ARIZONA DEPARTMENT OF TRANSPORTATION

REPORT NUMBER: FHWA-AZ95-372-II

COST/ BENEFIT AND RISK ASSESSMENT PROCEDURE FOR THE PRODUCT EVALUATION PROGRAM

Volume II Product Evaluation Model Reference Manual and User's Guide

Prepared by: David Lewis Doug Liner Jonathan Harvey Hickling Corporation 8720 Georgia Avenue, Suite 1005 Silver Spring, Maryland 20910

January 1995

Prepared for: Arizona Department of Transportation 206 South 17th Avenue Phoenix, Arizona 85007 in cooperation with U.S. Department of Transportation Federal Highway Administration The contents of the report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Arizona Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names which may appear herein are cited only because they are considered essential to the objectives of the report. The U.S. Government and The State of Arizona do not endorse products or manufacturers.

. Report No.	2 Gruermant	Accession No.	Technical Repo	
FHWA-AZ95-372-2	2. Government	Accession No.	5. Recipients C	atalog No.
Title and Subtitle	l			
			5. Report Date January,	1005
Cost/Benefit and Risk As	recoment			rganization Code
Procedure for the Produc			of the state of th	
Volume II: Reference Ma	anual and User's Guid	e		
Author	- T		8. Performing O	rganization Report No.
David Lewis, Doug Line	r, Jonathan Marvey			
Performing Organization Name an	nd Address		10. Work Unit N	ko.
Hickling Corporation				
8720 Georgia Avenue, Si			11. Contract or (
Silver Spring, MD 20910)		SPR-PL-	1(47)372
2. Sponsoring Agency Name and A			13. Type of Rep	ort & Period Covered
Arizona Department Of 7	Fransportation		Final Rep	port, 3/94 8/94
206 S. 17th Avenue				
Phoenix, Arizona 85007			14. Sponsoring a	Agency Code
5. Supplementary Notes			l	
Prepared in cooperation v	with the U.S. Departm	ent of Transportation	on, Federal Highway	y Administration
The Product Evaluation and Evaluation program likelihood that a new pro benefits outweigh its cos	(PRIDE) of the Arized oduct is a worthwhile sts. The model define	ona Department of investment from a s characteristics, (Transportation (AI economic point of r "attributes"), asso	DOT) to determine the f view, namely that its ociated with products.
and Evaluation program likelihood that a new pro	(PRIDE) of the Ariz oduct is a worthwhile ets. The model define e units of measure (n fits that occur over a u hange in metrics that the discounted, presen stimate of economic b d on economic criteria d in a series of two.	ona Department of investment from as s characteristics, (d netrics) and transla user-defined analysis occurs with the use t day value of all be benefits allows trans t.	Transportation (AI economic point of r "attributes"), asse tes these product c s period. The main of a new product a nefits minus all cost portation officials	DOT) to determine the f view, namely that its ociated with products, characteristics into the feature of the model is and to forecast the net ts, associated with this rank or choose among
The Product Evaluation and Evaluation program likelihood that a new pro- benefits outweigh its cos utilizes their appropriate estimated costs and benefit to measure the relative cl present value (NPV), or t change. The resulting es- alternative products base This volume is the second the technical background	(PRIDE) of the Ariz oduct is a worthwhile ets. The model define e units of measure (n fits that occur over a u hange in metrics that the discounted, presen stimate of economic b d on economic criteria d in a series of two. V , analytic approach an portation Products,	ona Department of investment from as s characteristics, (d netrics) and transla user-defined analysis occurs with the use t day value of all be benefits allows trans t.	Transportation (AI economic point of r "attributes"), asse tes these product c speriod. The main of a new product a nefits minus all cost portation officials project report, con M.	DOT) to determine the f view, namely that its ociated with products, characteristics into the feature of the model is and to forecast the net ts, associated with this rank or choose among
The Product Evaluation and Evaluation program likelihood that a new pro- benefits outweigh its cos utilizes their appropriate estimated costs and benefit to measure the relative cl present value (NPV), or the change. The resulting est alternative products base This volume is the second the technical background 7. Key Words New Highway and Transp Benefit-Cost Analysis, Ri Economic Evaluation	(PRIDE) of the Ariz oduct is a worthwhile ets. The model define e units of measure (n fits that occur over a u hange in metrics that the discounted, presen stimate of economic b d on economic criteria d in a series of two. V , analytic approach an portation Products,	ona Department of investment from as es characteristics, (d netrics) and transla user-defined analysis occurs with the use t day value of all be benefits allows trans t. Volume I is the fina ad verification of PE	Transportation (AI economic point of r "attributes"), asse tes these product c speriod. The main of a new product a nefits minus all cost portation officials project report, con M.	DOT) to determine the f view, namely that its ociated with products, characteristics into the feature of the model is and to forecast the net ts, associated with this rank or choose among staining information on
The Product Evaluation and Evaluation program likelihood that a new pro- benefits outweigh its cos utilizes their appropriate estimated costs and benefit to measure the relative cl present value (NPV), or the change. The resulting est alternative products based This volume is the second the technical background 7. Key Words New Highway and Transp Benefit-Cost Analysis, Ri Economic Evaluation	(PRIDE) of the Ariz oduct is a worthwhile ets. The model define e units of measure (n fits that occur over a u hange in metrics that the discounted, presen stimate of economic b d on economic criteria d in a series of two. V , analytic approach an portation Products, isk Analysis,	ona Department of investment from as es characteristics, (d netrics) and transla user-defined analysis occurs with the use t day value of all be penefits allows trans Volume I is the fina id verification of PE	Transportation (AI a economic point of br "attributes"), asse tes these product c speriod. The main of a new product a nefits minus all cost portation officials of project report, con M.	DOT) to determine the f view, namely that its ociated with products, characteristics into the feature of the model is and to forecast the net ts, associated with this rank or choose among staining information on

															-				-	-				-	_	_	
	Symbal		<u> </u>	#	уd	Ē		<u>,</u> E	, E	, Te	9			20	न	-		th oz)e0	• ' =	• PX			LL. e			
IO BI UNITS	To Find	1	Inches	[••]	yarda	milee	1	aquare inches	aquare feet	square miles	Acres		1	90000	epunod	ahort tone	I	fluid ounces	galione	cubic leet	oublo yarda		et)	Fahrenheit	lemperature	212°F 180 200	0 100 0
NVERSIONS 1	Multiply By	LENGTH	0.039	3.28	1.09	0.621	AREA	0.0010	10.764	0.39	2.53		MASS (weight)	0.0353	2.206	1.103	VOLUME	0.034	0.264	36.316	1.308		TEMPERATURE (*****)	0/6 (ihen	add 32)	88.6 80 120	20 40 00 37 37
TACHEOTAS Approximate conversions to si units	When You Know		miliimetera	metere	melers	kilometere	1	miliimetere squared	moters equared	kitometera squarad	hectares (10,000 m ²)		-	grams	kilograma	megagrams (1000 kg)	1	millimetera	litere	metere cubed	meters oubsd		TEM	Celaiua	temperature	-40°F 0 40	40°C 20 0
VERSION	Symbol		uu	E	Þ	k		-	Ē	, by	đ			3	2	Mg		'n		Ē	Ē		_	0.			
) con	Bymbol		cm	Ē	E	ka		en e	Ē	Ē	km k	ad 				BW		mL		Ē	Ē	_		0.		_	
METRIC (SIL) CONVERSION FACTORS TO 81 UNITS APPROXIM	To Find		centimeters	metere	metere	kliametere	· •	centimetere equared	meters squared	meters squared	kliometers squared	heolares	ļ	grams	kliograms	smagagem	ł	millimetere	litera	meters cubed	meters cubed	, E	<u>et)</u>	Celalue	temperature	of FHWA Order 6190.1A	item of Measurements
	Multiply By	LENGTH	2.64	0.3048	0.914	1.61	AREA	6.462	0.0929	0,836	2.59	0.395	MASS (weight)	28,35	0.454	0.907	VOLUME	29.67	3.785	0.0328	0.766		TEMPERATURE (exact)	5/9 (after	aubtracting 32)		nternational Byet
APPROXIMATE CONVERSIONS	When You Know		Inches	leet	yarde	miles	1	square inches	square feet	equare yards	equare milee	BOLOS	1	047008	epunod	short tons (2000 lb)]	lluid ounces	galione	cubic feet	oublo yarda	Volumes greater than 1000 L shall be shown in	TEM	Fahrenheit	lemporature.	These factors conform to the requirement	.81 is the symbol for the international By
	Symbol		Ē	z	уd	Ē		*	* ۲	² by	, im	0		10	ਰ	⊢		jl oz	aat	=	*by	Note: Voli		u. °		The	18.

.

.

÷.,

TABLE OF CONTENTS

1.0 INTRODUCTION	1
OVERVIEW	i
FRAMEWORK FOR ANALYSIS	2
The Cost-Benefit Analytic Framework	
Data Requirements for Cost Benefit Analysis	
The Risk Analysis Process	4
Variables and the Analysis of Risk	5
PLAN OF THE MANUAL AND USER'S GUIDE	5
2.0 REFERENCE MANUAL	7
INTRODUCTION	7
IDENTIFICATION OF NEW PRODUCT FOR EVALUATION	10
PEM STEP 1	12
Roadway Characteristics	13
Sources of Data	13
Highway User Cost and ADOT Policy Data	14
Sources of Data	14
PEM STEP 2: COMMON PRODUCT ATTRIBUTES	16
Sources of Data, Base Case	17
ADOT Sources	
ADOT Maintenance Group	17
ADOT Office of Risk Management	19
Other Sources.	19
Sources of Data, New Product	20
Product Vendor Sheets.	20
Other Sources.	21
PEM STEP 3: SPECIFIC PRODUCT ATTRIBUTES.	22
Sources of Data, Base Case	24
ADOT Sources.	24
Sources of Data, New Product	24
Product Vendor Sheets.	24
Other Sources.	24
PEM STEP 4	26
Risk Analysis and the Benefit-Cost Model.	27
The Basic RAP, Variation One	27
The Expanded RAP, Variation Two	31

PEM STEP 5	32
Safety	33
Value of Time	34
Vehicle Operating Costs	35
Disruption Effects	35
Productivity Effects	
Annual Capital Expenditures	
Maintenance Costs	37
Liability Costs	
Environmental and Aesthetic Costs	38
Structure and Logic Diagrams	38
Overview of the Benefit-Cost Analysis	39
Net Safety Costs/Savings	
Net Time Costs/Savings	41
Net Vehicle Operation Costs/Savings	
Net Productivity Costs/Savings	43
Net Disruption Costs/Savings	44
Product Demand in Base Case and New Product Case	45
Annual Capital Costs/Savings	. 46
Net Maintenance Costs/Savings	
Net Liability Costs/Savings	48
Net Fabrication Costs/Savings	49
PEM STEP 6	50
3.0 USER'S GUIDE	53
LOADING THE INTERFACE SOFTWARE	
CREATING A SCENARIO FILE	
Additional Interface Functions	
Reviewing the Scenario Data.	
Retrieving an Old Scenario File.	. 59
DATA INPUT DESCRIPTIONS	
Roadway Characteristics	
Metric Conversion	. 59
Facility Type	
Number of Lanes	61
Pavement Condition	61
Roadway Length	. 61
Average Annual Daily Traffic	
Annual Increment in Average Annual Daily Traffic	. 62
Highway User Cost Data and ADOT Policy Data	. 62
PSI Before and After Resurfacing	. 63
Expected Base Case Pavement Life	. 64

T

I

Base Case Resurfacing Costs	64
Highway Capacity	64
Peak Period Factor	64
Value of Life, Injury, and Property Damage Only Accident	65
Average Value of Time	65
Effects on Accident Rates, Speed, and Vehicle Operating Costs	66
Price of Fuel, Tires, Maintenance and Repair Costs, and Depreciation	
Costs	67
Discount Rate	69
Period of Analysis	
Common Product Attributes	
Average Material Units per Product	
Materials Unit Cost	
Current Products in Use	
Annual Increase in Products	
Percent of Products Vandalized/Knocked Down per Year	
Useful Economic Life of Product	
Maximum Economic Life of Product	
Percent of Products Held as Inventory	
Products at First Year of Steady State	
Years to Steady State	
Steady State Product Growth	73
Start-Up Training and Equipment Costs	
Annual Training and Equipment Costs	
Testing and Evaluation Costs	
Inventory and Carrying Costs	
Disposal and Salvage Costs	
Number of Claims per 100 Failures	
Percent of Claims Settled	
Percent of Claims Dropped/Not Pursued	
Average Settlement and Court Costs	
ADOT Fabrication Labor Wage	
Fabrication Labor Productivity	77
Time Until Fabrication Productivity Achieves 50 Percent of Expected	
Level	
Change in Time until Fabrication Productivity Achieve 95 Percent of	
Expected Level	
Hourly Fabrication Equipment Costs	77
Other Material Costs	77
Overhead Rate	
Scrap Rate	
ADOT Maintenance Labor Wage	

Maintenance Labor Productivity	. 78
Time until Labor Productivity Achieve 50 Percent of Expected Level	. 78
Change in Time until Labor Productivity Achieve 95 Percent of	
Expected Level	. 78
Hourly Maintenance Equipment Costs	. 79
Expected Disruption Delay	. 79
Percent of AADT Effected by Disruption	. 79
Failure Rate Path	. 79
Specific Product Attributes	. 80
Annual Personnel Costs of Effected Employees	. 80
Percent Administrative Improvement Realized	. 80
Time until Administration Efficiency Reaches 50 Percent of Expected	
Level	. 80
Time until Administration Efficiency Reaches 95 Percent of Expected	
Level	. 81
PSI of Pavement with New Product	. 81
Expected Pavement Life with New Product	. 81
Resurfacing Costs with New Product	. 81
Percent Reduction in PDO, Injury and Fatal Accidents with New	
Product	. 81
Percent Improvement in Speed/Flow with New Product	. 81
LOADING THE RISK ANALYSIS SIMULATION SOFTWARE	. 83
System Requirement	
Loading the Simulation Software	
Selecting the Model and Scenario	
Navigating the Main Menu	
MODIFYING INPUT RANGES	
Selecting the Data to Edit	
Editing Data	
Changing Values	
Exiting and Saving	
RUNNING A SIMULATION	92
Running a Monte Carlo Simulation	92
VIEWING THE RESULTS: TEXT FILE	93
Viewing the Results	93
VIEWING THE RESULTS: STATISTICAL GRAPHS	
Viewing Result Graphs	94
Confirming the Output Filename	94
Selecting the Output Destination	94
Selecting the Type of Graph to View	94
Selecting the Output to View	94
Viewing other Graphs	04

Quitting	
PRINTING THE RESULTS: STATISTICAL GRAPHS	95
Printing Result Graphs	95
Confirming the Output Filename	95
Selecting the Output Destination	95
Selecting the Type of Graph to Print	95
Selecting the Output to Print	95
Confirming the Graph Titles	95
Entering the Graph Filename	
Printing other Graphs	
Printing the Graph Files	
Quitting	95
4.0 PEM TUTORIAL	97
INTRODUCTION	97
DATA SOURCES	97
Printed Reports	97
Draft Version of Project EP 8606	97
SHRP's Innovative Materials Development and Testing: Volume 5;	
Partial Depth Spall Repair	97
ADOT Sources	98
ADOT Materials Group	98
ADOT Risk Management	98
ADOT Maintenance Planning	98
DATA SHEETS	98
PEM OUTPUT; TABULAR AND GRAPHICAL	
ANALYSIS AND INTERPRETATION	105
5.0 TECHNICAL APPENDIX	113
RAP SESSION DOCUMENTATION FOR PEM SIGN SHEETING	
MATERIAL COST-BENEFIT ANALYSIS	114
Risk Analysis Primer	116
Structure and Logic Diagrams	122
Net Sign Purchase Costs/Savings	124
Net Maintenance Costs/Savings	125
Impact of Retroreflectivity on Highway User Costs	126
RAP Input Variables	127
Basic Assumptions of the RAP session	
Data Sources	161
Arizona Department of Transportation	161
Vendor Sheets	
Outside Experts	161

Other Sources	
Data Inputs from RAP Session Participants	164
Probability Distribution Graphs of PEM Sign Sheeting Analysis	
HIGHWAY USER COST DATA	
Data Needed for Cost Benefit Analysis	
PEM COMPUTER SOURCE CODES	230

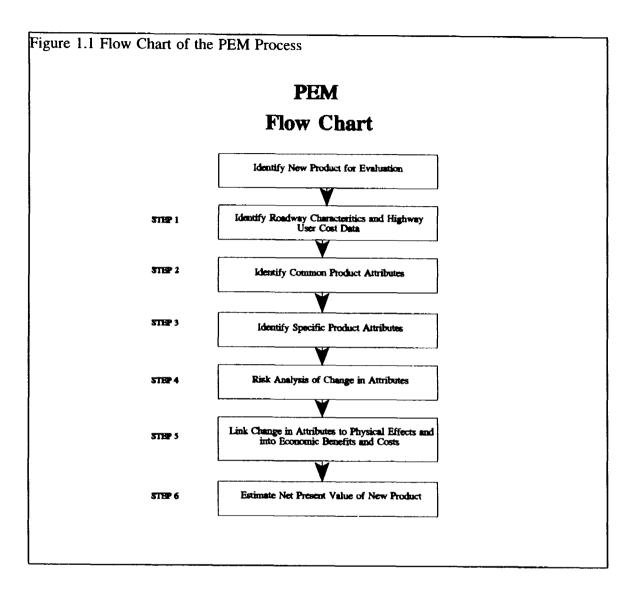
LIST OF TABLES

Table 2.1:	Common Product Attributes; Maintenance Activity 115, Spall Repair PCC	
	Pavement	18
Table 2.2:	Common Product Attributes; Liability Variables Associated with Concrete	
	Patching Materials	19
Table 3.1:	Matrix of Factors for Vehicle Operating Costs	68
Table 4.1:	Ranking of Concrete Patching Materials (NPV of economic benefits in \$	
	million per mile)	105
Table 5.1:	RAP Session Participants	162

LIST OF FIGURES

Figure 1.1: Flow Chart of the PEM Process	
Figure 2.1: Flow Chart of the Six Steps of the PEM Process	
Figure 2.2: Sample of a Data Sheet for the Risk Analysis Process	
Figure 2.3: RAP Generated Probability Distribution	
Figure 2.4: Monte Carlo Simulation: A Way to Combine Probabilities	
Figure 3.1: Initial Software Interface Screen	55
Figure 3.2: Software Interface Main Menu	
Figure 3.3: Sample Data Input Screen	
Figure 3.4: Base Case and New Product Demand over a 25 Year Analysis Period	
Figure 3.5: Initial Simulation Software Screen	
Figure 3.6: Selecting the Simulation Model	
Figure 3.7: Reading in a Scenario File	
Figure 3.8: Selecting the Scenario File	
Figure 3.9: Simulation Software Main Menu	
Figure 3.10: Modifying Data Inputs Menu	
Figure 3.11: Modifying Data Inputs	
Figure 5.1: Sample of a Data Sheet for the Risk Analysis Process	
Figure 5.2: RAP Generated Probability Distribution	120
Figure 5.3: Monte Carlo Simulation: A Way to Combine Probabilities	121

OVERVIEW


The Arizona Transportation Research Center's Cost-Benefit Product Evaluation Model (hereafter referred to as PEM) is designed to enable the Product Resource Investment Deployment and Evaluation program (PRIDE) to determine the likelihood that a new product is a worthwhile investment from an economic point of view, namely that its benefits outweigh its costs. The model defines characteristics, (or "attributes'), associated with products, utilizes their appropriate units of measure (metrics) and translates these product characteristics into the estimated costs and benefits that occur over a twenty-five year period¹. The main feature of the model is to measure the relative change in metrics that occurs with the use of a new product and to forecast the net present value (NPV)² of the economic effects (benefits-costs) associated with this change. A flow chart describing this process is presented in Figure 1.1.

PEM addresses the uncertainty that often surrounds new product performance with a risk analysis process (RAP). This element of PEM allows the ATRC analyst to assign probability ranges around the product data inputs, based on the availability and the quality of information obtained from company representatives, product vendor sheets, laboratory testing, and ADOT personnel. The RAP element simulates the variability of factors that affect products in the real world and produces a probabilistic estimate of the economic costs and benefits associated with a new product.

The ATRC analyst can use PEM estimates of new product economic benefits for two basic objectives. At the basic level, PEM allows for a screening of a series of new products based on achieving a given threshold of net economic benefits. At a more expanded level, PEM can be used for real-time modelling during a RAP panel session where ADOT personnel, company representatives and industry experts (third-parties with significant professional or academic experience with the product under evaluation) are invited to investigate and deliberate the costs and benefits of a specific product. In either application, PEM provides the ATRC an objective, analytical tool to assess the economic merits of a new product, and to assist decision makers to determine whether the product should be tested or purchased and put into use by the Arizona Department of Transportation (ADOT).

¹ A twenty five year time period is commonly used in the evaluation of transportation projects and investments.

 $^{^{2}}$ The Net Preset Value (NPV) of economic benefits is defined as the discounted, present day value of all benefits minus all costs.

FRAMEWORK FOR ANALYSIS

This section sets forth the analytical framework for PEM. Its two sections describe the principal analytical processes used by the model to estimate the probable range of net economic benefits associated with a new product. The first section outlines the costbenefit approach to new products, while the second section discusses the risk analysis process and how it is incorporated in PEM. Taken together, these two processes form the foundation of PEM, and an understanding of these analytical tools is needed to interpret the model's output.

The Cost-Benefit Analytic Framework

The cost-benefit analytic framework serves as an objective tool to evaluate the economic merits of new products. The process measures all economic effects (costs and benefits) associated with the Base Case, or the current product in use, and compares these values with the New Product case, or the product under evaluation. The results of a cost-benefit analysis can then be used by the ATRC to better facilitate purchasing decisions among alternative products.

The standard techniques of cost-benefit analysis developed for assessing prospective transportation projects are used by PEM to evaluate the candidate products for evaluation by ATRC. The costs of transportation products and services are measured by the cost of real resources, or the equivalent value of these resources employed in an alternative use. These costs are determined through market prices, where such product markets exist, while the intangible costs associated with the product are estimated according to accepted statistical values such as: the value of time savings, life and injury (see the Technical Appendix). Aesthetic and environmental costs, in particular, require special attention in assigning monetary values to them. All costs are projected over the product life-cycle and are discounted to arrive at the NPV that can be directly compared with the NPV costs of the current product.

The PEM cost-benefit framework considers all reductions in costs as economic benefits. PEM explicitly accounts for eight categories of economic costs: safety, value of time savings, vehicle operating costs, disruption costs, productivity costs, capital expenditures, maintenance costs and liability costs. PEM indirectly accounts for environmental and aesthetic costs through a threshold analysis. A product whose attributes lead to reduced vehicle operating costs, and time savings, for example, produces user cost savings or economic benefits in these cost categories. These benefits (or costs) are forecasted over the entire analysis period and then discounted to reflect their present-day equivalent values. A new product may simultaneously produce both benefits and incur extra costs across different economic effect categories, but PEM is designed to sum these economic categories to produce a *net* benefit estimate of all economic categories. PEM's forecast of the NPV of economic benefit estimates can be used to make a direct comparison between products or to rank a series of products based on the relative NPV of economic benefits.

Data Requirements for Cost Benefit Analysis

PEM guides the analyst to enter the appropriate information to conduct the cost-benefit analysis. There are three types of input variables that the analyst must enter to run the model: roadway characteristics, highway user cost and ADOT policy data, and the metrics of common and specific attributes of new products. The first two types of input variables establish the background for the cost-benefit analysis while the third input variable group deals exclusively with the attributes of the new product. A short description of the types of input variables is presented below, while a detailed explanation of each variable in PEM is presented later in the User's Guide.

• Roadway Characteristics

These variables define the facility that will affect the area where the new products will be used or implemented.

Highway User Cost and ADOT Policy Data

These are variables that reflect either policy-defined values for certain transportation-related inputs, such as the average value of time, or market prices for common transportation inputs, such as the price of fuel and tires, that will impact economic benefits.

• Metrics of Common and Specific Attributes of New Products These are variables that measure the common and specific attributes of new products. They are typically obtained from vendor specification sheets, in-house laboratory testing or from other government agencies and associations.

The Risk Analysis Process

The purpose of risk analysis is to develop a range of outcomes and the probability of achieving them. The risk analysis process (RAP) component of PEM is designed to deal simultaneously with the risk of the multiple variables that affect product performance. PEM's RAP component operates on two functional levels: at the basic level, where the ATRC analyst inputs product data and self-generates a risk analysis simulation to forecast net economic benefits, and at the more advanced RAP level, where company representatives, industry experts and ADOT personnel are invited to deliberate the probability ranges surrounding central variables of the model and to comment on the resulting forecasts of economic benefits. This section briefly explains RAP and how it is used in PEM. A more detailed explanation of the risk analysis process is contained in the Reference Manual.

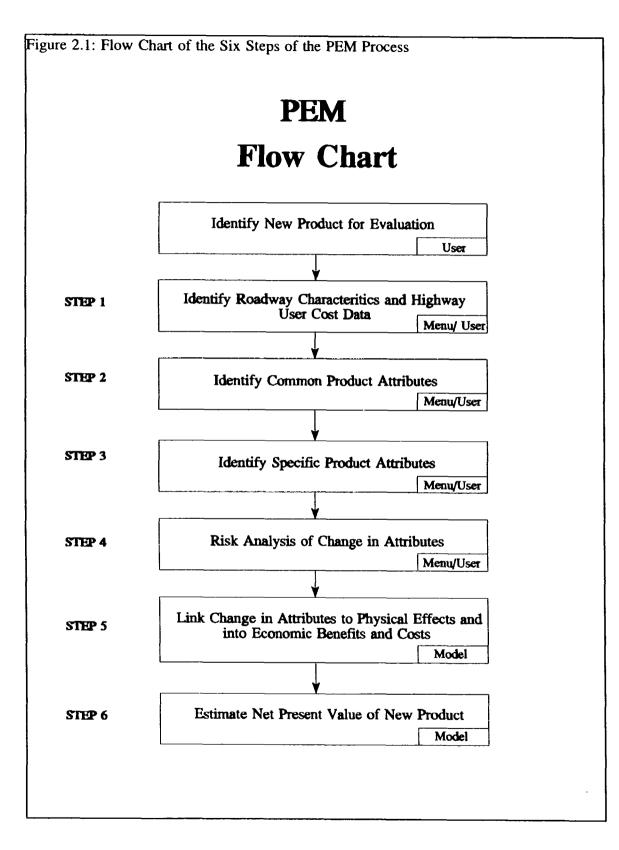
Variables and the Analysis of Risk

Many of the input values, or variables, used in PEM's cost-benefit analysis contain an element of uncertainty. To capture these real-world variations, a risk analysis, which develops a probability range for each variable, is introduced in PEM. The risk analysis *process* (RAP) employed in PEM refers to the *specific methodology* by which data relating to product attributes is subjected to a risk analysis. The RAP component of PEM adds a important dimension to the standard benefit-cost analysis since it accounts for the variation of values between variables and produces a range of potential economic benefits rather than a single net present value estimate.

