

PERFORMANCE TESTING OF HPC ON SUNSHINE BRIDGE

Final Report 658

Prepared by:

Tarif M. Jaber Jaber Engineering Consulting, Inc. 10827 E. Butherus Drive Scottsdale, Arizona 85255

September 2009

Prepared for: Arizona Department of Transportation in cooperation with U.S. Department of Transportation Federal Highway Administration The contents of the report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Arizona Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names which may appear herein are cited only because they are considered essential to the objectives of the report. The U.S. Government and The State of Arizona do not endorse products or manufacturers.

This report can also be found on our web site...

http://www.dot.state.az.us/ABOUT/atrc/Publications/Publications.htm

		Tech	nical Report Docι	Imentation Page					
1. Report No.	2. Government A	ccession No.	3. Recipient's Ca	atalog No.					
FHWA-AZ-09-658									
4. Title and Subtitle			5. Report Date September	2009					
Performance Testing c	of HPC on Sunshine Bridge	e	6. Performing Organization Code SPR-658						
7. Author Tarif M. Jaber, P.E. FACI				rganization Report No. tt JEC 64-107					
9. Performing Organization Nam	e and Address		10. Work Unit N	10. Work Unit No.					
			11. Contract or 0 T0402A00	Grant No. 002 SPR 658					
12. Sponsoring Agency Name an Arizona Department of 206 S. 17 th Avenue Phoenix, AZ 85007			13.Type of Repo	ort & Period Covered					
Project Manager: Chris	st Dimitrplos		14. Sponsoring	Agency Code					
15. Supplementary Notes Prepared in cooperation	on with the U.S. Departme	nt of Transportatio	n, Federal Highwa	y Administration					
16. Abstract									
replaced on August 24, 20 concrete (HPC), reinforced This report documents the	The deck of the Sunshine Bridge overpass, located westbound on Interstate 40 (I-40) near Winslow, Arizona, was replaced on August 24, 2005. The original deteriorated concrete deck was replaced using high performance concrete (HPC), reinforced with low-carbon, low-corrosion reinforcing steel. HPC is a new technology in Arizona. This report documents the first survey of the deck's condition and recommends that ADOT embark on a monitoring program to evaluate the performance of HPC.								
The ADOT monitoring prog and testing to measure and December 18, 2007, which	d document HPC performa	ance. The survey p	resented in this rep	ort was performed on					
Visual observation and tes	t results show the following	g:							
 The concrete has The average air-vence The deck surface 	 The concrete has significantly slowed down and/or prevented chloride penetration through the bridge deck. The average air-void parameters of HPC do not meet the industry standards for frost resistant concrete. 								
HPC appears to perform v system. There were no sig				mmended air void					
It is recommended that bridge deck monitoring and concrete testing be done annually or biennially throughout the bridge's estimated 50-year service life to confirm long-term performance of HPC. It is also recommend that the next monitoring survey be initiated and conducted before the end of the year 2009.									
17. Key Words High performance concret carbon steel, chloride peri penetration, air void parar cracking, HPC monitoring of HPC	meability, rapid chloride neters, concrete , long term performance	18. Distribution State Document is ava U.S. public throu National Technic Service, Springfie 22161	ilable to the gh the al Information eld, Virginia	23. Registrant's Seal					
19. Security Classification	20. Security Classification	21. No. of Pages	22. Price						
Unclassified	Unclassified	13							

