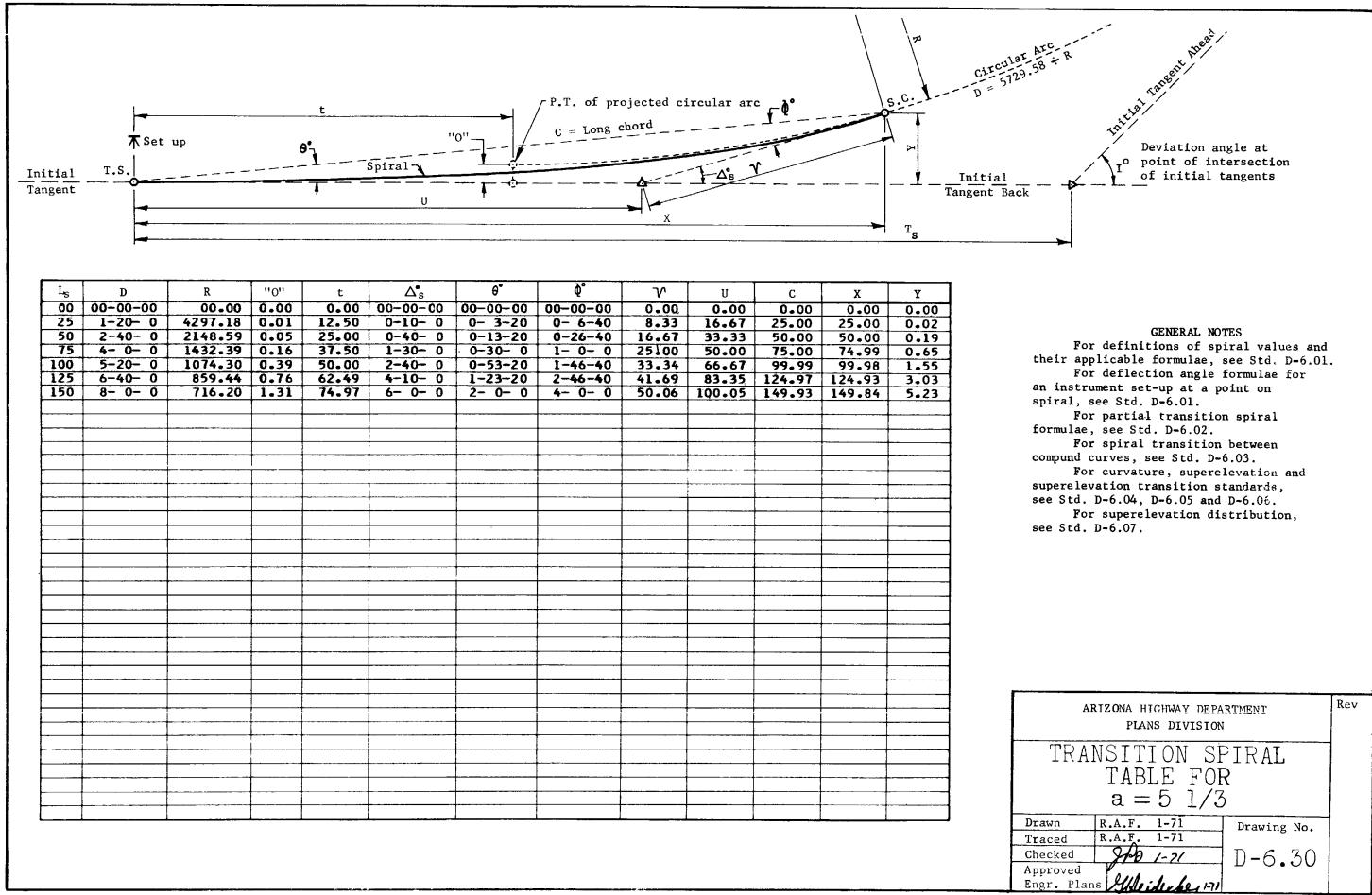


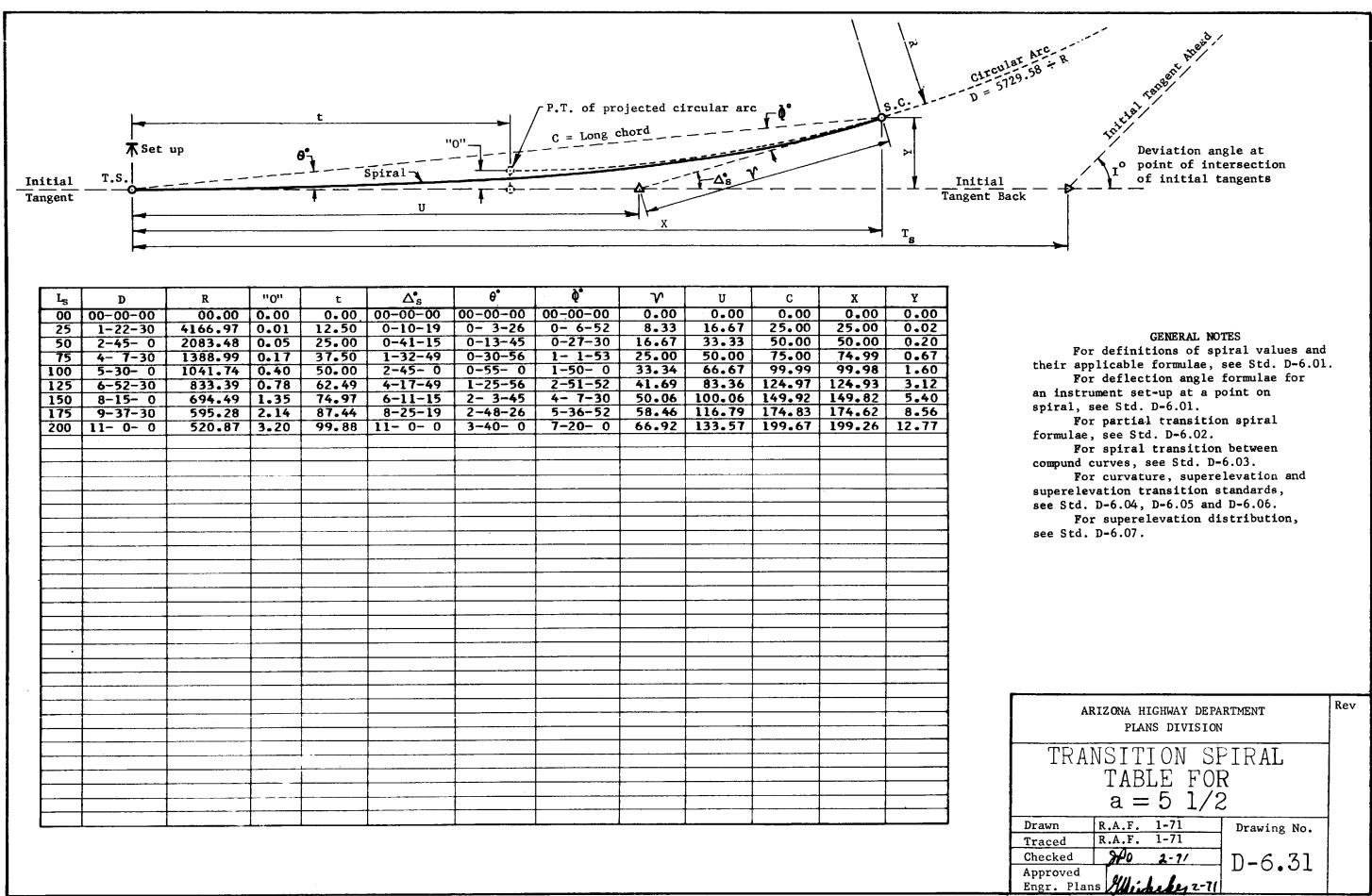

<u>tial</u> ugent	T.S.	up		t 91	Spiral U		P.T. of pro		rcular ar $$	° <u>F</u> °			Circular D = 5729.
								X				T _s	
Ls	D	R	"0"	t	Δ_{s}^{\bullet}	θ*	ġ.	γ	U	С	X	Y	
00 25 50 75	00-00-00 0-52-30 1-45- 0 2-37-30	00.00 6548.09 3274.04 2182.70	0.00 0.00 0.03 0.11	0.00 12.50 25.00 37.50	$\begin{array}{r} 00-00-00\\ \hline 0-6-34\\ \hline 0-26-15\\ \hline 0-59-4 \end{array}$	00-00-00 0- 2-11 0- 8-45 0-19-41	00-00-00 0- 4-22 0-17-30 0-39-23	0.00 8.33 16.67 25.00	0.00 16.67 33.33 50.00	0.00 25.00 50.00 75.00	0.00 25.00 50.00 75.00	0.00 0.02 0.13 0.43	
100 125 150	3-30- 0 4-22-30 5-15- 0	1637.02 1309.62 1091.35	0.25 0.50 0.86	50.00 62.50 74.99	$ \begin{array}{r} 1-45-0 \\ 2-44-4 \\ 3-56-15 \end{array} $	0-35- 0 0-54-41 1-18-45	1-10- 0 1-49-22 2-37-30	33.34 41.68 50.02	66.67 83.34 100.02	100.00 124.99	99.99 124.97 149.93	1.02 1.99 3.44	•
													:
													•
						······							1
					· · · · · · · · · · · · · · · · · · ·								

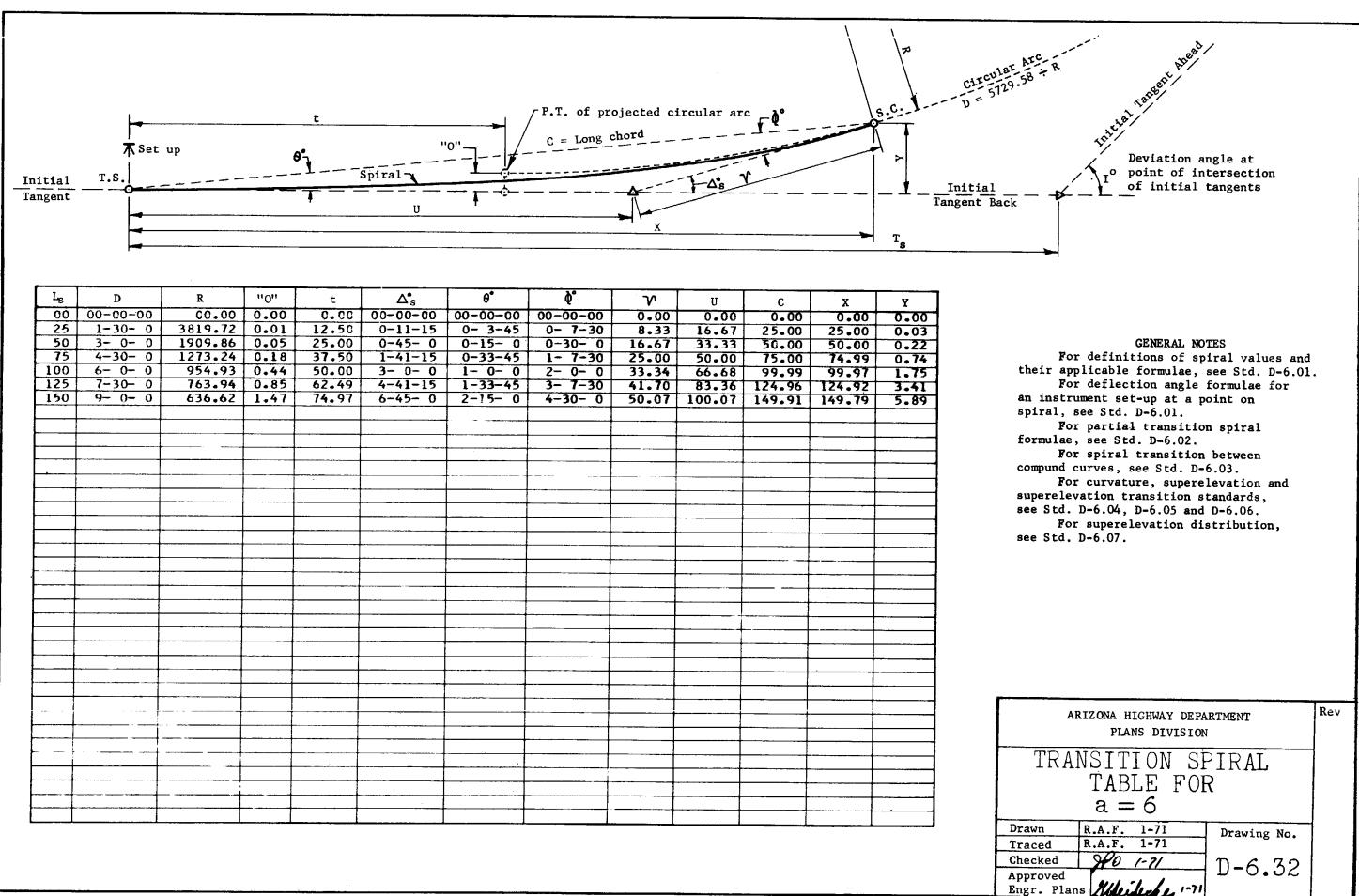



GENERAL NOTES For definitions of spiral values and applicable formulae, see Std. D-6.01... For deflection angle formulae for trument set-up at a point on , see Std. D-6.01. For partial transition spiral ae, see Std. D-6.02. For spiral transition between d curves, see Std. D-6.03. For curvature, superelevation and levation transition standards, d. D-6.04, D-6.05 and D-6.06. For superelevation distribution, d. D-6.07.