A variable is assigned a range of uncertainty only if that uncertainty is a legitimate object of the analysis. For instance, uncertainty over the failure rate of a patching material should be accounted for in the analysis. However, the values associated with roadway characteristics, for example, should remain firm since they set the physical framework for the risk analysis. In addition to these variables, some of ADOT's transportation policies will be subject to uncertainty. The uncertainty in these variables, which reflect management judgment, should reflect uncertainty associated with their impacts and the uncertainty regarding which policy will be adopted.

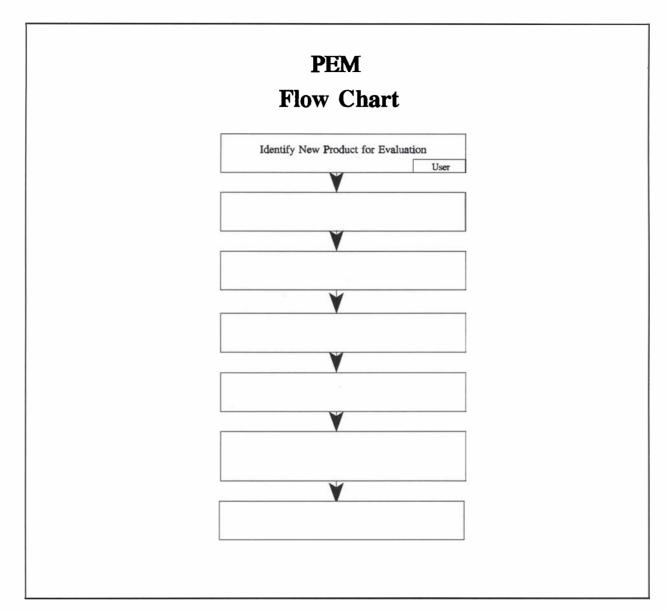
The result of PEM's risk analysis is a forecast of the range of net economic benefits associated with the use of a new product, and the probability, or odds, that the product will produce a given level of net benefits. PEM's forecast of a product's net benefits allows ADOT planners and decision-makers to select the level of risk within which they are willing to plan and make commitments with regards to the testing or purchasing of new products.

PLAN OF THE MANUAL AND USER'S GUIDE


This reference manual and user's guide provides background information on the model and a step-by-step explanation of the process used to evaluate the economic effects (costs and benefits) of new products within a risk analysis framework. Section 2, the Reference Manual to PEM, provides the context for the PEM analysis, by specifying the types and sources of data needed run the model as well as a graphical and textual explanation of how PEM's variables interact to develop a forecast net economic benefits. Section 3, the User's Guide to PEM, provides a step-by-step account of how to operate PEM, from loading the software to editing a risk analysis scenario and running multiple simulations. Section 4 presents a PEM tutorial which uses actual product data to forecast the net benefits of six competing products. The final section of the manual, the Technical Appendix, contains information on the Highway User Cost Data used in the model.

INTRODUCTION

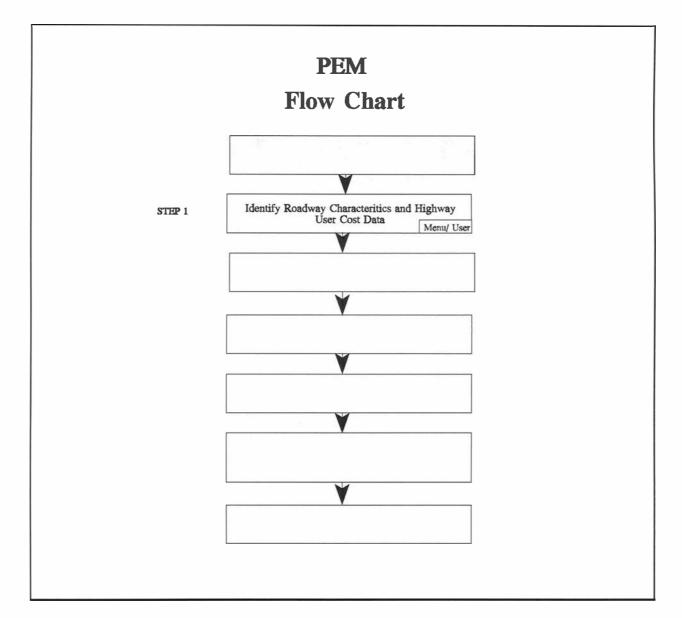
PEM is designed to assist in the evaluation of new products in the ATRC's PRIDE program by providing a forecast of the net economic benefits associated with the use of each product. PEM requires the user to first input data on common and specific attributes, and then to make judgements concerning risk (either alone or with the aid of a RAP session) in order to assign probability ranges around the product data. PEM uses this information to forecast the probability range of net economic effects (benefits or costs) associated with the new product which can then be interpreted and used by the ATRC to aid in testing or purchasing recommendations.


The Reference Manual is designed to develop the context of the benefit-cost analysis. This section describes the process that the analyst should use in preparing the product information for PEM and in interpreting its forecasts. The section proceeds sequentially, starting with the steps that require the user to input data directly into the PEM software interface (see Figure 2.1). Following the description of the data input steps, the section focuses on the final steps of the PEM process and explains how the model uses product information to forecast economic costs and benefits in a risk analysis framework.

The reference manual assumes no prior risk analysis experience on the part of the user, nor does it require a background in economics to understand the benefit and cost

forecasts generated by the model. Its main objective is to provide suggestions and techniques to obtain the necessary data for PEM, explain how that data is used by the model, and to interpret PEM's forecasts of economic benefits and costs. Wherever possible, graphics and structure and logic diagrams are used to illustrate the links between user inputs and model outputs.

Throughout the section, the PEM flow-chart motif is used to divide the sequential steps that comprise the PEM process. Each rectangular box represents a basic step in the modelling process, with the smaller box on the lower right-hand side of each box indicating the primary responsibilities for each step. "User" refers to the independent responsibility of the ATRC analyst to make a decision or action. "Menu/User" refers to the responsibility of the user to input product data according to the model's menu-driven, input screens. "Model" refers to PEM's independent calculation of economic benefits and costs based on the previously provided product data.



IDENTIFICATION OF NEW PRODUCT FOR EVALUATION

Before the PEM process can begin, the ATRC must identify a new product for evaluation. This is largely an internal ADOT process dependent on a variety of decision-making criteria. Typically, the process involves reacting to one of the numerous product approval applications that are received annually by ADOT.

Prior to using PEM, the ATRC (or the analyst) should decide how they intend to use PEM forecast of net economic benefits. The distinction between evaluating a product for further testing by ADOT and purchasing the product outright for immediate use implies different standards for judging the model's forecast. A proto-type product with limited field experience, for example, might have to demonstrate a relatively high probability of

achieving a level of net economic benefits before it should be tested further by ADOT. Conversely, a new variation of a product already in use by ADOT, might be held to a less stringent standard, since the risk associated with the product performance is known and accepted, and any improvements would be made at the margin.

In step 1 of PEM, the user is asked to identify the roadway characteristics and highway user cost and ADOT policy data that will be used in the cost benefit analysis. This data is used to set the physical framework and default user cost values for the analysis (for a complete listing of the variables in each category, refer to the User's Guide). It is important to carefully prepare the inputs for these variables, since inaccurate entries at this stage can significantly impact the model's benefit forecasts. The following two sections describe the data needed for this step and the potential sources for obtaining it.

Roadway Characteristics

Roadway characteristics define the facility where the new products will be used or implemented. The analyst should know, for example, whether a particular product is planned to be used on a four-lane highway or on smaller, rural roads. This basic distinction affects the potential traffic disruption effects, for example, since they are proportionately tied to the size of roadway facilities as well as to the kilometer length of the highway and Average Annual Daily Traffic (AADT).

Sources of Data

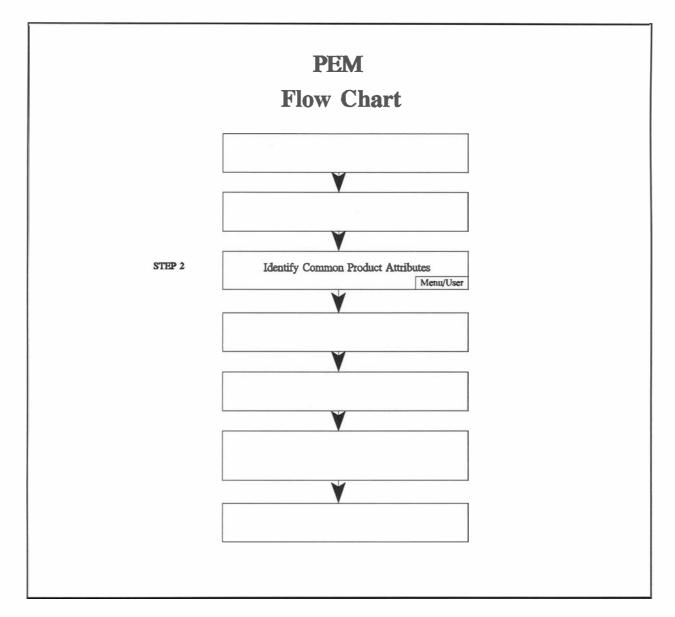
The principal sources for obtaining roadway characteristics data are from ADOT personnel. ADOT District Engineers and maintenance crews are familiar with the types of roads and conditions where most products are used and they can usually supply ample anecdotal and factual information for several inputs in this section. For variables dealing with Highway Design or Facility Type, ADOT Engineering Supervisors are a source of information, as well as the personnel from the contracting divisions that draft specifications for ADOT construction contracts.

Highway User Cost and ADOT Policy Data

Highway User Cost and ADOT Policy Data reflects either policy-defined values for certain transportation-related inputs, such as the average value of time, or market prices for common transportation inputs, such as the price of fuel and tires, that will impact economic benefits. Once these values are agreed upon, they remain constant for the PEM analysis. A complete listing of the Highway User Cost Variables is presented in the User's Guide, as well as the default values, which are contained in the Technical Appendix.

Sources of Data

Values for the Highway User Cost Data come from the body of federal and state transportation research. The cost figures, such as fuel costs, the value of time, and various accident costs were compiled from national data and through an extensive research project into highway user costs completed for the National Cooperative Highway Research Program by Hickling³. The physical effects, such as the maximum impact of pavement conditions on speed and accident rates are from Hickling experience.


³ NCHRP Project 2-18: Research Strategies for Improving Highway User Cost-Estimating Methodologies (1993)

The model equations, which result in user cost estimates in the areas of speed (value of time), safety, and vehicle operating costs, are derived from separate sources. The safety equations are based on data tables incorporated in the Highway Economic Requirements System (HERS)⁴. The vehicle operating cost equations are based on the Technical Memorandum to NCHRP project 7-12, <u>Microcomputer Evaluation of Highway User</u> <u>Benefits</u>, by the Texas Transportation Institute (Technical Memorandum)⁵. The equations are based on empirical relationships derived by Thawat Watanada et. al⁶. during the late 1970's and early 1980's.

⁴ Jack Faucett Associates, <u>The Highway Economic Requirements System (HERS) Technical</u> <u>Report</u>. prepared for the U.S. Department of Transportation, Federal Highway Administration, Washington, D.C., June, 1991.

⁵ Texas Transportation Institute, Technical Memorandum on Tasks 1 and 2 of NCHRP Project 7-12 "Microcomputer Evaluation of Highway User Benefits," 1990.

⁶ Watanada, Thawat et al. <u>Vehicle Speeds and Operating Costs: Models for Road Planning</u> <u>and Management</u>. (Washington, D.C.: The World Bank) 1987.

PEM STEP 2: COMMON PRODUCT ATTRIBUTES

In step 2 of PEM, the user identifies common product attributes which refer to the standard qualities or features of a product that are used in the cost-benefit analysis. The main task of the analyst, at this point in the PEM process, is to develop a Base Case, or the set of values for common product attributes that are associated with the current product. Once these values are established, the analyst can then use PEM to compare the set of values of common product attributes associated with the *new* product to determine whether it produces net economic benefits.

PEM distinguishes between those attributes which are "common" to all products, such as unit cost, useful economic life, and labor and equipment costs and "specific," those attributes which are particular to certain products, which is presented in the next section. Examples of common product attributes used in PEM are listed below (an explanation of each product attribute is presented in the User's Guide):

- Useful Economic Product Life;
- Inventory and Carrying Costs;
- Disposal and Salvage Costs;
- Testing and Evaluation Costs; and
- Failure Rate Path (the pattern of product failures over time).

Sources of Data, Base Case

Data for the Base Case can normally be obtained from ADOT and other sources. The following sections briefly explain the types of data that is available from each source.

ADOT Sources. Several sources within ADOT provide practical information on product use and maintenance which can be used to develop the Base Case. ADOT divisions that either actively plan or budget routine maintenance and construction procedures are one source of useful Base Case product cost information, as are the implementing divisions, such as district engineers, that have had direct experience with specific products or procedures. The following is a sample list of the ADOT sources that maintain the type of data needed to run PEM:

ADOT Maintenance Group

The division's PECOS II Maintenance Management System provides basic historical cost data on material, labor, equipment, installed inventory, and productivity according to predefined maintenance categories. This database system can provide median common product attribute estimates for the Base Case. Considering the specific product and other performance information, the analyst can then assign probability ranges around these estimates to develop the probability distributions for use in PEM's RAP component.

The following table illustrates the common product attribute data contained in the PECOS II Maintenance Management System:

N	e 2.1: Common Product Attributes; Maintenance Activity 115, Spall Repair PCC Pavement						
Data Category	Value	Units					
Work Quantity	189.4	Cubic ft.					
Inventory	774.0	12 ft. lane miles					
Quantity STD	.2	Cu. ft./lane mile					
Labor Hours	1702.5	Labor hour					
Productivity	.11	Cu. ft/labor hour					
Total Cost	\$71,792.54	Dollars					
Unit Cost	\$379.05	Dollars/labor hour					

Using the information in the Table 2.1, the analyst develops the Base Case common product attributes by adding probability ranges to each of the variables used in PEM. According to the table, labor productivity is .11 cu.ft. per labor hour across all ADOT maintenance organizations. The ATRC analyst, however, based on research and interviews with ADOT engineers, may feel that labor productivity for this activity and the current product could reach .2 and will seldom drop below .10 cu. ft. per labor hour. PEM inputs for Base Case product labor productivity, therefore, would be .2 for 10% upper range .11 for median estimate, and .10 for the lower 10% range (this process is explained further in the section 2.6).

ADOT Office of Risk Management

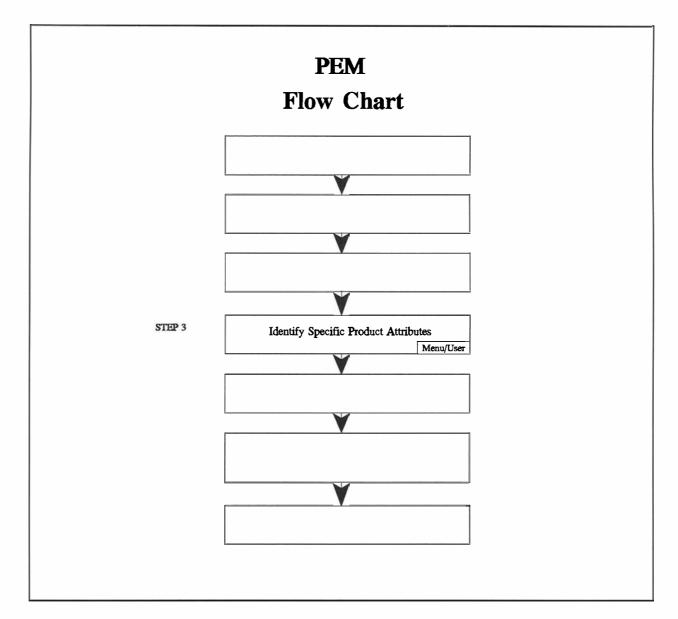
To determine the Liability Risks associated with a product, the analyst should contact the ADOT Office of Risk Management. Generally, the manager of this office will be able to provide some information on the liability costs associated with a given product, even through product liability cases tend to be less frequent than design or maintenance liability cases. For those products that do have a history of liability costs, such as concrete patching materials, the analyst will be able to develop a Base Case liability cost scenario. The following table summarizes the Base Case liability variables associated with a concrete patching material:

Var		ct Attributes; Liability ated with Concrete als
Liability Variable	Value	Units
Number of Claims per 100 Failures	10	Claims
Percent of Claims Settled	30-40	Percent
Percent of Claims Not Pursued	60	Percent
Average Settlement Costs	500-750	<pre>\$ per Settlement plus Admin. Costs</pre>
Court Costs	\$15,000	\$ per Trial plus Admin. Costs

Based on Table 2.2, the Base Case liability costs for concrete patching materials are likely to be small on an annual basis, but may be considerable over the analysis period used in PEM. The percentage of product failures is the most difficult variable to estimate, since accurate data on product failures is difficult to obtain. In this example, only 10 percent of product failures result in claims against ADOT. Of these claims, 30 to 40 percent result in settlement, with the majority being claims not pursued, either because the claim was denied or dropped. For those claims that result in court cases, which is imputed by PEM, ADOT can incur substantial costs of up to \$15,000 in this example.

Other Sources. Other, non-ADOT, sources of information are effective for developing the Base Case set of common product attribute variables. The Transportation Research Information Services (TRIS) section of the Transportation Research Board (TRB) of the National Academy of Sciences maintains an extensive database of all ongoing domestic and foreign transportation research. Current and past studies of transportation-related products and/or their use and application are listed from several state and federal research

programs. Studies such as, <u>Implementation Strategies for Sign Retroreflectivity Standards</u>, <u>NCHRP Report 346</u>, provide product information on several types of retro-reflective sign sheeting, including average product cost, units per mile (per kilometer) of rural and urban signs and typical maintenance costs. Data from such credible sources can readily be used to supplement or substitute the Base Case set of common product attributes variables.


Sources of Data, New Product

To evaluate a **new** product with PEM, the analyst must obtain information corresponding to the common product attributes developed for the Base Case product. Although vendor sheets occasionally specify the typical labor and equipment costs associated with a product, these estimates may be based on ideal conditions and therefore may exaggerate the values. Nevertheless, these values can be used as a basis for the initial median estimates, around which probability ranges can be developed. When utilizing vendor data the probability range around the median estimate is likely to be larger for this reason (a more detailed explanation of assigning probability ranges is explained in section 2.6). The following sections describe the principal sources for new product information:

Product Vendor Sheets. As explained in the earlier, product vendor sheets and official company submissions are the primary source of general product information for PEM's product attributes data fields. Following the ATRC's "Checklist for New Proposals" (see Technical Appendix), the manufacturer must provide product information ranging from independent lab tests to the manufacturers' cost sharing in ADOT product testing and evaluation. These submissions contain the basic information, such as unit cost, equipment requirements (costs), and productivity estimates that allows the ATRC analyst to begin the cost-benefit analysis using PEM. In some cases, these vendor sheets contain extra information that can readily be used by PEM, such as product life cycle estimates and direct comparisons with competing products. Local contractors and product representatives are also an obvious source to solicit common product attribute information.

Other Sources. State and federal transportation agencies routinely conduct new product evaluations. State DOTs typically obtain technical information and product specifications from in-house testing, reliance on vendor presentations and demonstrations, and reference to new product information from other State DOTs and industry publications. Information exchange is also facilitated by the American Association of State Highway Transportation Officials (AASHTO) in cooperation with the Federal Highway Administration (FHWA) through a computer database of new product information entitled the Special Product Evaluation List (SPEL).

The Strategic Highway Research Program (SHRP) is also an important source for new product information. Created in 1987 to improve the performance and durability of U.S. roadways, the SHRP program, with support from the Federal government, State DOTs, AASHTO and the Transportation Research Board (TRB), investigated 130 new highway products in four areas: highway operations, concrete and structures, asphalt and long term pavement performance. The SHRP report entitled, <u>Innovative Materials Development and Testing; Volume 5; Partial Depth Spall Repair; (SHRP H-356)</u>, for instance, contains extensive information on brand-name materials and optimal application procedures for the partial spall repair of Portland Concrete that can be used in PEM.

PEM STEP 3: SPECIFIC PRODUCT ATTRIBUTES

In step 3 of PEM, the user identifies the specific product attributes associated with a given product. Like common product attributes, they refer the qualities or characteristics that are used in the cost-benefit analysis, but in this case, they refer to the unique properties of a product that are not necessarily found in all products. For example, pavement materials share many common product attributes, such as unit price and product life cycle, but they also have specific attributes that affect the smoothness of the pavement, a trait that can be

mapped into user benefits, such as Vehicle Operating Costs. The important point to note is that these attributes are not common to all products.

PEM is equipped to deal with certain specific common attributes. While it is not necessary to input data for each of these categories, they can bring a important additional level of detail to PEM's cost-benefit analysis.

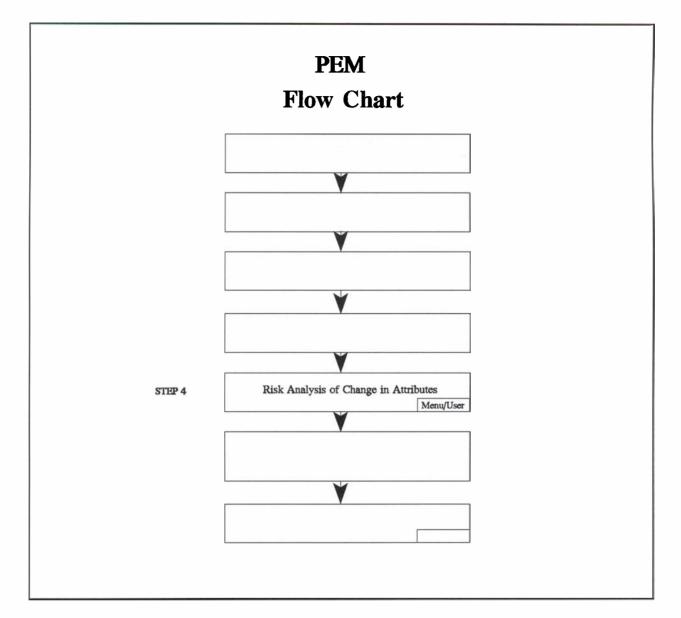
Some of the specific product attributes contained in PEM include:

- PSI of Pavement with New Product;
- Expected Pavement Life with New Product;
- Resurfacing Costs with New Product;
- Percent Administrative Improvement Realized;
- · Percent Reduction in Fatal Accidents with New Product; and
- Percent Improvement in Speed/Flow with New Product.

The specific product attributes outlined above apply to two basic categories of products. The first three specific attributes apply to those products that affect pavement condition, which as described earlier, can lead to benefits in Vehicle Operating Costs, as well as the Value of Time and Safety. The last four specific attributes refer products that in some manner affect Productivity, Safety or the Value of Time. These attributes are more subjective than the first set, and can consist of multiple factors that together impact the benefit category (A full description of each specific product attribute appears in the User's Guide).

Sources of Data, Base Case

ADOT Sources. As with common product attributes, sources within ADOT can provide practical information on product use and maintenance which can be used to develop the Base Case. ADOT divisions that deal with pavement maintenance and construction procedures are one source of useful Base Case information, as are the implementing divisions, such as district engineers, that have had direct experience with specific products or procedures.


Sources of Data, New Product

There are generally two sources for obtaining information on the specific product attributes of new products.

Product Vendor Sheets. As described with common product attributes, product vendor sheets usually contain basic information on product characteristics that can be used in PEM. With regards to specific attributes, some manufacturers may tout a certain advantage of their product over others. This documented information can be brought into PEM through the specific attribute variables, such as reduction in accident incident rates. Often, however, it is useful to check the source/study that is behind the manufacturer's claim.

Other Sources. State and federal transportation agencies routinely conduct product evaluations which contain information that can be used to support values for specific product variables. As in the example above, a manufacturer may claim that his product has certain impact on accident rates which may or may not be confirmed by current studies.

In the event that a value can not be confirmed or supported by any current study, the uncertainty surrounding that value will be greatly increased. This heightened uncertainty will be reflected in the probability range assigned to that value by the user or the RAP panel. This increased uncertainty will reduce the impact of the variable in the model. A more detailed explanation of this process is contained in section 2.6. It is with these types of variables that RAP panels, consisting of experts in the product field, are most useful in determining what the value should be and the probability to attach to it. The RAP panel in this case, would provide the confirmation and support for the estimate that could not be provided by current studies.

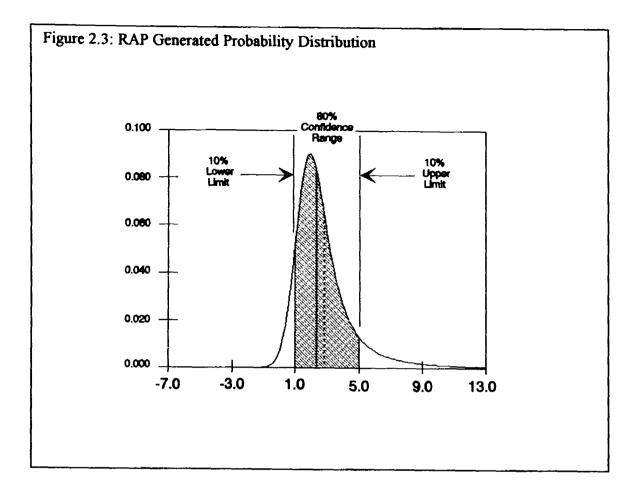
In PEM Step 4, the user assesses the degree to which a new product's attributes will lead to a measurable change in metrics and forecasts the potential variation of that change. To deal with the uncertainty surrounding new product performance, the analyst places probability ranges around each variable subject to real-world fluctuation based on both objective and subjective data sources, which leads to a more accurate forecast of the potential economic benefits stemming from a new product. This section presents the background on the Risk Analysis Process (RAP) and how it is applied in the Cost-Benefit framework of PEM.

Risk Analysis and the Benefit-Cost Model

The goal of a cost-benefit analysis is to determine the effect of a change (or changes) in the resource allocation associated with the introduction of a new product or process. A new product which reduces maintenance costs (a maintenance savings) through its durability, for example, produces an economic benefit in the PEM analysis, and is preferred over the existing resource allocation. The critical analytical role in this step is determining the actual change in physical effects that will occur with each new product attribute as well as the timing for these changes. Since product performance is often unpredictable, a risk analysis of the central variables in the cost-benefit framework adds an important, real-world dimension to the analysis.