SI* (MODERN METRIC) CONVERSION FACTORS	IMATE CONVERSIONS TO SI UNITS APPROXIMATE CONVERSIONS FROM SI UNITS	Multiply By To Find Symbol Symbol	LENGTH	25.4 millimeters mm mm millimeters 0.039 inches in	0.305 meters m m meters 3.28 feet ft	· meters m meters 1.09	1.61 kilometers km km kilometers 0.621 miles mi	AREA	645.2 square millimeters mm ² Square millimeters	0.093 square meters m ² m ² Square meters 10.764 square feet	u.ooo square neces ni ni oquare neces n.r.eo square yarus 0.405 bertares ha ba bactares 2.47 acres	2.59 square kilometers km^2 km^2 Square kilometers 0.386 squ		es 29.57 milliliters mL mL milliliters 0.034 fluid ounces fl oz	3.785 liters L L L liters 0.264 gallons	0.028 cubic meters m ³ m ³ Cubic meters 35.315 cubic feet	0.765 cubic meters m°	00L shall be shown in m ³ .	MASS	28.35 grams g g grams 0.035 ounces	0.454 kilograms kg kilograms 2.205 pounds ib 000lb) 0.907 megagrams mg Mg megagrams 1.102 short tons (2000lb) T (or "metric ton") (or "f") (or "metric ton")	~	5(F-32)/9 Celsius temperature °C °C Celsius temperature 1.8C + 32	or (F-32)/1.8	<u>ILLUMINATION</u>	10.76 lux x x ux 0.0929	3.426 candela/m ² cd/m ² cd/m ² candela/m ² 0.2919 foot-Lamberts	ICE AND PRESSURE OR STRESS	4.45 newtons N N newtons 0.225 poundforce	per 6.89 kilopascals kPa kilopascals 0.145 poundforce per Ibf/in ²
SI* (MOL	APPROXIMATE CONVERSIONS TO SI	When You Know Multiply By	LENGTH			0.914		AREA		0.093		iles 2.59	VOLUME			0.028	cubic yards 0.765 cul	NOTE: Volumes greater than 1000L shall be sho	MASS	28.35		TEMPERATURE (exact)	5(F-32)/9	temperature or (F-32)/1.8	ILLUMINATION	10.76	3.426	FORCE AND PRESSURE OR STR	4.45	
		Symbol		. <u>c</u>	ft	yd	Ш		in²	ff ²	n ye	mi ²		fl oz	gal	ft ³	yď			Z :	≗⊢		Ļ۲			۔ ار	F		lbf	lbf/in ²

Table of Contents

Scope of Work 2 Work Performed 3 1. Field Sampling 3 2. Field Observation 3 3. Laboratory Testing 3 a. Rapid chloride permeability 3 b. Air void analysis 4 c. Chloride ion content 4 Findings 5 Recommendations 5 References 6	Executive Summary	1							
Work Performed31. Field Sampling32. Field Observation33. Laboratory Testing3a. Rapid chloride permeability3b. Air void analysis4c. Chloride ion content4Findings5Recommendations5References6	Introduction	2							
Work Performed31. Field Sampling32. Field Observation33. Laboratory Testing3a. Rapid chloride permeability3b. Air void analysis4c. Chloride ion content4Findings5Recommendations5References6	Project Background2								
1. Field Sampling 3 2. Field Observation 3 3. Laboratory Testing 3 a. Rapid chloride permeability 3 b. Air void analysis 4 c. Chloride ion content 4 Findings 5 Recommendations 5 References 6									
2. Field Observation	Work Performed	3							
3. Laboratory Testing	1. Field Sampling	3							
a. Rapid chloride permeability 3 b. Air void analysis 4 c. Chloride ion content 4 Findings 5 Recommendations 5 References 6	2. Field Observation	3							
a. Rapid chloride permeability 3 b. Air void analysis 4 c. Chloride ion content 4 Findings 5 Recommendations 5 References 6	3. Laboratory Testing	3							
b. Air void analysis	a. Rapid chloride permeability	3							
Findings5 Recommendations	b. Air void analysis	4							
Recommendations	c. Chloride ion content	4							
References	Findings	5							
References									
	Appendix								

LIST OF TABLES

Table 1 - Cores Information	3
Table 2 - RCP Results	4
Table 3 - Air Void Analysis Results	4
Table 4 - Chloride Ion Content Results	
Table 5 - ASTM C1202	

APPENDIX

LIST OF PHOTOS

Photo 1- Coring location A	7
Photo 2- Coring location A	7
Photo 3- Coring location B	
Photo 4- Coring location C	
Photo 5- Concrete cores	

EXECUTIVE SUMMARY

The deck of the Sunshine Bridge overpass, located westbound on Interstate 40 (I-40) near Winslow, Arizona, was replaced on August 24, 2005. The original deteriorated concrete deck was replaced using high performance concrete (HPC), reinforced with low-carbon, low-corrosion reinforcing steel. HPC is a new technology in Arizona. This report documents the first survey of the deck's condition and recommends that ADOT embark on a monitoring program to evaluate the performance of HPC.

The ADOT monitoring program should consist of visual observation of the deck condition and concrete sampling and testing to measure and document HPC performance. The survey presented in this report was performed on December 18, 2007, which represents the first field survey since concrete deck placement.

