STATE OF ARIZONA STATE HIGHWAY DEPARTMENT

PLANS DIVISION 1947

ROADWAY STANDARDS FOR USE IN FIELD AND OFFICE

ISSUED TO

ARIZONA STATE HIGHWAY DEPARTMENT - PLANS DIVISION INDEX TO DESIGN STANDARDS

SIGHT DISTANCE

DRWG NO.	SUBJECT	DATE
D1-1	STOPPING DISTANCES & PASSING DISTANCES AS RELATED TO SPEEDS	MAR. 1941
DI-S	ACCELERATION & DECELERATION DISTANCES AND VISIBILITY AT NIGHT	JUNE 1941
D1-3	SIGHT RESTRICTIONS & APPROACH SPEEDS AT NON-STOP INTERSECTIONS	APR. 1941
DI-4	SIGHT RESTRICTIONS & APPROACH SPEEDS AT "STOP" INTERSECTIONS	APR. 1941
DI- 5	NON-PASSING SIGHT DISTANCE ON VERTICAL & HORIZONTAL CURVES	JUNE 1945
D1-6	PASSING SIGHT DISTANCE ON VERTICAL CURVES	JUNE 1945

CURVATURE

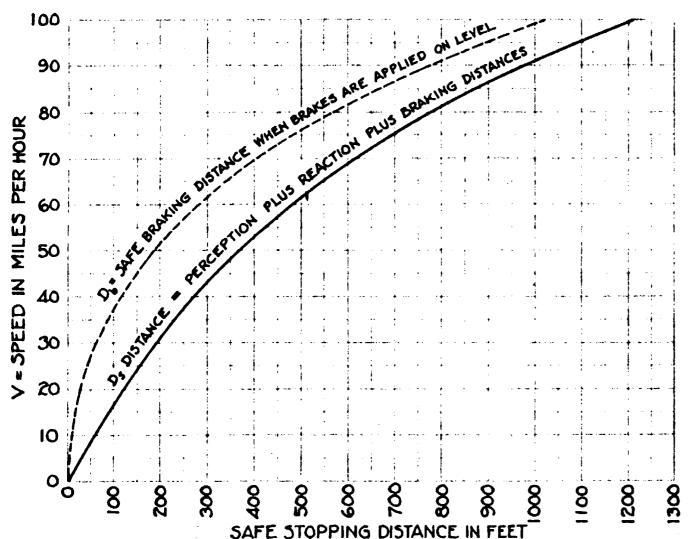
D2-1	SUPERELEVATION FOR CURVES AS RELATED TO DESIGN SPEEDS (CHART)	APR. 1941
DS-5	MINIMUM TURNING SPACE, CURVE WIDENING, AND CROWN TO SUPERELEYATION RUN-OF	F APR. 1941
D2.3	SUPERELEVATION TABLES (SUPPLEMENT TO DRWG NO D2-1)	JUNE 1947

TRANSITION SPIRALS

D3-I	CORRELATION OF TRANSITION SPIRALS TO CIRCULAR CURVE - FORMULAE	JUME I
D3-5	TRANSITION SPIRAL FORMULAE CONTINUED	t Shut
D3-3	TABLE a=1/3	APR. H
D3-4	TABLE Q=Y2	APR. H
D3-5	TABLE Q:43	APR. H
D3 - 6	TABLE a=i	APR. IS
03-7	TABLE a=1/3	APR.H
03-8	TABLE C=1%	APR. 19
D3 - 9	TABLE C-2	APR. IS
D3 - 10	TABLE 4:21/2	APR. IS
D3-11	TABLE Q=3/3	APR. H
03-12	TABLE CI=5	APR. 19
03-13	TABLE CI-10	APR. 19
		
		1
		1
		1
		1
		1
		+

REGULATION OF ROADSIDE DEVELOPMENTS

DRWG.NO.	SUBJECT	DATE
	UTILITIES	
04-1	CLEARANCE OF UTILITY POLE LINES AS RELATED TO HIGHWAYS	MAY 1941
<u> </u>	PRIVATE FACILITIES	
D5-I	PRIVATE DRIVEWAY ENTRANCE RESTRICTIONS - URBAN TYPE	MAY 1941
D5-2	PRIVATE DRIVEWAY ENTRANCE RESTRICTIONS - RURAL TYPE	MAY 1941
D5-3	PICTORIAL LAYOUT OF DRIVEWAY ENTRANCES - RIGHT ANGLE	MAY 1941
D5·4	PICTORIAL LAYOUT OF DRIVEWAY ENTRANCES - SKEW	MAY 1941
D5-5	MULTIPLE DRIVEWAY ARRANGEMENTS	APR. 1750
	PUBLIC AND TRAFFIC	
D6-I	PARKING ON STATE HIGHWAYS	MAY 1941
		
 		
L		


DRAFTING OF PLANS & PROFILE, OFFICE PROCEDURE, ETC.

07-1	ROADWAY PLANS STANDARD	FEB.1946
D7-2	STRUCTURE NOTATIONS	FEB. 1946
D7-3	PLANS SYMBOLS	FEB. 1946
		
	1	

MISCELLANEOUS CRITERIA AFFECTING DESIGN REQUIREMENTS

D8-1	DRAINAGE TABLE CHART	I
i		

SAFE STOPPING DISTANCE

MINIMUM PASSING SIGHT DISTANCE

FORMULAE AND DEVELOPMENT OF FIGURES FOR TWO-LANE MINIMUM PASSING SIGHT DISTANCE

d ₃ =1.47 Vt	30 50 45	20 10 15 20 40 60 55 50 60 80 75 70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		40 60 55 50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 70 65	60 80 75 70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
d ₁ =4.4 (V-m) 88 66 44 132 110 88 176 154 d ₂ =25+1.47 (V-m)t 270 195 134 455 358 270 696 568 d ₃ =1.47 Vt 285 251 220 473 439 382 719 654	2.1 1.3 1.4	1.7 1.0 1.1 1.3
d ₂ =25+1.47(V-m)t 270 195 134 455 358 270 6% 548 d ₃ =1.47 V t 285 251 220 473 439 382 719 654	8.1 12.1 11.3	9.8 14.8 13.6 12.1
d ₃ =1.47 Vt 285 251 220 473 439 382 719 654	132 220 198 1	176 264 242 220
43,114,4	455 1028 876 (696 1460 1250 1028
	50/ IN 8 1000 G	863 1512 1400 1245 1735 3234 2892 2593
d=d,+d2+d3 643 512 398 1060 907 740 1595 1376	376 11060 1000 0	
IN THE CASE OF THREE-LANE HIGHWAYS da IS DROPPE		1733 3Z3C Z87Z Z593

When d = d,+d2 358 261 178 587 468 358 872 722 587 1248 1074 872 1724 1692 1248 IN THE CASE OF FOUR-LANE HIGHWAYS MINIMUM PASSING SIGHT DISTANCE IS LIMITED ONLY BY TOTAL SAFE STOPPING DISTANCE D3 (See Stopping Distance - Left)

NOTE: To calculate passing of two vehicles instead of one as illustrated above, the formulae for t and d_2 are modified as follows: $t = \sqrt{\frac{4.00}{4.00}}$, and $d_2 = 35 + 1.47 \text{ (V-m) } t$.

A.A.S.H.O. 1940 APPROVED CONCLUSIONS REGARDING MINIMUM SIGHT DISTANCES

				1					
DESIG	UMED N SPEED	PERCEPTION PLUS REACTION		COEFFICIENT OF FRICTION	FACTOR OF	SAFE COEFFICIENT	BRAKING DIST. ON LEVEL	TOTAL SAFE STOPPING DIST	
M.P.H. V	FT. PER SEC.	SECONDS	FEET D _R	SKIDDING	SAFETY	of Friction	Db = Va	FEET D _s = D _R + D _b	
10	14.67	3.5	51	0.68	1.25	0.55	6	57	
20	29.3	3,25	95	0.65	1.25	0.525	25	120	
30	44	3.0	132	0.62	1.25	0.50	60	192	
40	59	2.75	162	0.59	1.25	0.475	112	274	
<i>5</i> 0	73	2.50	183_	0.56	1.25	0.45	185	368	
60	68	2.25	198	0.53	1.25	0.425	283	461	
70	103	2.0	206	0.50	1.25	0.40	408	614	
80	117	1.75	205	0.47	1.25	0.375	570	775	
90	132	1.50	198	0.44	1.25	0.35	771	969	
100	147	1.25	183	0.41	1.25	0.325	1025	1208	

NOTES:

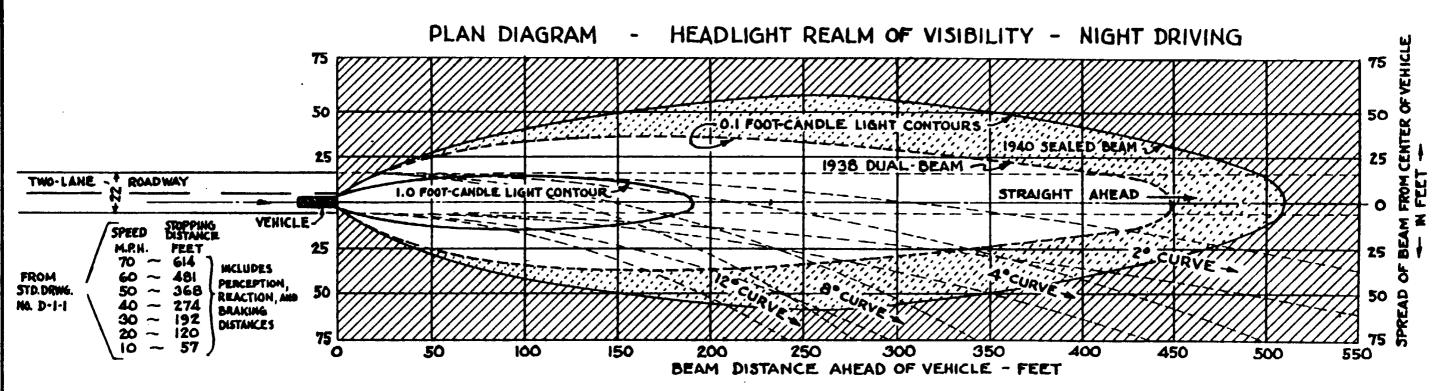
When a highway is on a grade the formula for braking distance is modified to result in the following: $D_b = \frac{v^2}{30(f \pm grade)}$ in which "grade" is percent of grade $\div 100$

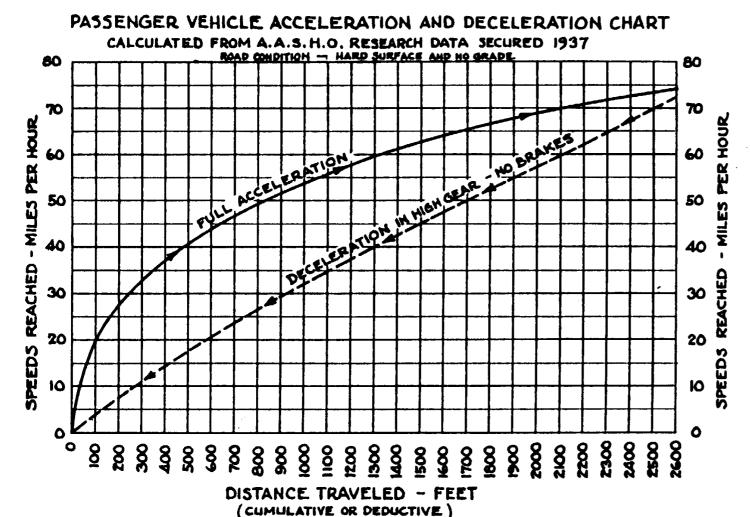
Passing minimums - Height of eye 4.5'- object 4.5' Non-passing minimums - Height of eye 4.5'- object 4 inch

The formulae and tabulations shown here with respect to Minimum Sight Distances and Safe Stopping Distances conform to A.A.S.H.O. Policy on Sight Distance
For Highways - 1940

The figures shown here apply to normal road surfaces including wetness but not to conditions of mud, snow, or ice.

ı	A33UMLU	MINIMUM	11411411	1 (7) 3010 303	II his Serres	
ı	DESIGN	NON-PASSING	POR TWO-LA	E HIGHWAYS	FOR THREE-LA	ME HIGHWAYS
ı	SPEED	SIGHT DIST.	DESIRABLE	ABSOLUTE	DESIRABLE	ASSOLUTE
į	M.P.H.	FEET	FEET	FEET		FRET
	30	200	600	500		s below based
	40	275	1100	900	on possing to	o vehicles.
	50	350	1600	1400	1100	900
i	60	475	2300	2100	1500	1300
ı	70	600	3200	2900	2000	1800
١						