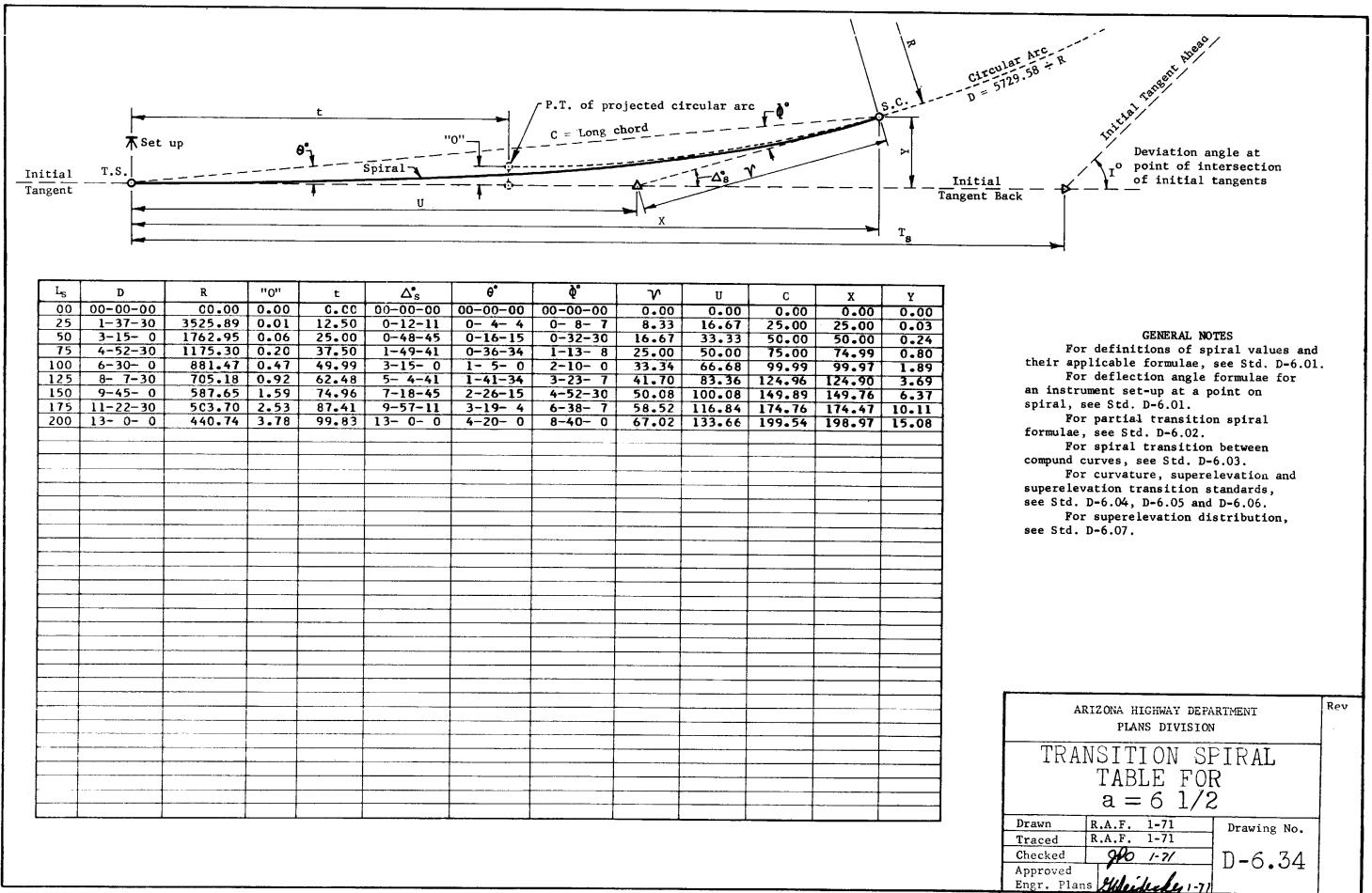


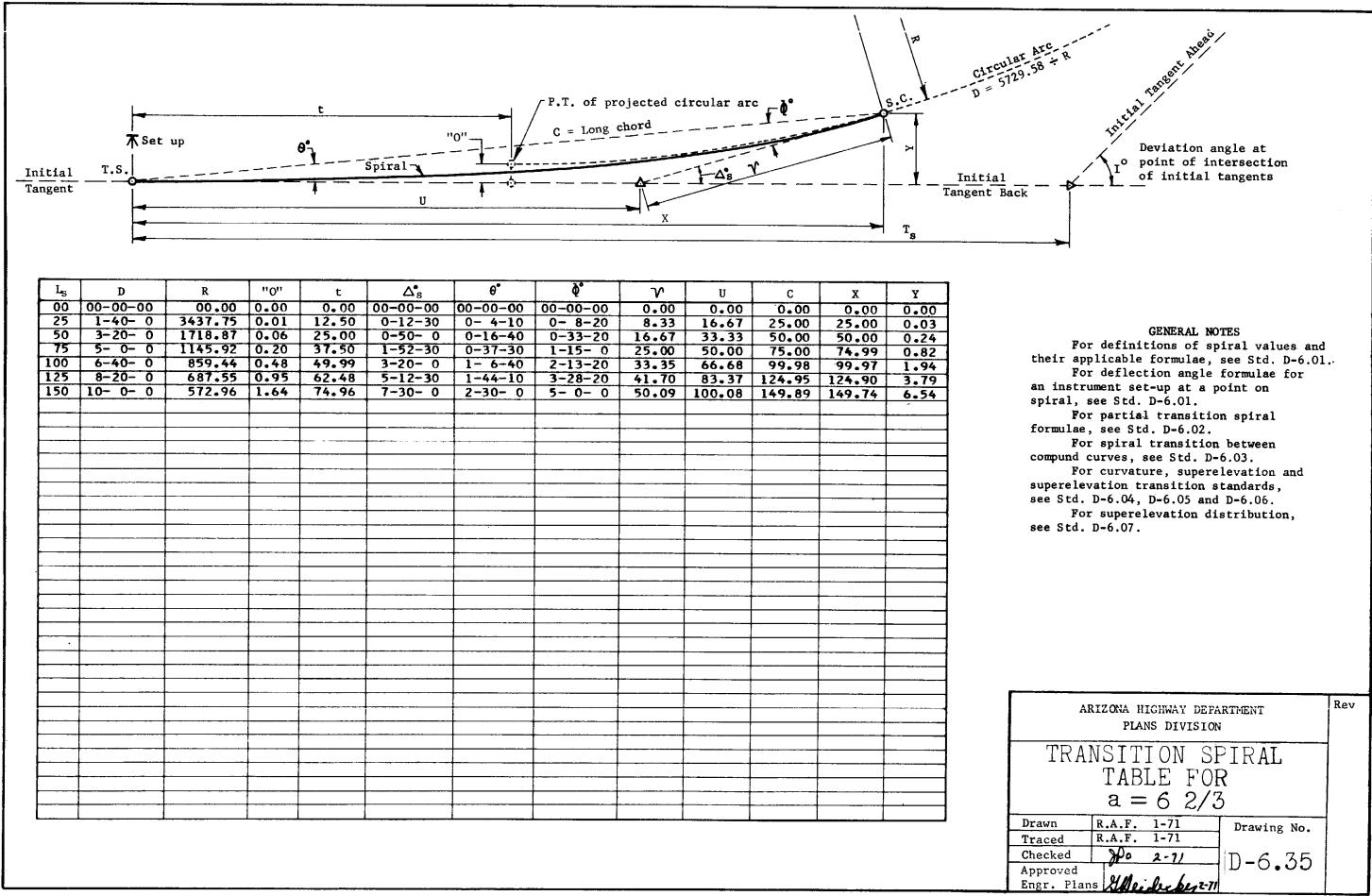


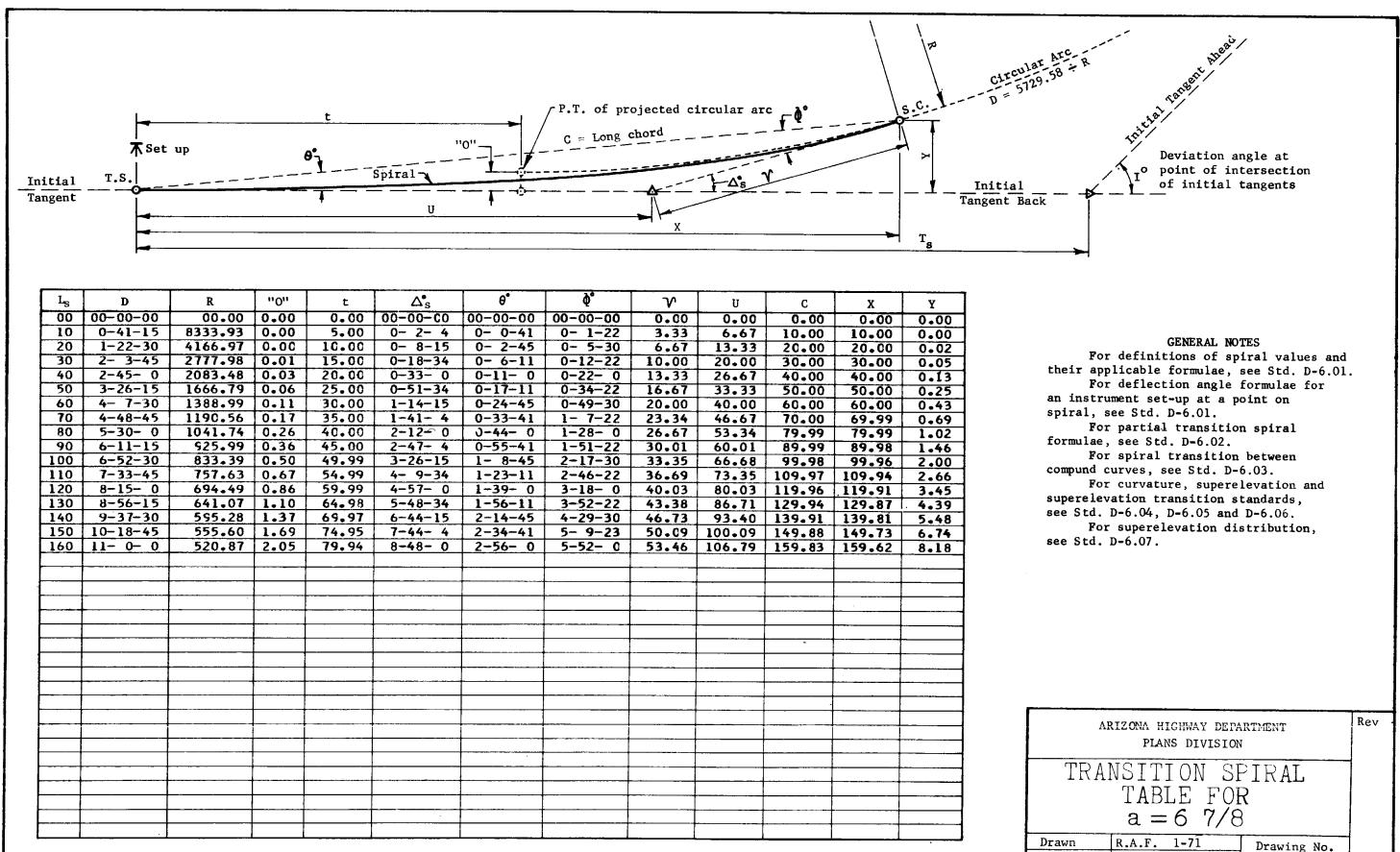


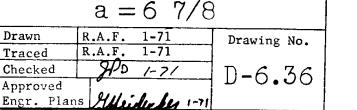


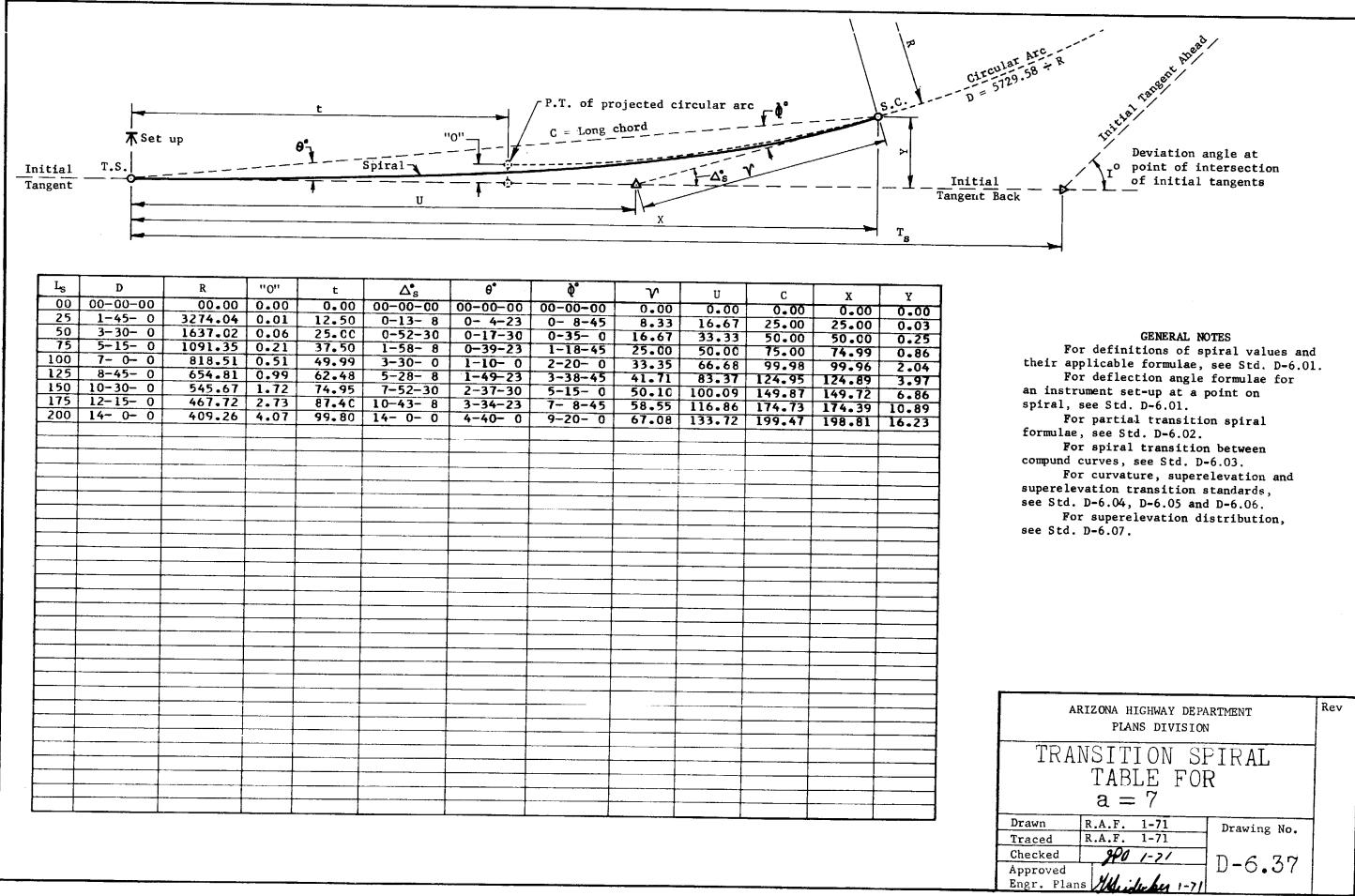


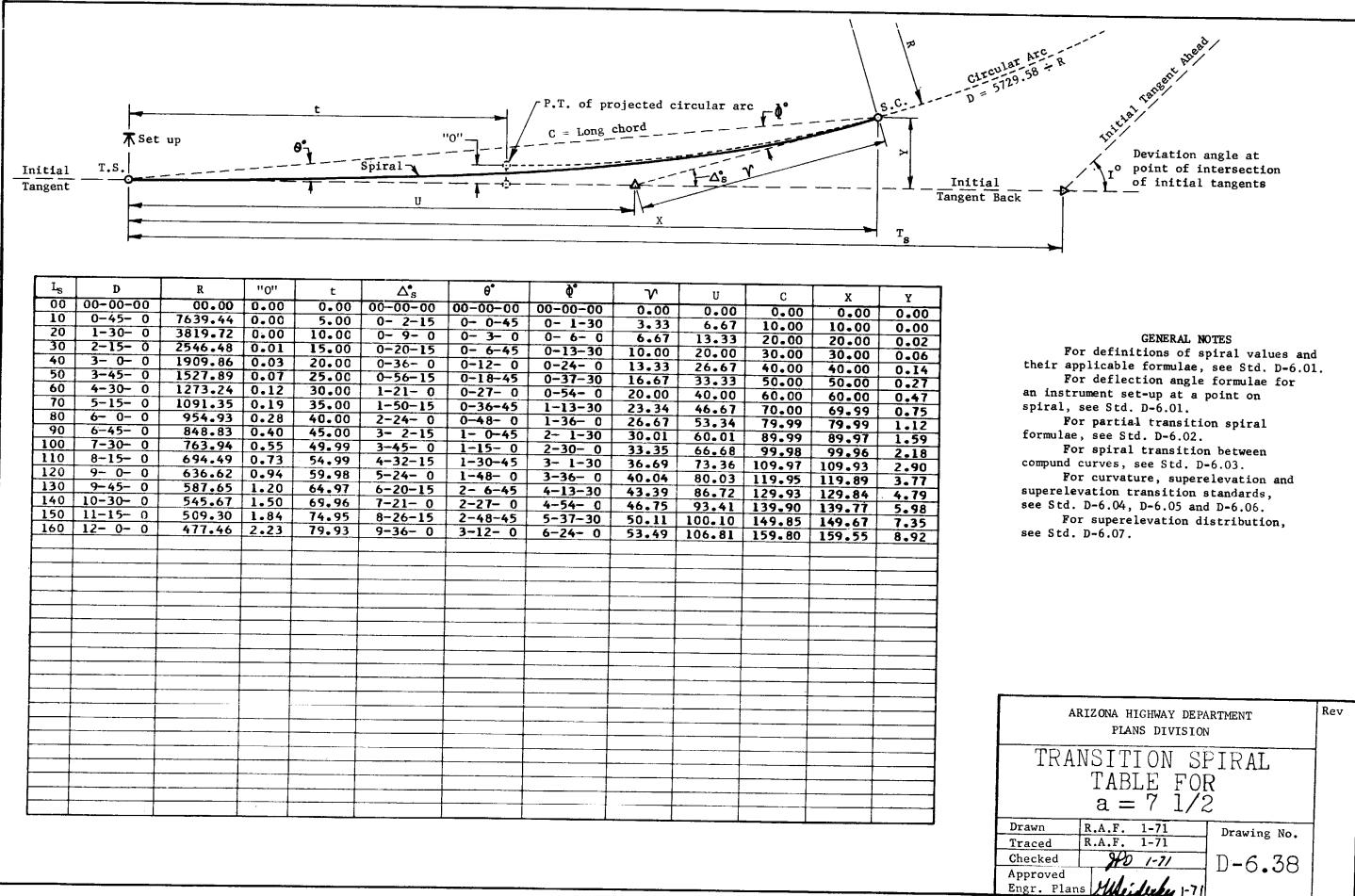


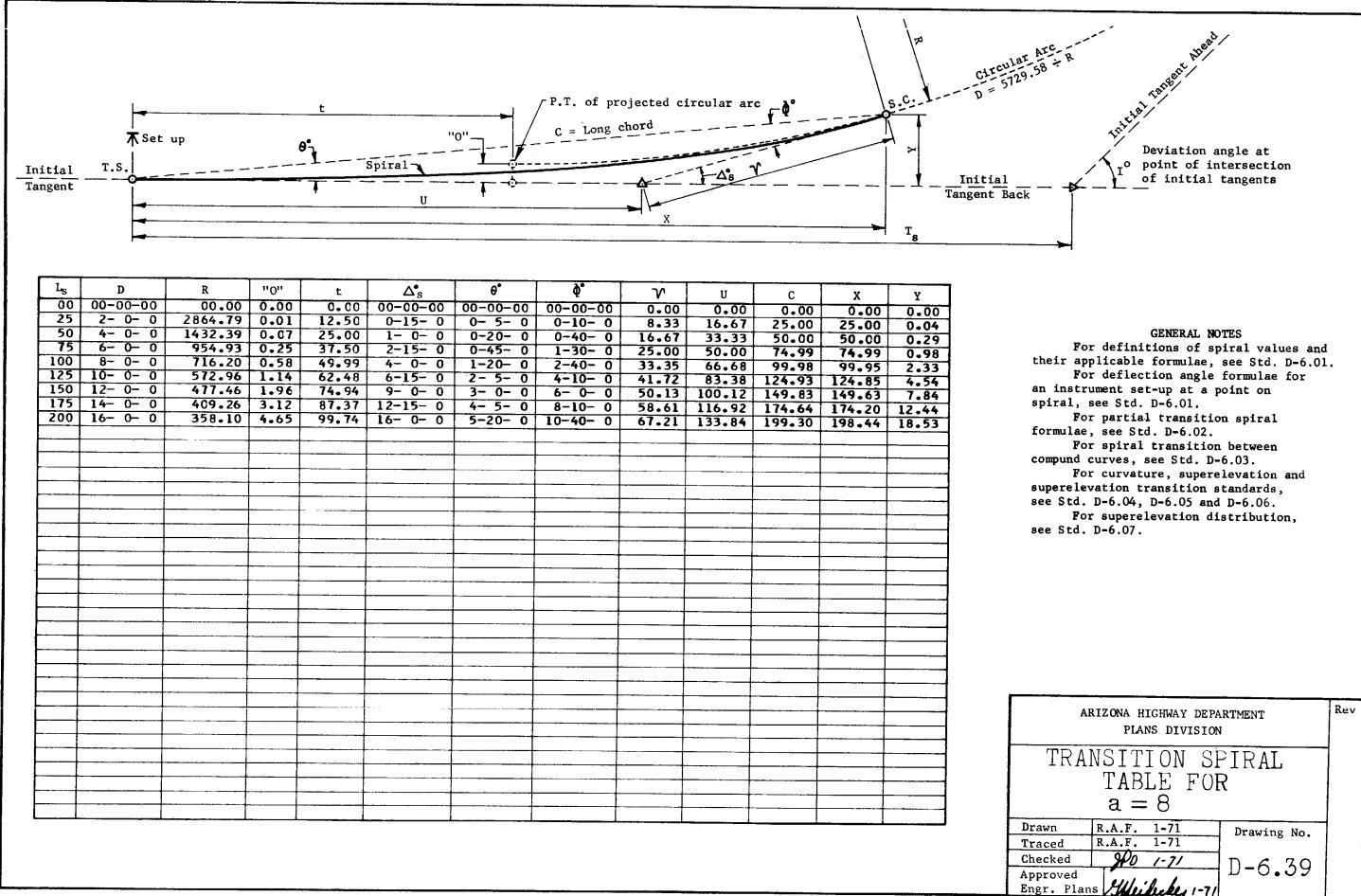

FLANS DIVISION	1
ANSITION SE	PIRAL
TABLE FOR	2
a = 6	
R.A.F. 1-71	Drawing No.
R.A.F. 1-71	
d lans Illeilecher 1-71	D-6.32
lans Meller 1. 1-71	