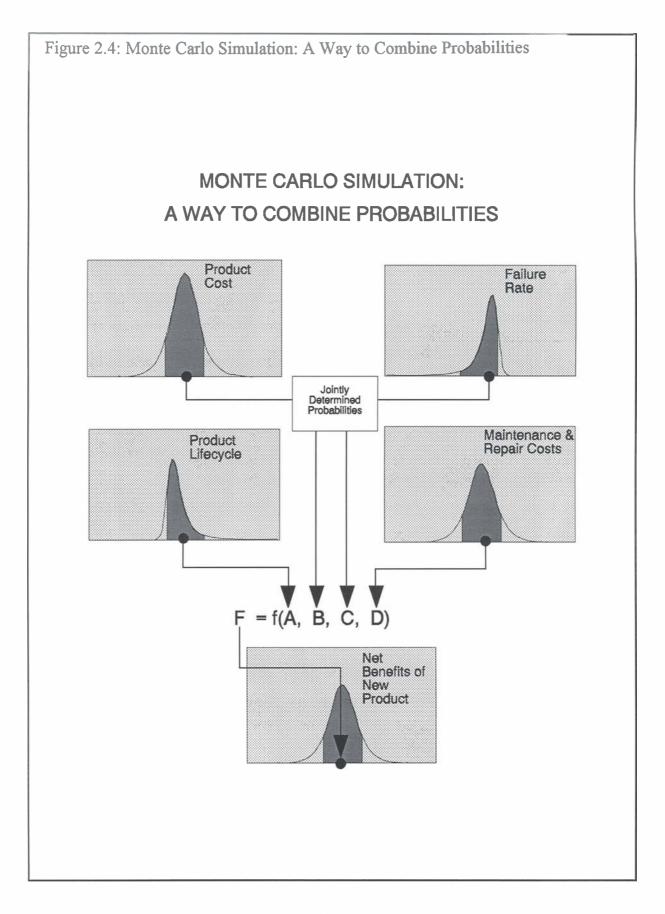
The RAP component of PEM includes two variations. Variation one is the basic level screening process in which the ATRC analyst inputs median estimates of common and specific product attributes and assigns probability ranges. A risk analysis simulation is then conducted on one or several products to determine the relative NPV of the economic benefits associated with each product. Variation two, the expanded version of RAP, involves the same process as variation one, but adds a step in which the probability ranges around product data variables are open to discussion at a RAP panel session. The steps involved in both variations are outlined in the following sections.

The Basic RAP, Variation One


Variation one of PEM's RAP component allows the **analyst** to attach probability functions to the uncertain estimates associated with the Base Case and ne product common product attributes. This process addresses the fact that the further into the future product performance is forecast, the more uncertainty there is and the greater the risk becomes of producing forecasts that deviate from actual outcomes. Projections in PEM, therefore, need to be made with a range of input values to allow for this uncertainty and for the probability that alternative economic, demographic, technological and environmental conditions may prevail that affect the set of common product attribute variables.

The ATRC analyst collects data for the RAP component of PEM starting with the steps 2 and 3 of the PEM process. Special data sheets, created by the ATRC and similar to the one pictured in Figure 2.2, are used to record the common and specific product attribute estimates, which can vary according the quality of the product data, outside testing information, ADOT anecdotal experience, or other pertinent factors. The analyst should combine this objective and subjective data into data sheets for each variable. In Figure 2.2, a sample data sheet provides space for an initial median estimate in the first column, and the second and third columns define a range which represents "an 80 percent confidence interval" -- the range within which we can be 80 percent confident of forecasting the product performance. If the analysts is very uncertain of the forecast of product performance, a wider probability range is used (and vice versa). This process ensures that all risks are properly reflected in the PEM forecasting process.

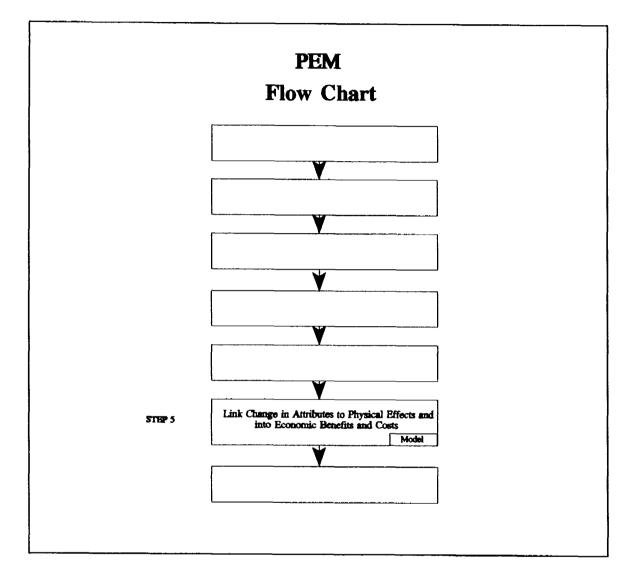
		ng and Equipment C (Annual \$)	
Product	Median Estimate	10 % Lower Limit (%)	10 % Upper Limit (%)
New Product	\$3,800	\$3,420	\$4,180
Current Product	\$4,000	\$3,800	\$4,500


Probability ranges need not be normal or symmetrical -- that is, there is no need to assume the bell shaped normal probability curve. The bell curve assumes an equal likelihood of being too low and being too high in forecasting a particular value. It might well be, for example, that additional training and equipment costs, as presented in Figure 2.2, are more likely to exceed the median estimate than to not attain it. The RAP process places no restrictions on the degree of "skew" in the specified ranges and thus maximizes the extent to which the Risk Analysis reflects reality.

Although the computer program will transform all ranges into formal "probability density functions", they do not have to be determined or presented in either mathematical or graphical form. All that is required is the entry of upper and lower limits of an 80 percent confidence interval in the Data Sheets. The risk analysis software will then use numerical analysis to translate these entries into a uniquely defined statistical probability distribution automatically (see Figure 2.3). This liberates the non-statistician from the need to appreciate the abstract statistical depiction of probability and thus enables administrators,

stakeholders and decision-makers to understand and participate in the process whether or not they possess statistical training.

Once the probability distributions for all changes in common and specific product attribute variables are entered into PEM, the risk analysis software produces probability distributions for each metric. Values for each variable are based on these distributions and are incorporated into the model to yield a final result. (see Figure 2.4). The result of this process represents both a forecast of the net economic benefits and quantification of the probability that the forecast will be achieved.



The Expanded RAP, Variation Two

Variation two of PEM's RAP component follows the same steps as variation one, but is geared towards a **panel discussion** of the probability ranges around common and specific product attributes. The RAP panel session, facilitated by the ATRC, is conducted as a structured workshop to further evaluate the costs and benefits associated with a given product. ADOT personnel, company representatives and industry experts are invited to the RAP session to evaluate the forecasting assumptions and the estimated probabilities associated with product data. PEM can be used for real-time modelling during the RAP session to test alternative product performance scenarios which incorporates the judgement of panel members and builds confidence in the forecasts.

Expanded RAP sessions can be held on an ad hoc or regular basis depending on the desires of the ATRC. Participants in a RAP session should receive a briefing book in advance containing information on the product and suggested probability ranges around common and specific product attribute variables. During the session, panelists review PEM (via the Structure-and-Logic Models, graphical diagrams of the relationships between model variables, which are located at the end of Section 2.7) and review and comment upon each Data Sheet containing the product information. This approach facilitates consensus building in the underlying forecasting assumptions and associated probabilities concerning product performance.

PEM STEP 5

In PEM step 5, the model calculates the economic benefits of new highway and construction products based on the inputs of earlier stages of the PEM process and the large body of transportation research data. To determine the economic benefits and costs associated with a specific new product, the analyst follows the steps 1-4 of the PEM process, which solicit median and probability ranges for the main product variables used in the cost-benefit analysis. PEM then maps the values for the Base Case and New Product variables into the economic effect categories defined in transportation and economics literature.

PEM explicitly considers eight categories of economic effect areas, and indirectly considers two further categories based on a threshold analysis. Each explicit category has an individual Structure & Logic diagram which charts the interaction between quantitative inputs for roadway characteristics, highway user cost data and common and specific product attributes and their resulting net benefit outputs. PEM accounts for following economic effects:

Explicit Economic Effect Categories

- Safety;
- Value of Time;
- Vehicle Operating Costs;
- Disruption Costs;
- Productivity Costs;
- Capital Expenditures;
- Maintenance Costs; and
- Liability Costs;

Indirect Economic Effect Categories

- Environmental Costs; and
- Aesthetic Costs.

The following sections present an explanation of the economic effect categories in PEM and are meant to accompany the Structure and Logic Diagrams. A detailed description of each input variable in the Structure and Logic Diagrams is presented in the User's Manual.

Safety

PEM considers safety-related costs as the statistical value of human life as well the value of non-fatal accidents and property damage. Accident rates are calculated separately for three events: "property damage-only" accidents, injuries (as opposed to injury-producing accidents) and fatalities. The specific values for these three types of events are taken from <u>The Cost of Highway Crashes</u>⁷ prepared for the Federal Highway Administration by the Urban Institute. The methodology and calculation of the accident incident rate for each event is explained in further detail in the User's Guide.

A fundamental safety-related issue revolves around the valuation of life and injuries. Measuring safety benefits (or accident costs) per incident involves correctly identifying (1)

⁷ The Urban Institute, <u>The Costs of Highway Crashes</u> (Washington D.C.: The Urban Institute, 1991). (prepared under FHWA contract DTFH61-85-C-00107).

losses involved and (2) the value of the benefit to the population stemming from the change in its exposure to physical risk. The first part, identifying losses is a fairly direct process involving compilation and analysis of existing data. The second, however, involves the indirect measurement of what people will pay for safety benefits. A near consensus exists on the methodology to be employed in measuring safety benefits using the willingness to pay approach, but the "value of life" approach is also gaining acceptance. Since the willingness to pay for risk reduction may vary for individuals both with respect to income and risk profile, a framework for evaluating safety benefits is needed, so that the "value of life" and measures of risk exposure can be identified or refined.

In a benefit-cost analysis of a highway improvement, reliable predictions of accident frequency and severity are as significant in determining total accident costs as is the estimation of the unit costs of accidents, broken down by degree of severity.

Value of Time

PEM considers the value of time as an important economic effect category related to the use of a product. Highway investment proposals, for instance, typically derive most of their appraised benefits from estimated savings in costs associated with travel time delays. A new product which produces a similar reduction in delays, through increased productivity or a shorter application time, for example, may also lead to savings in the value of time. How to place a value on the time lost through highway delays has long been a significant issue in the estimation of highway user costs.

The value of delay and time savings has long been known to be a significant element of highway user cost. Current thinking and state-of-the-art studies hold that the value of travel time represents the marginal rate of substitution of money for travel time, i.e., travel time values are based upon estimates of the amount of money decision-makers are willing to pay for a reduction in the amount of time that they, or a shipped commodity, spend in travel.

PEM uses speed/flow formulae to first determine the average vehicle speed for given facility types and traffic volumes. These formulae are consistent with the view of traffic speed/flow presented in the <u>AASHTO Redbook (1977)</u>⁸. The specific data used to derive the coefficients for these formulae comes from HERS⁹, and from the Texas Transportation Institute¹⁰. The monetary values applied to time savings in PEM are

⁸ American Association of State Highway and Transportation Officials. <u>A Manual on User</u> <u>Benefit Analysis of Highway and Bus-Transit Improvements 1977</u>. (Washington D.C.: 1978)

⁹ Ibid, <u>The Highway Economic Requirements System</u>.

¹⁰ Ibid, <u>Technical Memorandum for NCHRP 7-12</u>.

derived from information supplied from the Maricopa Association of Governments, Transportation and Planning Office which combines the percentage of person-trips by purpose obtained from household travel surveys with the average wage rate per sector and the occupancy rate per purpose to determine an average value of time for person/trips.

Vehicle Operating Costs

PEM considers vehicle operating costs as the cost of fuel, oil, maintenance and repairs, tire wear and highway-related vehicle depreciation. Generally speaking, vehicle operating costs are calculated based on posited mechanistic relationships between consumption rates for vehicle operating cost components on one hand, and highway conditions and traffic characteristics on the other. Information on these costs, as well as the methodology used to obtain them, can be found in HERS¹¹ and the Technical Memorandum to NCHRP 7-12¹².

In existing economic evaluation models for estimating highway operating costs, the prices associated with the consumption of key components are used only to convert quantitybased consumption rates developed in the models to an economic metric. Those models do not reflect the impact of price changes on changes in the levels of consumption of a particular cost component or cluster of components. Nor do they reflect the influence of other economic factors like changes in income levels.

Disruption Effects

In PEM, disruption effects are linked to the amount of time and the potential impact the disruption has on traffic during product installation or maintenance. The net disruption cost savings measures the incremental effects of disruption, or the additional costs or savings to highway users associated with the installation or maintenance of a new product.

The variables affecting the net disruption costs affect three economic effect areas under PEM: Safety, Value of Time and Vehicle Operating Costs. A Base Case product that currently requires a 30 minute installation time, for example, impacts these three areas through the disruption's direct effect on each category. For Safety, the percentage of AADT affected by the disruption as well as the maximum effect of the disruption on accident rates are used to forecast the Safety Disruption Costs. The Value of Time and Vehicle Operating Costs, derived from the Technical Memorandum to NCHRP 7-12¹³, are dependent upon on the percentage of AADT affected by the disruption and the length the disruption time. The sum of these three effect categories provides Base Case net

¹¹ Ibid, <u>The Highway Economic Requirements System</u>.

¹² Ibid, <u>Technical Memorandum for NCHRP 7-12</u>.

¹³ Ibid, <u>Technical Memorandum to NCHRP Report 7-12</u>.

disruption costs. A new product which reduces the disruption time, and/or the amount of traffic affected by disruption and the disruption's maximum effect on accident rates, leads to a net savings in disruption costs and an economic benefit to the driver.

Productivity Effects

ADOT productivity effects refer to the overall reduced costs associated with a new product. A new, durable pavement that leads to a reduction in annual maintenance costs may contribute to ADOT productivity only if this new product does not increase other cost categories, such as associated capital expenses on new equipment. The important aspect of this benefit category is accounting for all administrative, as well as fabrication and maintenance and operating costs associated with existing products. PEM accounts for productivity effects in three areas of potential improvements, namely: administrative, fabrication, and maintenance and operating costs.

The basic methodology used to obtain productivity data for all areas considered by PEM is the same. It involves observing the number of units of a new product installed or applied in one hour divided by the number of workers. The resulting figure is the number of units per person per hour or the productivity associated with a given product. Productivity estimates for Administrative and Fabrication are obtained from ADOT groups directly affected by the use of the product. The PECOS II data system calculates productivity for all ADOT maintenance activities and many vendors provide similar calculations for their products. Graphical representations of the three elements of productivity improvements are presented in the "Net Productivity Savings," "Product Demand," "Net Maintenance and Operating Costs," and "Net Fabrication Costs" Structure and Logic Diagram presented at the end of this section.

Annual Capital Expenditures

PEM's Annual Capital Expenditures category is dependent on both ADOT management purchasing and inventory decisions as well as common product attributes and product performance. The interaction of these factors produces the Base Case and New Products which is incorporated into the Annual Capital Expenditures category.

The Product Demand model solicits information on current and projected inventory, phase-in/phase-out periods, and product performance in terms of useful and maximum useful economic life. These values are used to derive estimates of the Base Case purchasing and inventory patterns for the current product, as well as to calculate the costs associated with phasing-in a new product while simultaneously phasing-out the current product. The product demand sub-model results in outputs for annual Base Case and phase-in/phase-out product purchases which are used in the drive the forecasts in the Annual Captial Expenditures.

PEM's Annual Capital Expenditures economic effect category uses specific cost data for Base Case and New Products combined with previously derived product demand functions to forecast the annual capital expenditures associated with a specific product. Inventory and Carrying Costs, as well as Salvage and Disposal Costs are added to the model, depending upon the number of units held in inventory and the annual product failures, respectively. Like the Product Demand model, this model forecasts the Annual Capital Expenditures associated with the Base Case product and compares this figure to the combined Annual Capital Expenditures associated with the phasing-in of a new product and the phase-out of the current product.

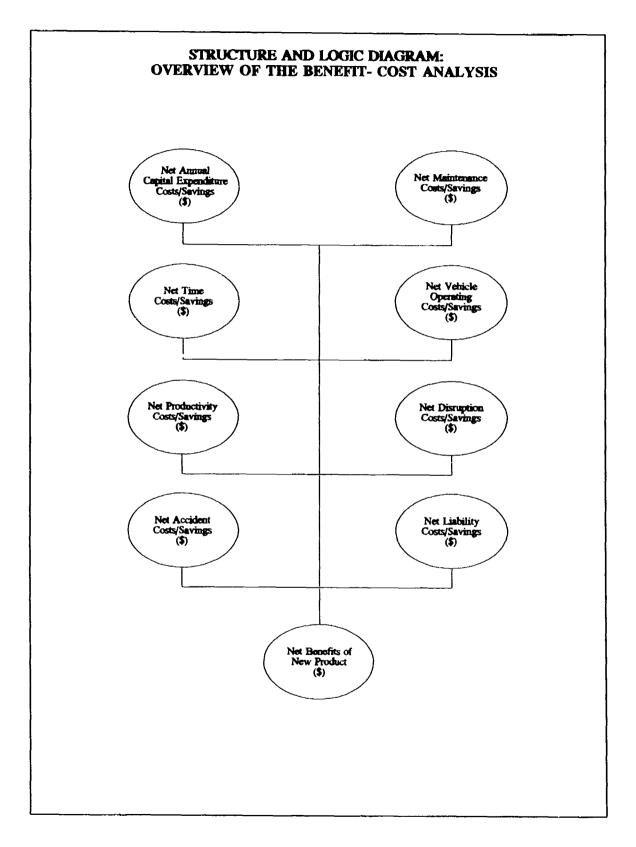
Maintenance Costs

PEM's Maintenance Costs effect category considers a host of variables that are typically linked to the maintenance and upkeep of an installed product. The common product attributes which comprise maintenance costs include: hourly equipment costs, labor productivity, fabrication productivity, average ADOT labor wage, as well as the annual number of product replacements which is based on failure rate and the knockdown/vandalism rate. Specific product attributes which affect pavement condition are also considered in this category, since these products may affect ADOT's pavement maintenance costs. The sum of these two types of maintenance activities is an estimate of the annual Maintenance Costs associated with a specific product. A new product which reduces the costs in either maintenance activity, such as through reduced equipment costs, for example leads to overall maintenance cost savings and economic benefit associated with the product.

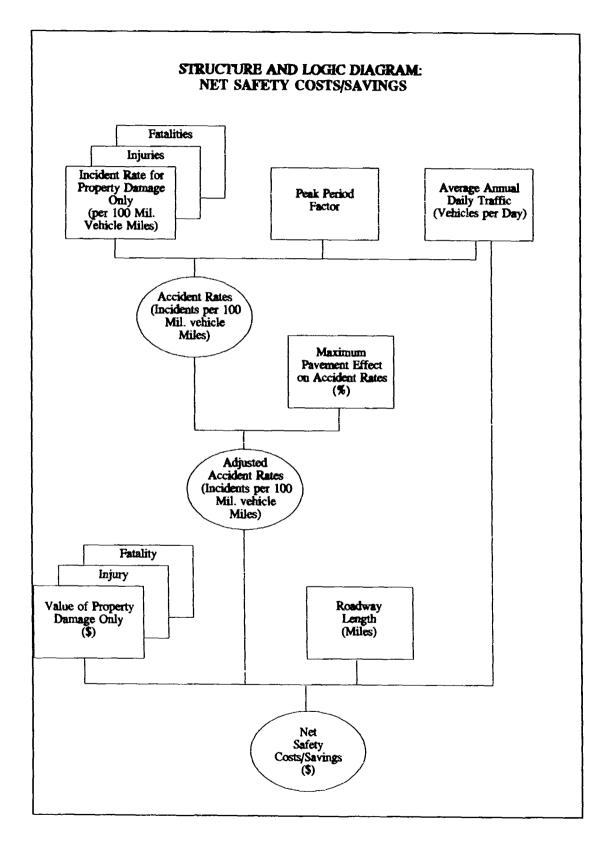
Liability Costs

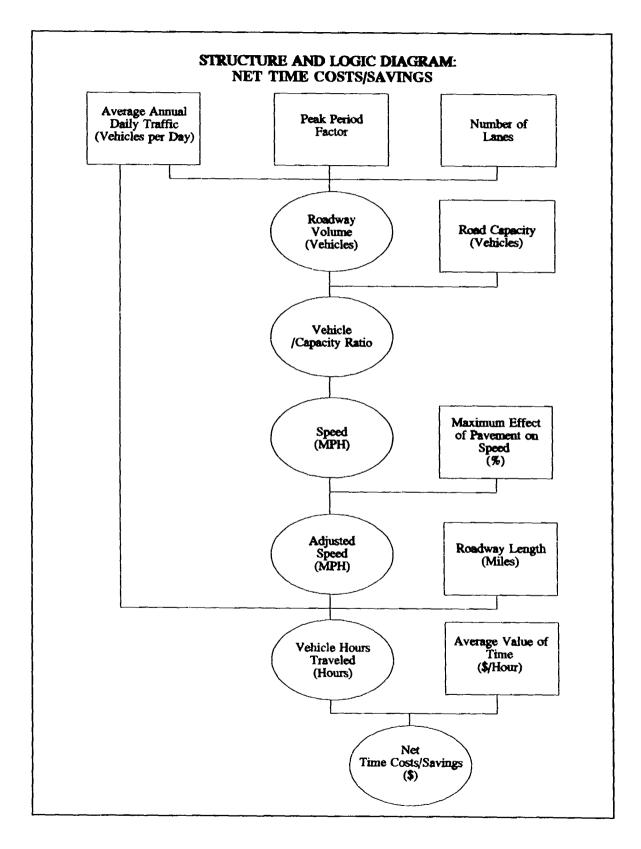
Product liability and the cost of litigation associated with product failures represents an important economic benefit category to State DOTs. A new highway product that reliably and consistently provides the same or superior user benefits compared to current technology may decrease the claims against the state and, ultimately, liability costs. Although the probability of related accidents due to a specific product attribute may be very small, the model addresses their statistical occurrence based on the number of claims per 100 product failures, and considers the costs incurred for those cases that are settled and those cases that go to trial. This basic accounting of liability costs provides a monetary measure of the potential liability risks associated with the use of a new product. In instances where little or no reliable data is available for this benefit category, the user should contact ADOT Risk Management for an opinion on the product's potential liability costs, if any.

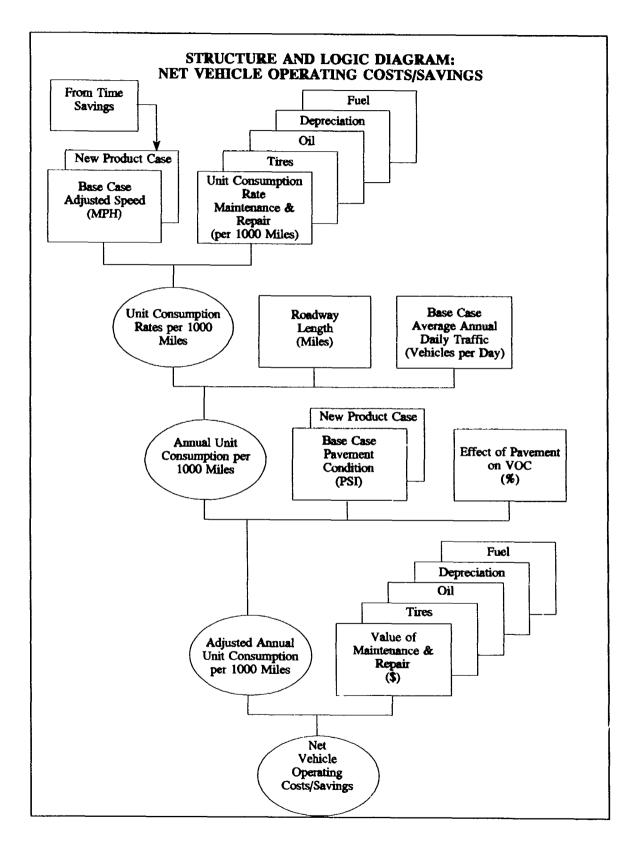
Environmental and Aesthetic Costs

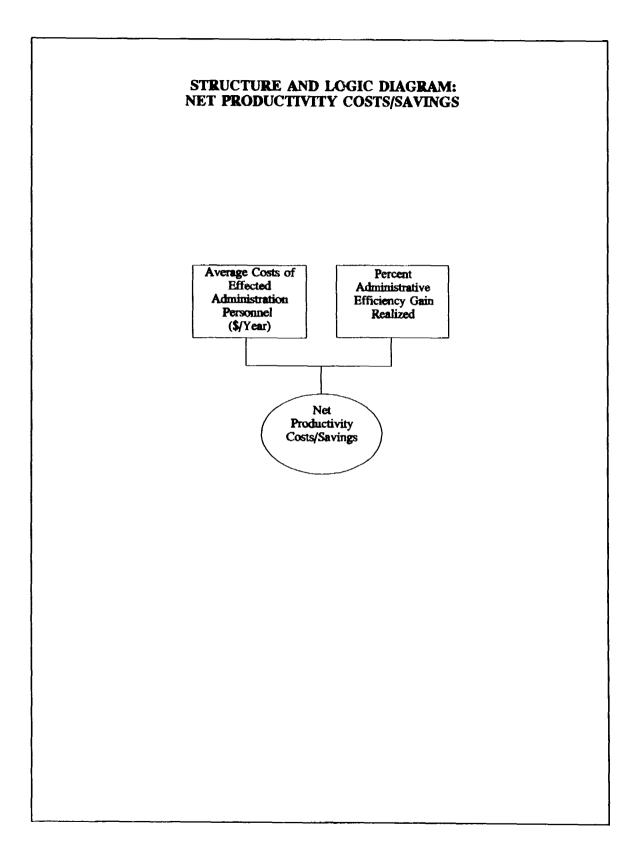

PEM addresses the environmental and aesthetic costs associated with a product via a threshold analysis which indirectly places a monetary value on environmental and aesthetic benefits. This approach was adopted since modelling the environmental and aesthetic costs associated with each product depends upon a myriad of independent factors that cannot be easily generalized and incorporated into a model with the scope of PEM.