ARIZONA STATE HIGHWAY DEPARTMENT REV. PLANS DIVISION


SAFE STOPPING DISTANCES
AND
MINIMUM PASSING DISTANCES
AS RELATED TO DESIGN SPEED

CALCULATED AND DRAWN MARCH 1941 STANDARD DRING. NO. BY LESLIE MEDOUGALL - HIGHWAY DENGMA

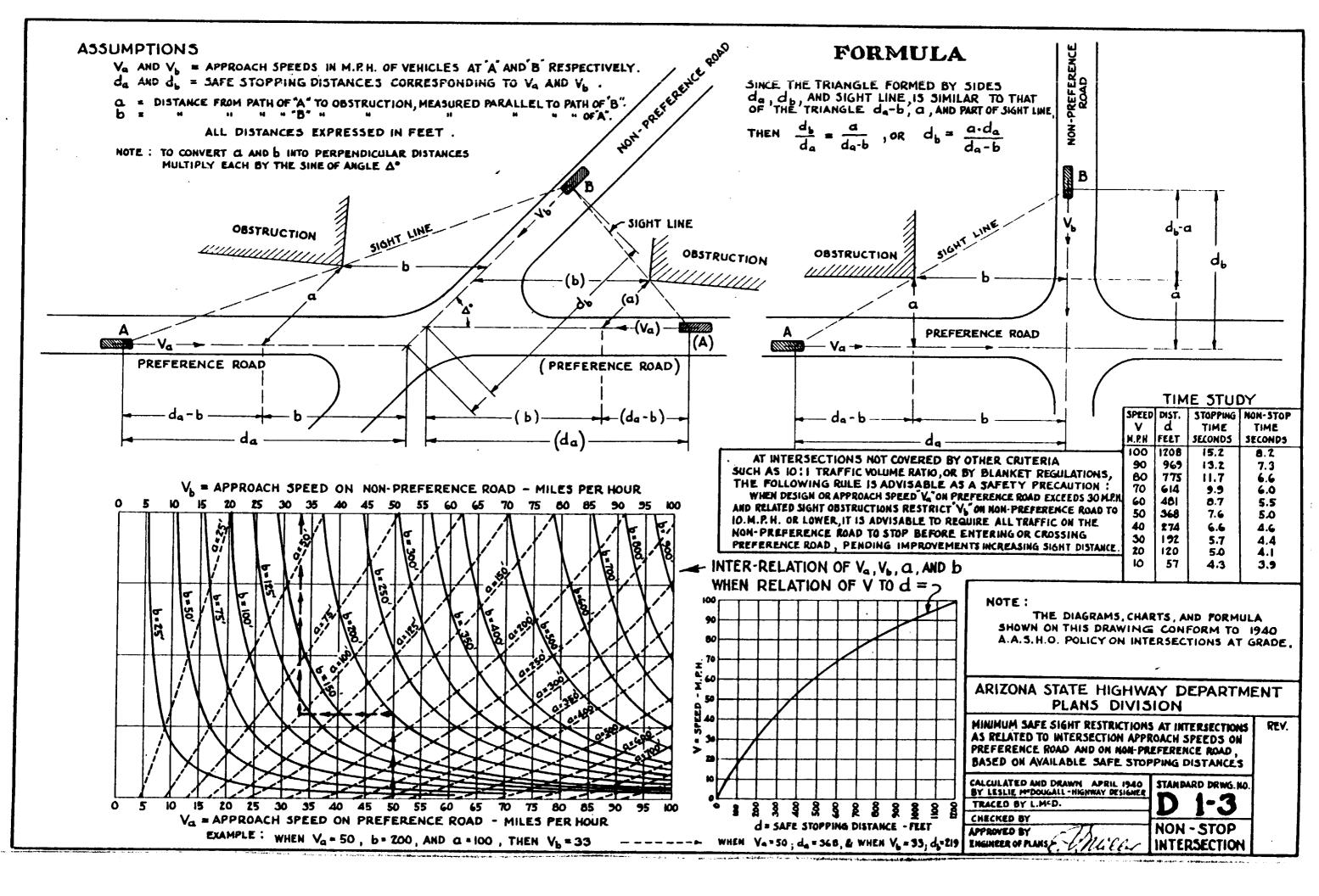
APPROVED BY ENGINEER OF PLANS WHILE

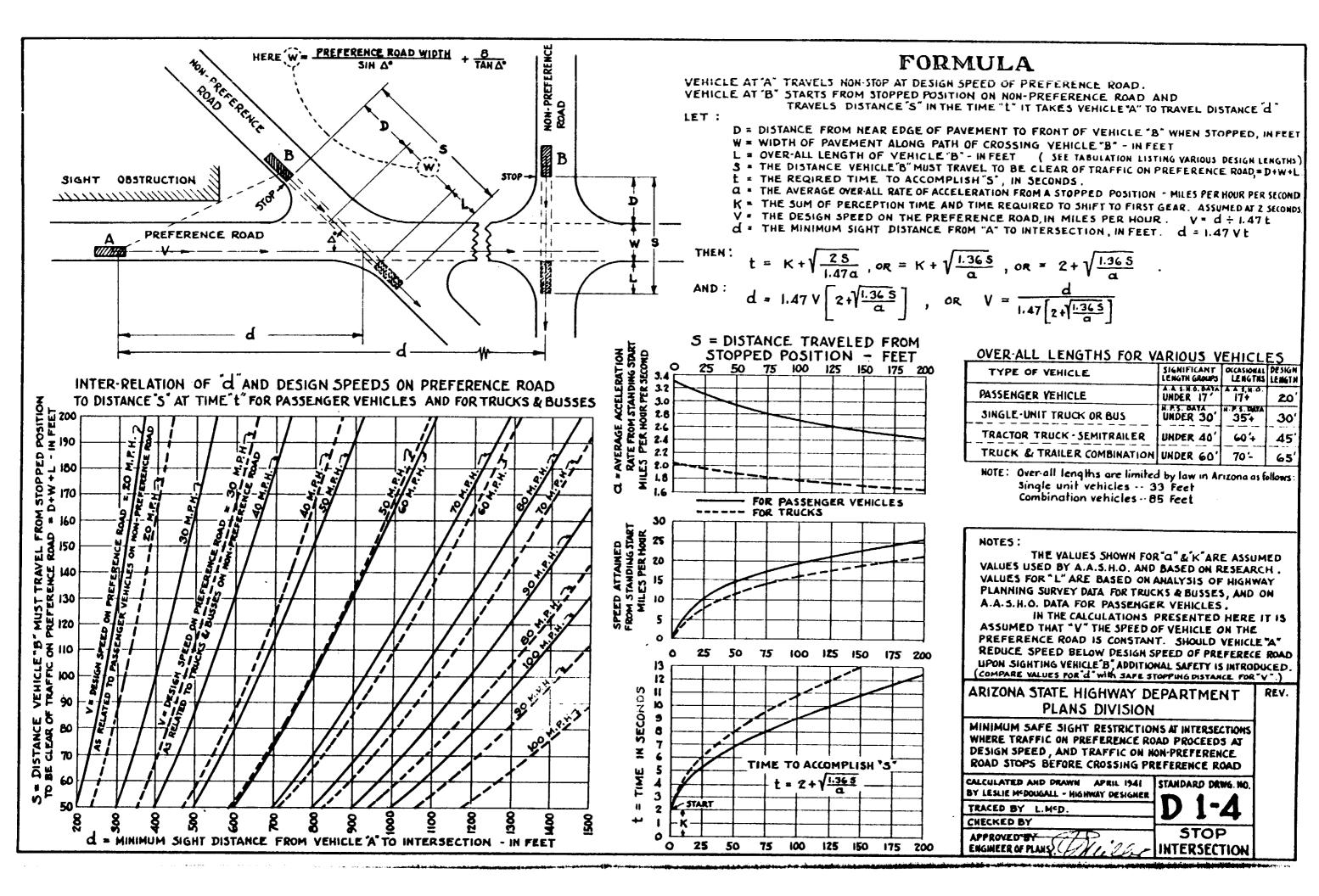
D 1-1

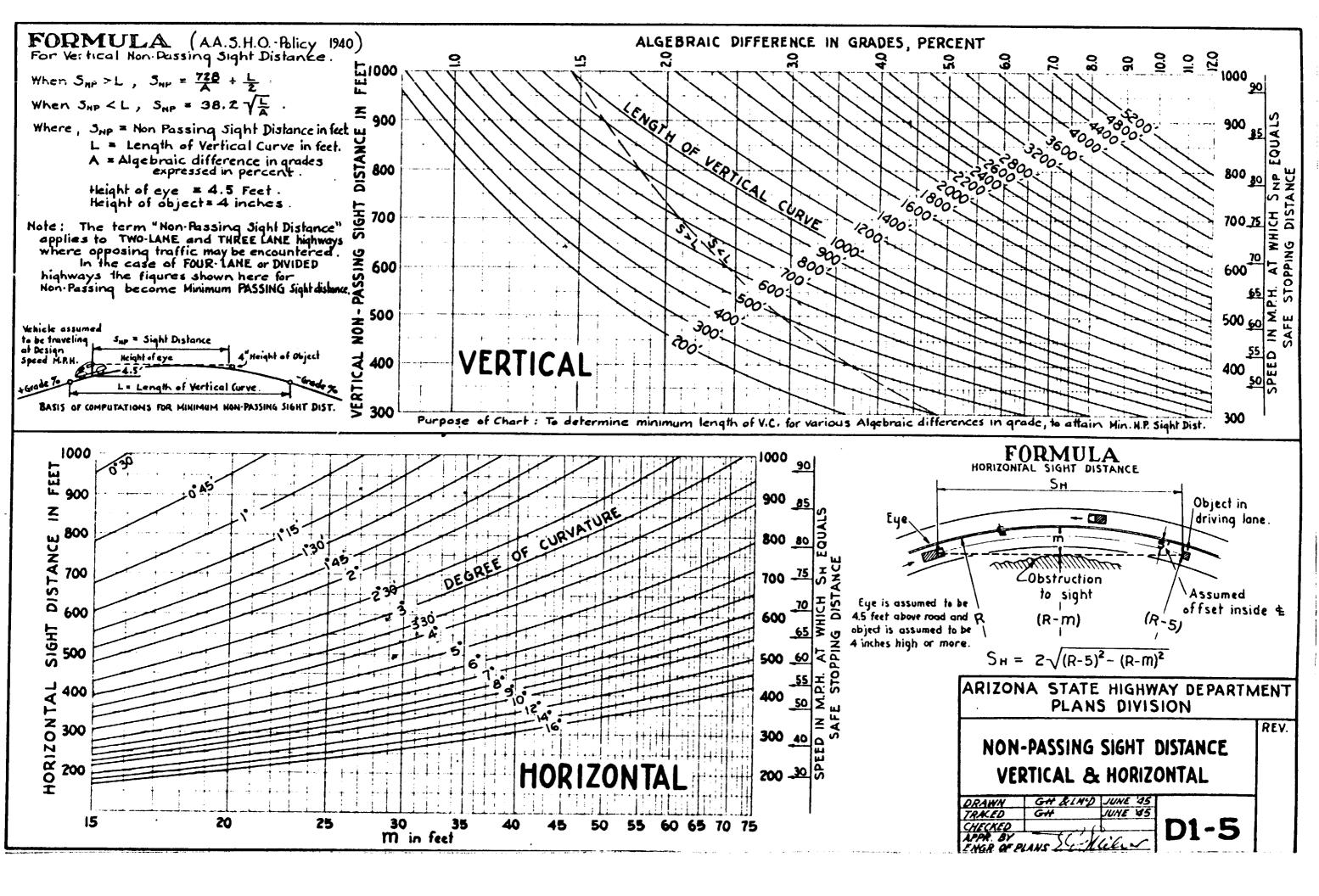
NOTES:

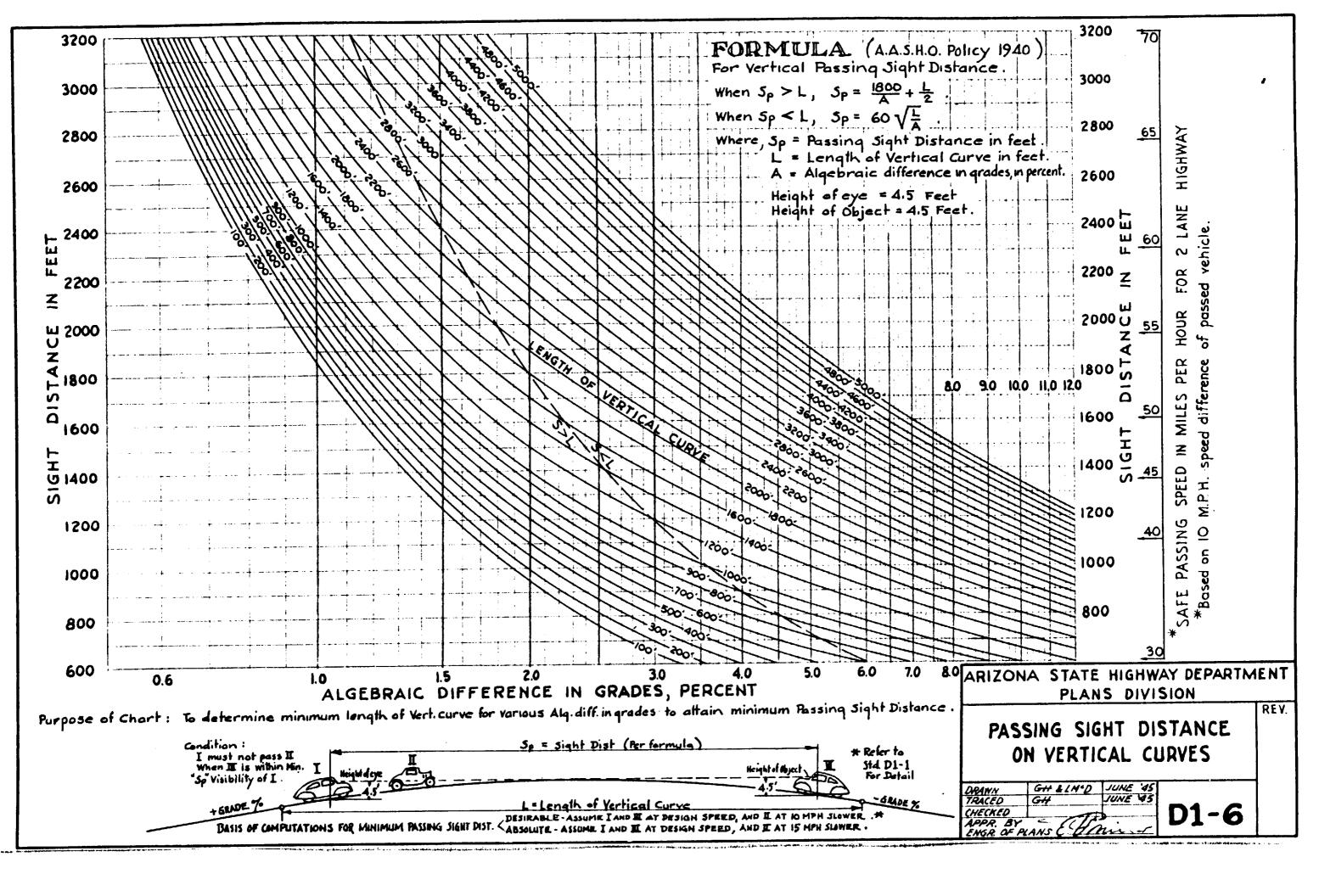
OBJECTS OUTSIDE OF THE O.I FOOT-CANDLE LIGHT CONTOUR ARE OBSCURE.

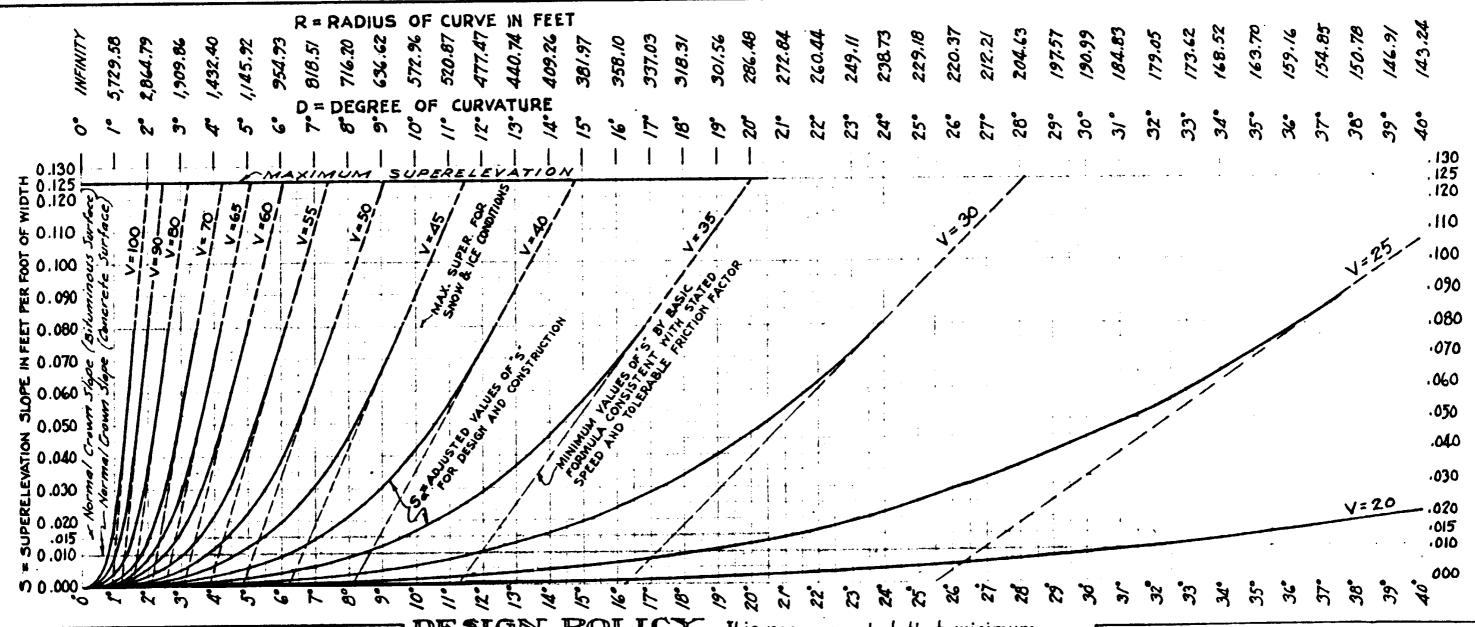
HEADLIGHT CONTOURS ARE BASED ON DATA CONTAINED IN A REPORT OF A COOPERATIVE INVESTIGATION BY COMMITTEE ON CURVATURE AND SPEED, HIGHWAY RESEARCH BOARD; COMMITTEE ON SPEED REGULATION, NATIONAL SAFETY COUNCIL; AND THE HIGHWAY RESEARCH STAFF, IOWA ENGINEERING EXPERIMENT STATION. PRESENTED AT HIGHWAY RESEARCH BOARD MEETING 1940.


GENERAL NOTE :


AVAILABLE RESEARCH DATA UPON WHICH THIS DRAWING IS BASED ARE MEAGRE. A MORE ABUNDANT AND EXACTING RESEARCH ON THESE SUBJECTS IS INDISPENSABLE TO GREATER ACCURACY IN CALCULATIONS.


ARIZONA STATE HIGHWAY DEPARTMENT PLANS DIVISION


ACCELERATION & DECELERATION CHART, AND DIAGRAM SHOWING VISIBILITY WITH HEADLIGHTS AT NIGHT CALCULATED AND DRAWN JUNE 1941 STANDARD DRWG. 10. BY LESLIE M-DOUGALL, HIGHWAY DESIGNER CHECKED BY


APPROVED BY ENGINEER OF PLANS WHILE.