Approved Engr. Plans

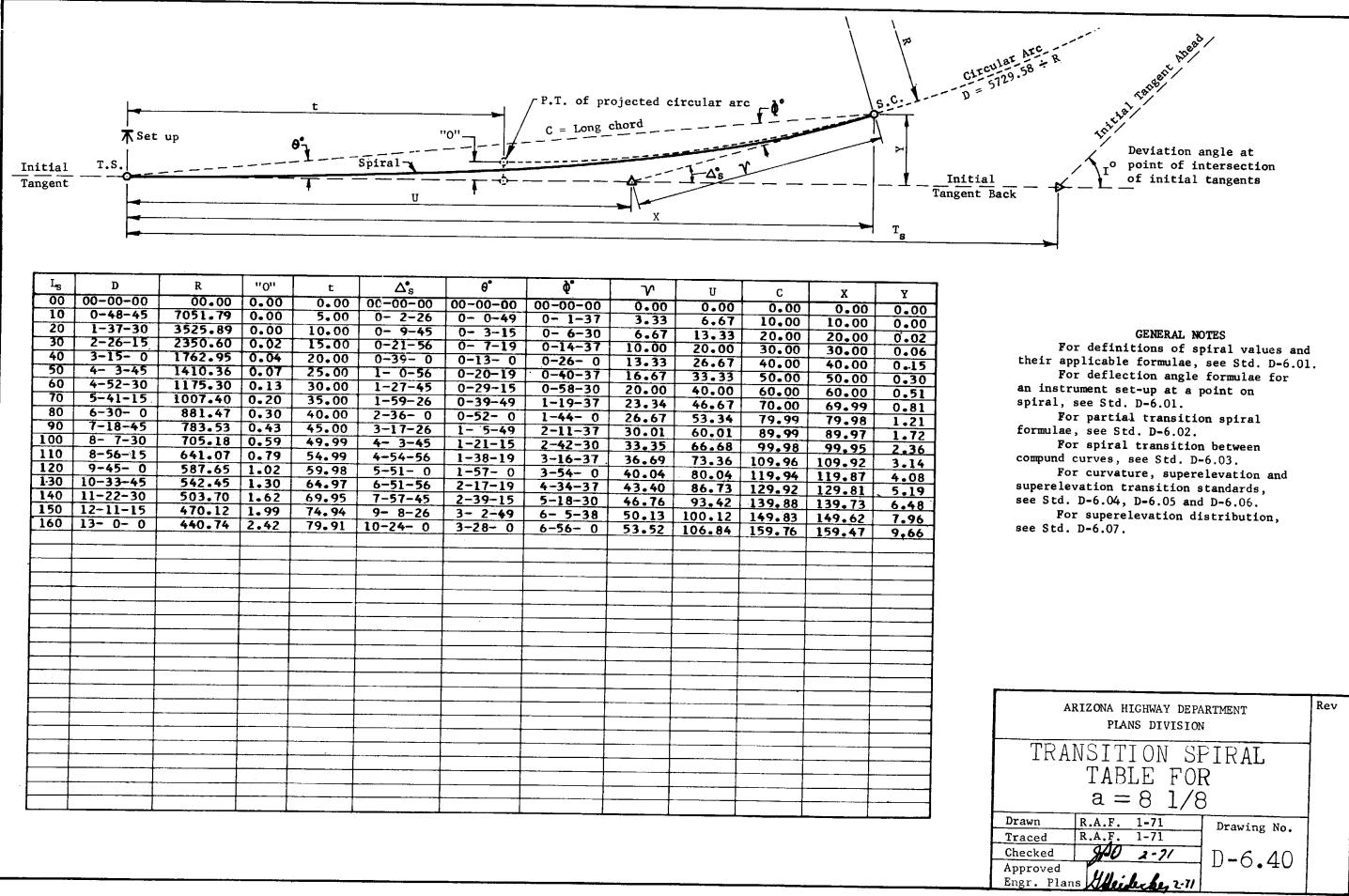

Oneen	
Approv	vec
Fnar	D1

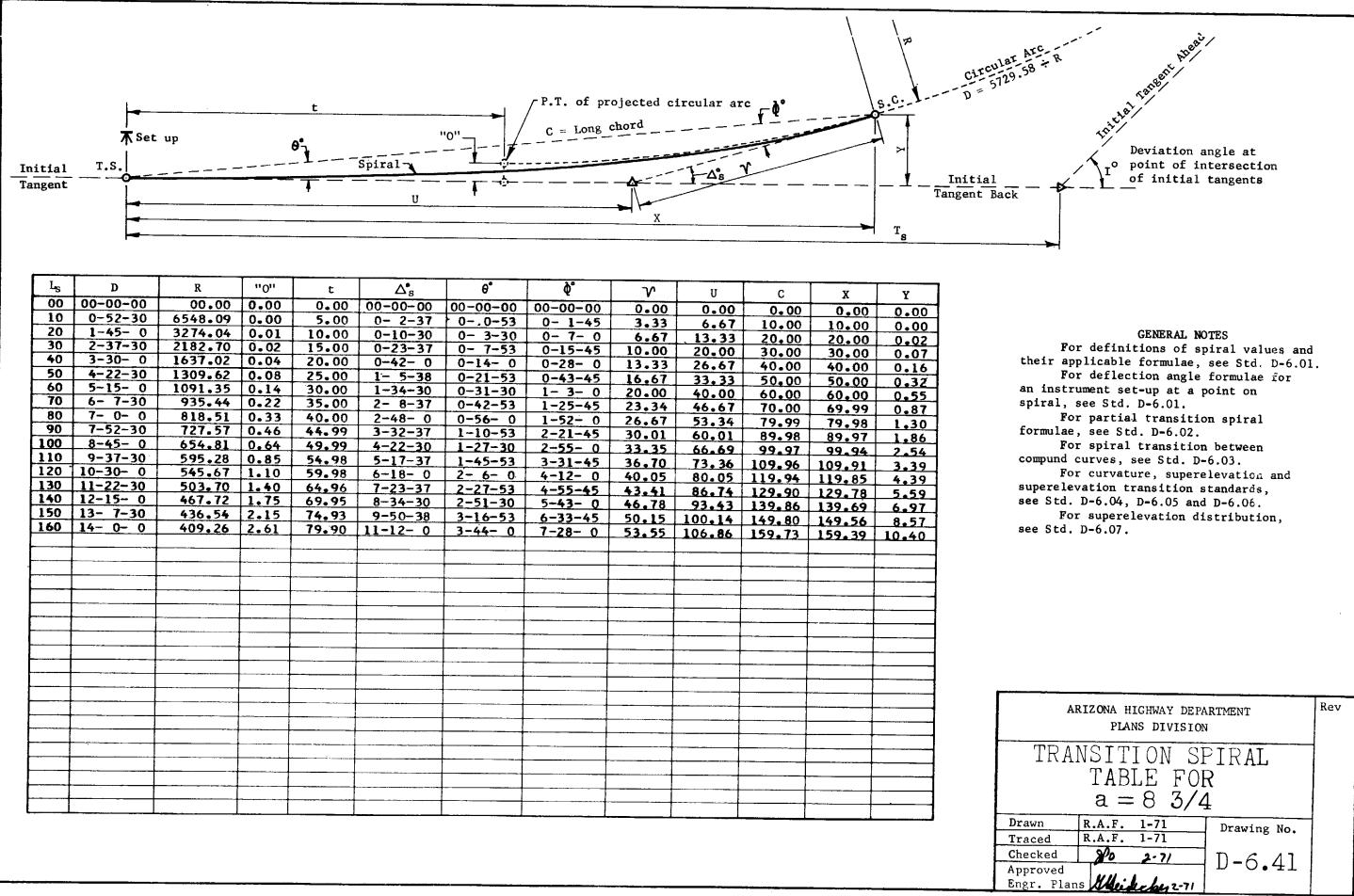


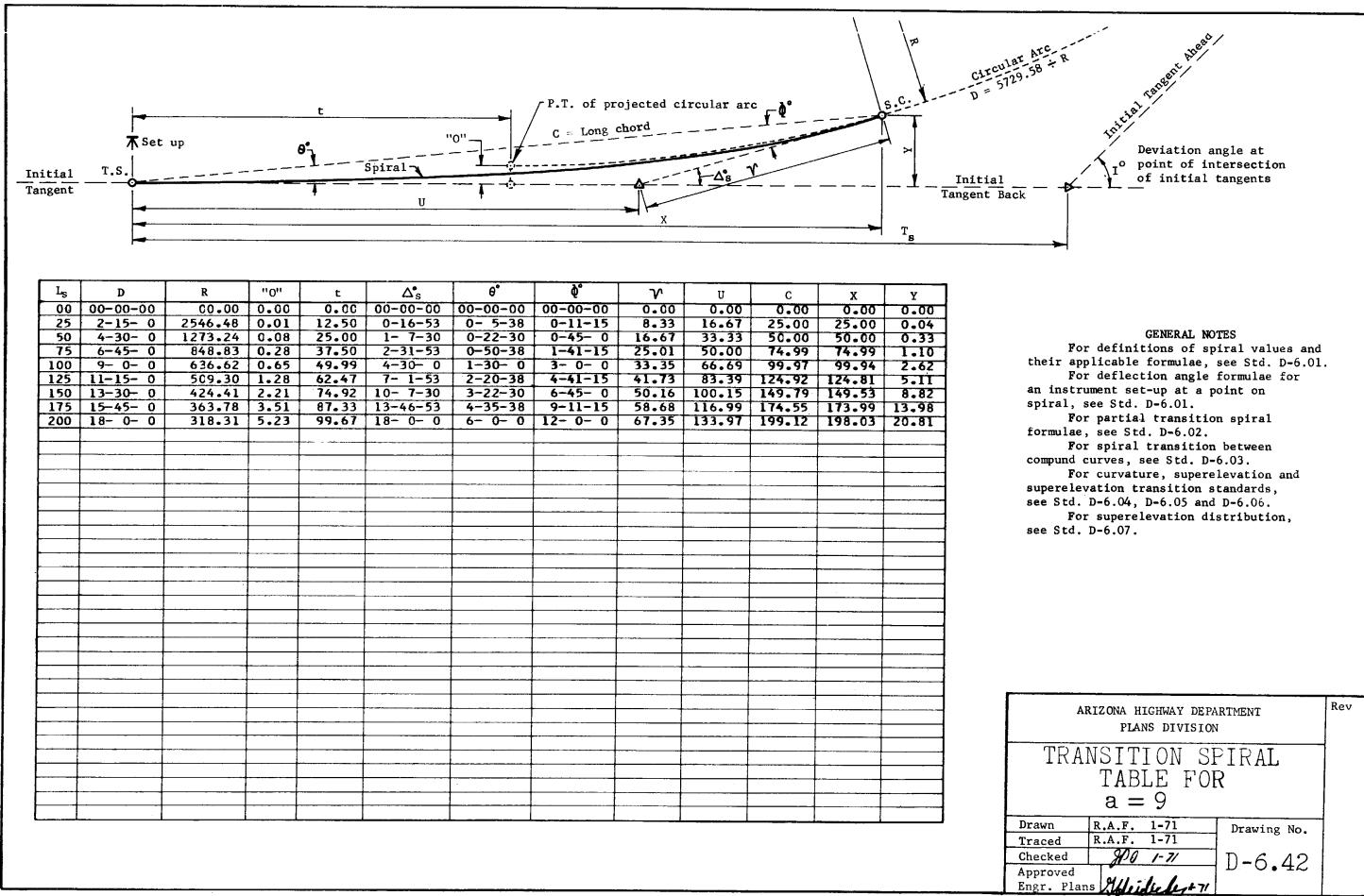

Approv	eċ
Fnor	D1

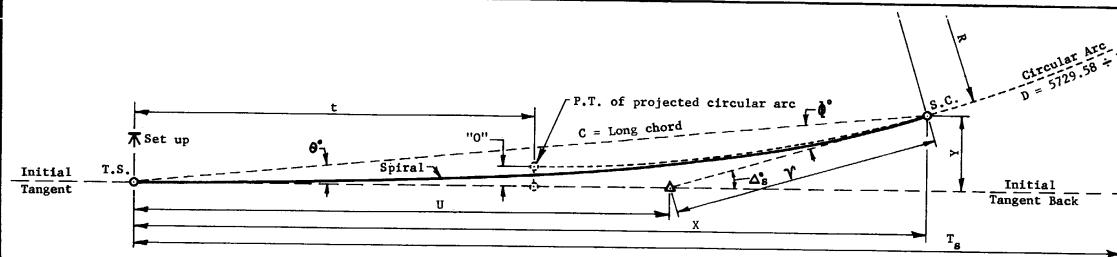


Traced Checked Approved

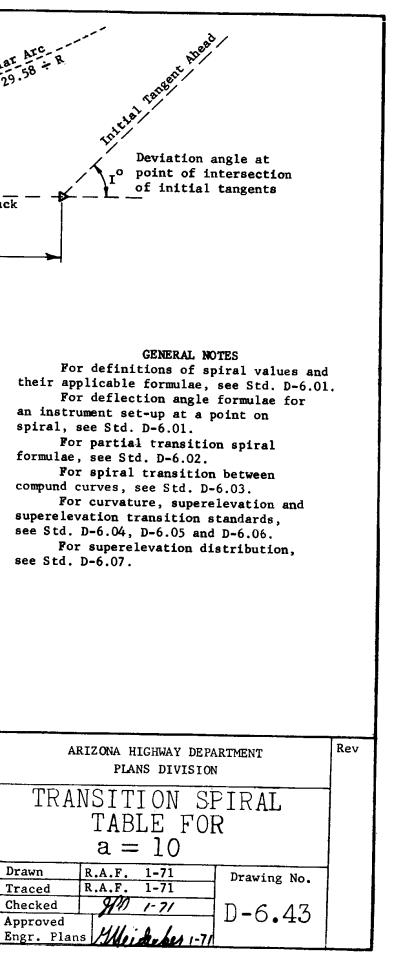


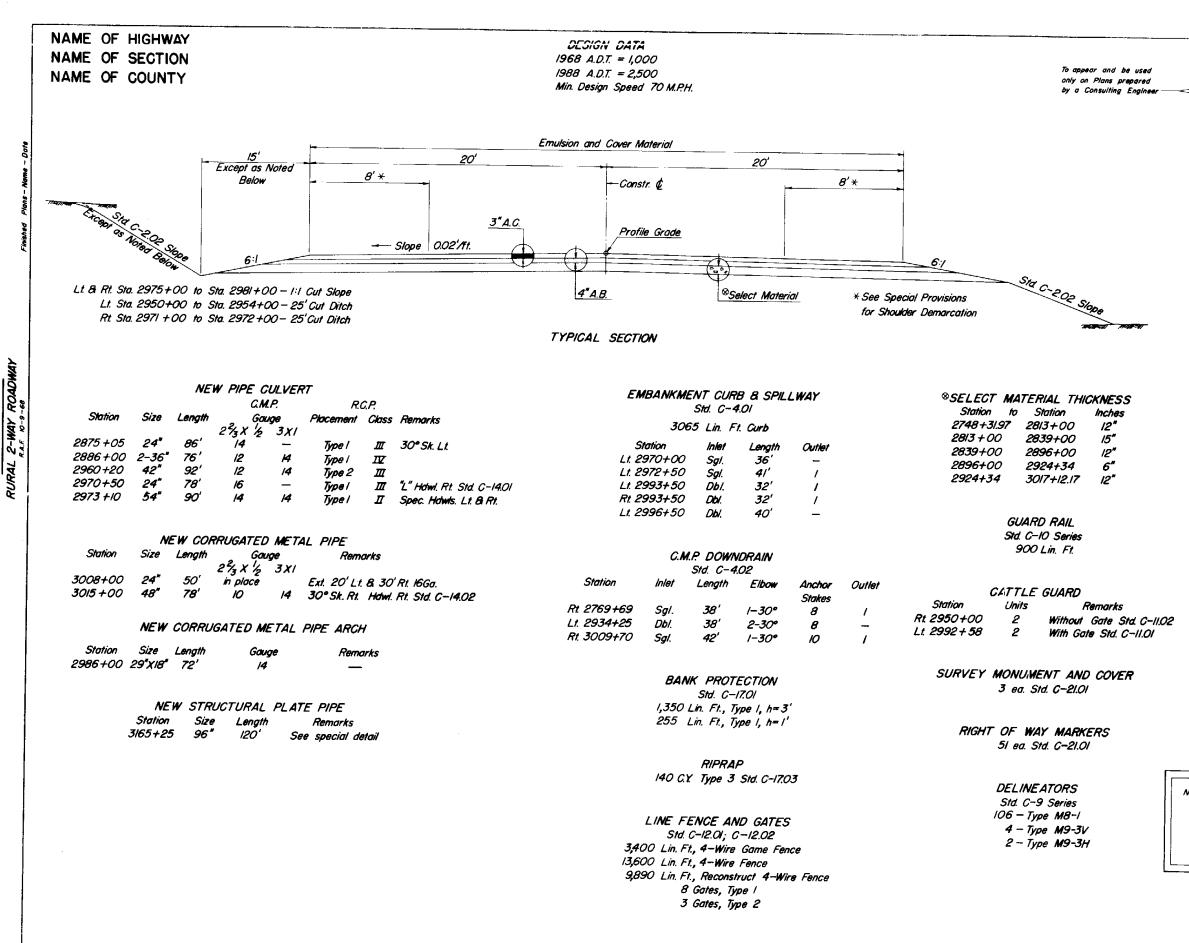






	and a second						
ARIZONA HIGHWAY DEPARTMENT PLANS DIVISION							
ANSITION SPIRAL TABLE FOR a = 8							
R.A.F. 1-71 R.A.F. 1-71	Drawing No.						
4 lans Heilicker 1-71	D-6.39						