PEM's environmental and aesthetic costs threshold is based on 80 percent of the net economic benefits associated with a given product. A new product which produces a net economic cost, or negative benefit can potentially overcome this evaluation if it is determined that the environmental and aesthetic benefits associated with the product are at least equal to or exceed 80 percent of the net economic costs.

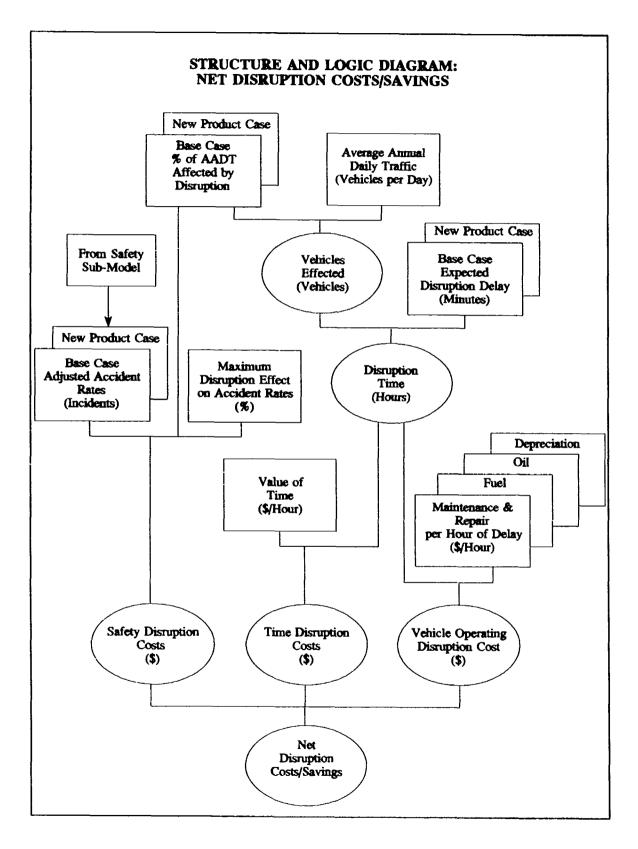

PEM's approach to environmental and aesthetic costs is ideally suited for variation two of the RAP component, although it can also be performed in variation one. As explained in PEM step 5, variation two is the expanded version of RAP in which ADOT personnel, company representatives and industry experts are invited to deliberate the probability ranges around central variables and to interpret PEM's forecasts. PEM's indirect estimation of environmental and aesthetic benefits provides the panel a starting point for discussing and forming a consensus about the value of these effects and their relationship to the product under consideration. Of course, PEM's threshold analysis of environmental and aesthetic costs associated with a product can also be evaluated by a single analyst, although this approach may limit the range of opinion concerning the value of these benefits.

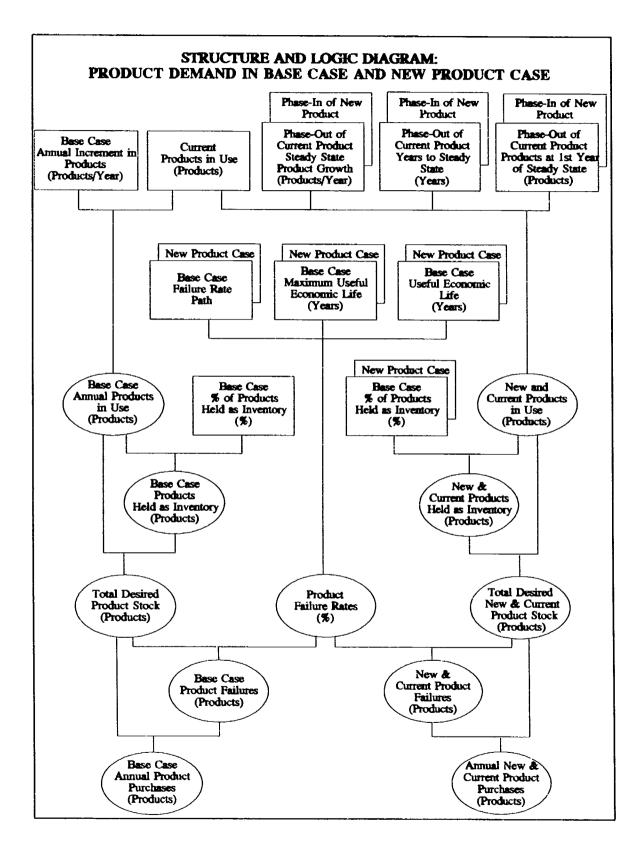

Structure and Logic Diagrams

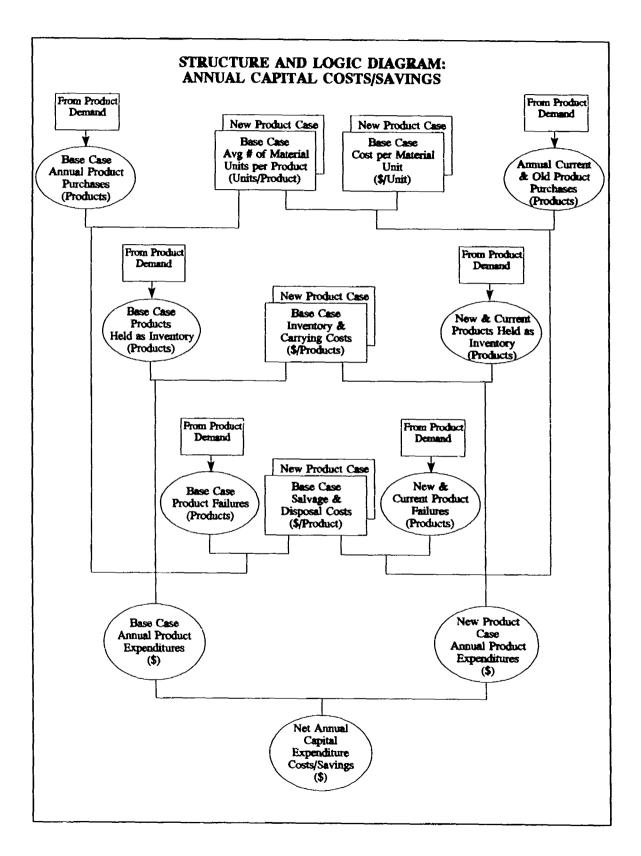

The following pages present the Structure and Logic Diagrams for each of the economic effect categories explained above. In each diagram, squares represent inputs to the model, while ovals represent outputs or outcomes from the relationships in the model. By using these diagrams, the user will be able to trace the path from the model inputs to the economic benefit categories.

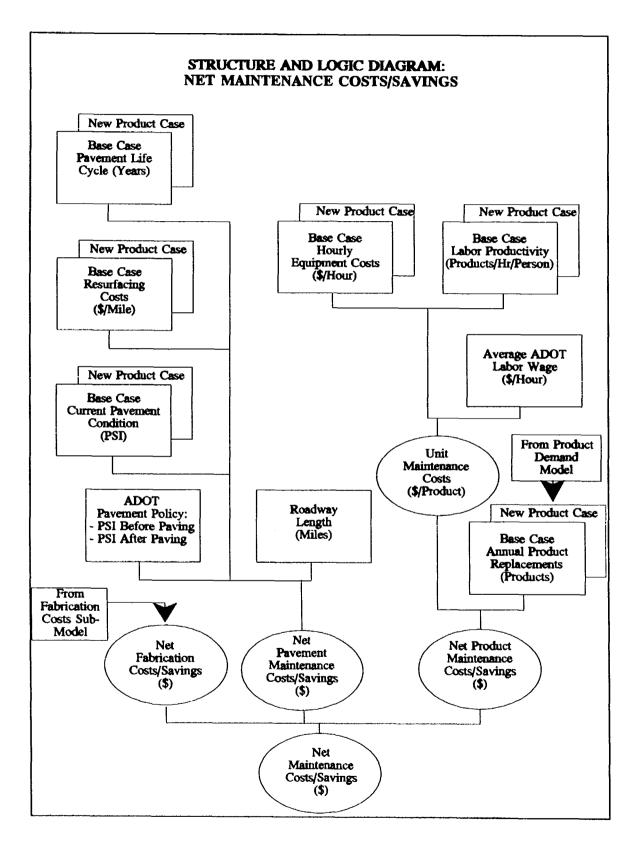


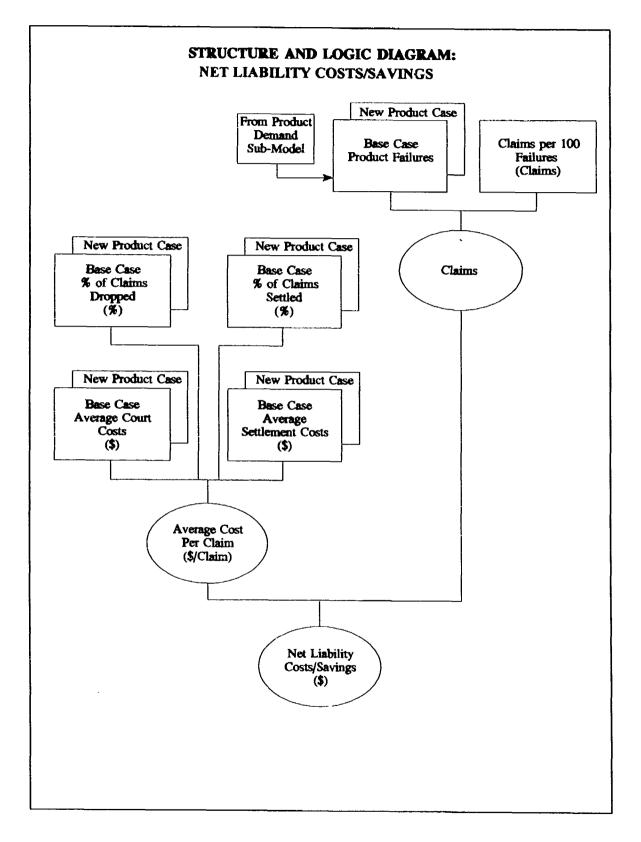
,

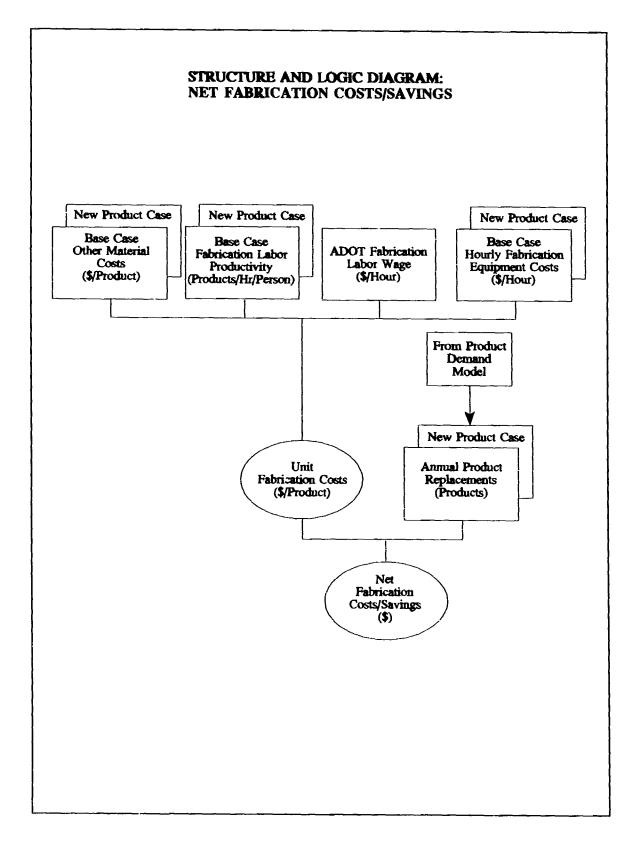


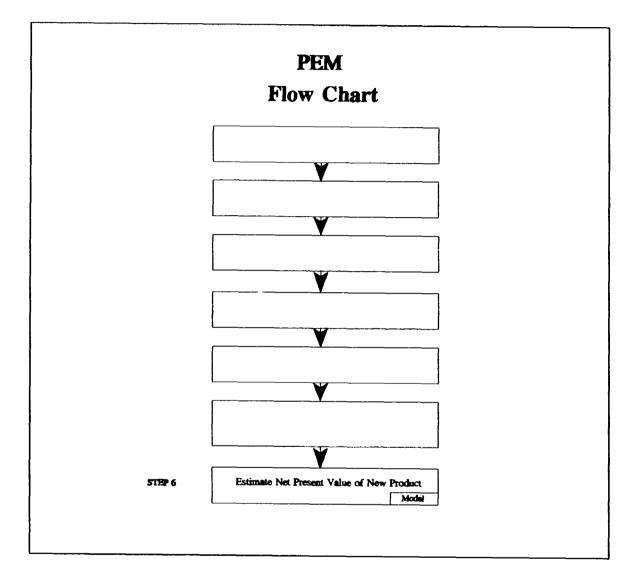







- -





PEM STEP 6

The final step of the PEM process is the estimation of the Net Present Value of the New Product. The model calculates this value by taking the net economic benefits derived in step 5 and "discounting" this value by the user defined discount rate, over the user defined analysis period¹⁴. Those products that yield a net present value of zero or above reflect an economic return of over five percent for the period studied, and are therefore economically justified. Those with negative values, conversely, are not economically justified.

¹⁴ The AASHTO Redbook (1977) recommends a discount rate of 5 percent for transportation project investments.

The model's final output of net present value gives the ATRC analyst a useful analytical tool for ranking and prioritizing new highway products. Given several products to screen, the analyst can compare the net present values and select only those products that yield relatively high net present values for further investigation. Alternatively, the analyst can also view the probabilities of achieving certain levels of economic benefits through the decumulative distribution option in the PEM risk analysis software (see the User's Guide for further instruction).

Using this information, the analyst can supplement the ATRC product selection process with a risk-adjusted, economic case for either ADOT product testing or purchasing. If a certain product warrants more investigation, the PEM results can be exposed to experts in a full RAP session to more thoroughly examine the economic costs and benefits associated with a new product.

3.0 USER'S GUIDE

The following section provides general information about PEM and basic instructions for running it. The step-by-step instructions provide all the basic information necessary to load the software, create a model scenario, modify input data, run a risk analysis statistical simulation, and analyze the model's outputs.

PEM is composed of two software programs. The first program serves an interface and database manager, while the second program is used for running risk analysis simulations. The software interface is used to generate new scenario files and to retrieve old scenarios. It is designed to run in any standard spreadsheet software program, such as Excel, Lotus 123, or Quatro Pro. The second program is the actual risk analysis simulation software, which runs in DOS.

The remainder of this section is divided into six sub-sections which focus on the step-bystep procedures for using the PEM software. The six sub-sections are:

- Loading the interface software;
- Creating a scenario file;
- Loading the risk analysis simulation software;
- Modifying inputs;
- Running a simulation; and
- Analyzing results.

LOADING THE INTERFACE SOFTWARE

1) Loading the Interface Software

From any standard spreadsheet software program, retrieve or open the spreadsheet called MAKER.WK1. The initial screen that appears is pictured in Figure 3.1. The software must be in a sub-directory called RAP.

2) Activating the Main Menu

Hitting **CTRL+A** activates the main menu. The main menu is pictured in Figure 3.2. To make a selection, use the up and down directional arrow keys to center the cursor over the corresponding number to the left of the appropriate menu item and hit **Enter**.

Maker.wk1	
	_
NEW PRODUCT SCENARIO GENERATOR	
AND DATABASE MANAGER	
FOR RISK ANALYSIS	
PREPARED FOR	
ARIZONA DEPARTMENT OF TRANSPORTATION	
(ADOT)	
· ·	
	-
<< <ctrl +="" a="" for="" main="" menn="">>></ctrl>	
:	
•	

Figure 3.1: . Initial Software Interface Screen

CREATING A SCENARIO FILE

There are two steps to creating a new scenario file. The first step requires inputting or altering scenario data. The scenario data is broken up into four categories: roadway characteristics data; highway user cost and ADOT policy data; common product attribute data; and specific product attribute data. These categories correspond to menu selections 1 through 4, respectively, which are pictured in Figure 3.2.

The second step requires inputting a filename and entering a description of the product. This step is accomplished by hitting *Enter* with the cursor over main menu option 6, as pictured in Figure 3.2.

Entering Input Data

The procedure for entering data in any of the four categories is identical. Once the correct selection is made from the main menu, the cursor will automatically move to the first data input field for that category. A sample data entry screen is pictured in Figure 3.3. To enter a new data value, simply key in the new value and hit *Enter*. The user must utilize the directional arrow keys as well as the *Page Up* and *Page Down* keys to move to each data field. When the user is done altering the data, CTRL + A returns the cursor to the main menu.

Each of these data categories and associated inputs will be explained in detail later in this section.

It is suggested that new users refer to the variable descriptions in Section 3.3 for proper descriptions of each data input.

Entering the Scenario Filename and Product Description

Once all the appropriate scenario data has been entered, the user must select main menu option 6, as pictured in Figure 3.2. The user will then be prompted to enter a filename. This filename should be no more than eight characters. All the relevant scenario data and results will be saved under this filename. Secondly, the user will be prompted to input the name of the product being evaluated. This name will appear as the scenario name when the user runs a simulation using the risk analysis simulation software.

Select an Option 1 Roadway Characteristics Data 2 Highway User Cost Data and ADOT Policy Data 3 Common Product Attribute Data 4 Specific Product Attribute Data 5 Review Scenario Data 6 Create a New Scenario File 7 Remieve an Old Scenario File 8 Quit ŀ •

:

COMMON PRODUCT ATTRIBUTES	Units	Median Value	Lower 10%	
# of Units per Product - BC	(# of Units)	9.00	8.00	
# of Units per Product - NP	(# of Units)	9.00	8.00	
Material Cost per Unit - BC	(S/Unit)	0.88	0.73	
Material Cost per Unit - NP	(S/Unit)	3.74	3.72	
Current Products in Use - BC	(Products)	1000	900	
Annual Inc. in Products - BC	(Products)	100	9	
% of Prod. Vand/Hit per Yr-BC	(%)	0.0527	0.047	
% of Prod. Vand/Hit per Yr-NP	(%)	0.0527	0.047.	
Useful Economic Life- BC	(Ycars)	6.36	5.0	
Useful Economic Life- NP	(Years)	10.30	8.4	
Max Useful Economic Life - BC	(Years)	9.45	7.0	
Max Useful Economic Life - NP	(Years)	15.70	11.4	
% of Prod. Heid as Inv BC	(%)	0.00	0.0	
% of Prod. Heid as Inv NP	(%)	0.00	0.0	
Phase-Out- Prod at Steady State	(Products)	0	1	
Phase-Out-Yrs to Steady State	(Years)	2.00	1.7	
Phase-Out- S. S. Stock Growth	(Products)	0.00	0.0	

(Products)

(Years)

(Products)

(S)

(5)

(S/Year)

(5)

1000

2.00

100

0.00

0.00

0.00

4000.00

900

1.75

0.00

0.00

0.00

3000.00

90

Upper 10%

> 10.00 10.00 0.93 3.75 1100 110 0.0577 0.0577 8.40 13.10 13.75 20.10 0.00 0.00 0 3.00 0.00 1100

> > 3.00

110

0.00

0.00

0.00

5000.00

Figure 3.3: Sample Data Input Screen

Phase-In - Prod at Steady State

Phase-In - Yrs to Steady State

Phase-In - S.S. Stock Growth

Ann Training & Equipment Costs

Start-up Equipment Costs

Testing & Evaluation Costs

Start-up Training Costs

Additional Interface Functions

Reviewing the Scenario Data. Option 5, as seen in Figure 3.2, allows the user to peruse the scenario data before it is exported as a scenario file. Using the up and down directional arrow keys allows the user to page through the data. When done hitting CTRL + A returns the cursor to the main menu.

The data can not be modified at this time, if the user desires to change any of the data he/she must return to the main menu (CTRL + A) and then select the appropriate category.

Retrieving an Old Scenario File. To rerun an old scenario utilizing the risk analysis simulation software requires that the user retrieve the old file by selecting option 7 from the main menu, see Figure 3.2. The user will be prompted to select the old file, which will automatically be imported into the simulation software, and will be ready to run once the user loads the simulation software.

DATA INPUT DESCRIPTIONS

Roadway Characteristics

As seen in Figure 3.2, roadway characteristics data represents the first category of data inputs needed to run a simulation. These inputs are required and essential to defining the base case against which the new product is to be evaluated. There are no specific values for these variables. They will depend upon the physical characteristics of the road on which the products under evaluation are to be used. These characteristics can significantly impact the entire range of economic benefits associated with each product and should remain constant between similar product scenarios, unless there is compelling evidence to support a change. The following is a complete list of the data inputs in this category:

- Metric Conversion;
- Facility Type;
- Number of Lanes;
- Roadway Length;
- Average Annual Daily Traffic;
- Annual Increment in Average Annual Daily Traffic; and
- Current Pavement Condition.

Metric Conversion

The metric conversion toggle allows the user to switch between metric units and U.S. units as the base unit of analysis. This switch will not change any prices. The user must manually convert them.

The following is a complete list of the prices that must be changed when converting from metric to a U.S. based unit system:

	U.S. System	Metric
Fuel	\$/gallon	\$/liter
Oil	\$/quart	\$/liter
Maintenance & Repair	% Avg Cost/1000 mi	% Avg Cost/1000 km
Resurfacing Costs	\$/mile	\$/kilometer

Typical values for these prices have been included in the Technical Appendix.

Facility Type

A total of twelve different facilities have been included in the model (7 urban, and 5 rural), each of which has a unique number code. The facility types and their corresponding codes are listed below. The user is required to input a number code, corresponding to the facility type in the base case and with the new product. The facility designation codes <u>should be</u> the same for both cases since it is highly unlikely that any new product would change the facility type.

The facility type drives the speed/value of time analysis as well as the safety/accident cost analysis. Each facility type has a unique speed flow curve and a unique accident rate data array. The vehicle operating cost analysis is driven by the determination of the average speed and is therefore also directly effected by the facility type.

The twelve facility types included in the model are:

- 1. 4 Lane Full Access Control, Urban
- 2. 6 or More Lane Full Access Control, Urban
- 3. 4 Lane Partial Access Control, Urban
- 4. 6 or More Lane Partial Access Control, Urban
- 5. 2 or 3 Lanes, Urban
- 6. Multilane Undivided No Access Control, Urban
- 7. Multilane Divided No Access Control, Urban
- 8. Multilane Full Access Control, Rural
- 9. Multilane Partial Access Control, Rural
- 10. 2 or 3 Lanes, Rural
- 11. Multilane Undivided No Access Control, Rural
- 12. Multilane Divided No Access Control, Rural

Number of Lanes

This is a straight forward, roadway specific input. The user must ensure that the number of lanes specified is compatible with the chosen facility types. The number of lanes should be the same for both cases since it is highly unlikely that any new product would change the number of lanes.

The number of lanes primarily effects speed/flow. Speed/flow is driven by the volume to capacity ratio which is a function of the average annual daily volume and the capacity of the road, which naturally depends on the number of lanes.

Pavement Condition

This value must be specified for the roadway in the base case. Pavement condition is specified through use of the pavement service index (PSI), which operates on a scale of 0.1 to 5.0. A PSI of 5.0 represents the best pavement condition, and 0.1, the worst.

Pavement condition has a direct effect on all three of the major user cost categories, speed/flow, safety, and vehicle operating costs.

PSI (pavement service index) values range from 3.0 to 4.5 for typical U.S. highways.

Roadway Length

This value must be input in kilometers. It refers to the length of road facility under analysis. This value will depend upon the analysis and product under evaluation.

Average Annual Daily Traffic

This value refers to the average annual daily traffic (AADT) on the facility under consideration. AADT is defined in the <u>Highway Capacity Manual, Transportation</u> <u>Research Board Special Report 209</u>,¹⁵ as "the total volume passing a point or segment of a highway facility, in both directions, for one year, divided by the number of days in the year." This value will depend upon the facility type chosen. Some typical AADT values are listed below.

		Low	High
1.	4 Lane Full Access Control	35,000	0 80,000
2.	6 or More Lane Full Access Control	80,000	120,000
3.	4 Lane Partial Access Control	20,000	75,000
4.	6 or More Lane Partial Access Control	80,000	120,000
5.	2 or 3 Lanes	3,000	10,000
6.	Multilane Undivided No Access Control	35,000	45,000
7.	Multilane Divided No Access Control	45,000	55,000
8.	Multilane Undivided No Access Control	8,000	10,000
9.	Multilane Divided No Access Control	15,000	25,000
10.	Multilane Full Access Control, Rural	15,000	25,000
11.	Multilane Partial Access Control, Rural	25,000	35,000
12.	2 or 3 Lanes, Rural	1,600	8,000

Annual Increment in Average Annual Daily Traffic

This value refers to the increase in vehicles a facility may undergo over time. This value is specific to the facility type chosen by the user. The increment may be zero or even negative.

Highway User Cost Data and ADOT Policy Data

Highway user cost data and ADOT policy data reflect either policy-defined values for certain transportation-related inputs, such as the average value of time, or market prices for common transportation inputs, such as the price of fuel and tires. The values for these variables should be agreed upon beforehand and remain constant throughout a product evaluation. The prices should also be consistent with the desired convention (i.e. metric vs. U.S. system). This is necessary in order to have a common set of prices for the evaluation of all economic impacts.

¹⁵ Transportation Research Board, National Research Council, <u>Highway Capacity Manual</u>, <u>Special Report 209</u>. (Washington, D.C.: 1985).

The Highway User Cost Data and ADOT Policy Data contained in PEM includes:

- PSI Before Resurfacing;
- PSI After Resurfacing;
- Expected Base Case Pavement Life;
- Base Case Resurfacing Costs;
- Highway Capacity;
- Peak Period Factor;
- Value of Life;
- Value of Injury;
- Value of Property Damage Only Accident;
- Value of Time;
- Maximum Pavement Effect on Accident Rates;
- Maximum Pavement Effect on Speed;
- Disruption Effect on Accident Rates;
- Fuel Price;
- Tire Price;
- Maintenance and Repair Costs;
- Depreciation Costs;
- Discount Rate; and
- Period of Analysis.

Values for these variables have been provided and are presented in the Technical Appendix of this manual.

PSI Before and After Resurfacing

Pavement preservation policy data, available from the ADOT Materials Group, is used to develop the pavement condition profile over the analysis period, as well as allocate resurfacing costs in each relevant year.