			FUGAL FORCE TO BEGINNING DIS	
	BALL BANK EMANATION		NON-COMPENSATED FRICTION ANGLE	FRICTION FACTOR
V	ANGLE, B	ANGLE BR	$B_p = B_n - B_n$	F = Tan. By
zo	14.5	2.5	12.0	\$,210
25	12.5	2.0	10.5	. 185
Q 30	है।।इ	1.75	9.75	-6.170
2 35	₹ 10.5	1.5	9.0	160 % 150 %
₹40	\$ 10.0	1.5	<u> 6.5</u>	
g 45	9.5	7 1.25	8.25 8.0 7.15	.로 .145 신
₩ <u>50</u>	₹ 9.0	1.0	8.0	<u> 3 .140 </u> §
55 60	3 8.75	\$ 1.0.	§ 7.75	135
3 60 65	8.5 B.25	4 1.0 1.0	7.5	130 S
₹ 65 70	0.75 0.25 0.0 7.75	1.0	7.0	
75	7.75	1.0	6.75	120 3
80	7.5	1.0	6.5	£ .115 C
85	7.4	1.0	6.4	\$.112
90	7.3		6.3	011.
95	7.2	0.95	6.15	₹ .107
100	7.1	0.90	6.0	₹ .105

design policy It is recommended that minimum superelevation used for any curve be not less than 0.015 Per Foot, In the case of simple curve with tangents, transition between normal crown and minimum superelevated section to be accomplished in a minimum of 200' on langent. Superelevation slopes less than .015 to be used only in the case of reverse curves will spirals. In the case of spirals with tangents refer to Standard D2-2 for method of transition

FORMULA centrifugal ratio, or the slope at which centrifugal force is fully compensated = $\frac{.067 \, \text{V}^2}{.000}$ or .00001164 V^2D

Hence, the basic formula for superelevation 15:

5 = Superelevation slope in ft.perft. $5 = .00001164 Y^2D - F$ V = Velocity in miles per hour in which! D = Degrée of Curvature in degrees

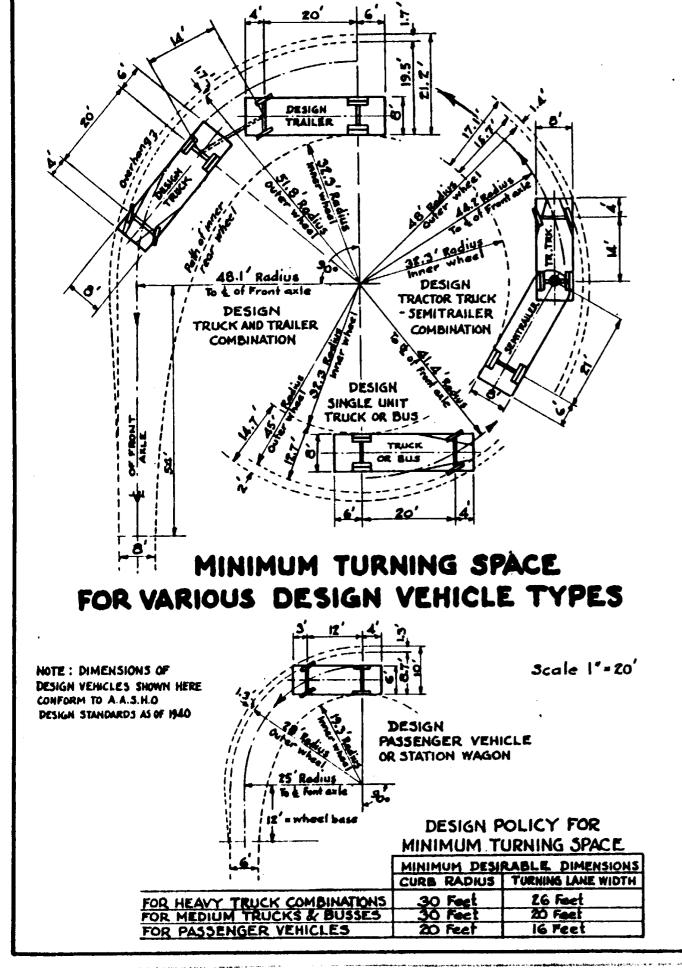
F = Friction factor (aspertable left) To compute the adjusted values of 5" for curvature of lesser degree than that which is indicated when S=.080, The following formula is applied: $S_a = .080 \frac{d^3}{D^3}, \text{a cubical curve} \quad \begin{cases} S_a = \text{Adjusted value of 5" at d} \\ D = \text{Degree of curvature where } S=.080 \\ d = \text{Degree of lesser curvature than } D \end{cases}$

NOTES

The figures for "Non-compensated centrifugal force toleration "as shown on table (lower left), are products of analysis and extension of Highway research data endorsed by A.A.S.H.O. and National Safety Council These figures are based on normal road surface conditions free of mud, snow or ice.

ARIZONA STATE HIGHWAY DEPARTMENT PLANS DIVISION

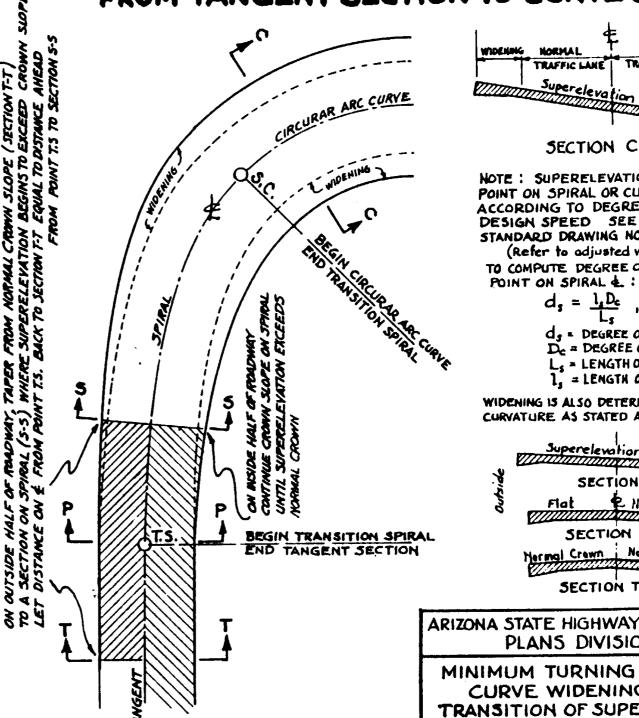
SUPERELEVATION


AS RELATED TO CURVATURE AT VARIOUS DESIGN SPEEDS

CALCULATED AND DRAWN APRIL 1941 BY LESLIE H-DOUGALL - HIGHWAY DESIGNER

STANDARD DRWG, NO

CHECKED BY APPROVED BY ENGINEER OF PLANS


D 2-1

DESIGN POLICY FOR HIGHWAY CURVE WIDENING

TO NORMAL TRAFFIC LANE WIDTHS ADD O.I FOOT PER LANE PER DEGREE OF CURVATURE . HO PAVEMENT WIDEHING REQUIRED FOR CURVES OF 5 DEGREES OR LESS .)

SPIRAL TRANSITION OF SUPERELEVATION AND WIDENING FROM TANGENT SECTION TO CURVE SECTION

NOTE: THE ABOVE INSTRUCTIONS WITH REFERENCE TO

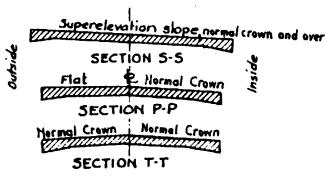
STARTS AT BEGINNING OF SPIRAL.

TAPERING SLOPES FROM CROWN TO SUPERELEVATED

IN THE CASE OF REVERSE CURVES SUPERELEVATION

NORMAL NORMAL TRAFFIC LANE | TRAFFIC LANE Superclevation slope SECTION C-C

NOTE : SUPERELEVATION SLOPE AT ANY GIVEN POINT ON SPIRAL OR CURVE IS COMPUTED ACCORDING TO DEGREE OF CURYATURE AND DESIGN SPEED SEE CHART AND FORMULA STANDARD DRAWING NO. D 2-1


(Refer to adjusted values of "5") TO COMPUTE DEGREE OF CURVATURE AT ANY

 $d_s = \frac{1_s D_c}{1_s}$ in which

d = Degree of Curvature on Spiral D. = DEGREE OF CIRCULAR ARC CURVE

L. = LENGTH OF SPIRAL FROM T.S. TO S.C. 1. = LENGTH ON SPIRAL FROM T.S. TO POINT

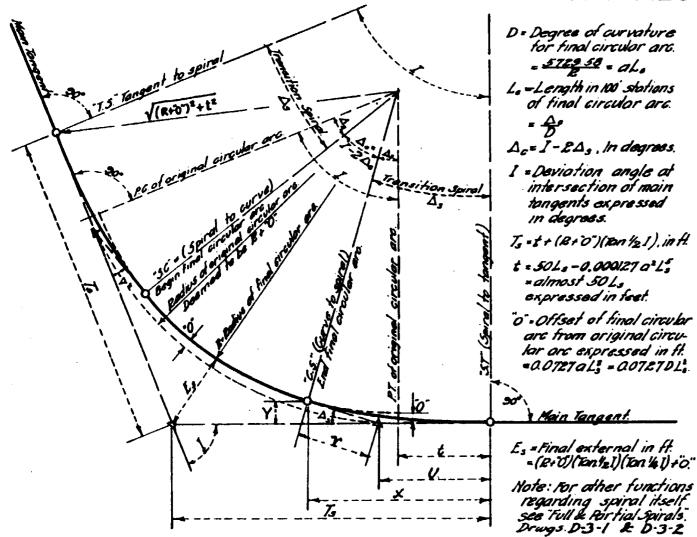
WIDENING IS ALSO DETERMINED BY DEGREE OF CURVATURE AS STATED AT THE TOP OF THIS SHEET

ARIZONA STATE HIGHWAY DEPARTMENT PLANS DIVISION

MINIMUM TURNING SPACE CURVE WIDENING AND TRANSITION OF SUPERELEVATION FROM TANGENT TO CURVE SECTION

CALCULATED AND DRAWN APRIL 1941 BY LESLIE MEDOUGALL - HIGHWAY DESIGNER CHECKED BY SECTION, APPLY ONLY TO CURVES FOLLOWING ATANGENT. APPROVED BY ENGINEER OF PLANS

STANDARD DRWG. NO.