L _S	D	R	"0"	t	Δ_{s}^{\bullet}	0 *	\$.	T Y	U U	c	x	Y	T
0	00-00-00	INFINITY	0.00	0.00	00-00-00	00-00-00	00-00-00	0.00	0.00	0.00		f	ł
_ 10	1-00-00	5,729.58		5.00	0-03-00	0-01-00	0-02-00	3.33	6.67	10.00	0.00	0.00	
20	2-00-00	2,864.79	.01	10.00	0-12-00	0-04-00	0-08-00	6.67	13.33	20.00	10.00		
30	3-00-00	1,909.86	.02	15.00	9-27-00	0-09-00	0-18-00	10.00	20.00	30.00	20.00	.02	1
40	4-00-00	1,432.40	.05	20.00	0-48-00	0-16-00	0-32-00	13.33	26.67	40.00	30.00	.08	ι - t
50	5-00-00	1,145.92	.09	25.00	1-15-00	0-25-00	0-50-00	16.67	33.33	50.00	40.00	.19	1
60	6-00-00	954.93	.16	30.00	1-48-00	0-36-00	1-12-00	20.00	40.00	60.00	60.00	.36	e a
70	7-00-00	818.51	.25	35.00	2-27-00	0-49-00	1-38-00	23.33	46.67	69.99	69.98	.63	s
80	8-00-00	716.20	.37	40.00	3-12-00	1-04-00	2-08-00	26.68	53.35	79.99		1.00	4
90	9-00-00	636.62	.53	45.00	4-03-00	1-21-00	2-42-00	30.01	60.02	89.98	79.98	1.49	f f
100	10-00-00	572.96	.73	49.99	5-00-00	1-40-00	3-20-00	33.36	66.69	99.97	<u>89.96</u> 99.93	2.12	4
110	11-00-00	520.87	.97	54.98	6-03-00	2-01-00	4-02-00	36.71	73.38	109.95	109.88	2.91	с
120	12-00-00	477.47	1.26	59.97	7-12-00	2-24-00	4-48-00	40.07	80.07	119.92	119.81	3.87	
130	13-00-00	440.74	1.60	64.95	8-27-00	2-49-00	5-38-00	43.43	86.75	129.87	129.71	5.02	8
140	14-00-00	409.26	1.99	69.93	9-48-00	3-16-00	6-32-00	46.81	93.47	139.82	139.59	6.38	8
150	15-00-00	381.97	2.45	74.90	11-15-00	3-45-00	7-30-00	50.20	100.19	149.75	149.43	7.96	
160	16-00-00	358,10	2.97	79.87	12-48-00	4-16-00	8-32-00	53.61	106.92	159.64	159.20	9.79	8
170	17-00-00	337.03	3.56	84.82	14-27-00	4-49-00	9-38-00	57.04	113.68	169.52	168.92	11.88	
180	18-00-00	318.31	4.24	89.76	16-12-00	5-24-00	10-48-00	60.50	120.46	179.36	178.56	14.23	
190	19-00-00	301.56	4.99	94.68	18-03-00	6-01-00	12-02-00	63.99	127.27	189.16	188.12	16.88	
200	20-00-00	286.48	5.82	99.59	20-00-00	6-40-00	13-20-00	67.52	134.13	198.92	197.57	19.83	
210	21-00-00	272.84	6.73	104.48	22-03-00	7-21-00	14-42-00	71.09	141.01	208.61	206.90	23.09	
220	22-00-00	260.44	7.74	109.35	24-12-00	8-04-00	16-08-00	74.71	147.94	218.25	216.09	26.69	
230	23-00-00	249.11	8.84	114.18	26-27-00	8-49-00	17-38-00	78.39	154.93	227.81	225.12	30.63	
240	24-00-00	238.73	10.05	118.99	28-48-00	9-36-00	19-12-00	82.14	161.99	237.29	233.97	34.92	I
250	25-00-00	229.18	11.35	123.76	31-15-00	10-25-00	20-50-00	85.98	169.11	246.68	242.61	39.57	1
260	26-00-00	220.37	12.78	128.49	33-48-00	11-16-00	22-32-00	89.90	176.32	255.96	251.03	44.60	
270	27-00-00	212.21	14.31	133.18	36-27-00	12-09-00	24-18-00	93.92	183.63	265.12	259.18	50.01	
280	28-00-00	204.63	15.96	137.81	39-12-00	13-04-00	26-08-00	98.21	191.05	274.15	267.05	<u>55.80</u> 62.07	
												02.07	

Drawn Traced Checked Approved

	ARIZ		12	24	
DATE		ENGINEER			
	DATE	- I.I			DATE FOR THE CONSULTING ENGINEER

LENGTH OF PROJECT

Sta. 2748 + 31.97 to Sta. 2989 + 24.90 Bk. = 24,092.93'Sta. 2989 + 27.50 Ahd. to Sta. 3017 + 12.17 = 2784.67'Total = 26,877.60'

Net and Gross Length = 5.090 Miles Mile Post 165.85 to Mile Post 160.76

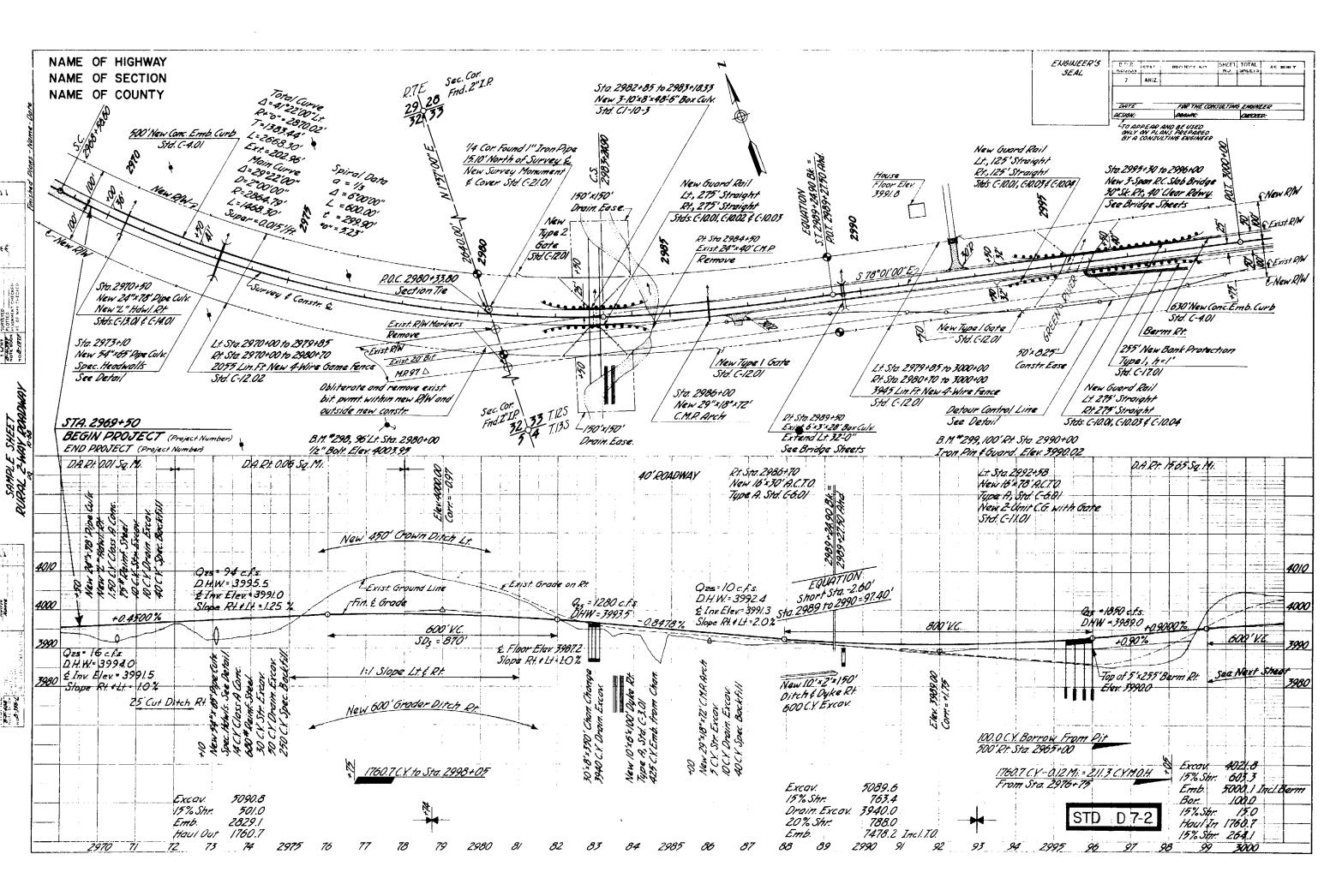
	INDEX OF SHEETS
Sheet No.	Sheet Type
1	Face Sheet
2	Summary Sheet
3-5	Special Details
6	Structure Summary Sheet
7-12	Plan and Profile
/3− /4	Traffic Sheets
15-1 9	Sta. 2995 + Green R. Bridge
20	Sta. 2989 + Spec. Cutv. Layout
21-22	Roadside Development

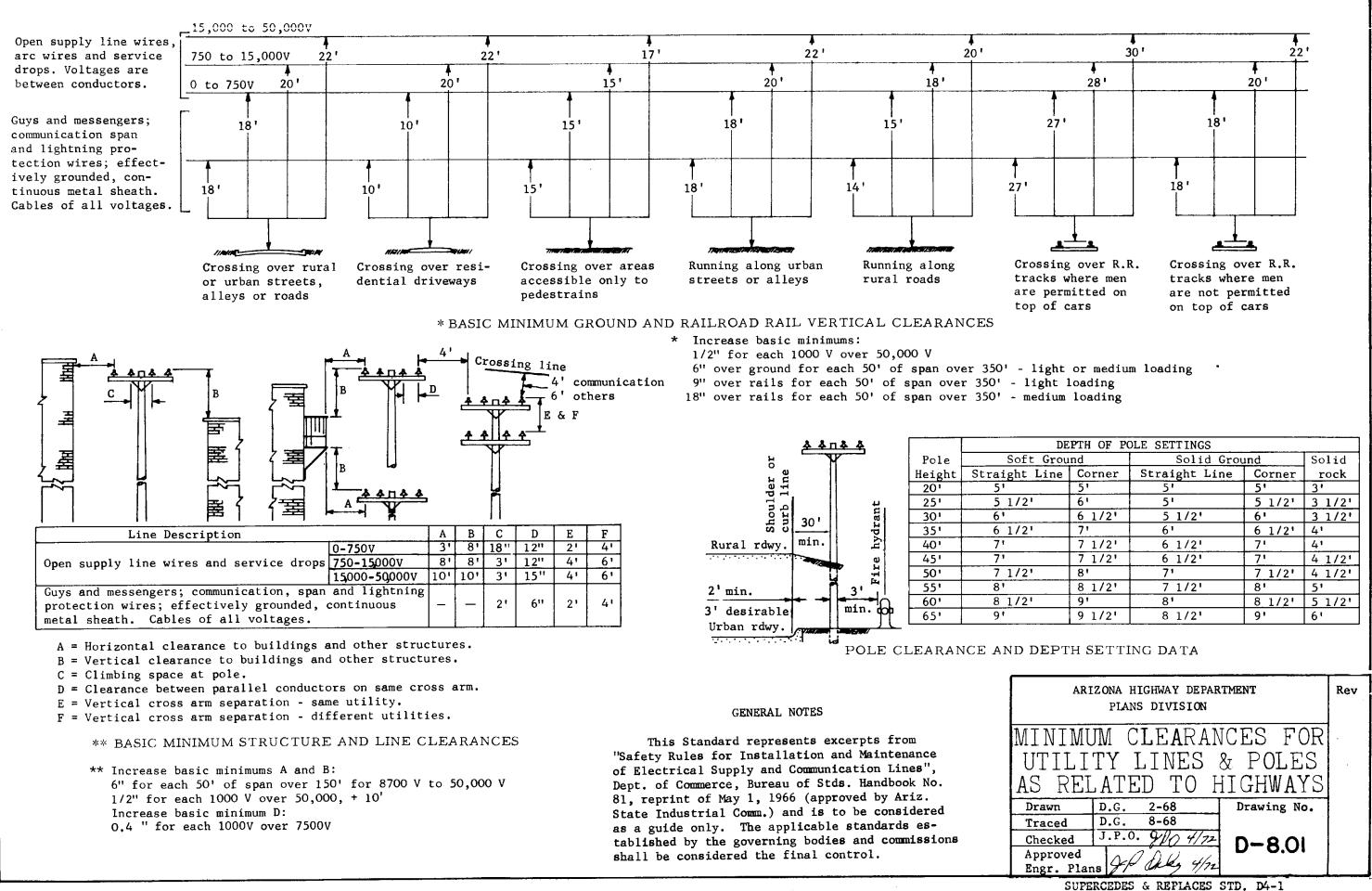
RO.	ADWAY (CONSTRU	ICTION	STANDAR	DS 1968
C—1.01	C-6.01	C-10.03	C-12.02	C-13.11	C-17.03
C-2.02	C-6.02	C-10.04	C-1 3.0 1	C-14.01	C-21.01
				C-14.02	C-21.02
C-4.01	C-10.01	G-11.02	C-/3.08	C-1 403	
C- 4.02	C-10.02	C-12.01	C~1 3 .10	C-17.01	

GENERAL NOTES

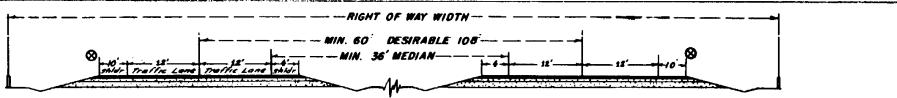
Right of way encroachments shall be removed by order of the State unless otherwise noted.

- All right of way provisions shall be complied with before job acceptance.
- Striping of finished roadway shall be for standard 2-lane, 2-way operation.
- Bench markers will be furnished by the State and placed by the Contractor. Std. C-21,02.


Right of way markers shall be furnished and placed by the Contractor as directed by the Engineer. Std. C-21.01. Mile past markers will be furnished by the State and


placed by the Engineer. Changes in location or length of spillway installations may be made by the Engineer to improve drainage conditions.

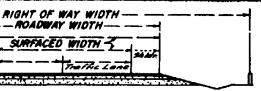
NOTE: If LEROY lettering is used, use a No. 200 template with a No. 2 pen point for tilles. For quantities use a No. 175 template with a No. 1 pen point. If lettered in freehand, use No. 6 Ames Lettering Guide lines with No. 2 Rapidograph for titles. For quantities use No. 6 Ames Lettering Guide lines with No. 1 Rapidograph.