The variable PSI After Resurfacing is used in conjunction with the variables PSI Before Resurfacing and Expected Pavement Life to generate the pavement condition for each year. The pavement condition deteriorates at a constant rate (linearly) until it reaches the PSI level before resurfacing, at which time it is assumed that resurfacing occurs. After resurfacing, PSI is set to the value indicated for PSI after resurfacing and the cycle repeats.

The level at which resurfacing occurs is specific to the pavement preservation policy in place. A target PSI of 4.0 to 4.5 is normally expected after resurfacing.

Expected Base Case Pavement Life

This variable represents the time it takes the pavement to deteriorate from the PSI level after resurfacing to the PSI level at which resurfacing takes place.

This variable is dependent on the type of pavement and the PSI level at which resurfacing occurs and therefore has no typical value.

Base Case Resurfacing Costs

The cost of resurfacing represents the cost, in dollars per kilometer, incurred each time the roadway is resurfaced.

This value is dependent on many things, including the type of resurfacing required, the degree of improvement expected and the thickness of the surface. These are all dependent on the pavement preservation policy and therefore there is no typical value.

Highway Capacity

Highway capacity is defined in the <u>Highway Capacity Manual</u>,¹⁶ as "the maximum rate of flow at which persons or vehicles can be reasonably expected to traverse a point or segment of a lane or roadway during a specified time period...usually expressed as vehicles per hour or persons per hour." The value recommended in the manual for use in planning decisions 2000 vehicles per hour. This value is not likely to change and should remain constant for all product evaluations.

This variable effects the vehicle to capacity ratio, which is the main driver behind speed/flow and vehicle operating costs.

Peak Period Factor

The peak period factor is defined in the <u>Highway Capacity Manual</u>,¹⁷ as "the hourly volume during the maximum volume hour of the day divided by the peak 15-minute rate of flow within the peak hour." This value was calculated by Hickling for prior work done for ADOT on the Phoenix freeway system. This value is not likely to change and should remain constant for all product evaluations.

¹⁶ Ibid, <u>The Highway Capacity Manual</u>.

¹⁷ Ibid, <u>The Highway Capacity Manual</u>.

Value of Life, Injury, and Property Damage Only Accident

Safety-related costs include the statistical value of human life, as well as, the value of non-fatal accidents and property damage. The costs of the three types of accidents were calculated from <u>The Cost of Highway Crashes</u> prepared for the Federal Highway Administration.¹⁸ Accident rates are calculated separately for three events: "property damage-only" accidents; injuries (as opposed to injury-producing accidents); and fatalities. Accidents costs are applied to the corresponding incident rate to derive Net Safety Costs.

The incident rate cost formulae are derived using a regression of accident rate data based on a logistic curve. The accident rate data comes from HERS.¹⁹ The formula is in the following form:

$$Rate_{i} = A_{i} + B_{i} \left(\frac{1}{\exp^{(\alpha_{i} + \beta_{i} * AADT)}} \right)$$

Where:

- A = maximum (or minimum) value. If B is negative, A is a maximum, otherwise A is the minimum.
- B = difference between maximum and minimum value.
- $\alpha \& \beta$ = coefficients that determine the shape of the logistic curve.
- i = the three accident incident types: property damage only (PDO), injuries and fatalities.

The values for A, B, α , and β vary according to the facility type.

Average Value of Time

The speed/flow formulae are used to calculate an average speed given the facility type and the volume of traffic. The formulae represent two distinct curve sections, which is in line with the way in which speed/flow is currently viewed and is consistent with the <u>AASHTO</u> <u>Redbook (1977)</u>.²⁰ The first section is relatively flat, with a linear slope. This region represents conditions which are relatively free of congestion. The second section is dominated by congestion and speed drops off rapidly as a result of increased volume, until

¹⁸ Ibid, <u>The Cost of Highway Crashes</u>. Note: the "statistical value of life" currently used in PEM is for demonstrating the validity of the model only. Other values may substituted according to ADOT policy.

¹⁹ Ibid, <u>The Highway Economic Requirements System</u>.

²⁰ Ibid, <u>AASHTO Manual on User Benefit Analysis</u>.

the speed reaches a minimum speed (crawl speed). The data used to derive these coefficients comes from $HERS^{21}$ and the Texas Transportation Institute.²²

During low volume periods speed is defined as a function of the volume/capacity ration as follows:

Speed = Free Flow Speed - B * v/c

Where:		
Free Flow Speed	=	The theoretical maximum speed that can be attained on the roadway.
Slope	=	The effect of traffic on speed during low volume periods. This value is expressed as the change in speed proportional to the increase in the volume to capacity ratio.

During periods of high volume the speed is defined as:

Speed =
$$\alpha + \beta * v/c^{Power}$$

Where:

 α = The speed at the transition from low volume to high volume.

- β = The effect of traffic on speed during low volume periods. This value is expressed as the change in speed proportional to the increase in the volume to capacity ratio (raised to the power).
- Power = The power of the effect of the volume to capacity ratio on speed.

The values for free flow speed, B, α , β , power and the transition point vary according to facility type.

Effects on Accident Rates, Speed, and Vehicle Operating Costs

These percentage effects, are used to scale the three major cost estimating models, speed, safety, and vehicle operating costs. For instance, the pavement condition of the road is used in conjunction with the variable *Maximum Pavement Effect on Accident Rates* to scale accident rates according to the condition of the road.

²¹ Ibid, <u>The Highway Economic Requirements System</u>.

²² Ibid, <u>Technical Memorandum to NCHRP Project 7-12</u>.

The formulas and values utilized in the model were derived from HERS²³ the Texas Transportation Institute,²⁴ and <u>Designing Safer Roads, TRB Special Report 214</u>.

The following is a complete list of all the percentage effects utilized by PEM:

- Maximum Pavement Effect on Accident Rates;
- Maximum Pavement Effect on Speed;
- Disruption Effect on Accident Rates;

Values for these variables were have been provided and can be found in the Technical Appendix.

Price of Fuel, Tires, Maintenance and Repair Costs, and Depreciation Costs

Table 3.1 lists the vehicle operating cost components and the factors which influence those costs. The actual formulae are complex empirical relationships and are not specified here but are based on work completed by Hickling for <u>NCHRP Project 7-12</u>. Information on these costs can be found in HERS²⁵ the Texas Transportation Institute's Technical Memorandum.²⁶ The five user cost components are:

 Fuel Consumption 	- measured in liters;
Tire Wear	- measured in % of a tire;
 Oil Consumption 	- measured in liters of oil;
 Maintenance and Repair 	- measured in % average cost/1000 kilometers; and
Depreciation	- measured in % of average depreciable value.

²³ Ibid, <u>The Highway Economic Requirements System</u>.

²⁴ Ibid, <u>Technical Memorandum to NCHRP Project 7-12</u>.

²⁵ Ibid, <u>The Highway Economic Requirements System</u>.

²⁶ Ibid, <u>Technical Memorandum to NCHRP Project 7-12</u>.

Cost Factor	Vehicle Operating Cost Component				
	Fuel	Tire	Oil	M&R	Depr.
Uniform Speed Costs					
Speed		•	•	•	•
Speed Cycling Costs					
Speed	•	•	•	•	•
Cycling Range ²⁷	•	•	•	•	•
Cycling Rate ²⁸	•	•	•	•	•
Pavement Condition ²⁹	•	•	•	•	•

Table 3.1 - Matrix of Factors for Vehicle Operating Costs

²⁷ The speed cycling range is fixed as 5 MPH above and below the average speed. This is consistent with traditional cost methodologies.

²⁸ The cycling rate is calculated based on the volume to capacity ratio for the roadway.

²⁹ The pavement condition effect is applied as a single factor to the final operating cost value. This is consistent with data generated using the MicroBENCOST relationships and is also supported by the HERS relationships.

Discount Rate

This value represents the rate at which future benefits and costs are discounted into current values. This is necessary to accurately reflect consumers' preference for present over future benefits and for the fact that forecasts are inherently uncertain. This rate is very powerful and should remain constant throughout the course of an evaluation.

The AASHTO Redbook (1977),³⁰ as well as Texas Transportation Institute's Technical Memorandum³¹contain recommendations of discount rates for use in highway planning. Hickling recommends a rate of 5% which is consistent with both studies. ADOT is capable of changing this rate in the model but should be forewarned that using a rate that is too low will raise the present value of benefits and result in economically undesirable products being selected. Conversely, a discount rate that is too high will tend to favor projects that have a shorter payback period.

Period of Analysis

The period of analysis refers to the number of years over which annual costs will be calculated and discounted to the present. This is a ADOT specific value. The maximum number of years for which an analysis can be conducted is 50. The recommended number of years is 25. This variable must be specified beforehand and should remain constant when analyzing similar products.

³⁰ Ibid, AASHTO Manual on Estimating User Benefits.

³¹ Ibid, Technical Memorandum to NCHRP Project 7-12.

Common Product Attributes

Common product attributes are distinguished from specific product attributes simply by the fact that common product attributes apply to all products, while specific attributes may or may not apply to a product. While it is not necessary to input a value for each variable, the level of detail and confidence of the analysis will be reduced proportionately. It will be indicated, for each variable, how the variable effects the model and how it's omission would reduce potential costs and benefits.

Common product attributes contained in PEM include:

- Average Number of Material Units per Product;
- Material Unit Cost;
- Current Products in Use;
- Annual Increase in Products;
- Percent of Products Vandalized/Knocked Down per Year;
- Useful Economic Life of the Product;
- Maximum Useful Economic Life of the Product;
- Percent of Products Held as Inventory;
- Products at First Year of Steady State;
- Years to Steady State;
- Steady State Product Growth;
- Start-up Training and Equipment Costs;
- Annual Training and Equipment Costs;
- Testing And Evaluation Costs;
- Inventory and Carrying Costs;
- Disposal And Salvage Costs;
- Number of Claims per 100 Failures;
- Percent of Claims Settled;
- Percent of Claims Dropped;
- Average Settlement and Court Costs;
- ADOT Fabrication Labor Wage;
- Fabrication Labor Productivity;
- Hourly Fabrication Equipment Costs;
- Other Material Cost;
- Overhead Rate;
- Scrap Rate;
- ADOT Maintenance Labor Wage;
- Maintenance Labor Productivity;
- Hourly Maintenance Equipment Costs;
- Expected Disruption Delay;
- · Percent of AADT Affected by Disruption; and
- Failure Rate Path.

Average Material Units per Product

The value for this variable refers to the average number of material units that are utilized to make one product. For example, 16 square feet of sign sheeting is used to make one roadway sign or .5 cubic meters of patching material is used for one patch. It may be the case that each material unit is used directly. For example, one guardrail reflector is the material unit and the product. In this case the ratio is 1 to 1. The model requires data for both the base case and the new product case. Without values for this variable, annual capital expenditures cannot be calculated.

Material Unit Cost

Material unit cost is the dollar cost of the material used to make the product or used directly in an application. For instance, in the case of sign sheeting, the product is the sign and the material is the sign sheeting. The material comes in square feet and through the use of the previous variable, *Average Material Units per Product*, this material is turned into the product. The material unit cost must be in dollars per the unit base (square feet, cubic yards, etc...) used in the previous variable. The model requires cost data for both the base case and the new product case. Without values for this variable, annual capital expenditures cannot be calculated.

Current Products in Use

This value represents the current products in use. It is the starting point for determining product growth in the base case and the phase-out period in the new product case. This variable affects yearly product expenditures. Data for this variable is only required for the base case, as there is no current stock of a new product. This variable impacts annual capital expenditures.

It may not always be possible to determine this value. A convenient alternative is to determine the number of products in use over a 1 kilometer stretch of rural/urban road. For example, <u>NCHRP Report 346</u>, <u>Implementation Strategies for Sign Retroreflectivity Standards</u> uses a figure of 18 regulatory signs per mile of rural road. To utilize this figure in the analysis, the variable *Roadway Length* would become 1 mile. The final net benefits would be in dollars per mile. These values can also be easily converted to metric simply by multiplying then by 0.6214.

Annual Increase in Products

This variable is utilized to develop the annual product stock for the base case. The value for this variable must be entered in products per year and could be 0 or even negative. This variable impacts annual capital expenditures.

Percent of Products Vandalized/Knocked Down per Year

This value refers to the percent of products in use that need to be replaced due to vandalism or are destroyed by accidents during a given year. These products that need to be replaced fall outside the normal product life-cycle and are not accounted for by the product failure rate, which is a function of the useful life of the product. This variable is not essential for calculating annual product demand and expenditures, but it can add an additional level of detail to the analysis if utilized.

Useful Economic Life of Product

The useful economic life of the product is defined as the time at which 50% of the products installed at the same point in time have failed or ceased to perform their desired function. The model requires data for both the base case and the new product case. Both values for this variable must be entered in years. This variable is essential for calculating the product failure rate which impacts annual capital expenditures.

Maximum Economic Life of Product

The maximum useful economic life of the product is defined as the time at which 99% of the products installed at the same point in time have failed, or ceased to perform their desired function. The model requires data for both the base case and the new product case. Both values for this variable must be entered in years. This variable is essential for calculating the product failure rate which impacts annual capital expenditures.

Percent of Products Held as Inventory

This percentage reflects the percent of products in use held as inventory during a given year. It may be that no inventory of the product is maintained, in which case, the percentage would be zero. This percentage, along with the other product stock variables, are used to determine the desired level of product stock for a given year. The model requires data for both the base case and the new product case. This variable impacts annual capital expenditures.

Products at First Year of Steady State

Steady state is defined as the point at which the product stock tends to remain steady or relatively constant. In the event a new product is approved for use by ADOT, existing old products are not immediately replaced, instead they are phased-out as the new product is phased-in. This phase-in and phase-out period characterizes the new product case, the scenario against which the base case is compared. Conversely, the base case is characterized by no phase-in or phase-out period. This variable, along with the variable *Years to Steady State*, characterizes this phase-in and phase-out period. The model requires data inputs for both the old product and the new product during this period. This variable impacts annual capital expenditures and is essential for its proper calculation.

Years to Steady State

This variable represents the time period in years over which the old product is phased-out and the new product phased-in. There is no unique value for this variable, instead it will depend upon the product in question and current and past ADOT usage of the product. The model requires data inputs for the behavior of both the old product and the new product during this period. This variable impacts annual capital expenditures and is essential for its proper calculation.

Steady State Product Growth

Once steady state is reached, it capital stock may continue to grow marginally or contract each year. This variable captures the change the capital stock may undergo over time, which may be zero or negative. The model requires data inputs for both the base case (which may be 0) and the new product case. This variable impacts annual capital expenditures. Figure 3.4 describes the relationship between *Current Products in Use, Annual Increase in Products, Products at first Year of Steady State, Years to Steady State, Steady State Product Growth,* and how they are utilized to describe the base case and new product case.

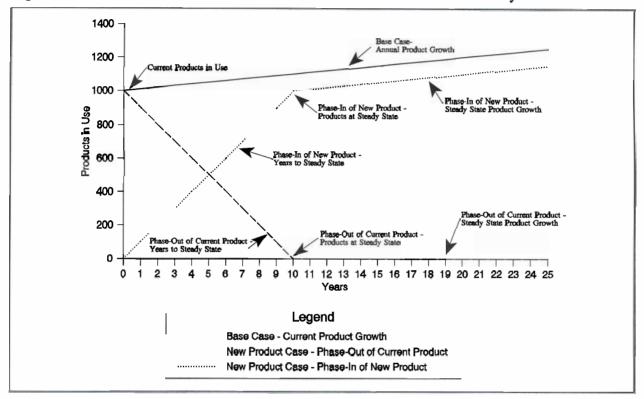


Figure 3.4 Base Case and New Product Demand over a 25 Year Analysis Period

Start-Up Equipment and Training Costs

These variables indicate the costs, in dollars per year, associated with implementing a new product. Start-up equipment costs includes any special machinery or equipment which is required to maintain and install a new product. This variable *does not* include the use of standard ADOT equipment services that are included in unit maintenance costs. It refers specifically to those products that require a special instrument or handling procedure that necessitates the use of special equipment that ADOT does not currently own or operate. This category also includes any compliance or compatibility expenses that are involved with the new product. Current products do not have additional special equipment needs. This variable is only required for the new product case.

Additional training costs, in dollars per year, are those expenses associated with the instruction of ADOT personnel to install, use and maintain a new product. These costs are typically a one-time, up front expense that varies according to the complexity of the product and the number of ADOT personnel that will ultimately use the product. There are no additional training costs associated with the base case.

Both these variables, while not essential to the calculation of annual capital expenditures, can add a significant detail to the costs involved with phasing-in a new product.

Annual Training and Equipment Costs

Annual training and equipment costs, in dollars per year, specifically refers to those costs which are likely to be incurred each year due to the adoption of a new product. These are expenses that are incurred each year after the first year and do not reflect start-up costs which are accrued in the first year of implementation. There are no additional annual training and equipment costs associated with the base case. This variable is not essential to the calculation of annual capital expenditures, but can add a significant level of detail to the costs involved with phasing-in a new product.

Testing and Evaluation Costs

Testing and evaluation costs, in dollars, reflect those expenses incurred by ADOT to test, inspect, and evaluate a new product. It is assumed that these costs are accrued in the first year of a product's implementation. The testing and evaluation costs associated with existing products are not included in the model, as such, this cost is accounted for only in the new product case. This variable is not essential to the calculation of annual capital expenditures, but can add a significant level of detail to the costs involved with phasing-in a new product.

Inventory and Carrying Costs

Annual inventory costs measure the cost of maintaining a product in warehouse inventory. The cost is input in dollars per product per year. The model requires data inputs for both the base case and the new product case. This variable is not essential to the calculation of annual capital expenditures, but can add a significant level of detail to the analysis.

Disposal and Salvage Costs

This variable concerns the salvage and disposal costs, in dollars per product, that occur when a product is replaced. The model requires data inputs for both the base case and the new product case. This variable is not essential to the calculation of annual capital expenditures but can add a significant level of detail to the analysis.

Number of Claims per 100 Failures

This variable relates the number of product failures that result in legal action/claims, against ADOT. This value is dependent upon the product itself and prior experience at ADOT or other transportation departments. The model requires estimates for both the base case and the new product case. This variable is essential for calculating annual liability costs.

Percent of Claims Settled

The majority of claims against ADOT do not result in court cases. Those that do not are either settled or dropped. This percent represents the percent of claims that are settled. The model requires percentages for both the base case and the new product case. This variable is essential for calculating annual liability costs.

Percent of Claims Dropped/Not Pursued

Those claims which are dropped incur no cost to ADOT. This percent along with the *Percent* of *Claims Settled* jointly determine the number of claims going to court. The model requires percentages for both the base case and the new product case. This variable is essential for calculating annual liability costs.

Average Settlement and Court Costs

These variables relate the average court or settlement costs, in dollars per claim, associated with a claim against ADOT. While relatively few claims actually result in court cases, there are significant costs associated with processing claims, legal fees and adverse settlements. Average court costs depend upon the legal exposure characteristics of the product itself. This cost is one component of total liability costs. The model requires data inputs for both the base case and the new product case.

Average settlement costs characterizes the costs associated with a settled claim. It includes costs associated with processing the claim and paying the settlement. This cost is the second

component of total liability costs. The model requires costs for both the base case and the new product case.

ADOT Fabrication Labor Wage

The hourly labor wage, input as dollars per hour, is used to calculate product fabrication costs, as well as, any fabrication productivity savings that may arise from the use of a new product.

Fabrication Labor Productivity

This variable concerns the productivity of ADOT fabrication workers with regards to the base case and the new product case. Productivity must be entered as products per hour per person or fractional products per hour per person, if the product requires more than one person to fabricate. This variable is essential for correctly calculating labor fabrication productivity and fabrication costs.

Time until Fabrication Productivity Achieves 50 Percent of Expected Level

Productivity in the new product case may not be instantaneously achieved due to learning curve effects. For this reason, it is reasonable to assume that productivity will increase over time until the expected productivity level is reached. This variable characterizes the time it takes productivity to achieve 50 percent of its expected level. This value may be zero if there are no learning curve effects.

Change in Time until Fabrication Productivity Achieves 95 percent of Expected Level

This variable refers to the time, in years, it will take to have productivity increase from 50 percent of its expected level to 95 percent. This variable is also input in years, or in fractional years, as the case may be. This value may be zero if there are no learning curve effects.

Hourly Fabrication Equipment Costs

Hourly fabrication equipment costs refer to the expenses incurred to ADOT in using equipment or machinery for the fabrication of the product, for example building a new sign. This value, in conjunction with user-defined fabrication productivity and fabrication labor wage values, provides a fabrication expense estimate for each product. The model requires hourly fabrication equipment estimates for both the base case and new product case. This variable is essential for correctly calculating annual product fabrication costs.

Other Material Costs

This value refers to any additional materials that are necessary for the fabrication of one product. Data for this variable must be entered as dollars per product. This variable is not essential for the proper calculation of fabrication costs, but it can add a significant level of detail to the analysis.

Overhead Rate

This rate, in dollars per product, refers to the overhead costs involved with many fabrication processes. The user must be careful to differentiate equipment costs and overhead costs, to avoid double counting. This variable is not essential for the proper calculation of fabrication costs and may be zero.

Scrap Rate

The rate entered as a percent of waste per product, refers to the unavoidable waste that occurs during many fabrication process. This variable is not essential for the proper calculation of fabrication costs and may be zero.

ADOT Maintenance Labor Wage

The hourly labor wage, input as dollars per hour, is used to calculate product maintenance costs, as well as, any maintenance productivity savings that may arise from the use of a new product.

Maintenance Labor Productivity

This variable concerns the productivity of ADOT laborers with regards to the base case and the new product case. Productivity must be entered as products per hour per person or fractional products per hour per person, if the product requires more than one person to maintain. This variable is essential for correctly calculating labor productivity and maintenance costs.

Time until Labor Productivity Achieves 50 Percent of Expected Level

Labor productivity in the new product case may not be instantaneously achieved due to learning curve effects. For this reason, it is reasonable to assume that productivity will increase over time until the expected productivity level is reached. This variable characterizes the time it takes productivity to achieve 50 percent of its expected level. This value may be zero if there are no learning curve effects.

Change in Time until Labor Productivity Achieves 95 percent of Expected Level

This variable refers to the time, in years, it will take to have productivity increase from 50 percent of its expected level to 95 percent. This variable is also input in years, or in fractional years, as the case may be. This value may be zero if there are no learning curve effects.

Hourly Maintenance Equipment Costs

Hourly equipment costs refer to the expenses incurred to ADOT in using equipment or machinery for the routine maintenance and upkeep of a product. This figure, in conjunction with user-defined ADOT productivity and labor wage values provides a maintenance expense estimate for each product. The model requires hourly equipment estimates for both the base case and new product case. This variable is essential for correctly calculating annual product maintenance costs.

Expected Disruption Delay

Disruptions in highway users' travel times are likely to occur when ADOT or ADOT contractors maintain or install products. The expected disruption time in minutes per vehicle is used in conjunction with the *Percent of AADT Affected* to calculate disruption hours and total disruption costs. The model requires minute delay estimates for both the base case and new product case. This variable is essential for calculating annual disruption costs.

Percent of AADT Effected by Disruption

This percent refers to the percent of cars <u>annually</u> effected by the maintenance activities associated with a particular product. For example if 10,000 vehicles a day are affected by the disruption and the disruption occurs 10 times a year, a total of 100,000 vehicles a year are effected. If AADT on the road is 100,000, then 365,250,00 vehicles a year (AADT * 365.25) travel on that particular facility. The percent of AADT effected is 0.003 (Total AADT/Vehicles Effected). This variable is essential for calculating annual disruption costs.

Failure Rate Path

The user has four different types of failure rate paths to choose from. The four choices are: a linear failure rate path; a logistic failure rate path; an exponential failure rate path; and an option to specify that replacement of a product only takes place when the maximum useful product life has been reached. These four options correspond to option numbers 1 through 4. The failure rate path impacts annual capital expenditures and at least one selection <u>must</u> be chosen.

Specific Product Attributes

Specific product attributes only apply to certain products. A user must correctly determine if the product under analysis effects any of these attributes. While it is not necessary to input values for each of these attributes, they can bring a important level of detail to the analysis.

The specific product attributes contained in PEM include:

- Annual Personnel Costs of Effected Employees;
- Percent Administrative Improvement Realized;
- PSI of Pavement with New Product;
- Expected Pavement Life with New Product;
- Resurfacing Costs with New Product;
- · Percent Reduction in Property Damage Only Accidents with New Product;
- · Percent Reduction in Injury Accidents with New Product;
- · Percent Reduction in Fatal Accidents with New Product; and
- Percent Improvement in Speed/Flow with New Product.

Annual Personnel Costs of Effected Employees

A new product may potentially impact administrative efficiency at ADOT. The value for this variable is used in conjunction with *Percent Administrative Improvement Realized* to calculate the administrative savings due to a new product. It is important to note that this dollar value represents the yearly dollar costs of all the employees effected by any administrative efficiency improvement.

Percent Administrative Improvement Realized

This percent refers to the administrative efficiency gain that may be realized with a new product. It is important to note that this gain must be realized. This refers to the fact that actual savings must be realized. A task that may have required the hiring of a new employee that now can be done without the additional personnel cost is a realized savings. A task that may have required two administrators, which now requires one, is not a realized savings unless that one administrator is released. This variable impacts productivity savings and is essential to calculate administrative productivity savings.

Time until Administrative Efficiency Reaches 50 Percent of Expected Level

Administrative productivity may not instantaneously improve due to learning curve effects. For this reason it is reasonable to assume that efficiency will improve over time until the expected efficiency level is reached. This variable characterizes the time it takes to reach 50 percent of the expected efficiency improvement. This value may be zero if there are no learning curve effects.

Time until Administrative Efficiency Reaches 95 percent of Expected Level

This variable refers to the time, in years, it will take for administrative efficiency to increase from 50 percent of its expected level to 95 percent. This variable is also input in years, or in fractional years, as the case may be. This value may be zero if there are no learning curve effects.

PSI of Pavement with New Product

A new product may improve the pavement condition of a roadway. This variable will capture that change. Such a change will result in pavement maintenance savings to ADOT and savings to highway users in the areas of vehicle operating costs and time savings.

Expected Pavement Life with New Product

A new product may also prolong the life of a particular road. This type of change will reduce repaying expenses incurred by ADOT over the analysis period and create highway user cost savings in the areas of vehicle operating costs and time savings.

Resurfacing Costs with New Product

Any product that reduces resurfacing costs associated with a kilometer of roadway will be captured here. This type of change will reduce paving expenses incurred by ADOT over the analysis period.

Percent Reduction in PDO, Injury and Fatal Accidents with New Product

Any new product may reduce accidents, resulting in considerable highway user savings. A product may reduce accidents in all three accident categories or it may reduce one type of accident but increase accidents in another category. For example, more reflective sheeting would reduce all types of accidents. This percentage will impact safety costs.