REV.

DEGREE				MI MI	W4 D1	PD MAL			PEGREE	DESI/	GN SPE	ED IN	MILES	DER L	40tiR		DEGREE	DESIG	N SPEED MPH	ij	DEGREE	MPI
OF						ER HOU	70	x .	CURVE	65	60	55	50	45	40		CURVE	.35	30 25	1	CURVE	
CURYE	100	95	90	85	80	75	/	ķ	COMAS	63	100	33	20	45	40		43°	<u> </u>	,1278	7		 _`
								ત્રે	1500	 	 				.1294		42*		,1205	2	 	
				<u> </u>				2	14.30	 	 				.1200		41.		.1133	120		<u> </u>
20'	1				1		.1270	8	14.00						1107		40°		.1060			↓
4 15							.1224	Ö	13°30′						.1014		39°	i	.0987	2		1
10'							.1178	5	13.00,	 	 /				.0921		38° 37°		.0915		 	ļ
05'					<u> </u>	ļ	.1127	2.	12°30'		 				.0828		36*		.0773	10	72-	.1252
4.00					 	 	.1036	13	45'	+	 				.0689		35*		.0710	E	70°	11159
55'	į į					<u> </u>	.0984	3 3	30		1	1		.1261	.0645	İ	34.		.0651	ا في ا	68*	.106
3.45						.1265	.0937	6 6	15	 	 			. 1202	.0605		33°	 	.0595	Ĩ	64.	.097
40'			1	, ·		.1233	.0873	0 2	11.00,	 	 			.1143	.0544		32°	1	.0493	a	620	.076
35'	<u> </u>				 	.1174	.0842	3 · §	30'			•		.1025	.0491		30°	 	.0447	3	600	,0715
3°30′ 25′						.1069	.0742	3.5	15'	1	'			.0%5	.0458		290	1	.0404	3	58*	.064
20'						. 1010	,6485	J. 5	10.00					.0907	.0425		28*		1233 .0364	12	560	.058
3°15′					, 1271	, 0958	.0637	\$ 6	45'					.0848	.0393	1	27*		.1129 .0326	2	54°	.052
10'					1212	.0906	.0591	2.2	30' 15'			<u> </u>		. 6788 . 6728	.0363		250	 	.1024 .0271 .0919 .0259	16.	500	.0414
05'			ļ		. 1085	.0847	.0542	8 3	2'00'	 	 	 	.1219	,0670	,0309		24		.0814 .0229		48*	.036
3.00,				 	.1025	.0731	10462	8.8	<u> 45'</u>	†	 		. 1146	.0616	.0284	1 1/2	23*		.0715 .0201	3.	46.	032
-55°	i		i	.1260	.0958	.0666	.4421	13 %	30'				. 1074	,0565	.0260	1 3	22*		.0626 .0176] [44.	.028
2.45				. 1195	. 0877	.0611	.0386	3 5	15'	 	ļ		. 1001	.0517	.0238	4 4	210	10.51	,0545 ,0153	. 6	42.	.024
40'				. 1125	.0839	. 0559	.0353	1 £ ?	8°00		 	 	. 0928	.0471	.0217	00	190	.1251	.0470 .0/32	1 %	38*	.0217
35'			10000	. 1050	.0766	.0504	.0315	1, 2	45°	1		.1291	.4783	.0388	.0179	200	iá.	0967	.0343 .0097	b	36.	015
2°30'			,1257	.0982	.0632	.0416	.0263	16.	15'		•	,1203	.0704	.0351	.0162	5 6	17°	.0824	.0289 .008/	۶ ا	34*	.013
25']		. 1097	.0840	.0564	.0372	.0235	2.5	7*00'	 	 	. 1115	.0634	.0316	.0145	•	160	.0488	.0241 ,0068] . 2	32*	.010
20 31		1293	1501	.0766	.0508	.0335	1130.	12 %	45			. 1027	. 0568	.0283	.0/3/	ע א	150	,0567	10198 . 0056	1 4.	30*	.000
10'		.1210	.0946	.0687	.0456	.0300	.0190	8 6	30'	, [1	. 0737	.0507	.0253	,0116	3.3	14*	10461	,0161 .0045	2.	26.	.007
05'	145.4	.1115	. 0861	.0605	.0401	,0264	.0148	9.0	6.00	 	.1214	.0851	.0452	.0224	0092	9 5	13°	.0367	.0/29 .0036 .0/02 .0029	1 %	24.	.004
2°00′	. 1278	.1031	.0692	.0538	.0316	.0208	.0/3/	7 2	15	+	1105	.0667	.0352	.0175	1000/	2 2	ii•	.0224	.0078 .0022	Ž	220	.003
	.1080	.0853	.0577		.0273	1	.0114	1 6 8	30'		. 1005	.0584	.0308	, 3153	.007/	6.6	10*	.0168	,0059 ,0017] %	200	.002
1.45'		.6760	.0524	.0340	. 0239	.0157	.0022	3 6	15,		,0900	.0509	.0267	.0/33	, 006/	5 6	9•	.0/22	.0043 ,00/2	8	18.	,001
40'	.0894	.0661	.0455	.6313	,0208	.0137	.0086	10.5	5 00		.6794	.0459	.0231	.0115	.0053	2 2	8°	. 0086		\$	14.	.00/.
35'	.0785	.0560	.0386	. 0265	.0176	.0116	.0073	1 51.8	45'	1	.0681	.0376	.0198	.0098	.0045	2 %	7	. 0036	.0013 .004	12	120	.000
1°30'	.0570	.0479	,0330	.0227	.0151	.0084	,0063	19.2	15'		.0487	.0269	.0/42	.0060	,0033	5 8	50	. 002/	,0007 .0002		103	.000
20'	,0468	.0334	.0230	.0158	,0105	1 .	,0044	3.8	4'00		.0406	,0225	.0118	.0059	. 0027	1 4 8	4.	. 60//	.0004 .0001	1 • .	8*	.000
1° 15'	. 0389	.0277	191	.0131	.0087	,0057	.0036	22	45		.6935	.0185	,0097	.0049	.0022	3. 3	3.	,0005	.0002 .0000	1	6.	,000/
10'	. 0319	.0227	.0157	.0108	.007/	.0047	.0030	. 9	30		.0272	.0150	. 0079	.0039	.00/8		2.	.000/	.0000 .0000	32	4.	.000
<i>0</i> 5′	.0251	.0179	10/22	.004	.0056		.0023	6 6	13	.0381	.0218	.0025	.0063	,0032	100/4	1 1	0.	,0000	.0000 .0000	`	00	.000
100	.0199	.0142	.0028	.0067	.0065	,0023	.00/2	1 2 %	3°00°		.0171	.0073	.0038	.00/9	.00//	5 5	-	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	1	<u> </u>
55'	.0155	.0111	.0076	.0052	.0035	.00/7	.00//	12 3	30		.0099	.0055	. 0029	.00/4	.0007	9. 3.	1	ARIZO	na state hig			MEN
0.45	.0083	,0060	.0047	,0028	,0019	.00/2	.0000	23	15'	.0/26	.0072		.002/	.0010	.0005	XX	i		PLANS 1	NVISI	ON	
40'	.0060	.0043	.MES	,0020	.00/3	.4009	.0006	8 6	200	.0089		,0028	,00/5	_	,0003	1 %		644	DEDEL	CV	ATI	<u> </u>
354	. 0039	.0028	.0019	.00/3	.0009	,0006	.0004	3, 5	45	. 1	. 0034		.0010	.0005	.0002		İ	Ju	PEREL	.EV		Or
0°30'	. 0025	.0018	.00/2	.0000	.0006	.0004	,0002	7.4	30		.002/	.00/2	.0006	.0003	,000/	20			TABL	ES		
25'	.00/5	,0011	.007	.0005	.0007	.0002	.000/+	ر § اا	1800	.0082	,00/2	.0007	.0004	.002	.0000	9 3	I	\\\\\			MARAF	· •
20'	.0007	.0005	.004	.0002	.0002	.000/	,000/-	EE	1°00		.0003	.0004	,000/	.0000	.0000	6 2.	1 201	YLLE	MENT OF	SIA	INUAL	(N)
0-15'	.000/	.0002	.0002	.0001	.000	,6000	,0000	` &	30	. 1	.000/	,0000	,0000	.0000	.0000	5.3	CALCUI	ATED A	ND DRAWN JUN	L 1947	STAND	ARD DW
10'	1	.0000	.0000	. 6000	.0000	.0000	.0000	قِ کُو ا	15	0000	.0000	1	,0000	.0000	.0000	PP	SY LE	STIE W	DOUGALL - HWY	PESIGNER	4.	2
0° 00'	. 0000	.0000	.0000	.0000	.0000	.0000	.0000	\	0.00			.0000	.0000	.0000	.0000	lŧ	CHECK	VED BY	Ett		-41)	7 -

REV.