Visual observation and test results show the following:

- 1. The concrete has a very low chloride permeability.
- 2. The concrete has significantly slowed down and/or prevented chloride penetration through the bridge deck.
- 3. The average air-void parameters of HPC do not meet the industry standards for frost resistant concrete.
- 4. The deck surface appears to have minimal wear from snow removal equipment and shows no signs of concrete cracking.

HPC appears to perform very well during the monitoring period despite the lower than recommended air void system. There were no signs of deterioration or adverse field conditions.

We recommend that bridge deck monitoring and concrete testing be done annually or biennially throughout the bridge's estimated 50-year service life to confirm long-term performance of HPC. We also recommend that the next monitoring survey be initiated and conducted before the end of the year 2009.

INTRODUCTION

The purpose of this work was to collect information on the performance of the high performance concrete (HPC), placed on the deck of the Sunshine Bridge overpass on I-40. The bridge deck was constructed on August 24, 2005, as a pilot project under ATRC Project SPR 538 to evaluate the feasibility of using HPC technology on bridges in Arizona.

PROJECT BACKGROUND

Work under SPR 538 consisted of replacing the deteriorated concrete deck slab with a durable cast-in-place HPC deck. The HPC was designed to achieve four main objectives:

- Higher durability under freeze-thaw exposure.
- Lower permeability to salt penetration.
- Lower shrinkage potential.
- Reduced steel corrosion.

Quality control and quality assurance programs were implemented during concrete placement to collect and document information regarding concrete properties at the time of placement. Concrete sampling and testing were performed during construction to measure the in-place properties of HPC. This work is a part of a long-term program to monitor the performance of HPC during service life to:

- 1. Establish a baseline for concrete properties in the field.
- 2. Compare the baseline of concrete properties against those measured during concrete placement.

The baseline established in this work will be used as a benchmark for evaluating concrete properties and performance during the service life of the concrete bridge deck.

Jaber Engineering Consulting, Inc. (JEC) has completed the work on this project according to the scope of work outlined in the project statement dated December 7, 2007.

SCOPE OF WORK

- 1. Visually examine the bridge deck and barriers and document any cracking. If cracking is found, identify the type and cause.
- 2. Obtain concrete cores from the deck and measure the following:
 - a. *Rapid chloride permeability* (RCP) according to ASTM 1202 *Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration.* (ASTM 2009)
 - b. *Air voids* by performing an analysis according to ASTM C 457-06 *Method for Microscopical Determination of Parameters of the Air Void System in Hardened Concrete*. (ASTM 2006)
 - c. *Chloride ion content* (CIC) according to ASTM 1218 *Method for Water-Soluble Chloride in Mortar and Concrete.* (ASTM 2002).
- 3. Measure the extent of chloride penetration through the concrete bridge deck.

WORK PERFORMED

1. Field Sampling

JEC retained Western Technologies, Inc. (WTI) to perform concrete coring. WTI used ground penetrating radar (GPR) instruments to locate the reinforcing steel. Concrete coring locations were selected to avoid any damage to the reinforcing steel during coring operations.

On December 18, 2007, concrete from the bridge deck was sampled at three locations and at least four cores were taken at each location. A schedule of the concrete core samples is presented in Table 1 and coring is shown in photos 1 through 5 in the Appendix. All concrete samples were less than 6 inches long to avoid penetration of the full depth of the deck. A non-shrink grout was used to patch all cored areas.

CORE INFORMATION									
AREA	CORE LOCATION	# CORES	DESIGNATION						
Α	14' S. of the north barrier and 23' W. of the E. end of the deck	5	A1, A2, A3, A4, A5 ¹						
В	12' S. of the north barrier and 94.5' E. of the W. end of the deck	4	B1, B2, B3, B4						
С	12' S. of the north barrier and 23' E. of the W. end of the deck	4	C1, C2, C3, C4						

Table 1 - Cores Information

¹ Core A5 was damaged during coring and was discarded

2. Field Observation

JEC made a visual observation of the concrete deck and its surface. There were no signs of deterioration, scaling, cracking, or similar adverse conditions. The deck surface showed light markings from snow removal blades and equipment.