D 7-1

SAMPLE SHEET

EPTH OF PO	DLE SETTINGS		
ınd	Solid Grou	Solid	
Corner	Straight Line	Corner	rock
5'	5'	5'	3'
6'	5'	5 1/2'	3 1/2'
6 1/2'	5 1/2'	6'	3 1/2'
7'	6'	6 1/2'	41
7 1/2'	6 1/2'	7י	41
7 1/2'	6 1/2'	7'	4 1/2'
8'	7'	7 1/2'	4 1/2'
8 1/2'	7 1/2'	81	51
91	81	8 1/2'	5 1/2'
9 1/2'	8 1/2'	9'	6'

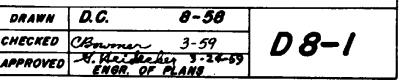
CLASS AA

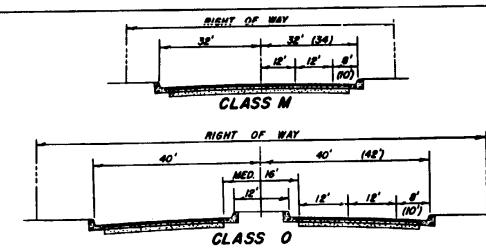

	 <u> </u>	 		-,
		-		_
		1		
			44	۲
l		L		1
!	_			

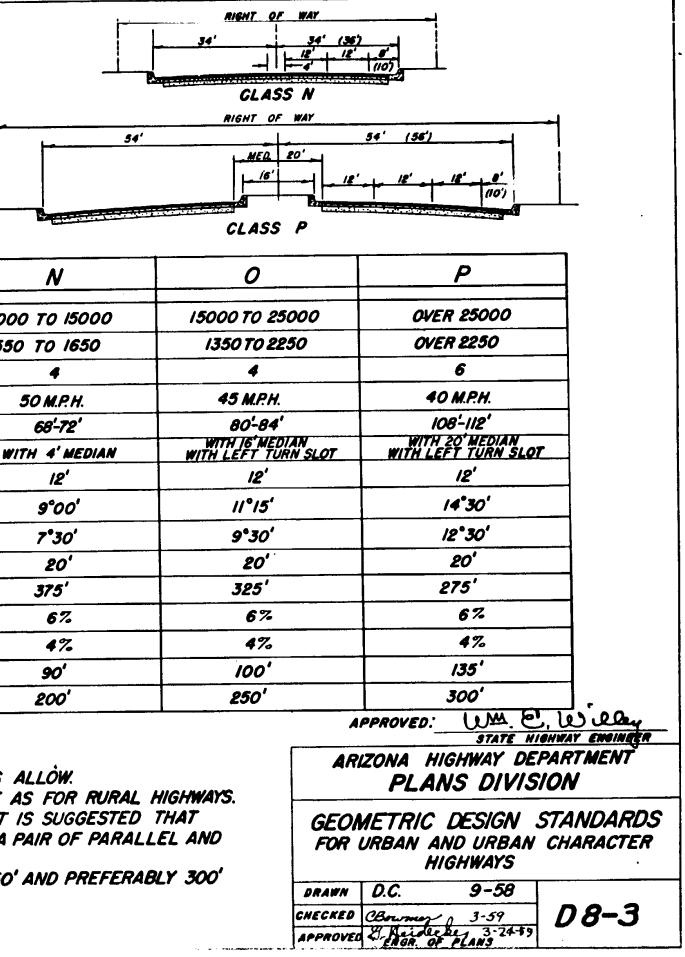
											6	LAJJ A	- 0-0-0		
DESIGN CROSS SECTION INDEX	CL.	ASS A	4 <i>A</i>	CLA	155	A	CLA	455	B	CL.	455	С	CL	455	D
A DT (AVERAGE DAILY TRAFFIC)	5000 TO 15000		1000 TO 5000		300 TO 1000		50 TO 300		UNDER 50		0				
DHY (30 TH HIGHEST HOUR)	600	O TO I	800	120	TO 6	500	36	5 TO 12	20						
TERRAIN	FLAT	ROLL.	MTN.	FLAT	ROLL.	MTN.	FLAT	ROLL.	MTN.	FLAT	ROLL.	MTN.	FLAT	ROLL.	MTN
DESIGN SPEED	80	70	60	80	70	60	70	60	50	60	50	40	50	40	30
ROADWAY WIDTH (INCL. PAVED SHLDRS.)		2-38'	8	40	40	40	34	34	34	28	28	28	26	26	26
TRAFFIC LANE WIDTH	12	12	12	12	12	12	12	12	12	10	10	10	10	10	10
NUMBER OF TRAFFIC LANES	4.	- DIVID	ED	2	2	2	2	2	2	2	2	2	2	2	2
MEDIAN WIDTH	SEE CROSS SECTIONS														
MAXIMUM CURVATURE, DEGREES	2°	4 °	6 °	2 °	CURVE 4 °	ridening 6°	0.1 FT. F	PER LANI	e per d 8°	EGREE ()F CURVE 8°	(WHEN 14°	OVER D	57) 4°	28°
DESIRABLE MAX. CURVATURE, DEGREES	1°	2 °	4 °	1°	2 °	4 °	2°	4 °	6°	4 °	6 °	8 °	6°	8 °	
MIN. STOPPING SIGHT DIST. (EYE TO 6" OBJECT)	775	625	480	775	625	480	625	4 80	375	480	375	275	375	275	200
PASSING SIGHT DISTANCE (EYE TO EYE)	<u> </u>			3200+	3200	2300	3200	2300	1600	2300	1600	1100	1600	1100	600
MAXIMUM GRADE	6%	67.	6%	67.	6%	67.	6%	6%	7%	6%	7%	87。	67.	8%	107.
DESIRABLE MAXIMUM GRADE	27.	3%	47.	27.	3%	47.	3%	4%	57.	4%	57.	6%	5%	6%	7%
MINIMUM R/W WIDTH	260	260	260	200	200	200	200	200	200	100	100	100	100	100	100
DESIRABLE MINIMUM WIDTH	308	308	308	250	250	250	250	250	250	200	200	200			

LING TERRAIN INCLUDES MILLS WHICH MAY CALL FOR CUTS AS HIGH AS BO'ON WITH SHORT RUNS OF MAXIMUM GRADE. MOUNTAIN" TERRAIN IMPLIES PRECIPITOUS CANYONS AND ESCARPMENTS WITH FORCED ALIGNMENT AND EXTENDED MAXIMUM GRADES. "DESIRABLE IS THE STANDARD AIMED FOR IF PHYSICAL FEATURES ALLOW. SIGHT DISTANCES LESS THAN "PASSING SIGHT DISTANCE" ARE PERMITTED, BUT AVOIDED IF POSSIBLE. THIS VALUE IS LISTED FOR THE PURPOSE OF DETERMINING WHAT PROPORTION OF THE LENGTH IS FULLY ADEQUATE.

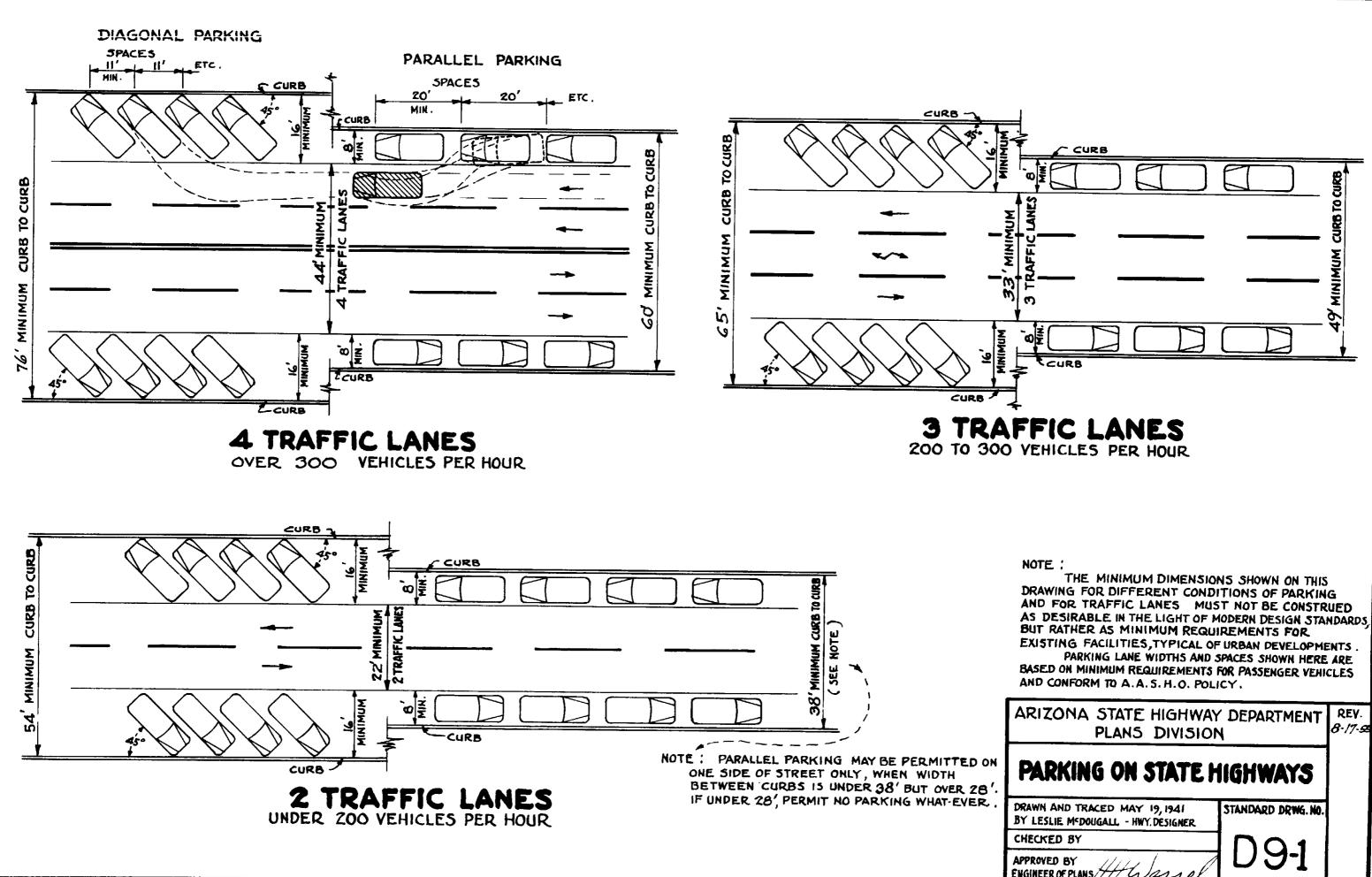
WIDTH OF CLEAR ROADWAY ON STRUCTURES: * CLEAR ROADWAY WIDTH ON ALL STRUCTURES SHOULD BE EQUAL TO THE APPROACH ROADWAY INCLUDING SHOULDERS.


MAXIMUM SUPERELEVATION . O. 128 FT. PER FT. ACROSS RUADWAY IN LOCATIONS FREE OF SNOW AND LEE CONDITIONS. 0.083 FT. PER ET. ACROSS ROADWAY IN LOCATIONS WHERE SNOW AND ICE PREVAIL.

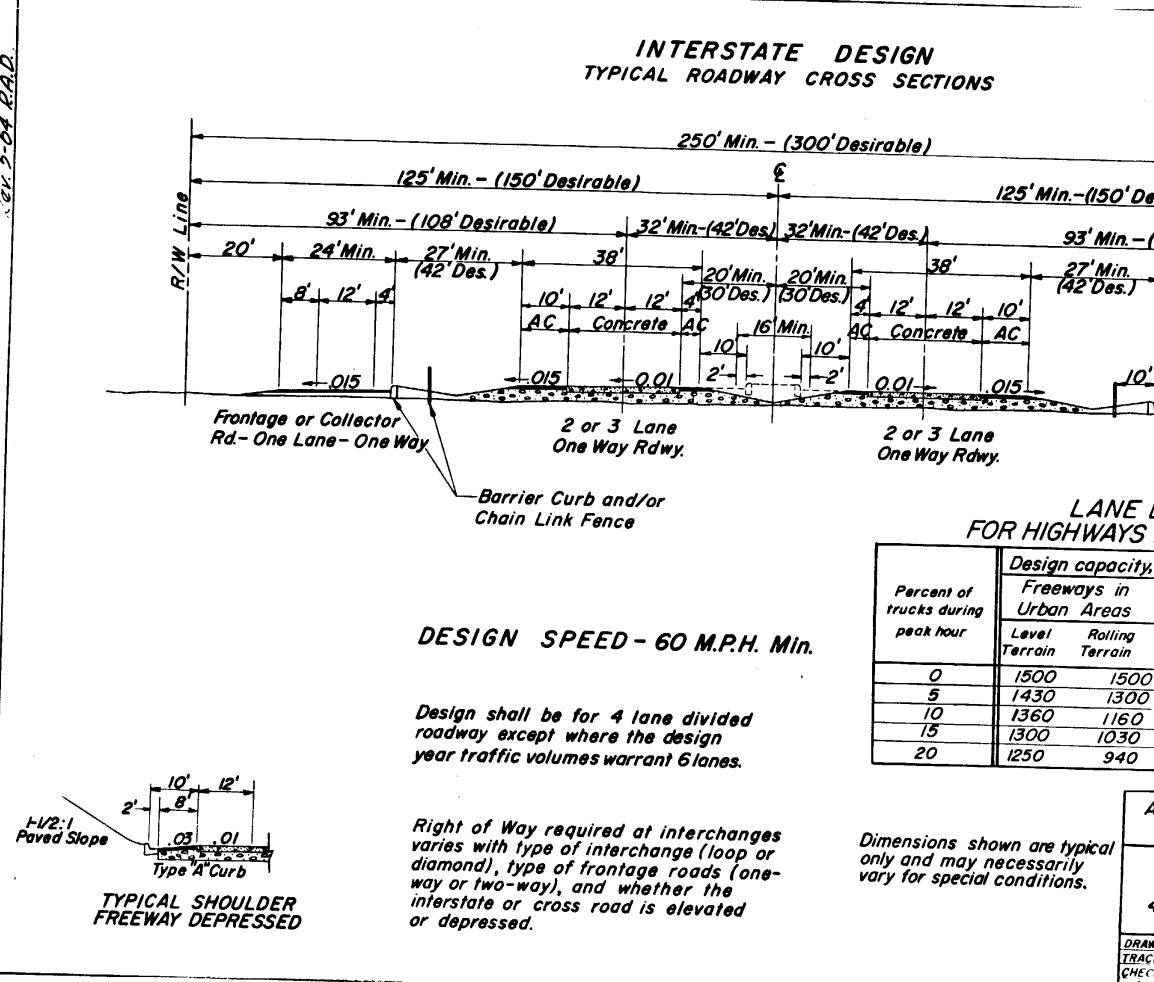



CLASS A-B-C-D

GEOMETRIC DESIGN STANDARDS FOR RURAL HIGHWAYS


DESIGN CROSS SECTION INDEX	М	N	0	
ADT (AVERAGE DAILY TRAFFIC)	3000 TO 5000	5000 TO 15000	15000 TO 25000	
DHV (JOTH HIGHEST HOUR)	330 TO 550	550 TO 1650	1350 TO 2250	
NUMBER OF TRAFFIC LANES	4	4	4	
DESIGN SPEED	60 M.P.H.	50 M.P.H.	45 M .P.H.	
ROADWAY WIDTH	64'-68'	68'-72'	80'-84'	L
INCLUDING 2-8'MINIMUM, IO'DESIRABLE PARKING LANES	UNDIVIDED CENTER	WITH 4' MEDIAN	WITH IG'MEDIAN WITH LEFT TURN SLOT	┡
TRAFFIC LANE WIDTH	12'	12'	12'	L
MAXIMUM CURVATURE	6°00'	9 °00'	//°/5'	
DESIRABLE MAXIMUM CURVATURE	5*00'	7*30'	9°30'	
MINIMUM TURNING CURB RADIUS	20'	20'	20'	
MINIMUM STOPPING SIGHT DISTANCE (EYE TO 6"OBJECT)	475'	375'	325'	
MAXIMUM GRADE	67.	67.	67.	
DESIRABLE MAXIMUM GRADE	4%	4%	4%	
MINIMUM R/W WIDTH	80'	90'	100'	
DESIRABLE MINIMUM R/W WIDTH	100'	200'	250'	

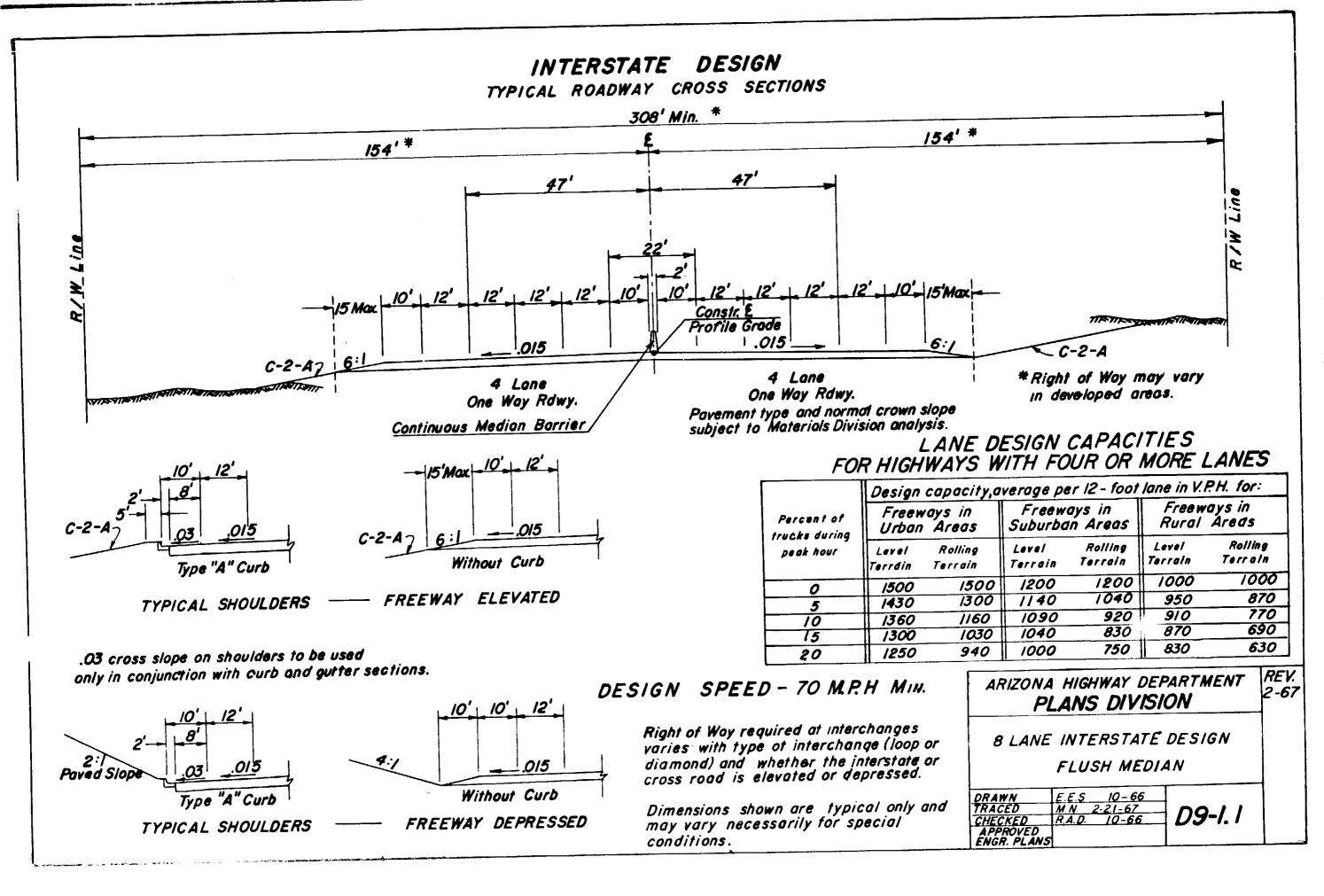
NOTES.