HWY PLANNING ENGRA HILLER

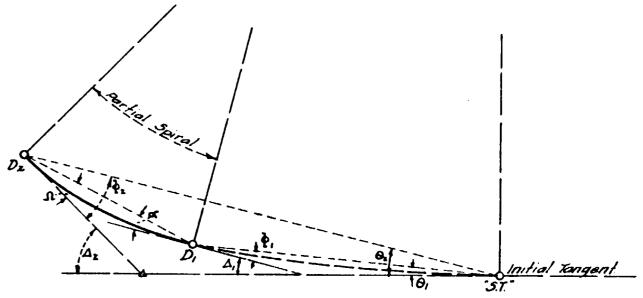
CIRCULAR CURVE WITH TRANSITION SPIRALS

TO DETERMINE THE PROPER LENGTH FOR TRANSITION SPIRAL WHEN <u>a</u> IS UNKNOWN.

Ls = Length of spiral expressed in 100 stations. V . Velocity in miles per hr. - Design Speed of road

R = Radius in feet of final circular are. = 5729.50 + D

L, = OOISO V' = D, Then a = D = 572958 When based on design speed


The solution of Ls as given in above equation will give alength of spiral. which will compensate centrifugal acceleration for the design speed with a safe skid resistance coefficient accounted for.

The value of L. may be increased slightly to provide a more desirable value for 'a" for the sake of simplicity in computations.

a = Rate of change in degree of curvature per 100' along spiral = 4

Note: Regardless of above formula for finding Ls it is recommended that Ls be no less than 1.5, or 150 feet minimum transition spiral length.

PARTIAL TRANSITION SPIRAL

a = Rate of change in degree of curvature along spiral per 100' = $\frac{D}{L}$ = $\frac{D}{L}$. Li-Length of full spiral expressed in 100' stations from D, to "5.T." D " D. to ST = D=

Lz-Li = Length of partial spiral expressed in 100' stations from Dz to Di = Dz-Di.

 $D_1 = Culminating degree of curvature at point <math>D_1 = aL_1 = D_2 - a(L_2 - L_1)$.

" " $D_2 = aL_2 = D_1 + a(L_2 - L_1)$.

 $\alpha = \frac{1}{2}aL_{1}(L_{z}-L_{1}) + \frac{1}{6}a(L_{z}-L_{1})^{2} = \frac{1}{2}D_{1}(\frac{D_{z}-D_{1}}{a}) + \frac{1}{6}a(\frac{D_{z}-D_{1}}{a})^{2}$, expressed in degrees $\Omega = \frac{1}{2} a l_z (L_z - L_i) - \frac{1}{6} a (L_z - L_i)^2 = \frac{1}{2} D_z (\frac{D_z - D_i}{a}) - \frac{1}{6} a (\frac{D_z - D_i}{a})^2$

Note: See full transition spiral for functions &, O. and A Ref. to Drawg. D-3-2.

Instruction to transitman to turn partial spiral deflections & and A. Example: if a: 1/3 and D, is 200', and Dz is 3'00', length between is 300'.

To find &; Normal deflection for circular curve D. for 300', or h. D.(l.-l.)

Plus & deflection for (a = /s)

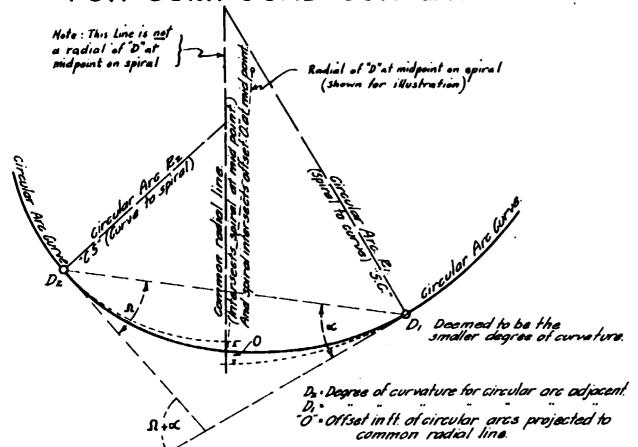
spiral for length 300', or h. a.(l.:L.)

= 3°00 + 0°30' = 3°30', Answer. To find A: Normal deflection for circular

Curve D. for 300', or h.D. (1.1.1)
Minus O deflection for (a. 45) Spiral for length 300', or 16 a(L.-L.)2 = 4°30'-0°30' = 4°00' Answer.

ARIZONA HIGHWAY DEPARTMENT PLANS DIVISION

REV.


JUNE 1541

CIRCULAR CURVE WITH TRANSITION SPIRAL AND PARTIAL TRANS. SPIRAL

COMPILED BY LESLIE ME DOUGALL '37 TRACED BY N.S

DRAWING NO. APPROVED BY KH. W. July 1938
APPROVED
LINES OF AMES & AME LO

INTERMEDIATE SPIRAL TRANSITION FOR COMPOUND CURVES.

Degree of curvature at any point an spiral shown above • Pp. $D_p = D_z - (a \text{ times length in 100' stations from } D_z \text{ to point}) = D_t + (a \text{ times length in 100' stations from } D_t \text{ to point}).$

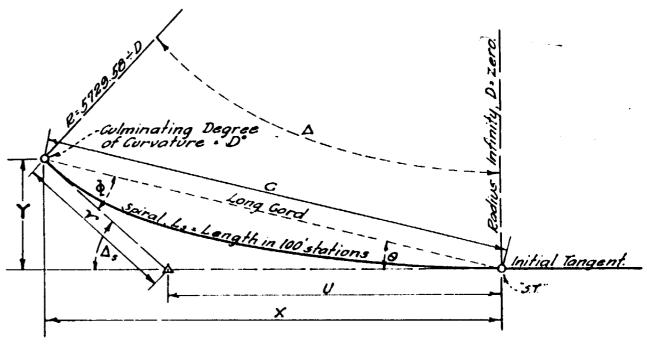
Note: Above spiral transition is basically the same as "Partial Transition Spiral" Drwg. D.3.1 INSTRUCTIONS FOR DETERMINING BASIC DATA.

First determine value of a, with V the design speed in M.P.H.

a 578950 = Max rate of change in degree of curvature per 100' along spiral.

Note: Above value for a may be <u>decreased slightly</u> for convenience of computations, this corrected value to be used in equations below and accepted as the value of a as a constant.

Then "0" = 0.0727 (D=-D,) (P=-Di)=


 $\Lambda - \frac{1}{2} D_2 \left(\frac{D_2 - D_1}{D_1} \right) - \frac{1}{6} a \left(\frac{D_2 - D_1}{D_1} \right)^2$. Deflection angle at D_2 to D_1 in degrees

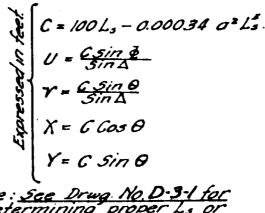
« = 1/2 D, (Da-De) + 1/6 a (D2-De)2 = " " D, to D3 "

Length of spiral from Da to D in 100' stations = Da-Di

Note: To figure deflection angles, or length, for any point on above spiral simply substitute the value of Dp in place of Dz or Di.

FULL TRANSITION SPIRAL.

D = Gulminating Degree of curvature = aL.