3. Laboratory Testing

ADOT retained one sample from each location to perform an in-house RCP testing. ADOT samples were marked A1, B1, and C1. The remaining samples were sent to WTI and Construction Technology Laboratory (CTL) in Skokie, Illinois, for testing.

a. **Rapid chloride permeability** testing was performed by CTL using cores number A2, B2, and C2. For each core/location, (A, B, and C) the top ³/₄ inch of the concrete core was removed and discarded. A 2-inch thick sample was cut and labeled "TOP." Another 1-inch thick was cut and discarded and a 2-inch thick sample was cut and labeled

"BOTTOM." The top and bottom samples for each location were tested and their average represented the RCP value at that location. Results are presented in Table 2.

RCP TEST RESULTS ASTM C 1202, COULOMB							
SAMPLE	CORE A2	CORE B2	CORE C2	AVERAGE			
TOP ¹	333	517	574				
BOTTOM ²	204	273	193				
AVERAGE	269	395	384	349			

Table 2 - RCP Results

¹ The top of this 2-inch sample is ³/₄ inch from the top of the corresponding core/deck surface.

² The top of this 2-inch sample is 3³/₄ inch from the top of the corresponding core/deck surface.

b. Air void analysis was performed by CTL using samples number A3, B3, and C3. Results are presented in Table 3.

AIR VOID PARAMETERS ASTM C 457-06							
LOCATION SAMPLE ID	TOTAL AIR CONTENT (A)	SPACING Factor	Specific Surface	VOIDS PER INCH	LENGTH OF TRAVEL	NUMBER OF POINTS	
SAMPLE ID	(%)	(in)	in^2/in^3		(in)		
CORE A3	3.4	0.013	477	4.1	90	1351	
CORE B3	6.2	0.012	378	5.8	90	1350	
CORE C3	9.3	0.006	509	11.9	90	1351	
AVERAGE	6.3	0.010	455	7.3	90	1351	
RECOMMENDED ⁽¹⁾	6.5 ± 1.5	< 0.008	>600	1.5 TIMES A	90		

Table 3 - Air Void Analysis Results

¹ Fr. Ch. 4, Section 4.4, Table 4.4.1 of *Building Code Requirements for Structural Concrete*. (ACI 2002a)

c. **Chloride ion content** testing was performed by Motzz Laboratory of Tempe, Arizona, (a sub-consultant to WTI) using samples number A4, B4, and C4. Results are presented in Table 4.

Table 4 - Chloride Ion Content Results

CHLORIDE ION CONTENT ASTM C 1218 - 02									
REGION FROM	COR	Е А4	Cori	e B4	COR	e C4	AVERAGE		
SURFACE (IN)	(%)	(LB)	(%)	(LB)	(%)	(LB)	(%)	(LB)	
0 то 1	0.1800	0.2700	0.2100	0.3150	0.2000	0.3000	0.1967	0.2950	
1 то 2	0.0120	0.0180	0.0140	0.0210	0.0074	0.0111	0.1113	0.1670	
2 то 3	0.0086	0.0129	0.0096	0.0144	0.0062	0.0093	0.0081	0.0122	
3 то 4	0.0096	0.0144	0.0096	0.0144	0.0087	0.0131	0.0093	0.0014	
4 то 5	0.0089	0.0134	0.0080	0.0120	0.0060	0.0090	0.0076	0.0115	
5 то 6	0.0092	0.0138	0.0065	0.0098	-	-	0.0079	0.0118	
BASE CONCRETE [*]	0.0087	0.0131	0.0087	0.0131	0.0087	0.0131	0.0087	0.0131	
ACI THRESHOLD ⁽¹⁾	1.3	2 LBS	1.3	2 LBS	1.3	2 LBS	1.3	2 LBS	

*Base concrete values were measured during concrete deck placement - August 24, 2005

¹ Fr. Guide for Concrete Highway Bridge Deck Construction. (ACI 2002b).

FINDINGS

The average RCP value for concrete at all three locations was 349 coulombs. The average RCP for the concrete at the time of placement was 984 coulombs. This indicates that the concrete has gained significant resistance to chloride permeability since placement. This is attributed mainly to the effect of fly ash and silica fume on concrete. The concrete is currently considered to have very low chloride penetrability as shown in Table 5.

Table 5 - ASTM C1202⁽¹⁾

Charge Passed (coulomb)	Chloride Penetrability
> 4000	High
2000 - 4000	Moderate
1000 - 2000	Low
100 - 1000	Very Low
< 100	Negligible
¹ Fr Standard Test Method for Electrical Indication of Cond	crete's Ability to Resist Chloride Ion Penetration. (ASTM 2009).