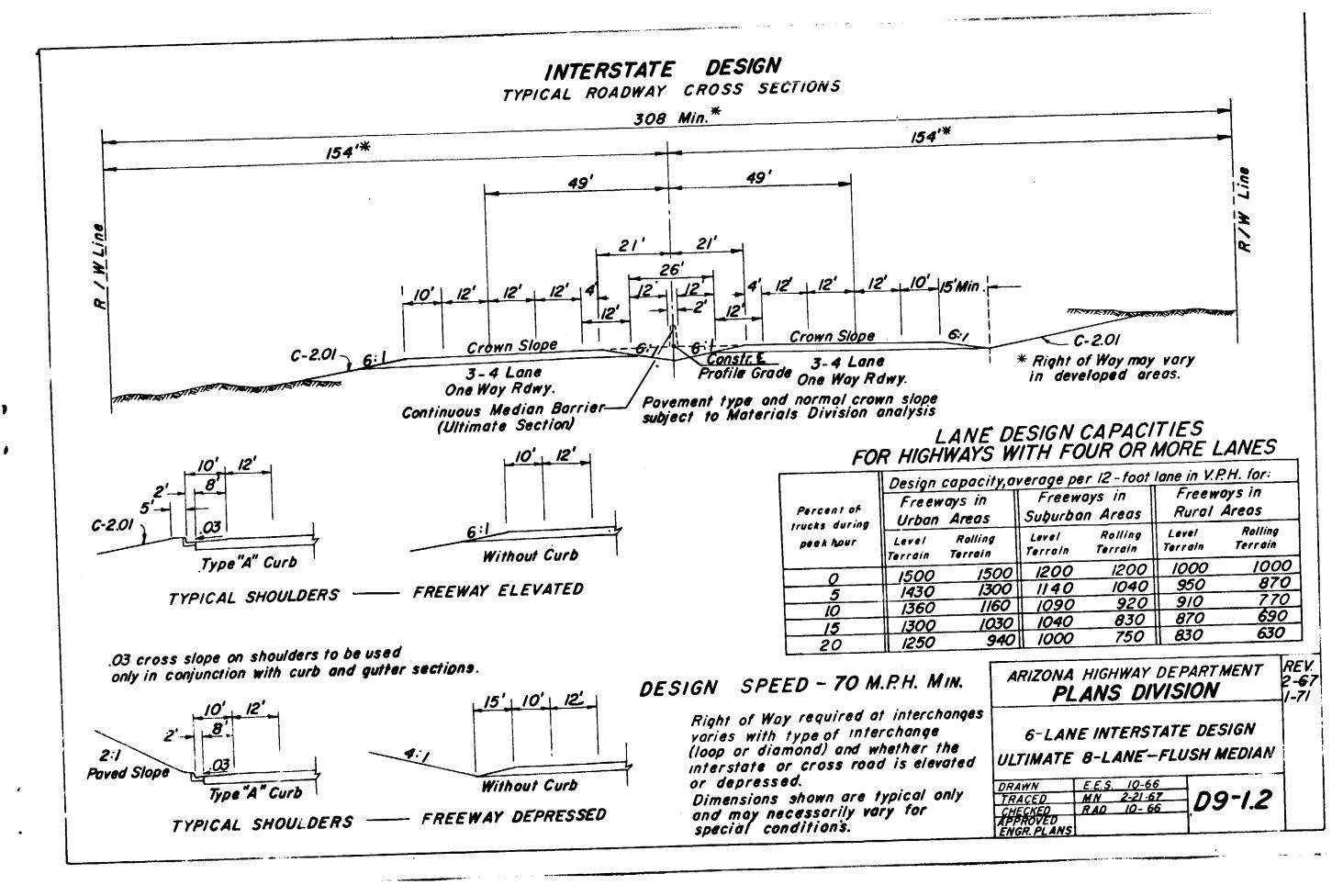

DESIRABLE IS THE STANDARD OR THE LIMIT AIMED FOR, IF PHYSICAL FEATURES ALLOW. SUPER ELEVATIONS FOR CURVES TO BE CONSISTANT WITH DESIGN SPEED. SAME AS FOR RURAL HIGHWAYS. IN LIEU OF OBTAINING SUFFICIENT R/W FOR ROADWAYS INDICATED ABOVE, IT IS SUGGESTED THAT CONSIDERATION BE GIVEN TO THE ADVANTAGES OF A FACILITY COMPOSED OF A PAIR OF PARALLEL AND ADJACENT ONE WAY STREETS. CONTROLLED ACCESS WITH FRONTAGE ROADS CAN BE PROVIDED IN R/W 250' AND PREFERABLY 300'

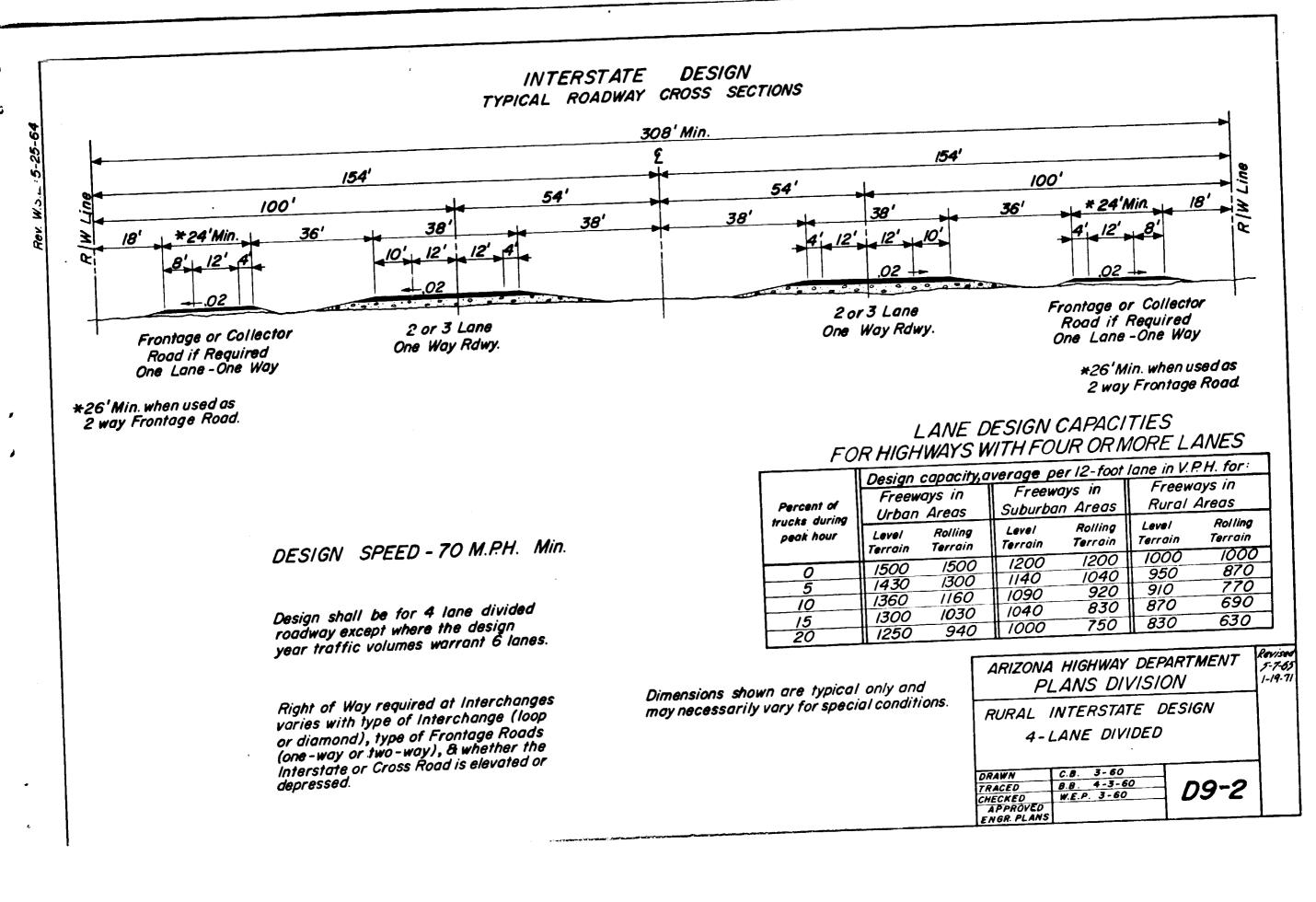
IN LIEU OF LIMITED ACCESS LAW.

DRAWN	L
CHECKED	Ċ
APPROVED	Ø

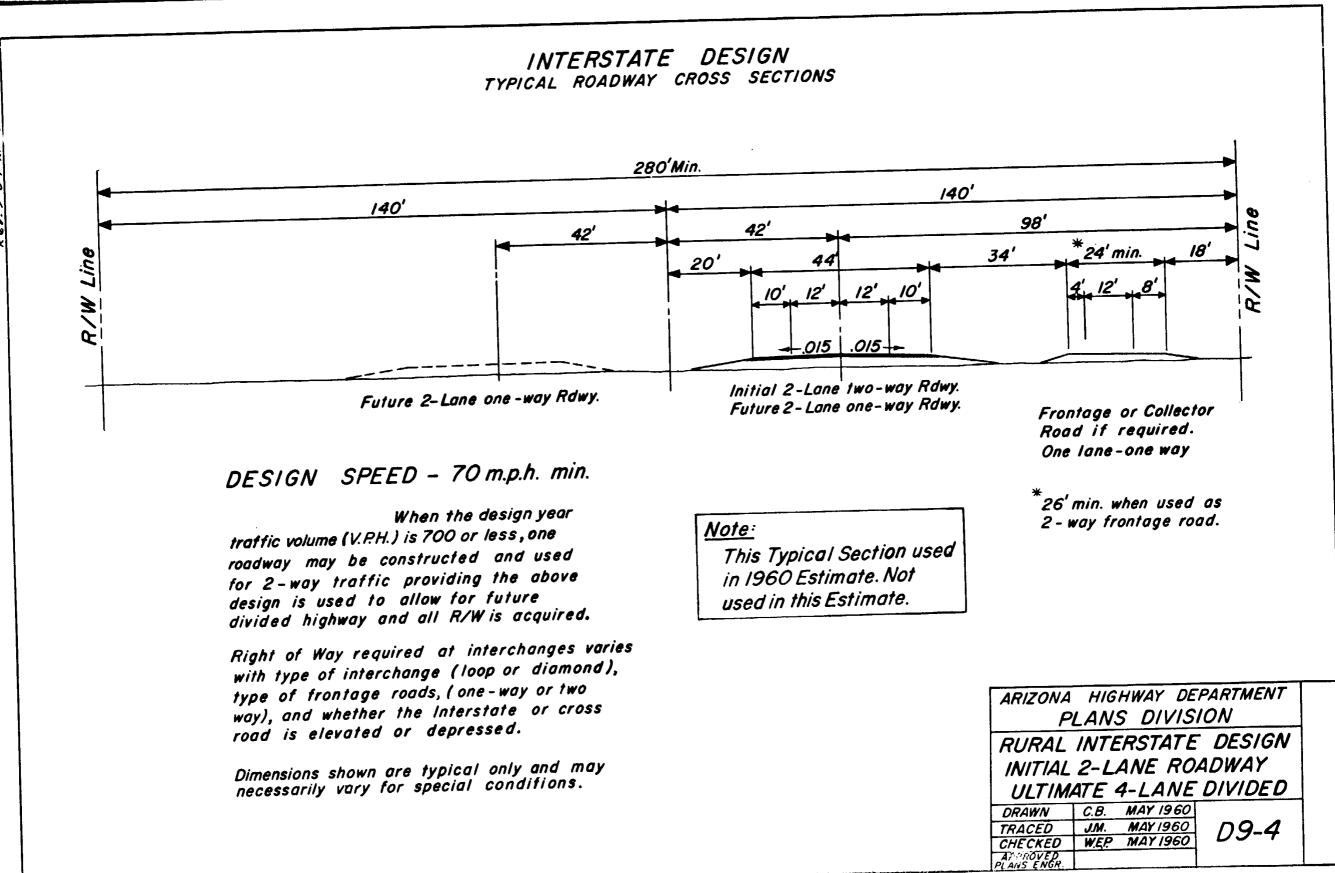
ARIZONA STATE HIGHWAY PLANS DIVISIO		REY. <i>8-17-9</i> 2
PARKING ON STATE H	lighways	
RAWN AND TRACED MAY 19, 1941 IY LESLIE MEDOUGALL - HWY.DESIGNER	STANDARD DRWG. NO.	
HECKED BY	D9-1	

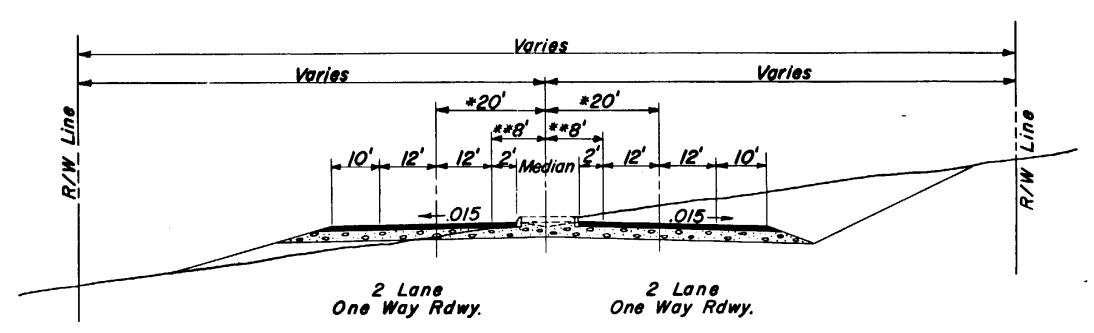



.