Supporting data for this variable may not be readily available. Vendor sheets and expert opinions may be required to reach a consensus on what the proper value of this variable should be, if any.

Percent Improvement in Speed/Flow with New Product

Any new product may improve speed/flow, resulting in considerable time and vehicle operating cost savings. The improvement in speed/flow must be from an improvement other than from an improvement in pavement condition. A change in pavement condition can also effect speed/flow, therefore, the user must be careful avoid double counting.

Supporting data for this variable may not be readily available. Vendor sheets and expert opinions may need to be required to reach a consensus on what the proper value of this variable should be, if any.

LOADING THE RISK ANALYSIS SIMULATION SOFTWARE

1) System Requirements

In order to load the simulation software a minimum of 560 K of conventional memory is necessary, as well as a math co-processor. It is recommended that the computer have a 486 processor. The software can run on a computer with a 386 processor, but simulations are computed much more slowly.

2) Loading the Simulation Software

Once a scenario has been created with the interface software, a Monte Carlo simulation can be run with the risk analysis software. To do so requires going to the correct subdirectory on the computer hard-drive and typing **RAP** followed by hitting *Enter*.

3) Selecting the Model and Scenario

The screen that appears in Figure 3.5 will appear after the software is loaded. Select **Read** from the menu. This can be accomplished by either moving the cursor with the direction arrow keys to the correct menu selection and hitting *Enter* or by typing the first letter of the menu item, *R* in this case. The screen pictured in Figure 3.6 will appear. Choose the only available model by pressing 1 then *Enter*. The screen in Figure 3.7 will appear. Select **Read** from this menu. The screen in Figure 3.8 will appear. Choose the correct scenario by typing the correct number, followed by *Enter*.

4) Navigating the Main Menu

ھ

You are now at the main menu (see Figure 3.9). From this menu, you can: Edit data, view Input ranges, run a simulation (Go), View results tables, display Results graphs, return to the Main model selection menu, or Exit.

Risk Analysis Process (C) 1994 Hickling Corporation ł Mon Jul 18 17:43:09 1994 Corporation Read Define Batch Read a currently defined model . Do you wish to define a new model or read it in from disk

۰.

Figure 3.5 Initial Simulation Software Screen

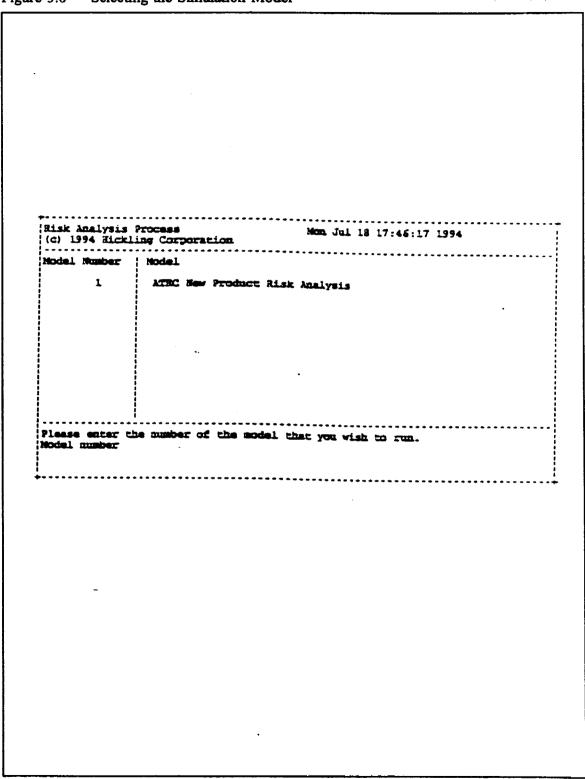


Figure 3.6 Selecting the Simulation Model

```
•
Risk Analysis Process Mon Jul 18 17:47:12 1994
(c) 1994 <u>Hickling Corporation</u>
Read Define
Read in an already existing scenario
Do you wish to define a new scenario or read in an existing one
                           .
                            · •• •
```

۰.

. .

Figure 3.7 Reading in a Scenario File

```
Risk Analysis Process
(c) 1994 Hickling Corporation
                                   -----
Scut Number | Scenario
         Sec 45
Durapacch
    12345
         Type III
Percol Flex
Calroc 1060
           Please entur the number of the scenario you wish to use
Scenario number
```

:

Figure 3.8 Selecting the Scenario File

```
*****
Risk Analysis Process Mon Jul 18 17:50:50 1994
(c) 1994 Rickling Corporation
Edit Co Input Results View Write Main Quit
Edit the Current Scenario Parameters
  Current Model : ATRC New Product Risk Analysis
Current Scenario : Set 45
                                            124 - 1947
        .....
```

.

Figure 3.9 Simulation Software Main Menu

.

MODIFYING INPUT RANGES

1) Selecting the Data to Edit

Select Edit from the main menu, as pictured in Figure 3.9. The next screen as pictured in Figure 3.10, displays the three categories of data which can be modified. These choices are Scalar, Multi-Year, and Conditional.

Scalar inputs are used in the model, therefore any changes must be made in this category. Conditional variables refer to correlation coefficients. Only two variables have correlation coefficients, *Useful Economic Life of the Product* and the *Maximum Economic Life of the Product*. The correlation coefficient attached to each variable is 1.00. These coefficients should not be changed or modified. No multi-year variables were used in this model.

2) Editing Data

Select Scalar from the menu, as pictured in Figure 3.9. Go to the line(s) that you wish to modify using the directional arrow keys to move between lines and the *Page Up* and *Page Down* keys to move between data pages. If the desired input line is not on the screen, press page down (or page up) to locate the item, see Figure 3.11.

3) Changing Values

Modify the existing values by typing directly into the cell that contains the current value. This will overwrite the existing data. Press *Enter* after each cell is properly modified.

4) Exiting and Saving

When all the desired inputs have been modified, press CTRL + END (CTRL and END keys simultaneously) to return to the editing menu. Select Quit and Yes to save the modifications and return to the main menu.

Risk Analysis Process Mon Jul 18 17:51:50 1994 (c) 1994 Hickling Corporation Scalar Multi-Year Conditional Random Quit Edit scalar parameters -----

:

Figure 3.10 ' Modifying Data Inputs Menu

Risk Analysis Process Mon Jul 18 17:52:46 1994 (c) 1994 Hickling Corporation Edit the scalar parameter values Const or St Dev or Kodian
 Median
 Lower
 10%
 Opper
 10%
 Mean

 2.000
 2.
 2.000
 2.

 5.000
 5.
 5.000
 5.
 Facility Type - Base Case(C) Facility Type - New Prod(C) Number of Lanes - Base Case(C) Number of Lanes - New Prod(C) 2.00 6.00 70.000 5.90 Design Speed - Base Case(C) Design Speed - New Prod(C) 70.00; 4 70.000 -70.00 Roadway Langth (C) AADT in Year 0 (C) 100.00; 100.000 112000.00 112000.0 AADT - Annual Increment (C) Current 291 - Base Case (C) 100.000 100.00 4.000 1.500 4.500 10.000 4.00 1.50 4.50 PSI before Resurfacing (C) PSI after Resurfacing(C) 4.50 Exp. Pav. Life · Base Case(C) 10.00 Resurfacing Costs - Base Case (C) 10000.000 10000.00 Highway Capacity(C) 2000.000 2000.00 Use AEnd when done, PgUp and PgDa to move between pages. 71 Cum. Graph, 72 Prob. Den. Graph, 73 Cum. Table, 74 Decum. Table _

RUNNING A SIMULATION

Running a Monte Carlo Simulation

Select Go from the main menu (Figure 3.9).

Type in the number of trials to perform. The number of trials is the number of times that the model samples each of the input ranges. The more trials that are run, the more accurately the results will reflect the "true" statistical outcome of the model. The minimum number of trials that can be run is 1 and the maximum is 2000. Running 500 trials will generally produce highly accurate results.

Select the number of bins. The number of bins selected determines the statistical precision of the output range. The minimum number of bins that can be chosen is 1 and the maximum is 50. Typically, 30 bins are used.

Confirm the output file names by pressing *Enter* twice. The output file names should not be changed from the model defaults. The model defaults will be the same file name as indicated by the user when the scenario was created. The software will run the simulation for the selected number of trials and return to the main menu.

VIEWING THE RESULTS: TEXT FILE

Viewing the Results

Select View from the main menu.

The results data from the most recent simulation of the current scenario will appear on the screen. This screen contains detailed information on each result which will be several pages long. Press the *Space Bar* to move through the pages. Information provided for each result in this screen includes:

- mean value, probability density, cumulative and de-cumulative probability values for each bin;
- expected value;
- upper and lower 10% probability values; and
- the de-cumulative probability table.

VIEWING THE RESULTS: STATISTICAL GRAPHS

1) Viewing Result Graphs

Select Results from the main menu.

2) Confirming the Output Filename

Press *Enter* once to confirm the output file name. The output file name should not be modified. The file name will be the same file name as indicated by the user when the scenario was created with the software interface, followed by the extension ".dat".

3) Selecting the Output Destination

Select Screen to view the statistical graphs on your monitor. Graphs can be printed on an HP compatible printer. The printing feature is covered Section 3.9.

4) Selecting the Type of Graph to View

Select one of the three available types of graphs: **Probability Density**, **De-Cumulative Probability**, and **Cumulative Probability**.

5) Selecting the Output to View

Type the number of the output you wish to see and press *Enter*. If the result is not on the screen, press *Page Down* to see more available results.

6) Viewing other Graphs

Repeat steps 4) and 5) as desired.

7) Quitting

Selecting Quit will return you to the main menu.

PRINTING THE RESULTS: STATISTICAL GRAPHS

1) Printing Result Graphs

Select Results from the main menu.

2) Confirming the Output Filename

Press *Enter* once to confirm the output file name. The output file name should not be modified. The file name will be the same file name as indicated by the user when the scenario was created with the software interface, followed by the extension ".dat".

3) Selecting the Output Destination

Select **Printer** to print the statistical graphs on your printer. Graphs can be printed on an HP compatible printer.

4) Selecting the Type of Graph to Print

Select one of the three available types of graphs: **Probability Density**, **De-Cumulative Probability**, and **Cumulative Probability**.

5) Selecting the Output to Print

Type the number of the output you wish to print and press Enter.

6) Confirming the Graph Titles

Confirm the titles and labels supplied by the software for the graph by pressing *Enter* four times. Modify the tiles and/or labels by typing directly over the existing text. When done press *Enter* four times.

7) Entering the Graph Filename

Enter the name of the file to which the graph data is to be printed (create your own unique file name).

8) Printing other Graphs

Repeat steps 4), 5), 6), and 7) as desired.

9) Printing the Graph Files

At the DOS prompt type SET SPLINE=YES then press *Enter*, next type SET PRINTER=HP followed by pressing *Enter*. Then type GRAPH <Graph Filename> followed by pressing *Enter*. This will send the graph to the printer.

10) Quitting

Select Quit will return you to the main menu, then selecting Quit again gives you the option to quit to DOS, do so.

96

~

INTRODUCTION

In this tutorial, PEM is applied to ADOT project EP-8606 to determine the relative economic benefits of six types of concrete patching materials. The main sources of data are discussed and a summary table of the data entered is presented. The PEM output is then presented in tables and graphical form. An analysis and interpretation of the results is then presented at the end of the tutorial.

DATA SOURCES

The data sources and assumptions used for the analysis are summarized in this section. Sources for the analysis range from ADOT personnel to the Strategic Highway Research Program (SHRP). An effort was made to use the most reliable information possible. In cases where data was unavailable, reasonable assumptions were made based on ADOT anecdotal experience and Hickling's research programs.

Printed Reports

Two main printed reports were used to supply data for the PEM analysis. A brief explanation of the two sources are presented below:

Draft Version of Project EP 8606

This draft contained essential project information that was used primarily to develop the roadway characteristics. For instance, the *facility type*, "6 or more lanes, full access control urban," was determined from the Project Design section of the draft report. Product cost data, converted into costs per square foot, was also used. The project's one-year follow-up investigation also contained information on product performance that was incorporated in the analysis.

SHRP's Innovative Materials Development and Testing: Volume 5; Partial Depth Spall Repair

The recent report contained specific information on the procedures and materials currently used for spall repair. This report complemented ADOT report EP-8606 since it contained information on labor and equipment needs, productivity, and crew size for each product. Similar information from project EP-8606 was difficult to extract because the same crew worked on all product installations.

ADOT Sources

Interviews with several ADOT personnel provided anecdotal and factual information which helped to frame the analysis. The various divisions of ADOT that supplied the information are listed below:

ADOT Materials Group

The ADOT Materials Group has first-hand information on many of the concrete patching materials used in the field. Estimates on the installation and disruption time associated with installing concrete patches, the maximum useful life and the number of patches per mile come from this division.

ADOT Risk Management

The product liability estimates come from ADOT Risk Management. The number of claims resulting from concrete patching failures, the number of claims settled, the number of claims dropped or denied, and the average settlement and court costs all come from this division.

ADOT Maintenance Planning

ADOT Maintenance Planning's PECOS II database provided some of the cost values for the analysis. Hourly equipment and labor costs, for instance, come directly from this source.

DATA SHEETS

The following data sheets contain information for each product that was used in the PEM analysis. The product name appears in the upper, left hand corner of each sheet.

UPM	Median Value	10% Lower Limit	10% Upper Limit
Material Unit Cost (\$/Sq ft)	\$2.60	\$2.34	2.86
Useful Economic Life (Years)	2.5	2.0	3.0
Maximum Useful Life (Years)	5.0	4.5	5.5
Average Units of Material per Patch (Units/Patch)	3.0	2.5	3.5
Current Patches in Use (#)	560	500	620
Annual Increase in Patches (#)	56	50	62
Patches at First Year of Steady State (#)	0	0	0
Years to Steady State (Years)	2	1.75	3
Steady State Product Growth (#)	0	0	0
# of Claims per 100 Failures	10	9	12
% of Claims not Pursued (% in decimal form)	.64	.60	.68
% of Claims Settled (% in decimal form)	.35	.30	.40
Average Settlement Costs (\$)	\$500	\$450	\$550
Average Court Costs (\$)	\$15,000	\$10,000	\$17,000
Labor Productivity (#/HR/Person)	4.67	4.2	5.14
Labor Wage	\$13.68		
Hourly Equipment Costs (\$/HR)	\$74.12	\$70.39	\$77.79
Exp. Disruption Delay (minutes)	5	3	7
Annual AADT Effected (%)	0.001	0.000	0.002
Failure Rate	1		

Celroc 10-60	Median Value	10% Lower Limit	10% Upper Limit
Material Unit Cost (\$/Sq ft)	\$9.64	\$8.68	\$10.6
Useful Economic Life (Years)	1	.5	1.25
Maximum Useful Life (Years)	1.5	1.25	1.75
Average Units of Material per Patch (Units/Patch)	3	2.5	3.5
Patches at First Year of Steady State (#)	560	500	620
Years to Steady State (Years)	2	1.75	3
Steady State Product Growth (#)	56	50	62
# of Claims per 100 Failures	10	9	12
% of Claims not Pursued (% in decimal form)	.64	.60	.68
% of Claims Settled (% in decimal form)	.35	.3	.4
Average Settlement Costs (\$)	\$500	\$450	\$550
Average Court Costs (\$)	\$15,000	\$10,000	\$17,000
Labor Productivity (Units/HR/Person)	5.0	4.5	5.5
Labor Wage	\$13.68		
Hourly Equipment Costs (\$/HR)	\$84.56	\$80.33	\$88.79
Exp. Disruption Delay (minutes)	20	15	25
Annual AADT Effected (%)	0.001	0.000	0.002
Failure Rate Path	1		

Set 45	Median Value	10% Lower Limit	10% Upper Limit
Material Unit Cost (\$/Sq Ft)	\$10.15	\$9.14	\$11.17
Useful Economic Life (Years)	1	.5	1.25
Maximum Useful Life (Years)	1.5	1.25	1.75
Average Units of Material per Patch (Units/Patch)	3	2.5	3.5
Patches at First Year of Steady State (#)	560	500	620
Years to Steady State (Years)	2	1.75	3
Steady State Product Growth (#)	56	50	62
# of Claims per 100 Failures	10	9	12
% of Claims not Pursued (% in decimal form)	.64	.60	.68
% of Claims Settled (% in decimal form)	.35	.3	.4
Average Settlement Costs (\$)	\$500	\$450	\$550
Average Court Costs (\$)	\$15,000	\$10,000	\$17,000
Labor Productivity (Units/Hr/Person)	5.0	4.5	5.5
Labor Wage (\$/HR)	\$13.68		
Hourly Equipment Costs (\$/HR)	\$84.56	\$80.33	\$88.79
Exp. Disruption Delay (minutes)	20	15	25
Annual AADT Effected (%)	0.001	0.000	0.002
Failure Rate Path	1		

Percol Flex	Median Value	10% Lower Limit	10% Upper Limit
Material Unit Cost (\$/Sq Ft)	\$9.61	\$8.65	\$10.57
Useful Economic Life (Years)	1	.5	1.25
Maximum Useful Life (Years)	1.5	1.25	1.75
Average Units of Material per Patch (Units/Patch)	3	2.5	3.5
Patches at First Year of Steady State (#)	560	500	620
Years to Steady State (Years)	2	1.75	3
Steady State Product Growth (#)	56	50	62
# of Claims per 100 Failures	10	9	12
% of Claims not Pursued (% in decimal form)	.64	.60	.68
% of Claims Settled (% in decimal form)	.35	.3	.4
Average Settlement Costs (\$)	\$500	\$450	\$550
Average Court Costs (\$)	\$15,000	\$10,000	\$17,000
Labor Productivity (Units/Hr/Person)	3.25	2.93	3.58
Labor Wage (\$/HR)	\$13.68		
Hourly Equipment Costs (\$/HR)	\$67.95	\$64.55	\$71.35
Exp. Disruption Delay (minutes)	5	3	7
Annual AADT Effected (%)	0.002	0.001	0.003
Failure Rate Path	1		

Туре Ш	Median Value	10% Lower Limit	10% Upper Limit
Material Unit Cost (\$/Sq Ft)	\$3.08	\$2.77	\$3.39
Useful Economic Life (Years)	1	.5	1.25
Maximum Useful Life (Years)	1.5	1.25	1.75
Average Units of Material per Patch (Units/Patch)	3	2.5	3.5
Patches at First Year of Steady State (#)	560	500	620
Years to Steady State (Years)	2	1.75	3
Steady State Product Growth (#)	56	50	62
# of Claims per 100 Failures	10	9	12
% of Claims not Pursued (% in decimal form)	.64	.60	.68
% of Claims Settled (% in decimal form)	.35	.3	.4
Average Settlement Costs (\$)	\$500	\$450	\$550
Average Court Costs (\$)	\$15,000	\$10,000	\$17,000
Labor Productivity (Units/Hr/Person)	1.43	1.29	1.57
Labor Wage (\$/HR)	\$13.68		
Hourly Equipment Costs (\$/HR)	\$86.88	\$82.54	\$91.27
Exp. Disruption Delay (minutes)	40	35	45
Annual AADT Effected (%)	0.002	0.001	0.003
Failure Rate Path	1		

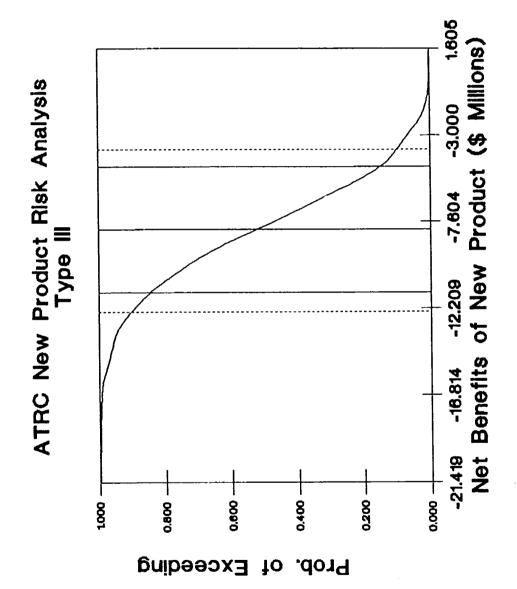
Durapatch	Median Value	10% Lower Limit	10% Upper Limit
Material Unit Cost (\$/Sq Ft)	\$10.25	\$9.23	\$11.28
Useful Economic Life (Years)	1	.5	1.25
Maximum Useful Life (Years)	1.5	1.25	1.75
Average Units of Material per Patch (Units/Patch)	3	2.5	3.5
Patches at First Year of Steady State (#)	560	500	620
Years to Steady State (Years)	2	1.75	3
Steady State Product Growth (#)	56	50	62
# of Claims per 100 Failures	10	9	12
% of Claims not Pursued (% in decimal form)	.64	.60	.68
% of Claims Settled (% in decimal form)	.35	.3	.4
Average Settlement Costs (\$)	\$500	\$450	\$550
Average Court Costs (\$)	\$15,000	\$10,000	\$17,000
Labor Productivity (Units/Hr/Person)	5.0	4.5	5.5
Labor Wage (\$/HR)	\$13.68		
Hourly Equipment Costs (\$/HR)	\$84.56	\$80.33	\$88.79
Exp. Disruption Delay (minutes)	20	15	25
Annual AADT Effected (%)	0.001	0.000	0.002
Failure Rate Path	1		

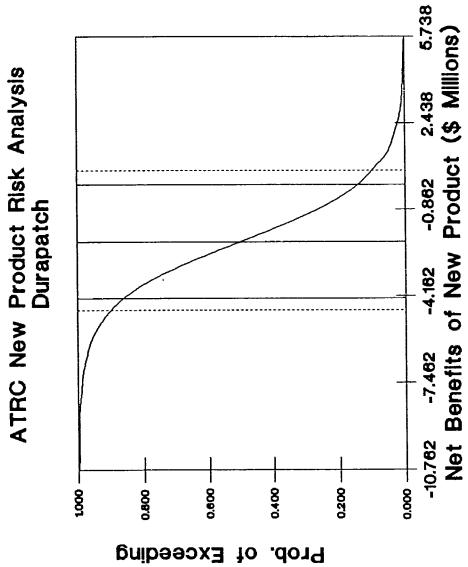
PEM OUTPUT; TABULAR AND GRAPHICAL

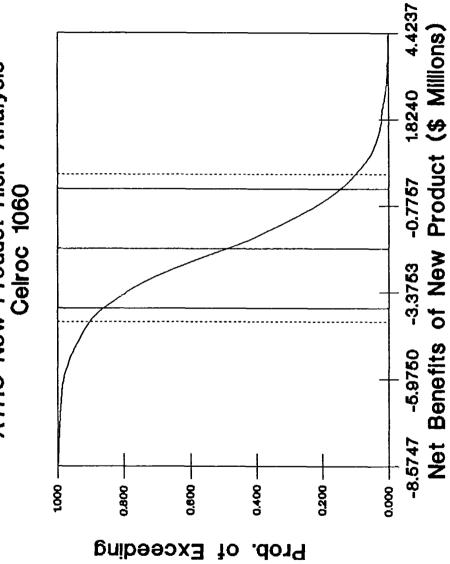
PEM's output is a result of a Monte Carlo simulation technique which varies each variable randomly within a user-defined probability range and then sums the results to provide an estimate of the range of net economic benefits associated with a product. PEM's results, therefore, are in the form of probability distributions, such as the decumulative probability distribution, which provides median, upper and lower bound estimates of the potential economic benefits associated with the use of a new product.

PEM's output from project EP-8606 is presented in the following table and graphs. The table is simply a ranking, by median NPV benefits, of the five concrete patching materials compared against U.P.M. The six decumulative probability distribution graphs, indicate the potential for potential economic benefits to move within these boundaries, based on real world conditions and the combined impact of many factors on product performance. These decumulative distributions can also be used to express the probability of achieving a given level of net economic benefits.

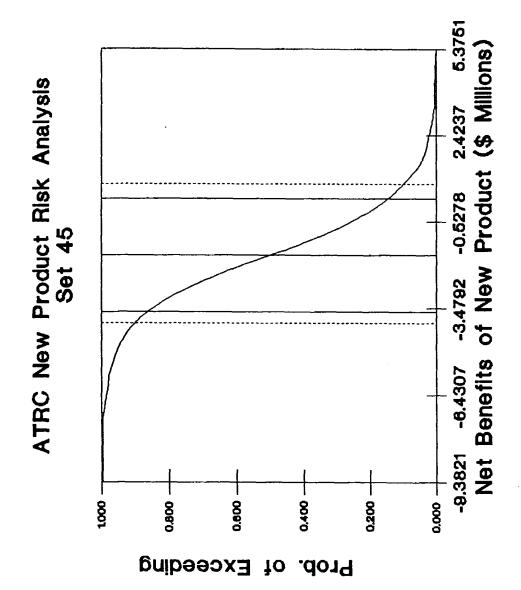
Table 4.1: Ranking of Concrete Patching Materials (NPV of economic benefits in \$ million per mile)		
Product	Expected Mean Value of Economic Benefits	
Type III	-8.03	
Durapatch	-2.10	
Celroc 1060	-2.07	
Set 45	-1.68	
Percol Flex	-1.61	

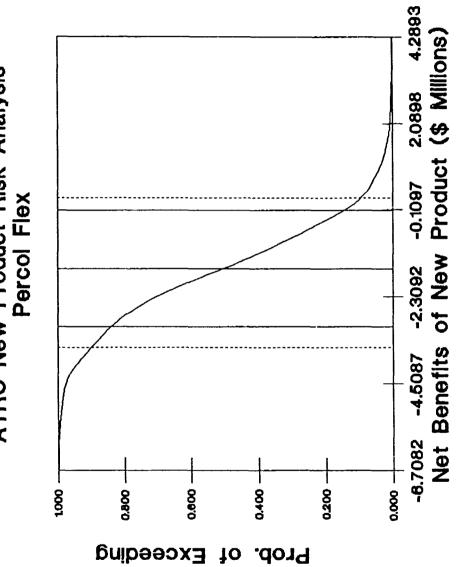

Table 5.1 presents a ranking of the expected mean value of economic benefits associated with five concrete materials over a twenty five year period. Each product was directly compared with the Base Case product, UPM, to estimate the median change in net benefits associated with the product.


ANALYSIS AND INTERPRETATION


The PEM analysis of the concrete patching materials used in ADOT Project EP-8606 is relatively straightforward. Aside from product cost, the principal economic cost factors affecting the analysis of any concrete patching material are its longevity and its impact on traffic disruption via the installation time. PEM's consideration of economic benefit categories, such as maintenance, vehicle operating costs, and the value of time savings, is such that those materials that have a long product life and quick installation period tend to perform better than other materials. Those products in PEM that have longer installation periods, on the other hand, lead to traffic disruptions which quickly produce economic costs to highway users.