Ls = Length of full spiral measured along spiral curve, expressed in 100' stations = D
Note: For reasonably accurate field measurements along spiral length
25' maximum chord lengths are recommended.

a = Bate change in degree of curvature along spiral per 100' = P

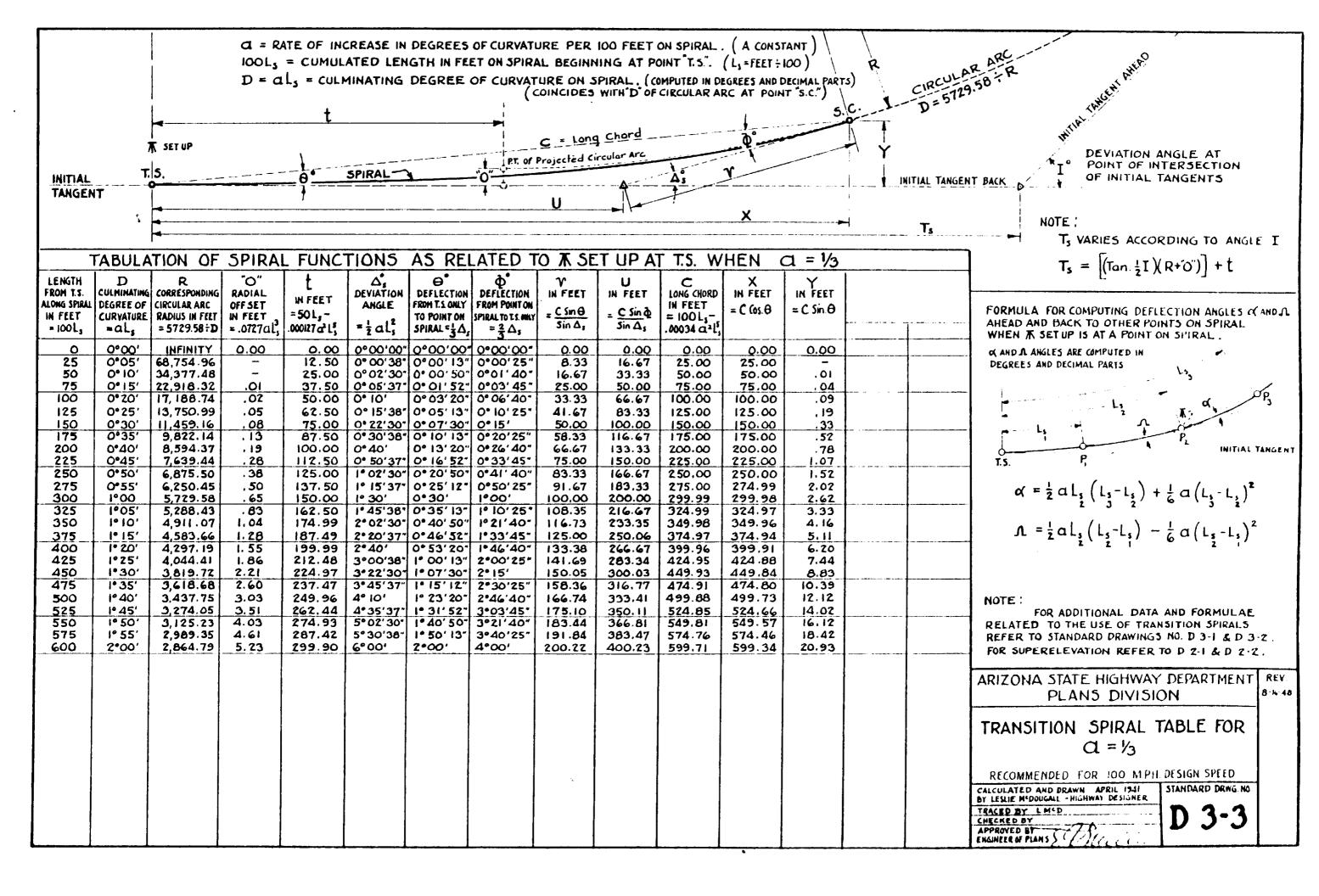
As = Central or deviation angle of full spiral, expressed in degrees = 1/2 of = 1/2 DL = 1/2 D

0 - Deflection angle of full spiral at "ST" end = 1/3 A = 1/6 aL2 = 1/6 DL3 1/6 P2 = 1/2 Q.

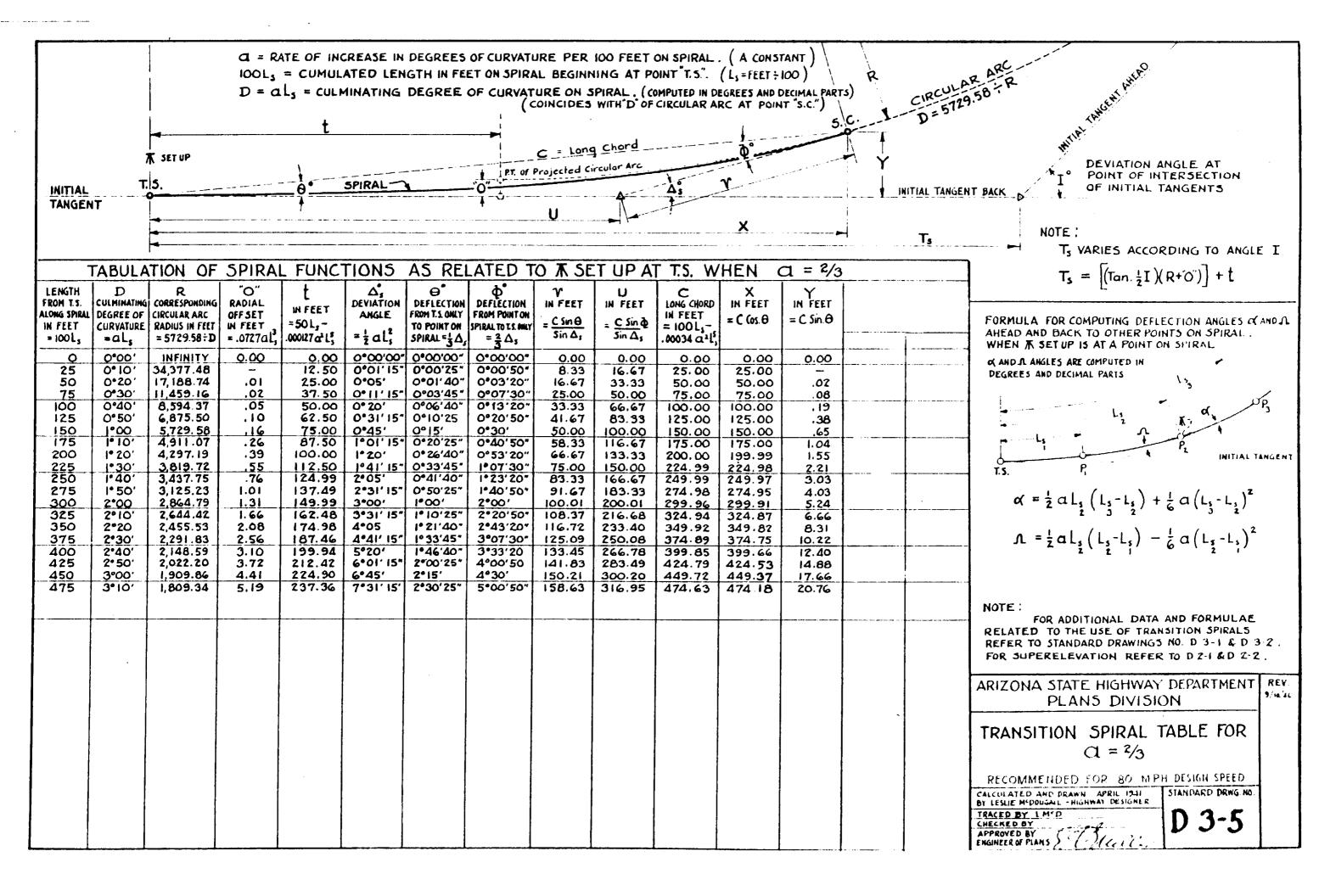
\$ - Deflection angle of full spiral of culmination and $\frac{2}{3}\Delta = 20 = \Delta - 0$

Note: See Drug No. D.3-1 for determining proper Ls or a li neither is given.

ARIZONA HIGHWAY DEPARTMENT. PLANS DIVISION


SPIRAL TRANSITION **FOR** COMPOUND CURVES AND FULL TRANSITION SPIRAL

CHARLED BY LESLIE ME DOUGALL '37. TENCED BY NS CHECKED BY MH.W.


DRAWING NO.

REV.

JIME 198