•


ŧ


esirable)	
(108' Desirable) 24'Min. 4 12' 8' 0' 015-	20' M Line
	- One Way ACITIES OR MORE LANES foot lane in V.P.H. for: Freeways in Rural Areas Ing Level Railing
0 1200 120 0 1140 10	DO IOOO IOCO 40 950 870 20 910 7 70 30 870 690
	AY DEPARTMENT DIVISION



64 RA D.

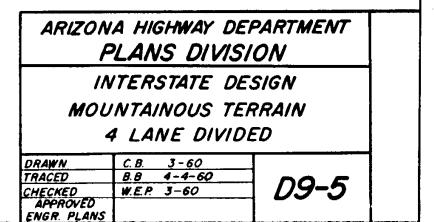
Ĵ

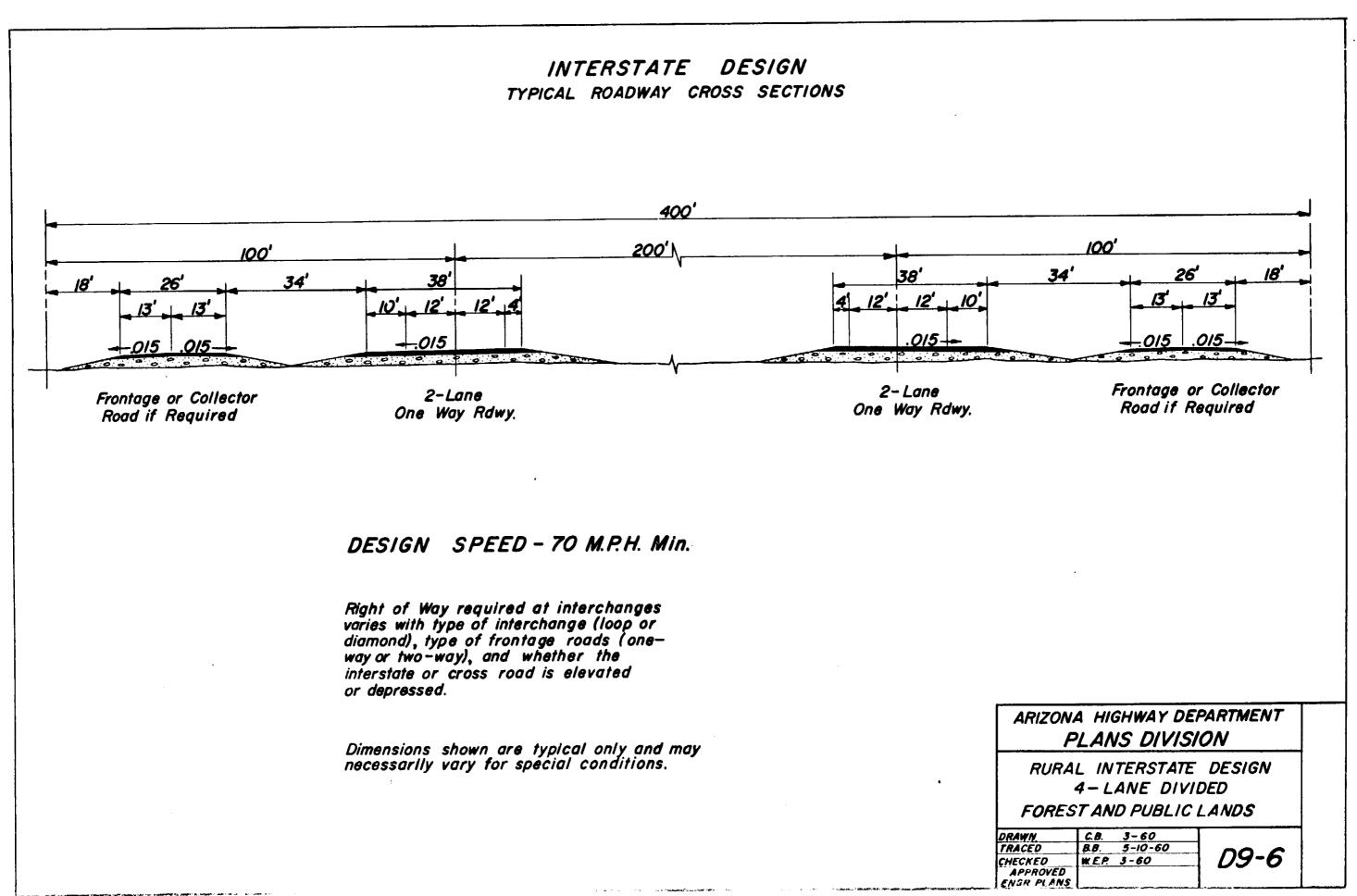
INTERSTATE DESIGN TYPICAL ROADWAY CROSS SECTIONS

*/6'Absolute Minimum for Rugged Mountainous Terrain. **4'Absolute Minimun for Rugged Mountainous Terrain.

DESIGN SPEED - 50 M.P.H. Min.

1

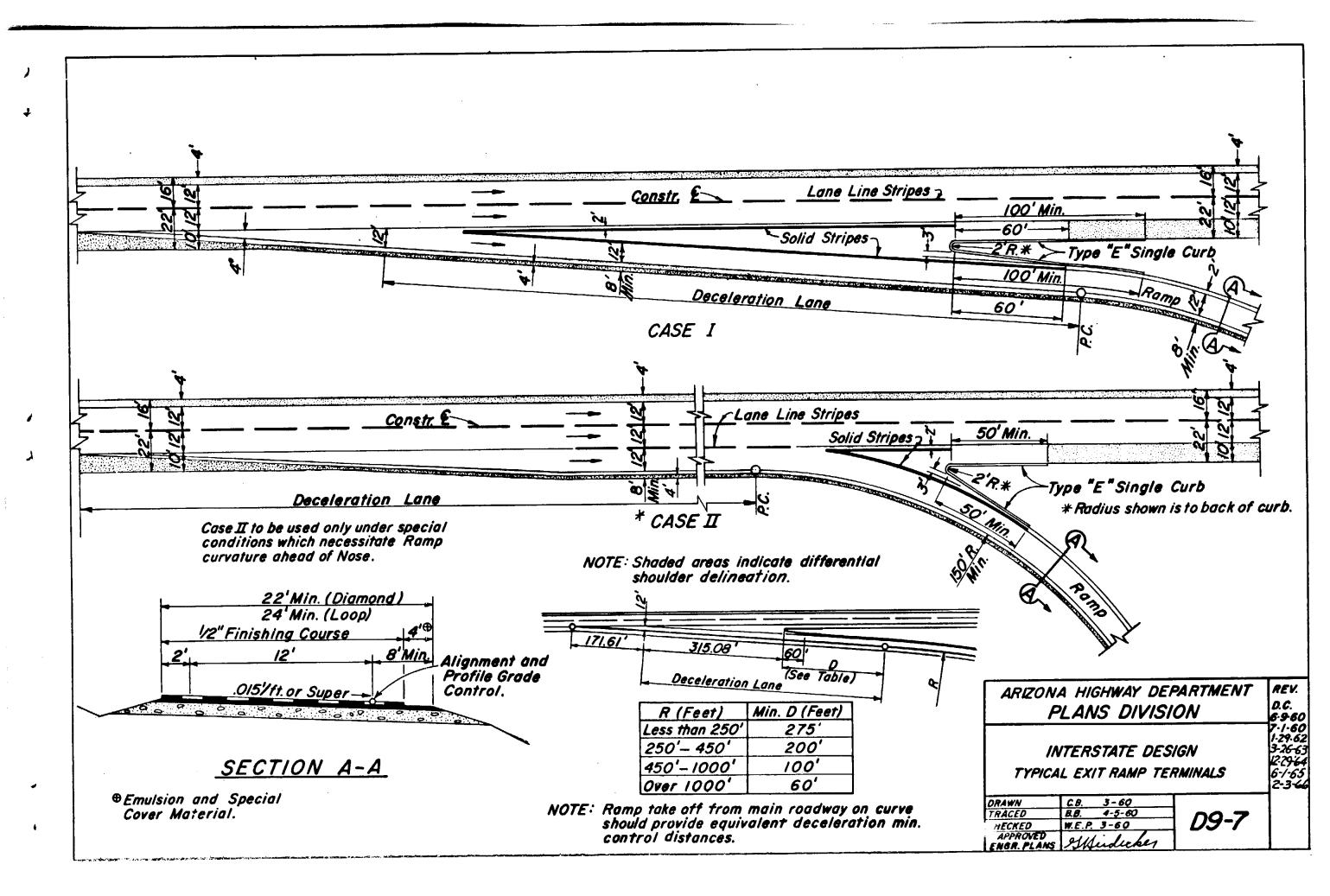

Ĵ


J

4

When the design year traffic volume (V.P.H.) is 700 or less, one roadway may be constructed and used for 2-way traffic providing the above design is used to allow for future divided highway and all R/W is acquired.

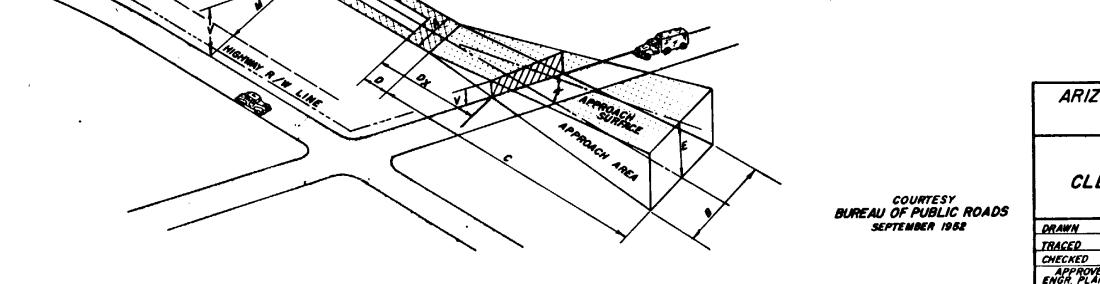
Dimensions shown are typical only and may necessarily vary for special conditions.



j.

1

J


4

	A	IRWA	Y-H	<i>IGHŴ</i> A	ay c	CLEA	RANCE	REQ	UIREME	N75	
RUNMAY LENGTH AT SEA LEVEL	CLASS AND TYPE OF SERVICE	A	B	C	D	E	C:É (SLOPE OF APPROACH SURFACE)	D _X MIN.	NON- INSTRUMENT (MIN.)	INSTRUMENT (MIN.)	V MIN
2301-3000	I. SECONDARY	250	2,250	10.000	200	500	20:1	500	300		15
3501 - 4200		400		10,000	200	250	40:1	800	350	700	/5
4201 - 5000	the second se	500		10,000	200	250	40:1	800	450	700	15
	4. CONTINENTAL			10,000		250	40:1	800	450	700	15
<u>5901 - 7000</u>		500	+	10,000		250	40:1	800	450	700	15
FIRST STEP SECOND STEP	INSTRUMENT	1,000	4,000	10,000	200	200	50 : 1 40 : 1	1,250	700	700	15

- A. WIDTH OF APPROACH AREA (AND APPROACH SURFACE) AT CLEAR ZONE END.
- WIDTH OF APPROACH AREA (AND APPROACH SURFACE) AT APPROACH END. **B**.
- LENGTH OF APPROACH AREA (AND APPROACH SURFACE) MEASURED HORIZONTALLY BEYOND C. CLEAR ZONE.
- D. LENGTH OF CLEAR ZONE.
- E. ELEVATION OF APPROACH SURFACE ABOVE END OF RUNWAY AT DISTANCE "C".
- DX MINIMUM HORIZONTAL DISTANCE FROM THE END OF THE RUNWAY TO THE NEAREST EDGE OF EXISTING OR PROPOSED HIGHWAY PAVEMENT. WHERE PAVED RUNWAYS DO NOT EXIST THIS DISTANCE SHOULD BE MEASURED FROM THE END OF THE LANDING STRIP.
- MINIMUM TRAVERSE CLEARANCE DISTANCE, CENTERLINE OF RUNWAY TO FIXED OBSTACLES. M
- HIGHWAY CLEARANCE, PROFILE AT PAVEMENT EDGE. MINIMUM VERTICAL CLEARANCE IS 15' V ANYWHERE IN APPROACH AREA AND UNDER TRANSITION SURFACE.
- K HORIZONTAL ANGLE BETWEEN RUNWAY CENTERLINE EXTENDED AND HIGHWAY.

NOTE: Approach data conforms to CAA technical standards and TSO-NIB, revised to date.

1

.

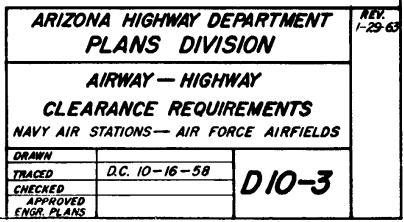
ŧ

	ia highway d PLANS DIVI		REV. 1-29-63 (1-5-63
CLEA	NRWAY — HIGH RANCE REQU CIVIL AIRFIL	IREMENTS	
v	I		1
0	D.C. 10-16-58	D10-2	
ROVED			

· · · · · · · · · · · · · · · · · · ·									
A	<u>IIRWAY - HIGI</u>	<u>HWAY</u>	CLE	<u>ARAN</u>	<u>CE RI</u>	EQUII	REMEN		
RUNNAY LENGTH AT SEA LEVEL	CLASS AND TYPE OF SERVICE	A	B	C	D	Ε	C:E (SLOPE OF APPROACH SURFACE)	M	V MIN.
8,000	NAVY AIR STATIONS AND AIR FORCE AIRFIELDS	2,000	4,000	10,000	1,000	200	1	1,200	/5
	A. WIDTH OF APP B. WIDTH OF APP C. LENGTH OF AP BEYOND CLEAR D. LENGTH OF C E. ELEVATION OF M. MINIMUM TRAN OBSTACLES. V. HIGHWAY CLEAR CLEARANCE I SITION SURFA	ROACH A ROACH A PROACH A R ZONE. LEAR ZOU F APPROA VERSE CL ARANCE, IS 15' AN ICE. H DATA C	REA (AND AREA (AN NE OR EN ACH SURF EARANCE PROFILE YWHERE	APPROAL D APPRO D ZONE. TACE ABOU DISTANC OF PAVE IN APPI	CH SURFA DACH SUR VE END C CE, CENTE MENT ED ROACH A PARTMEN	ACE) AT RFACE) M DF RUNN ERLINE GE. MIN AREA AI	APPROACH MEASURED H NAY OF DIS OF RUNWAY MMUM VER ND UNDER	END. HORIZONTA TANCE "C TO FIXE TICAL TRAN-	ED
	ENCROACI AIRFIELD 2. CRITERIA	HMENTS I S. FOR DEP.	N APPRO	ACHES A	ND AIRSH ARMY TY	PACE SU YPE AIR		AIR FOR	CE
	AND WILL					•	FFICE CHIEI TIONS.	F UF ENG	<i>MEENS</i>
				CL	PLA AIRW EARAN IR STATIC	NS L AY — I ICE RI	AY DEPAN DIVISION HIGHWAY EQUIREM WR FORCE	N ENTS	ps

J

. J


.

J -

i

1

Ł

BASIC PROCEDURE

GIVEN: Terrain Class, Design Speed, ADT (Average Daily Traffic), K (Design Hour Factor), T (% Trucks & Recreation Vehicle) and D (% Directional Distribution Factor) or % Passing Sight Distance > 1500 Ft.

FIND: The geometric design standard (roadway with the minimum cross section) that satisfies the given criteria.

STEPS

- 1. Compute DHV in 100's = ADT x K x 0.01
- 2. Enter the table in the appropriate terrain class column.
- 3. Within the terrain class column find the appropriate T (% Trucks) column.
- 4. Within the appropriate D or % Passing Sight Distance column find the range of smallest DHV values which will satisfy the value for DHV as computed in Step 1. Note that both given design speed and either D or % Passing Sight Distance must be satisfied.
- 5. The minimum geometric design standard is indicated by the "R" number associated with the result of Step 4.
- 6. The details of the geometric design standard found in Step 5 are shown on Std. D-52.20

Note: All DHV's computed in these procedures are two-way.

EXAMPLE NO. 1

GIVEN: Terrain = Rolling, Design Speed = 60 mph, ADT = 6000, K = 8%, T = 5%, Passing Sight Distance = 60% > 1500 Feet.

Solution:

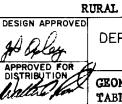
- 1. DHV = $6000 \times 0.08 \times 0.01 = 4.8$
- 2. Enter "Rolling" terrain class column.
- 3. Within the above column find the T% column group which contains the given value of 5% (0% to 9% group).
- 4. Within the column group found in Step 3 find that column which contains the % passing sight distance value of 60%.
- 5. Within the above column find the range of smallest DHV which contains the value 4.8 (from Step 1).
- 6. The "R" number to the left is found to be R3, the geometrics for which may be found on Std. D-52.20

Comment:

It will be noticed that cross section R5 will also satisfy the DHV criteria if a 50 mph design speed is permissable. A re-evaluation of the basic criteria may find such a revision advisable.