U.P.M.'s relatively low cost, quick installation time and durability contribute to make it the overall "winner," in terms of the NPV of economic benefits for project EP-8606. Three of the four concrete patching material lose, principally because of their relatively high cost and average set times. Percol Flex, which comes in second in the analysis, achieves a relatively better NPV because of its quick installation time and productivity figures. Type III portland concrete finished last in the analysis, principally due to the long set time and its impact on traffic disruption.


Graphs of the risk analysis of achieving net economic benefits for each product are presented at the end of this tutorial. The graphs present decumulative probability curves which chart the "Probability of (the product) Exceeding" (a given percentage) along the Y axis and the "Net Economic Benefits of the New Product" (in millions of U.S. Dollars) along the X axis. The solid, vertical center line represents the "median" estimate of net benefits, or the midpoint at which 50 percent of the mean estimates of net economic benefits fall above or below the median line. The two vertical dotted lines on either side of the median line represent the 10% lower and 10% upper limits (reading from left to right), or the points at which, respectively, there is only a 10 percent probability of the mean economic benefits estimate falling outside of these boundaries. The center region between the two dotted lines comprises the 80% confidence level, or area in which there is an 80 percent probability of the mean estimate of net economic benefits occurring within this region. The two vertical solid lines close to the solid lines represent the value of one standard deviation from the median estimate..



ATRC New Product Risk Analysis Celroc 1060

5.0 TECHNICAL APPENDIX

RAP SESSION DOCUMENTATION FOR PEM SIGN SHEETING MATERIAL COST-BENEFIT ANALYSIS

This section of the Technical Appendix contains the documentation that each participant in the reflective sign sheeting RAP session received, the values that were recorded, and the probability distribution graphs of the results. Together, these documents represent the fullscale risk analysis component of the PEM process. The results of this particular session are summarized at the end of Volume I, in the PEM verification section.

Each participant at the reflective sign sheeting material RAP session received the following documentation:

- The Risk Analysis Primer, a section explaining the Risk Analysis Process;
- Structure and Logic Models, diagrams of the economic benefit submodels; and
- **RAP Input Variables**, which are described in more detail below.

For each input variable there are two sheets:

Cover Sheet is identified at the top with the variable name and metric, and includes the following information:

Description

This section contains a brief description of the variable and how it is applied in the model.

How the Variable Affects the Model

The role the variable has in determining the output is described in this section. In other words, a explanation of how changes to the value of the variable affect the results.

Baseline Assumptions

This section supplies the data sources and assumptions of the model with regards to the input variables and on the data sheet. The sources and references contained in this section, such as vendor specification sheets and laboratory test results, contain information that is used to describe the common and specific attribute of new products. The initial estimate represents the value that we believe is the most likely to occur.

Major Uncertainties

Factors that could affect the realization of the median estimate are presented in this section. The initial estimate is taken from the best available information and is used to forecast the median value. The selection of an appropriate median forms the basis for the development of the probability ranges that will ultimately surround the value. A column for alternative values is also included on the data sheet to provide space for estimates that differ from the initial estimates.

Data Sheet is identified at the top with the same variable and metric as the accompanying cover sheet. The values in the data sheets represent the initial estimates and ranges prepared by Hickling analysts.

•

Risk Analysis Primer

The result of a Risk Analysis is a forecast of future events and the probability, or odds, of their occurrence. Not unlike modern weather forecasting, in which the likelihood of rain is projected with a statement of probability ("there is a 20 percent chance of rain tomorrow"), Risk Analysis is intended to provide planners and decision-makers with a sense of perspective on the likelihood of future events. Risk Analysis allows planners and decision-makers to select the level of risk within which they are willing to plan and make commitments.

Forecasting and the Analysis of Risk

The further into the future projections are made, the more uncertainty there is and the greater the risk is of producing forecasts that deviate from actual outcomes. Projections need to be made with a range of input values to allow for this uncertainty and for the probability that alternative economic, demographic, technological and environmental conditions may prevail. The difficulty lies in choosing which combinations of input values to use in computing forecasts, and how to use those forecasts to produce a final estimate.

Forecasts traditionally take one of two forms: first, a single "expected outcome", or second, one in which the expected outcome is supplemented by alternative scenarios, often termed "high" and "low" cases. Both approaches fail to provide adequate perspective with regard to probable versus improbable outcomes.

The limitation of a forecast with a single expected outcome is clear -- while it may provide the single best guess, it offers no information about the range of probable outcomes. The problem becomes acute when uncertainty surrounding the underlying assumptions of the forecast is especially high.

The high case-low case approach can actually exacerbate this problem because it gives no indication of how likely it is that the high and low cases will actually materialize. Indeed, the high case usually assumes that most underlying assumptions deviate in the same direction from their expected value; and likewise for the low case. In reality, the likelihood that all underlying factors shift in the same direction simultaneously is just as remote as everything turning out as expected.

A common approach to providing added perspective on reality is through "sensitivity analysis", whereby key forecast assumptions are varied one at a time in order to assess their relative impact on the expected outcome. A problem here is that the assumptions are often varied by arbitrary amounts. But a more serious flaw in this approach is that in the real world, assumptions do not veer from actual outcomes one at a time; it is the impact of simultaneous differences between assumptions and actual outcomes that would provide true perspective on a forecast. Risk analysis provides a way around the problems outlined above. It helps avoid the lack of perspective in "high" and "low" cases by measuring the probability or "odds" that an outcome will actually materialize. This is accomplished by attaching ranges (*probability distributions*) to the forecasts of each input variable. The approach allows all inputs to be varied simultaneously within their distributions, thus avoiding the problems

inherent in conventional sensitivity analysis. The approach also recognizes interrelationships between variables and their associated probability distributions. The result of a risk analysis is both a forecast and a quantification of the probability that the forecast will be achieved.

To improve confidence in the forecasts, the Risk Analysis Process also involves outside experts in evaluating the forecasting assumptions and the estimated probabilities associated with their accuracy.

Risk Analysis in Application to Cost Benefit Analysis

The Risk Analysis Process of the cost-benefit analysis of sign sheeting materials involves four steps:

- Step 1. The integration of product vendor and ADOT maintenance data (in appropriate metrics) into the Risk Analysis framework;
- **Step 2.** Assignment of estimates and ranges (probability distributions) to each variable and assumption in the forecasting process;
- **Step 3.** Expert and public evaluation and involvement, including revision of estimates and ranges developed in Step 2 (if necessary); and
- Step 4. Risk Analysis.

Step 1. Integration of Product Testing and Experimental Data into RAP Software

The process begins with the development of "Structure-and-Logic Models" depicting the interaction of product testing and experimental data with each defined economic benefit submodel. A Structure-and-Logic Model depicts the methodology non-mathematically, indicating how all variables and assumptions combine to yield an economic effect, (benefits net of costs). The models provide detailed documentation of how the methodologies are characterized for Risk Analysis. They also provide a clear and uncomplicated means of explaining the economic benefit categories to outside experts, stakeholders and others in an expert panel session.

Once the structure-and-logic of the model is properly represented, it is programmed into the Risk Analysis software.

Step 2. Central Estimates and Probability Distributions

Each variable is assigned a central estimate and a range (a probability distribution) to represent the degree of uncertainty.

Special data sheets are used (see Figure 1) to record the estimates. In this case, the first column provides space for an initial median estimate, and the second and third columns

DATA SHEET: Maximum Economic Life (Years)				
Product	Median Estimate	10 % Lower Limit (%)	10 % Upper Limit (%)	
Base Case	7	4	12	
New Product	12	10	15	

Figure 5.1: Sample of a Data Sheet for the Risk Analysis Process

define a range which represents "an 80 percent confidence interval" -- the range within which we can be 80 percent confident of finding the actual outcome. Thus the greater the uncertainty associated with a forecast variable, the wider the range will be (and vice versa). This process ensures that all risks are properly reflected in the forecasting process.

Ranges need not be normal or symmetrical -- that is, there is no need to assume the bell shaped normal probability curve. The bell curve assumes an equal likelihood of being too low and being too high in forecasting a particular value. It might well be, for example, that if projected inflation rates deviate from expectations, they are more likely to be higher rather than lower. The RAP process places no restrictions on the degree of "skew" in the specified ranges and thus maximizes the extent to which the Risk Analysis reflects reality.

Probability ranges for the variables in-question are established on the basis of both statistical analysis and subjective probability. Factors considered in the analysis include:

- Product vendor sheets and other state Departments of Transportation;
- Existing road conditions and the performance of similar products; and
- Federal studies on sign sheeting properties.

Although the computer program will transform all ranges into formal "probability density functions", they do not have to be determined or presented in either mathematical or graphical form. All that is required is the entry of upper and lower limits of an 80 percent confidence interval in the Data Sheets. The RAP software will then use numerical analysis to translate these entries into a uniquely defined statistical probability distribution automatically. This liberates the non-statistician from the need to appreciate the abstract statistical depiction of probability and thus enables administrators, stakeholders and decision-makers to understand and participate in the process whether or not they possess statistical training.

Step 3. Expert Evaluation and Consensus Building

Facilitated by the Hickling team, a RAP Session is conducted as a structured workshop. Participants receive a briefing book in advance and during the session they review the model (via the Structure-and-Logic Models) and review each Data Sheet. This approach facilitates consensus building in the underlying forecasting assumptions and associated probabilities.

Step 4. Risk Analysis

Once the Data Sheets are finalized, the RAP software transforms ranges given in the Data Sheets into statistical probability distributions (see Figure 2).

These distributions are combined using simulation techniques that allow all variables to vary simultaneously from their expected values (Figure 3). The result is a cost forecast together with estimates of the probability of achieving alternative outcomes given uncertainty in the underlying assumptions.

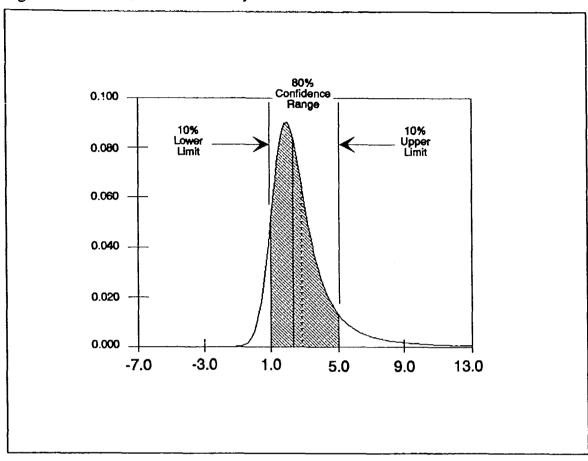


Figure 5.2: RAP Generated Probability Distribution

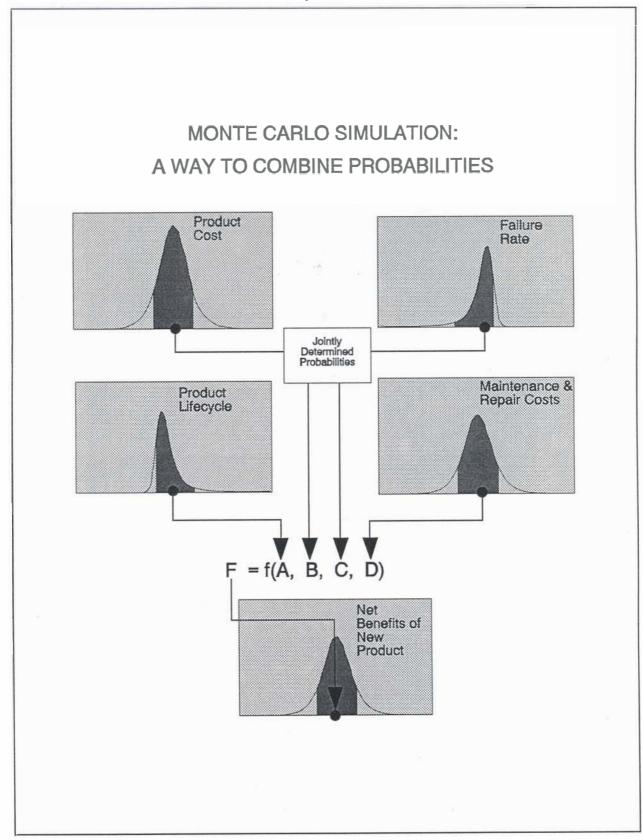
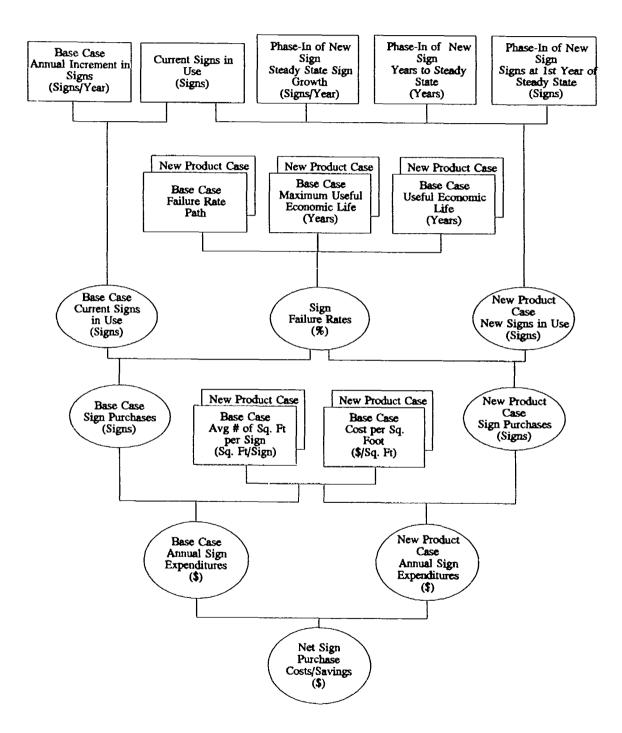


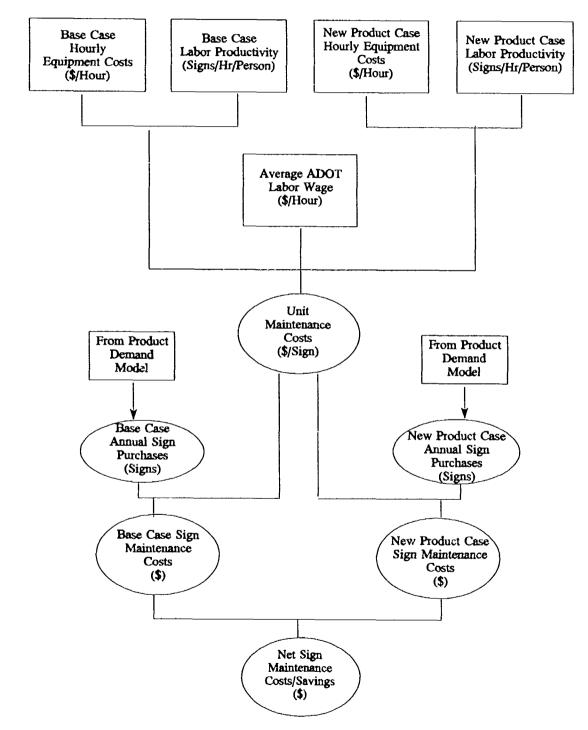
Figure 5.3: Monte Carlo Simulation: A Way to Combine Probabilities

Structure and Logic Diagrams

The following structure and logic diagrams refer to the economic benefit sub-models that are integrated into the larger net benefit-cost model. Using these diagrams, the panelist will observe the fundamental analytical relationships that drive the model.

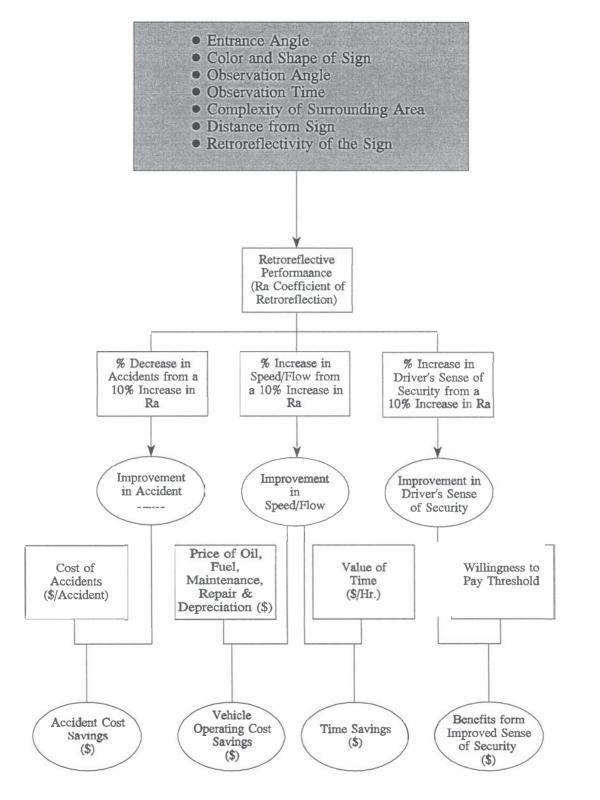

Net Sign Purchase Costs/Savings

- Net Sign Maintenance Costs/Savings
- Benefits from Improved Accident Rates due to Sign Sheeting +
- Benefits from Improved Speed/Flow due to Sign Sheeting +
- Benefits from Improved Driver's Sense of Security due to Sign Sheeting ╋


Net Benefit of New Sign Sheeting

ll

STRUCTURE AND LOGIC DIAGRAM: NET SIGN PURCHASE COSTS/SAVINGS



STRUCTURE AND LOGIC DIAGRAM: NET MAINTENANCE COSTS/SAVINGS

.

STRUCTURE AND LOGIC DIAGRAM: IMPACT OF RETROREFLECTIVITY ON HIGHWAY USER COSTS

RAP Input Variables

The following section contains a set of data sheets for each input variable in the model that will be considered during the RAP session. The first variable data sheet contains a variable description, an explanation of how the variable affects the model, the baseline assumptions used in constructing the model, and the major uncertainties associated with the particular variable. The second variable data sheet contains an initial median estimate of metric and upper and lower probability ranges for each variable based on available vendor specification sheets and other product data.

The risk analysis will focus on two specific types of warning and regulatory signs due to the multiple colors, sizes and positions used for different traffic control purposes. During the RAP session, it will be assumed that the participants are considering the material attributes of a right-hand side, ground-mounted, yellow warning sign with a black legend and a right-hand side, ground-mounted, white regulatory sign with a black legend.

VARIABLE: Average Units of Material per Sign Square Feet

Description

The value for this variable refers to the average number of material units that are utilized to make one product. For example, an average of 16 square feet of sign sheeting is used to make one roadway sign. The model requires data for both the Base Case and the New Product case. Without values for this variable, annual capital expenditures cannot be calculated.

How the Variable Affects the Model

This value is initially used in conjunction with the cost per square foot of material to determine material cost per sign. This value, in turn, is used with estimates for annual purchases, inventory size, and sign failures to forecast the value of annual sign capital purchases for both the Base Case and the New Product case.

Baseline Assumptions

Warning and regulatory signs are made in several sizes and shapes, from 36" X 36" to larger signs of 48" X 60" and upwards. In this example, 16 square feet will be used as an average sign size, based on an ADOT internal memorandum comparing sign costs. Further discussions with the ADOT sign shop indicate that this is an acceptable average size unit.

Major Uncertainties

As explained above, warning and regulatory signs come in a wide variety of sizes and shapes which may differ significantly from the average sign size.

DATA SHEET: Average Units of Material per Sign Square Feet

Product	Median Estimate	10 % Lower Limit	10 % Upper Limit
Engineering Grade	16	15	17
Super Engine. Grade	16	15	17
High Intensity	16	15	17
High Intensity, prismatic	16	15	17

Warning Signs

Regulatory Signs

Product		10 % Lower Limit	
Engineering Grade	9	8	10
Super Engine. Grade	9	8	10
High Intensity	9	8	10
High Intensity, prismatic		8	10

VARIABLE: Material Unit Cost \$

Description

Material unit cost is the dollar cost of the sign sheeting material used to fabricate one warning or regulatory sign. The material cost must be in dollars per unit of the previous variable. In this example, the material cost is in dollars per square foot to correspond with the units used in "Average Units of Material per Sign," (16 square feet). The model requires cost data for both the Base Case and the New Product case. Without values for this variable, annual capital expenditures cannot be calculated.

How the Variable Affects the Model

This value is initially used in conjunction with the average number units of material to determine material cost per sign. This value, in turn, is used with estimates for annual purchases, sign failures to forecast the value of annual sign capital expenditures for both the Base Case and the New Product case.

Baseline Assumptions

PECOS II cost estimates are used for Engineering Grade sign sheeting. Data supplied from vendors, for Super Engineering, and High Intensity (encapsulated bead and prismatic). In addition to basic material cost, a standard cost of \$1.13 for substrate (from PECOS II data) is added to each price to account for sign fabrication. For initial discussion purposes, a 10% upper and lower price range was assumed.

Major Uncertainties

Competitive pricing practices by major manufacturers may influence the costs of various grades of sign sheeting material. In addition, the expected expiration of the patent on High Intensity (encapsulated bead) sign sheeting material by 3M may affected material prices in this grade of sign sheeting.

DATA SHEET: Material Unit Cost \$

Warning Signs

Product	Median Estimate	10 % Lower Limit	10 % Upper Limit
Engineering Grade	\$1.98	\$1.78	\$2.18
Super Engine. Grade	\$3.28	\$2.95	\$3.61
High Intensity	\$4.38	\$3.94	\$4.82
High Intensity, prismatic	\$4.87	\$4.38	\$5.36

Regulatory Signs

Product	Median Estimate	10 % Lower Limit	10 % Upper Limit
Engineering Grade	\$1.98	\$1.78	\$2.18
Super Engine. Grade	\$3.28	\$2.95	\$3.61
High Intensity	\$4.38	\$3.94	\$4.82
High Intensity, prismatic	\$4.87	\$4.38	\$5.36

.

n.

VARIABLE: Useful Economic Life of Product Years

Description

The useful economic life of the sign is defined as the time at which 50% of the products installed at the same point in time have failed or ceased to perform their desired function. With regards to sign sheeting, this definition does not distinguish between product failure due to physical deterioration or to the inability to meet a minimum standard of retro-reflectivity. The model requires data for both the Base Case and the New Product case. Both values for this variable must be entered in years.

How the Variable Affects the Model

The value for this variable is used in conjunction with the maximum useful life variable and the user specified failure rate path to forecast the product failure rate. The product failure rate combined with the total desired capital stock estimate is used to project annual product purchases, replacements, and, ultimately, the effect on annual purchases.

Baseline Assumptions

For sign sheeting materials, this period can be estimated by ADOT experience. An ADOT internal memorandum indicates that warning and regulatory signs last on average four years. A *mean* estimate of seven years was assumed for the

for the Super-Engineering and High Intensity sheetings based on product literature and warranty periods.

Major Uncertainties

The average useful economic life of a warning or regulatory signs is debatable, as evidenced in the Baseline Assumptions. Until accurate sign inventories are established and a systemic review is performed, these forecasts are speculative. In addition, depending upon ADOT's future policy regarding minimum standards for retro-reflectivity, the useful economic life of sign sheeting material (as determined by the coefficient of retroreflectivity) may, in fact, become shorter than the physical life of the product.

DATA SHEET: Useful Economic Life of Product Years

Product	Median Estimate	10 % Lower Limit	10 % Upper Limit
Engineering Grade	3.5	3	4
Super Engine. Grade	7	6	8
High Intensity	7	6	8
High Intensity, prismatic	7	6	8

Warning Signs

Regulatory Signs

Product	Median Estimate	10 % Lower Limit	10 % Upper Limit
Engineering Grade	3.5	3	4
Super Engine. Grade	7	6	8
High Intensity	7	6	8
High Intensity, prismatic	7	6	8

VARIABLE: Maximum Useful Economic Life of Product Years

Description

The maximum useful economic life of the product is defined as the time at which 99% of the products installed at the same point in time have failed, or ceased to perform their desired function. With regards to sign sheeting, this definition does not distinguish between product failure due to physical deterioration or to the inability to meet a minimum standard of retro-reflectivity. The model requires data for both the Base Case and the New Product case to be entered in years.

How the Variable Affects the Model

The value for this variable is used in conjunction with the useful economic life variable and the user specified failure rate path to forecast the product failure rate. The product failure rate combined with the total desired capital stock estimate is used to project annual product purchases, replacements, and, ultimately, the effect on capital costs.

Baseline Assumptions

Estimates regarding the maximum useful life come from ADOT maintenance experience and vendor claims. Currently, ADOT does not have a codified system or policy to replace signs at a set point in time, therefore many signs remain in place several years after their warranty periods expire before replacement. The time estimates for sign sheeting material come from ADOT memoranda. The manufacturers of three out of four sign grades maintain warranty periods of ten years, but claim service lives of 14 years. Major Uncertainties

The useful life of sign sheeting material ideally depends both on the physical deterioration of the product as well as the decay rate of retro-reflectivity. Depending upon ADOT's policy regarding minimum standards for retro-reflectivity, the maximum useful economic life of sign sheeting material may be equal or less than the physical life of the product.

DATA SHEET: Maximum Useful Life of Product Years

Product	Median Estimate	10 % Lower Limit	10 % Upper Limit.
Engineering Grade	7	4.5	12.4
Super Engine. Grade	14	13	15
High Intensity	14	13	15
High Intensity, prismatic	14	13	15

Warning Signs

Product	Median Estimate	10 % Lower Limit	10 % Upper Limit
Engineering Grade	7	4.5	12.4
Super Engine. Grade	14	13	15
High Intensity	14	13	15
High Intensity, prismatic	14	13	15

VARIABLE: Current Signs in Use Signs

Description

This variable refers to the total number of signs in use, or the total capital stock. This variable is dependent upon the facility type and number of roadway miles specified by the user. It is the starting point for determining product growth in the Base Case. Data for this variable is only required for the Base Case, as it assumed that there is no current stock of a new product.

How the Variable Affects the Model

This variable is used in conjunction with the annual increase in signs to determine the Base Case annual signs in use. When adjusted for sign failures, this variable becomes the Base Case annual purchases.

Baseline Assumptions

ADOT does not currently have accessible data on the current number of signs in use. In lieu of this data, estimates from the <u>National Cooperative Highway Research Program (NCHRP) Report</u> <u>346</u>, <u>Implementation Strategies for Sign Retroreflectivity Standards</u>, will be used. According to the report, there are approximately 18 regulatory and 10 warning signs per mile in an urban area. (4 signs each, respectively, in a rural area). The model will initially use urban values. These base estimate are multiplied by 100 to present a realistic scenario based on 100 miles of roadway.