The air void analysis indicates that air void parameters do not meet recommended criteria by the American Concrete Institute in *Guide to Durable Concrete* (ACI 2008) and industry

the American Concrete Institute in *Guide to Durable Concrete* (ACI 2008) and industry standards for frost resistant concrete. The lower air content is the result of the higher than expected concrete air loss during pumping.

The chloride levels measured in three locations at varying deck depths indicate that the concrete has significantly prevented or slowed the penetration of chloride into the bridge deck. This correlates very well with the RCP test results measured, as shown in Table 2.

RECOMMENDATIONS

We recommend that a biennial monitoring program (visual observation, sampling, and testing of the concrete) be continued to monitor the development of HPC properties and confirm its performance in the field. Monitoring programs should continue for a minimum of 10 years, with intervals extended by one year each time until there is no significant change in concrete properties measured in the field.

REFERENCES

- 1. American Concrete Institute. 2002a. *Building Code Requirements for Structural Concrete*. ACI 318. Detroit, Michigan: American Concrete Institute. Chapter 4, Section 4.4, Table 4.4.1.
- 2. American Concrete Institute. 2002b. *Guide for Concrete Highway Bridge Deck Construction*. ACI 345. Detroit, Michigan: American Concrete Institute. Chapter 7, Section 7.3.4.
- 3. American Concrete Institute. 2008. *Guide to Durable Concrete*. ACI 201. Detroit, Michigan: American Concrete Institute.
- 4. American Society for Testing and Materials. 2002. *Method for Water-Soluble Chloride in Mortar and Concrete*. ASTM 1218-02. West Conshohocken, Pennsylvania: American Society for Testing and Materials.
- American Society for Testing and Materials. 2006. Method for Microscopical Determination of Parameters of the Air Void System in Hardened Concrete. ASTM C457-06. West Conshohocken, Pennsylvania: American Society for Testing and Materials.
- American Society for Testing and Materials. 2009. Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration. ASTM C1202 – 09. West Conshohocken, Pennsylvania: American Society for Testing and Materials. Table 5.

APPENDIX

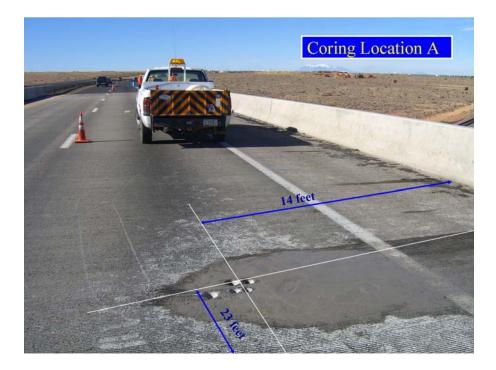


Photo 1- Coring location A

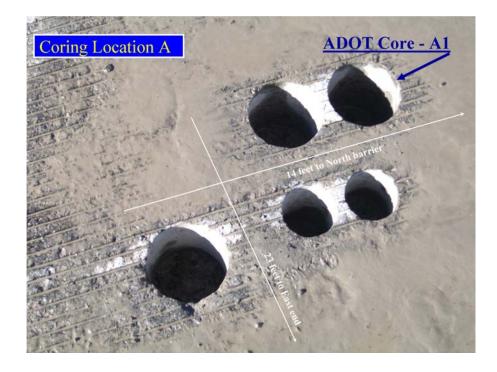


Photo 2- Coring location A

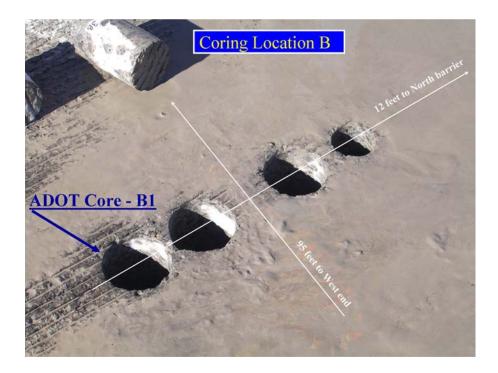


Photo 3- Coring location B

Photo 4- Coring location C

Photo 5- Concrete cores