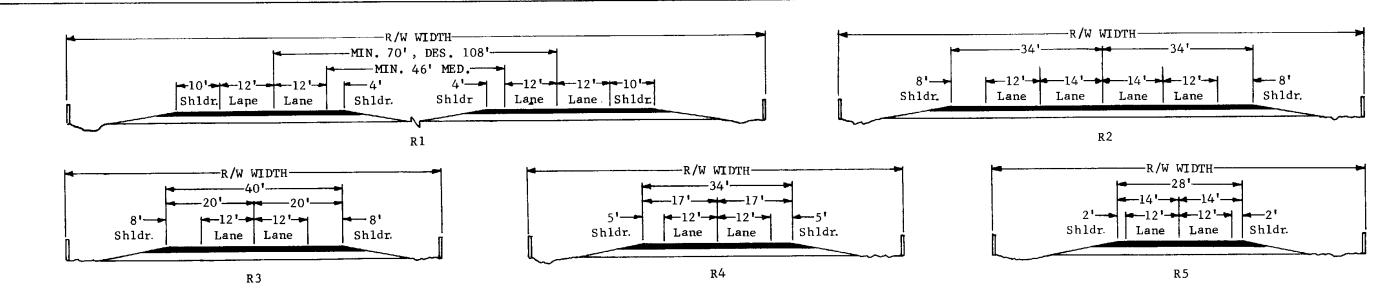
	•								M	UL	TI-	LAN	IE																
	Terrain					Roll	ing							М	ount	aind	ous	-											
		Max		9			15			20			9		15		20			9			15			2	20		
	% Trucks (T)	Min		0			10			16			0			10			16			0			10		1	6	
	% Directional	Max	60	70	80	60	70	80	60	70	80	60	70	80	60	70	80	60	70	80	60	70	80	60	70	80	60	70	80
	Distribution D	Min	50	61	71	50	61	71	50	61	71	50	61	71	50	61	71	50	61	71	50	61	71	50	61	71	.50	61	71
-	Design Speed		80) m	ph (Lev	el o	f Se	ervi	ce I	3)	70) mj	oh (Lev	el o	f Se	rvic	e B	5)	60	mp	oh (1	Leve	el at	f Se	r vic	e C	;)
14	DHV Range	Max	32	27	24	29	24	21	28	24	20	31	26	22	25	21	18	23	19	17	21	18	15	13	11	10	11	9	8
	(100's)	Min	23	20	17	22	19	16	21	18	15	20	17	15	16	14	12	14	12	11	10	9	8	9	8	7	8	7	6
~	Design Speed 70 mph (Level of Service B								3)	60) mj	oh (Lev	el o	f Se	rvic	e B)	50	mp	oh (1	Leve	el of	[Se	rvic	еC	;)		
2	DHV Range	Max				21	18	15	20	17	<u> </u>		16		15	13	11	13	11	10	17	14	12	10	8	7	8	6	5
	(100's)	Min	17	14	12	16	13	12	15	13	11	12	10	9	11	9	8	10	8	7	8	7	6	6	5	5	5	5	4

	2-LANE Terrain Level Rol																												
	Terrain					Rol	ling							М	ount	aind	ous												
	% Trucks (T)	Max		9			15		12	20			9		9		15		20			9			15		2	20	
	70 11 dene (1)	Min		0			10		.]	16			Q.			10			16			0			10		1	.6	
	% Passing Sight Di	st.	100	80	60	100	80	60	100	80	60	80	60	40	80	60	40	80	60	40	60	40	20	60	40	20	60	40	20
R3	Design Speed		70	m	oh (Lev	el o	f Se	rvic	e E	3)	60	mj	<u>oh (</u>	Lev	el o	f Se	rvic	еE	3)	50	m	oh (1	Leve	el of	Sei	rvic	e C	$\sum_{i=1}^{n}$
щ	DHV Range	Max	7.5	7.0	6.5	6.5	6.0	5,5	6.2	5,5	5,2	6.0	5.1	4.1	4.2	3,5	2.9	3.6	3.1	2,5	8.0	6.4	47	4.2	3.4	2.5	3.2	2.6	1.9
	(100 ¹ s)	Min	6.0	5.5	5.0	5.5	5.2	4.7	5.2	4.6	44	3.9	3.4	2.7	3.3	2.8	2,3	3.0	2.6	2.0	3.9	3.2	2.3	3.0	2,4	1.8	2,6	2,1	1,5
	% Passing Sight Di	st.	100	80	60	100	80	60	100	80	60	80	60	40	80	60	40	80	60	40	40	20	0	40	20	0	40	20	0
	Design Speed		70	m	oh (Lev	el o	f Se	rviç	e E	3)	60	m	oh (1	Leve	el o	f Se	rvic	еB)	50) m	ph (Lev	el o	f Se	<u>rvi</u>	ce`C)
Я	DHV Range	Max	7.2	6.7	6.1	6.4	5.9	5,4	6,0	5.6	5.0	5.5	4.7	3.7	4.1	3,5	2.8	3.5	3.1	2.4	5.4	4.0	2,6	3.2	2.4	1,5	2.5	1.9	1.2
	(100's)	Min	5.7	5.3	4.8	5.4	5.0	4.5	5.0	4.7	4.3	3.6	3.1	2.5	3.1	2.7	2.2	2.8	2.4	2.0	3.0	2.2	1.4	2.3	1.7	1.1	2.0	1.5	1,0
	% Passing Sight Di	st.	100	80	60	100	80	60	100	80	60	80	60	40	80	60	40	80	60	40	40	20	0	40	20	0	40	20	0
ŝ	Design Speed		60	m	ph (Lev	el o	f Se	rvi	e E	3)	50	m	oh ()	Lev	el o	f Se	rvic	e C	;)	40) m	ph (Lev	elo	f Se	rvic	e D	·)
Ц	DHV Range	Max	5,4	4.7	4.0	4.7	4.1	3.6	4.5	3,9	3.4	6.9	6,2	5,0	5,1	4.5	3.7	4.5	4,0	3,2	5,6	4.4	2.4	3.0	2,3	1,3	2.3	1.8	1.0
	(100's)	Min	43	3.7	3.2	4.0	3.5	3.0	3.8	3.3	2.8	4.6	41	3.3	4,0	3.6	2.9	3,6	3.2	2.6	2.7	2.1	1,1	2.1	1,6	0.9	1.8	1,4	0.7


EXAMPLE NO. 2

GIVEN: Terrain = Rolling, Design Speed = 70 mph, ADT = 22000, K = 11%, T = 8%, D = 55%.

Solution:


- 1. DHV = $22000 \times 0.11 \times 0.01 = 24$
- 2. Enter "Rolling" terrain class column.
- 3. Within the above column find the T% column group which contains the given value of 8% (0% 9% group).
- 4. Within the column group found in Step 3 find that column which contains the D value of 55% (50% 60% column).
- 5. Within the above column find the range of smallest DHV which contains the value 24 (from Step 1).
- 6. The "R" number to the left is found to be R1, the geometrics for which may be found on Std. D-52.20

The procedures will in some instances yield results which can be satisfied by more than one design standard. Final selection will require careful consideration of factors such as operation, economics, local influences, etc. Note that multi-lane vs. 2-lane standards are differentiated by directional distribution vs. % passing sight distance > 1500 feet. All DHV's computed in these procedures are two-way.

GENERAL NOTES

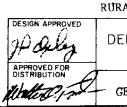
& RURAL CHARACTER HIGHMAN	18	
ARIZONA		REV.DATE
PARTMENT OF TRANSPORTAT HIGHWAYS DIVISION STANDARD PLANS	ION	
METRIC DESIGN SELECTION	PLAN	NO.
BLE & PROCEDURES	Đ-	52.10

Design Cross Section		R1			R2		-	R3			R4			R 5	
Number of Traffic Lanes		4-DIVIDE	D	4	-UNDIVID	ED		2			2			2	
Terrain	LEVEL	ROLL.	MTN.	LEVEL	ROLL.	MTN.	LEVEL	ROLL.	MTN.		ROLL.	MTN.	LEVEL	ROLL.	MTN.
Median Width & Roadway Width	See C	ross Sec	tions At	ove an	d Sectio	ns 8-11	and 8-	12 of De	sign Maı	าบคไ					,
Design Speed - m.p.h.	80	70	60	80	70	60	70	60	50	70	60	50	60	50	40
Maximum Curvature - Degrees	See S	tandards	D-6.04	, 6.05 a	x 6.06										T
Desirable Maximum Curvature - Degrees	1	2	4	1	2	4	2	4	6	2	4		6	8	14
Minimum Stopping Sight Distarce - Eye to 6" Object	900	675	500	900	67.5	500	675	500	375	675	500	375	500	375	275
Passing Sight Distance - Eye to Eye	-	-	-	3100	2700	2300	2700	2300	1900	2700	2300	1900	2300	1900	1550
Maximum Grade - %	3	4	6	3	4	6	3	4	<u> </u>	4	<u> </u>	<u>8</u>	4	 	- 0
Desirable Maximum Grade - %	2	3	4	2	3	4	3	4	4	3		100	100	100	100
Minimum R/W Width - Ft.	2.60	2.6()	260	200	200	200	200	200	200	100	100		100	100	100
Desirable Minimum R/W Width - Ft.	308	308	308	250	250	250	250	250	250	200	200	200			

GENERAL NOTES

LEVEL TERRAIN: Any combination of geometric design elements that permits trucks to maintain speeds that equal or approach speeds of passenger cars.

ROLLING TERRAIN: Any combination of geometric design elements that causes trucks to reduce speed substantially below that of passenger cars on some sections of the highway but which does not involve sustained crawl speeds by trucks for any substantial distance.


MOUNTAINOUS TERRAIN: Any combination of geometric design elements that will cause trucks to operate at crawl speed for considerable distances or at frequent intervals.

DESIRABLE is the standard to be attained if physical features permit.

PASSING SIGHT DISTANCES less than those tabulated are permitted but are to be avoided if possible.

ROADWAY WIDTH on structures shall be increased by two feet on each side for geometric design standards R1 through R4. For geometric design standard R5 the structure width may be greater than the approach roadway, but in no case shall it be less. CURVE SUPERELEVATION shall be in accordance with standards D-56.10 through D-56.40.

For Geometric Design Standard Selection Procedure, see Standard D-52.10.

AL & RURAL CHARACTER HIGHW	AYS	
STATE OF ARIZONA		REV.
PARTMENT OF TRANSPORT	ATION	
DIVISION OF HIGHWAYS		
STANDARD DRAWINGS		
	DRAWING I	NO.
EOMETRIC DESIGN STANDARDS	D-52	2.20
	i	

	Location			U	Irban (30-50	mph)				ł		Su	burban	(40-6	() mph)			
	% Trucks		0 - 5			6 - 1		r	11 - 1	5		0 - 5			6 - 1		r	11 - 1	5
	Directional	50	61	71	50	61	71	50	61	71	50	$\begin{bmatrix} 0 \\ 61 \end{bmatrix}$	71	50	61	71	50	$\frac{11}{61}$	71
		to	to	to	to .	to	to	to	to	to	to	to	to	to	to	to	to	to	to
	Distribution	60	70	80	60	70	80	60	70	80	60	70	80	60	70	80	60	70	80
	Turn & Park Criteria	60%	Green	Time,	Lt. Tu	rn Arr	ow, Tu	rns:	10% Lt	., 10%	Rt.	No Par	king i		r Lane			Only.	
	Design Hourly	40	32	28	37	31	26	35	28	25	37	31	26	35	28	24	33	27	23
5		to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to
	Volume (100's)	32	27	24	29	25	22	27	24	21	29	25	22	28	24	21	26	23	20
	Turn & Park Criteria	60%	Green	Time,	Lt. Tu	rn Arr	ow, Tu	rns:	10% Lt	., 10%	Rt.	No Par	king i	n Oute	r Lane	s. Di	stress	Only.	
	Design Hourly	31	25	22	30	24	21	28	23	20	30	24	21	28	23	20	27	22	19
U2		to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to
	Volume (100's)	25	21	19	24	20	18	22	19	17	24	20	18	22	19	17	21	18	16
	Turn & Park Criteria	60%	Green	Time,	Lt. Tu	rn Arr	ow, Tu	rns:	10% Lt	., 10%	Rt.	No Par	king i	n Oute	r Lane	s. Di		Only.	
U3	Design Hourly	26	22	19	25	20	17	23	19	16	25	20	17	23	19	17	22	18	16
P		to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to
	Volume (100's)	21	18	16	20	17	15	18	16	14	20	17	15	19	16	14	17	15	13
	Turn & Park Criteria	50%	Green	Time,	Turns:	10%	Lt., 1	0% Rt.	Park	ing in	Outer	Lanes	•	•					· · · · ·
4	Design Hourly	17	14	12	16	13	11	15	13	11	16	13	11	15	13	11	15	12	10
<u>14</u>		to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to
	Volume (100's)	14	12	10	13	11	10	12	11	9	13	11	10	12	11	9	12	10	9
	Turn & Park Criteria	50%	Green	Time,	Turns:	10%	Lt., 1	0% Rt.	No P	arking	in Ou	iter La	nes.						·
2	Design Hourly	18	15	13	17	14	12	16	13	11	17	14	12	16	13	11	15	13	11
		to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to
	Volume (100's)	14	12	11	14	12	10	13	11	10	14	12	10	13	11	10	12	11	9

PROCEDURE

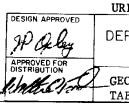
- GIVEN: Design Speed, ADT (Average Daily Traffic), K (Design Hour Factor), T (% Trucks), D (Directional Distribution) and whether classified as Urban or Suburban.
- FIND: The Geometric Design Standard (roadway with the minimum cross section) that satisfies the given criteria

<u>STEPS</u>

- 1. Compute DHV in 100's
 - $= ADT \times K \times 0.01.$
- 2. Enter the table in the appropriate urban or suburban column.
- Within the location class column find the appropriate T (% Trucks) column.
- 4. Within the appropriate D (% Directional Distribution) column, find the range of smallest DHV values which will satisfy the DHV value computed in Step 1. Note that the given design speed must be satisfied.
- 5. The minimum Geometric Design Standard is indicated by the "U" number associated with the results of Step 4.
- 6. The details for the Geometric Design Standard found in Step 5 are shown in Standard D-52.40.

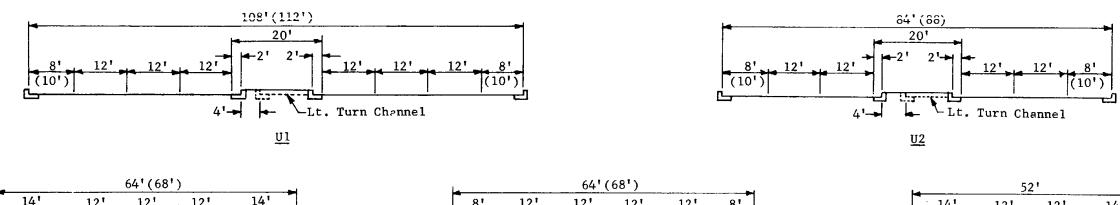
Note:

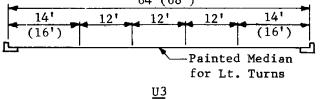
All DHV's computed in these procedures are two-way.

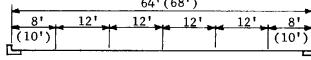

EXAMPLE

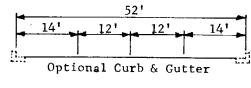
- GIVEN: Location Class = Suburban Design Speed = 55 mph ADT = 18,500 K = 12%
 - T = 7%
 - D = 55%
- 1. DHV = $18,500 \times 12 \times 0.01 = 22$
- 2. Enter Suburban column.
- Within the above column, find the T% group which contains the given T value (6% to 10% column).
- Within the column group found in Step 3 find the column which contains the D value of 55% (50% to 60% column).
- 5. Within the above column group, find the smallest DHV range which contains the value 22 (from Step 1).
- The "U" number to the left is found to be U3, the geometrics for which may be found on Standard D-52.40.

The procedures may in some instances yield results which can be satisfied by more than one geometric standard. Final selection will require careful consideration of factors such as operation, economics, local influences, etc.

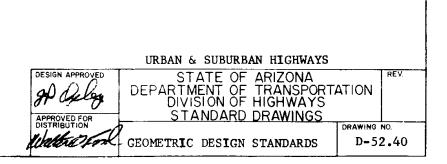

A capacity analysis should be performed in those instances where the variables (% green time, % turning movements, etc.) are known to differ appreciably from the average values tabulated.


Standard U5 may be modified to serve in situations where it appears that two through traffic lanes would be adequate into the near future and it has been determined that on street parking would be temporarily acceptable. Under these conditions the cross section would be composed of two 16 foot traffic lanes with two 10 foot parking lanes. Traffic carrying capability would be determined by multiplying the appropriate U5 tabular design hourly volume by 65%.




GENERAL NOTES

RBAN & SUBURBAN HIGHWAYS	
STATE OF ARIZONA EPARTMENT OF TRANSPORT DIVISION OF HIGHWAYS STANDARD DRAWINGS	ATION
EOMETRIC DESIGN SELECTION ABLE & PROCEDURES	DRAWING NO. D-52.30



<u>U4</u>

Design Cross Section	U1		U2		U3		บ4		U5	
Location	Urban	Subu r b a n	Urban	Suburban	Urb a n	Suburban	Urban	Suburb a n	Urban	Suburban
Number of Traffic Lanes	6	6	4	4	4	4	4	4	4	4
Traffic Lane Width - Ft.	12	12	12	12	12	12	12	12	12	12
Medi a n Width - Ft.	20	20	20	20	12	12	1	-	-	
Minimum Outer Lane Width - Ft.	8	8	8	8	14	14	8	8	14	14
Minimum Desir a ble Outer L a ne Width - Ft,	10	10	10	10	16	16	10	10	14	14
Minimum Roadwey Width Incl. Paved Shoulders - Ft.	108	108	84	84	64	64	64	64	52	52
Minimum Desirable Roadway Width Incl. Paved Shoulders - Ft.	112	112	88	88	68	68	68	68	52	52
Design Speed - mph	30-50	40-60	30-50	40-60	30- 50	40-60	30-50	40-60	30-50	40-60
Maximum Curvature - Degrees	8	6	8	6	8	6	8	6	8	6
Desirable Maximum Curvature - Degrees	7	5	7	5	7	5	7	5	7	5
Minimum Curb Return Radius - Ft.	20	20	20	20	20	20	20	20	20	20
Minimum Stopping Sight Distance - Eye to 6" Object	375	500	375	500	375	500	375	500	375	500
Maximum Grade - %	6	6	6	6	6	6	6	6	6	6
Desirable Maximum Grade - %	4	4	4	4	4	4	4	4	4	4
Minimum R/W Width - Ft.	135	135	100	100	90	90	90	90	80	80
Desirable Minimum R/W Width - Ft.	300	300	250	250	200	200	200	200	190	190

DESIRABLE is the standard to be attained if physical features permit. ROADWAY WIDTH on structures shall match that of approach roadway. CURVE SUPERELEVATION shall be in accordance with standards D-56.10 through D-56.40 subject to adjustments necessary to assuring reasonable ingress and egress to adjacent properties.

For Geometric Design Standard Selection Procedure, see Standard D-52.30.