Major Uncertainties

Depending on specific conditions in Arizona and current signing policies, the actual number of warning and regulatory signs can vary. Additionally, different quantities for each color of sign sheeting material exist within the warning and regulatory sign categories.

DATA SHEET: Current Signs in Use Signs

Warning Signs

Product	Median Estimate	10 % Lower Limit	10 % Upper Limit
Engineering Grade	1800	1700	1900

Product	Median Estimate	10 % Lower Limit	10 % Upper Limit
Engineering Grade	1000	900	1100

VARIABLE: Annual Increase in Signs Signs

Description

This variable is used to develop the annual sign stock for the Base Case. It simply reflects the expected increase in sign purchases per year. This variable impacts annual capital expenditures.

How the Variable Affects the Model

This variable is used in conjunction with the current signs in use to determine the total Base Case annual signs in use. When adjusted for sign failures, this variable becomes the Base Case annual purchases which ultimately impacts annual capital expenditures.

Baseline Assumptions

Based on conversations with the ADOT sign shop, it was determined that approximately 10 percent of annual sign production is devoted to new sign installations.

Major Uncertainties

This variable depends largely on the need for new signs, either due to new roadway construction or other factors.

DATA SHEET: Annual Increase in Signs Signs

Warning Signs

Product	Median - Estimate	10 % Lower Limit	10 % Upper Limit
Engineering Grade	180	170	190

Product	Median Estimate	10 % Lower Limit	10 % Upper Limit
Engineering Grade	100	90	110

VARIABLE: Phase-In of New Product Signs at First Year of Steady State Signs

Description

This variable specifies the quantity of signs of that ADOT plans to maintain at steady state once the phase in period is complete. It may be a one-for-one replacement of the Base Case product, depending on ADOT policy. This variable, along with the variable *Years to Steady State*, defines the phase-in period and impacts annual sign purchases.

How the Variable Affects the Model

This variable is used in conjunction with two other variables related to the phase in of a new product. The principal concept affecting all three variables is the steady state, which is defined as the point in time at which the product stock tends to remain steady or in equilibrium, given all product purchases and installations. The combination of these three variables develop the costs over time associated with the phase-in of a new product. This accounting is important to the cost-benefit analysis because of the extra inventory and capital costs associated with phasing-in a new product and phasing-out the current product.

Baseline Assumptions

In interviews with the ADOT sign sheeting shop and the Traffic Engineering Group, estimates of future phase-in variables were obtained based on the current phase-in of High-Intensity sign sheeting. A one-to-one replacement is initially assumed for the number of signs at the first year of Steady State.

Major Uncertainties

The timing of a phase-in is dependent upon many variables, including ADOT policy, product availability, and the speed with which the new product can adapted into maintenance and construction procedures and contracts.

VARIABLE: Phase-In of New Product Signs at First Year of Steady-State Signs

warning Signs				
Product	Median Estimate	10.% Lower Limit	10-% Upper Limit	
Engineering Grade	1800	1700	1900	
Super Engine. Grade	1800	1700	1900	
High Intensity	1800	1700	1900	
High Intensity, prismatic	1800	1700	1900	

Warning Signs

Product	Median Estimate	10 % Lower Limit	10 % Üpper Limit
Engineering Grade	1000	900	1100
Super Engine. Grade	1000	900	1100
High Intensity	1000	900	1100
High Intensity, prismatic	1000	900	1100

VARIABLE: Phase-In of New Product Years to Steady State Years

Description

This variable represents the number of the period in years over which the new product is to be phased-in. There is no unique value for this variable, instead it will depend upon the product in question and ADOT planning decisions. This variable impacts annual product purchases.

How the Variable Affects the Model

This variable is used in conjunction with two other variables related to the phase in of a new product. The principal concept affecting all three variables is the steady state, which is defined as the point in time at which the product stock tends to remain steady or in equilibrium, given all product purchases and installations. The combination of these three variables develop the costs over time associated with the phase-in of a new product. This accounting is important to the cost-benefit analysis because of the extra inventory and capital costs associated with phasing-in a new product and phasing-out the current product.

Baseline Assumptions

In interviews with the ADOT sign sheeting shop and the Traffic Engineering Group, estimates of future phase-in variables were obtained based on the current phase-in of High-Intensity sign sheeting. A median estimate of a two-year phase-in period was deemed appropriate.

Major Uncertainties

The timing of a phase-in is dependent upon many variables, including ADOT policy, product availability, and the speed with which the new product can adapted into maintenance and construction procedures and contracts.

VARIABLE: Phase-In of New Product Years to Steady-State Years

Product	Median	10 % Lower Limit	10 % Upper Limit
Engineering Grade	2	1.75	3.0
Super Engine. Grade	2	1.75	3.0
High Intensity	2	1.75	3.0
High Intensity, prismatic	2	1.75	3.0

Warning Signs

Regulatory Signs

Product		10 % Lower Limit	
Engineering Grade	2	1.75	3
Super Engine. Grade	2	1.75	3
High Intensity	2	1.75	3
High Intensity, prismatic	2	1.75	3

VARIABLE: Phase-In of New Product Steady State Sign-Growth Signs

Description

This variable refers to the growth of the capital stock figure once the phase-in of the new product has been completed. In a one-to-one replacement scenario, the New Product growth is expected to be approximately the same as the Base Case annual increase in signs. This variable impacts annual sign purchases.

How the Variable Affects the Model

This variable is used in conjunction with two other variables related to the phase in of a new product. The principal concept affecting all three variables is the steady state, which is defined as the point in time at which the product stock tends to remain steady or in equilibrium, given all product purchases and installations. The combination of these three variables develop the costs over time associated with the phase-in of a new product. This accounting is important to the cost-benefit analysis because of the extra inventory and capital costs associated with phasing-in a new product and phasing-out the current product.

Baseline Assumptions

In interviews with the ADOT sign sheeting shop and the Traffic Engineering Group, estimates of future phase-in variables were obtained based on the current phase-in of High-Intensity sign sheeting. It is assumed that steady state sign growth is approximately equal to current annual sign increases.

Major Uncertainties

The timing of a phase-in is dependent upon many variables, including ADOT policy, product availability, and the speed with which the new product can adapted into maintenance and construction procedures and contracts.

VARIABLE: Phase-in of New Product Steady-State Sign-Growth Signs

Product.	Median Estimate	10.% Lower Limit	10 % Upper Limit	
Engineering Grade	180	170	190	
Super Engine. Grade	180	170	190	
High Intensity	180	170	190	
High Intensity, prismatic	180	170	190	

Warning Signs

Product	Median Estimate	10 % Lower Limit	<pre>A the second s</pre>
Engineering Grade	180	170	190
Super Engine. Grade	180	170	190
High Intensity	180	170	190
High Intensity, prismatic	180	170	190

VARIABLE: Labor Productivity Labor Hours

Description

This variable concerns the productivity of ADOT laborers with regards to the Base Case and the New Product Case. Productivity must be entered as products per hour per person or fractional products per hour per person, if the product requires more than one person to maintain. This variable is essential for correctly calculating labor productivity and maintenance costs.

How the Variable Affects the Model

This variable is used in conjunction with hourly equipment costs and average ADOT labor wage to determine unit maintenance costs for the Base Case and New Product. The value for unit maintenance costs, in turn, is used with Base Case annual replacements to estimate Base Case and New Product annual maintenance costs. A new product which leads to reduced annual maintenance costs results in a net benefit for this economic effect category.

Baseline Assumptions

The productivity figure for PECOS II Maintenance Category 0404, "Sign Inspection, Maintenance, Installation" in 1992/1993 was used for the analysis. The same productivity figure was used for all grades of sign sheeting material. This productivity figure assumes that a standard 16 square foot sign is installed or maintained in 1.85 labor hours.

Major Uncertainties

The productivity values in the PECOS II Maintenance Trends Summary vary significantly from 1990/1991 to 1992/1993. This may reflect the effects of the current phase-in of High-Intensity sign sheeting. Additionally, special handling and/or maintenance activities associated with a specific grade of sign sheeting material may also impact productivity.

DATA SHEET: Labor Productivity Labor Hours per Sign per Person

Product	Median Estimate	10 % Lower Limit			
Engineering Grade	1.85	1.67	2.04		
Super Engine. Grade	1.85	1.67	2.04		
High Intensity	1.85	1.67	2.04		
High Intensity, prismatic	1.85	1.67	2.04		

Warning Signs

Product	Median, Estimate	10 % Lower Limit	10 % Upper Limit
Engineering Grade	1.85	1.67	2.04
Super Engine. Grade	1.85	1.67	2.04
High Intensity	1.85	1.67	2.04
High Intensity, prismatic	1.85	1.67	2.04

VARIABLE: Years until Labor Productivity reaches 50% Years

Description

This variable category concerns the timing of labor productivity associated with a new product. Maintenance and installation times may vary initially due to learning curve effects, therefore, it is reasonable to assume that productivity will increase over time until the expected productivity level is reached. This variable category captures the time it takes productivity to achieve 50 percent of its expected level. This value may be zero if there are no learning curve effects, but it must be entered for the model to function correctly.

How the Variable Affects the Model

This variable impacts the initial productivity level associated with a new product.

This variable is used in conjunction with labor productivity, hourly equipment costs and average ADOT labor wage to determine unit maintenance costs for the Base Case and New Product. The value for unit maintenance costs, in turn, is used with Base Case annual replacements to estimate Base Case and New Product annual maintenance costs. A new product which leads to reduced annual maintenance costs results in a net benefit for this economic effect category.

Baseline Assumptions

It is assumed that the labor productivity associated with new sign sheeting materials is approximately equal and that any learning curve period between the Base Case and New Product case is either instantaneous or negligible.

Major Uncertainties

It is possible for a new sign sheeting material to introduce special handling or application procedures that could impact the timing of labor productivity.

DATA SHEET: Years until Labor Productivity reaches 50%

Warning Signs

Product	Median Estimate	10 % Lower Limit	10 % Upper Limit -
Engineering Grade	0		
Super Engine. Grade	0		
High Intensity	0		
High Intensity, prismatic	0		

Product	Median Estimate	10 % Lower Limit	10.% Upper Limit.
Engineering Grade	0		
Super Engine. Grade	0		
High Intensity	0		
High Intensity, prismatic	0		

VARIABLE: Years until Labor Productivity Reaches 95% Years

Description

This variable category concerns the timing of labor productivity associated with a new product. Maintenance and installation times may vary initially due to learning curve effects, therefore, it is reasonable to assume that productivity will increase over time until the expected productivity level is reached. This variable category captures the time it takes productivity to achieve 50 percent of its expected level. This value may be zero if there are no learning curve effects, but it must be entered for the model to function correctly.

How the Variable Affects the Model

This variable impacts the initial productivity level associated with a new product. This variable is used in conjunction with labor productivity, hourly equipment costs and average ADOT labor wage to determine unit maintenance costs for the Base Case and New Product. The value for unit maintenance costs, in turn, is used with Base Case annual replacements to estimate Base Case and New Product annual maintenance costs. A new product which leads to reduced annual maintenance costs results in a net benefit for this economic effect category.

Baseline Assumptions

It is assumed that the labor productivity associated with new sign sheeting materials is approximately equal and that any learning curve period between the Base Case and New Product case is either instantaneous or negligible.

Major Uncertainties

It is possible for a new sign sheeting material to introduce special handling or application procedures that could impact the timing of labor productivity.

DATA SHEET: Years until Labor Productivity reaches 95%

Warning Signs

Product	Median Estimate	10 % Lower Limit	10 % Upper Limit
Engineering Grade	0		
Super Engine. Grade	0		
High Intensity	0		
High Intensity, prismatic	0		

Product	Median Estimate	10 % Lower Limit	
Engineering Grade	0		
Super Engine. Grade	0		
High Intensity	0		
High Intensity, prismatic	0		

VARIABLE: Failure Rate Path

Description

Four different types of failure rate paths describe the path of sign failures over time. The four choices are: a linear failure rate path; a logistic failure rate path; an exponential failure rate path; and an option to specify that replacement of a product only takes place when the maximum useful product life has been reached. These four options correspond to option numbers 1 through 4. The failure rate path impacts annual capital expenditures and at least one selection must be chosen for the model to function correctly.

How the Variable Affects the Model

The type of failure rate affects the rate at which the total desired stock of signs changes over time, which impacts Base Case annual sign purchases and total capital expenditures. A linear failure rate, for example, represents a relatively constant failure rate over the maximum life of the product. An exponential failure rate path, however, indicates a rapid increase in failures, which leads to increased product purchases and capital expenditures. Baseline Assumptions

Based on conversations with the ADOT sign shop, and Traffic Engineering, a linear failure rate was chosen to model the pattern of product failures or replacements over time, since the percentage of failures remained at a relatively constant 10 % per year.

Major Uncertainties

The failure rate path for new products is not always known. The proportion of product failures and replacements relative to all ADOT installed signs may change with the adoption of a new sign sheeting material and may necessitate a reconsideration of the failure rate path. ADOT policy with regards to the minimum standards for retroreflectivity may also impact the shape of the failure rate path.

DATA SHEET: Failure Rate Path

Warning Signs

Product.	Linear Curve	Exponential Curve	Replacement at End of Maximum Life
Engineering Grade	J		
Super Engine. Grade	1		
High Intensity	1		
High Intensity, prismatic	ſ		

Product	Linear Curve	Logistic Curve	Exponential Curve	Replacement at End of Maximum Life
Engineering Grade	J			
Super Engine. Grade	1			
High Intensity	J			
High Intensity, prismatic	1			

VARIABLE: Percent Change in Accident Rate due to a Change in the Retroreflectivity Coefficient

Description

This variable refers to the potential impact that a change in the coefficient of retroreflectivity (R_a) could have on accident rates, at the minimum required visibility distances (MRVD)'s as contained in the Federal Highway Administrations's recent report³². For purposes of discussion, a 10 % increase in R_a will be used during the RAP session to represent this change. The variable seeks to define how R_a (and the several factors that comprise it) impacts the driver's ability to: detect and recognize a sign, make a decision, initiate a maneuver and complete the maneuver safely.

How the Variable Affects the Model

This variable impacts the model through a percentage reduction in accidents which reduces overall accident costs.

Baseline Assumptions

There are currently no scientific studies indicating a definitive relationship between R_a and accident rates. It is the purpose of the RAP session to gain insights on this linkage from the professional and academic participants present.

Major Uncertainties

It is uncertain whether a causal link between R_a and accident rates exists, given the many variables that affect driver perception and performance.

³² U.S. Department of Transportation, Federal Highways Administration, <u>Minimum_Retroreflectivity</u> <u>Requirements for Traffic Signs; Publication No. FHWA-RD-93-152</u>, October, 1993.

DATA SHEET: Percent Change in Accident Rate due to a Change in the Retroreflectivity Coefficient

	Median Value	10% Lower Limit	10%-Upper S Limit
Impact on Accident Rates:			
(No Impact=0%; Low=1 to 3%; Medium=3 to 10%; High=+10%)			

VARIABLE: Percent Change in Speed/Flow due to a Change in the Retroreflectivity Coefficient

Description

This variable refers to the potential impact that a change in the coefficient of retroreflectivity (R_a) could have on vehicle speed and traffic flow, at the minimum required visibility distances (MRVD)'s as contained in the Federal Highway Administrations's recent report. For purposes of discussion, a 10 % increase in R_a will be used during the RAP session to represent this change. The variable seeks to define how R_a (and the several factors that comprise it) impacts the driver's ability to: detect and recognize a sign, make a decision, initiate a maneuver and complete the maneuver safely.

How the Variable Affects the Model

This variable impacts the model through a percentage improvement in average vehicle speed, which affects vehicle operating costs and travel time.

Baseline Assumptions

There are no studies that indicate a definitive relationship between R_a and vehicle speed and traffic. It is the purpose of the RAP session to gain insights on this linkage from the professional and academic participants present.

Major Uncertainties

It is uncertain whether a causal link between R_a and speed/flow rates exists, given the many variables that affect driver perception and performance.

DATA SHEET: Percent Increase in Speed/Flow due to a Change in the Retroreflectivity Coefficient

	Median Value	10% Lower	10% Upper Limit
Impact on Speed/Flow:		=======================================	
(No Impact=0%; Low=1 to 3%;			
Medium=3 to 10%; High=+10%)			

VARIABLE: Percent Change in Driver's Sense of Security due to a Change in the Retroreflectivity Coefficient

Description

This variable refers to the potential impact that a change in the coefficient of retroreflectivity (R_a) could have on the driver's sense of security, at the minimum required visibility distances (MRVD)'s as contained in the Federal Highway Administrations's recent report. For purposes of discussion, a 10 % increase in R_a will be used during the RAP session to represent this change.

A driver's "sense of security," is defined as the sum of all intangible factors that a driver would be willing to pay for that impact a driver's confidence to maneuver a vehicle safely and efficiently. The model uses a threshold analysis to estimate the willingness-to-pay amount for an increased sense of driver security due to a change in R_a . A percentage of the potential benefits derived from improvements in vehicle operating costs, safety and the value of time are used to forecast a threshold level value of benefits that a driver could be willing to pay for with a new sign sheeting material.

How the Variable Affects the Model

This variable does not directly impact the model, but rather, uses benefit estimates from economic effect categories to construct an indirect estimate for the value driver's would be willing- to-pay for an improved sense of driver security.

Baseline Assumptions

There are no studies that clearly indicate a relationship between R_a and vehicle speed and traffic. It is the purpose of the RAP session to gain insights on this linkage from the professional and academic participants present.

Major Uncertainties

It is uncertain whether drivers would be willing-to-pay for a sign-sheeting material with a certain level of R_a , given the many variables that affect driver perception and performance.

DATA SHEET: Percent Change in Driver's Sense of Security due to 10% Increase in Retroreflectivity Coefficient

	Median Value	10% Lower	10% Upper Limit
Impact on Driver's Sense of Security:			
(No Impact=0%; Low=1 to 3%; Medium=3 to 10%; High=+10%)			

Basic Assumptions of the RAP session

The analysis of sign sheeting materials was performed in accordance with the PEM methodology and the following assumptions:

- 1. A discount rate of 5% is used in the analysis.
- 2. The period of analysis is 30 years.
- 3. Estimates from the <u>National Cooperative Highway Research Program (NCHRP) Report</u> <u>346</u>, <u>Implementation Strategies for Sign Retroreflectivity Standards</u>, were used to determine the number of regulatory and warning signs per mile in an urban area, 10 and 18 per mile, respectively.
- 4. The analysis used a 100 mile section of 6 lane interstate highway.
- 5. Average annual daily traffic was assumed to be 90,000.
- 6. Accident costs were calculated from data supplied in "<u>The Costs of Highway Crashes</u>", Federal Highway Administration, 1991. (see the Technical Appendix for more information)
- 7. The amount of sign sheeting material used for regulatory and warning signs was assumed to be 9 and 16 square feet, respectively.
- 8. Regulatory signs were assumed to represent black on white coloring and warning signs represented black on yellow. Data for each of the two types of signs was collected for these two color schemes.
- 9. The base case sign sheeting material was assumed to be engineering grade.
- 10. Bob pike at ADOT provided the data on centerline miles of interstate roadway in Arizona. The mileage is 1018 for rural interstates and 156 for urban interstates.

Data Sources

Arizona Department of Transportation

All of the necessary road characteristic data, as well as much of the highway user cost data and product attribute data was provided by Tom Huey at the ADOT sign factory, the PECOS II maintenance database, and other ADOT sources. Values for fabrication costs, which were solicited from the sign factory after the RAP session, are included in the technical appendix.

Vendor Sheets

Where available, vendor information sheets about each type of sign sheeting material were utilized to help derive the initial estimates for both the common and specific attributes.

Outside Experts

The experts that participated in the RAP session are listed in Table 1. These experts debated each product attribute variable and assigned the range of uncertainty around each of the attribute variables. The ranges and median estimates for each of these variables are located in the later in the Technical Appendix.

Many of the product attribute variables used in the cost-benefit analysis contain an element of uncertainty. To capture real-world variations in these variables, a risk analysis, which develops a probability range for each variable, was introduced. Each variable was assigned a range of uncertainty based on research and the opinions of experts in the field of sign sheeting materials.

Table 5.1 RAP Session Participants

Participant's Name	Title	Employer
Chuck Eaton	Arizona State Traffic Engineer	ADOT
Kevin Woudenberg	ATSSA Representative	Woudenberg Enterprises
Gene Hansen	Transportation Engineer	ADOT
Bill Putman	Heraeus DSET Laboratories	Heraeus
Gordon Pate		Zumar
Tom Huey	Sign Factory Supervisor	ADOT
David Elack	Assistant Traffic Engineer	ADOT
David Olivarez	Traffic Engineer	ADOT
Jeff Paniati	Program Manager	FHWA
Gerado Flintsh	Research Assistant	ADOT
Robert Skelton	Market Development	3M
Randall Akichika	National Sales Manager	Nippon Carbide
Ken Uding	Technical coordinator	Stimsonite

Other Sources

The model databases are the main analytical drivers for the final cost estimates, and therefore the final economic analysis. These databases represent average speed (used in value of time and vehicle operating costs), vehicle operating costs (in unit consumption rates), and incidence rates for accidents. The vehicle operating cost unit consumption databases are based on data from the MicroBENCOST model and Hickling's work with the NCHRP. The general highway user cost data comes from a variety of sources. The cost figures, such as fuel costs, the value of time, and various accident costs were compiled from national data³³, Maricopa Association of Governments Transportation Planning Office data, and through an extensive research project into highway user costs completed for the National Cooperative Highway Research Program by Hickling³⁴.

³³ Sources include the Statistical Abstract of the United States 1992, U. S. Department of Commerce, Economics and Statistics Administration, Bureau of the Census, and "<u>The Costs of Highway Crashes</u>," Federal Highway Administration, 1991.

³⁴ NCHRP Project 2-18: Research Strategies for Improving Highway User Cost-Estimating Methodologies (1993)

Data Inputs from RAP Session Participants

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Maintenance Labor Productivity - EG NUMBER OF RESPONSES:

8

	STANDARD DEVIATION			
	MEDIAN	LOWER	UPPER 10%	
1994	0.32	0.40	0.72	

1

: :

.

	ser en ser della se	AVERAGE	
	MEDIAN	LOWER	UPPER
	2년 11년 ⁴ 1년	10%	10%
1994	1.11	0.66	3.57

·.

		MINIMUM	
	MEDIAN	LOWER	UPPER 10%
1994	0.80	0.33	2.04

		MAXIMUM	
	MEDIAN	LOWER	UPPER
	y de l'élèpenne.	10%	10%
1994	1.85	1.67	4.25

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	1.11	0.66	3.57

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Useful Economic Life of Sign - EG NUMBER OF RESPONSES:

11

	STANL	DARD DEVI	TION
	MEDIAN	LOWER	UPPER 10%
1994	1.60	1.41	2.50

÷

1994	6.36	5.00	8.40
	MEDIAN	LOWER	UPPER
	<u> Angelen</u> ger	AVERAGE	

.

٠,

	a da katala	MINIMUM	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	3.50	3.00	4.00

	xan bahayan	MAXIMUM	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	9.00	8.00	12.00

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER 10%
1994	6.36	5.00	8.40

:

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Maximum Useful Economic Life of Sign - EG NUMBER OF RESPONSES:

10

	STAN	ARD DEVL	TION
	MEDIAN	LOWER	UPPER
		10%	10%
<u> </u>	2.13	1.31	4.18

÷

-

: : :

1994	9.45	7.05	13.75
	MEDIAN	LOWER 10%	UPPER 10%
		AVERAGE	

.

	er de publique p	MINIMUM	Star Sector 1
	MEDIAN	LOWER	UPPER.
		10%	10%
1994	7.00	4.50	10.00

	MEDIAN	LOWER	UPPER
		10%	10%
1004	14 00	10.001	20.0

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	9.45	7.05	13.75

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Years Until Labor Productivity Reaches 50% - EG NUMBER OF RESPONSES:

3

I

	STANL	ARD DEVL	TION
	MEDIAN	LOWER	UPPER 10%
1994	0.00	0.00	0.00

1994	0.00	0.00	0.00
		10%	10%
	MEDIAN	LOWER	RAM
		AVERAGE	et i septembre føre

.

	lait inigationa	MINIMUM	Geologia -
	MEDIAN	LOWER	UPPER.
1994	0.00	0.00	0.00

	50000.20000	MAXIMUM	
[MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER 10%
1994	0.00	0.00	0.00

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Years Until Labor Productivity Reaches 95% - EG NUMBER OF RESPONSES:

3

	STAN	DARD DEVL	TION
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

:

-

1 2

	k 🕶 sang katika n	AVERAGE	
	MEDIAN	LOWER	UPPER 10%
1994	0.00	0.00	0.00

,

.

	an a	MINIMUM	
	MEDIAN	LOWER	UPPER
1994	0.00	0.00	0.00

		MAXIMUM	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Average Square Feet of Sign Material per Sign - EG NUMBER OF RESPONSES:

3

	STANDARD DEVIATION			
	MEDIAN	LOWER	UPPER 10%	
1994	0.00	0.00	0.00	

:

• •

	Alfred altern	AVERAGE	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	9.00	8.00	10.00

	MEDIAN	LOWER	UPPER 10%
1994	9.00	8.00	10.00

	Paratesiaen.	MAXIMUM	
	MEDIAN	LOWER	UPPER.
1994	9.00	8.001	10.00

	VALUES	REC. BY HIG	KLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	9.00	8.001	10.00

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Sign-Sheeting Cost per Square Foot - EG NUMBER OF RESPONSES:

6

	STAN	DARD DEVI	TION
	MEDIAN	LOWER	UPPER
	1997 (Jan 1978) 1997 - Jan 1997 (Jan 1997)	10%	10%
1994	0.11	0.07	0.11

:

-

	in the second large the	AVERAGE	
	MEDIAN	LOWER 10%	UPPER 10%
1994	0.88	0.73	0.93

,

:

.

	al constantia	MINIMUM	etine public, s
	MEDIAN	LOWER.	UPPER.
		10%	10%
1994	0.75	0.70	0.80

.

		MAXIMUM	
	MEDIAN	LOWER	UPPER.
1994	1.10	0.90	1.15

	VALUES	REC. BY HIC	KLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994 i	0.88	0.73	0.93

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Maintenance Labor Productivity - SEG NUMBER OF RESPONSES:

8

	STANDARD DEVIATION			
	MEDIAN	LOWER	UPPER	
1994	0.33	10%	10%	
1774	0.34	0.40	0.72	

:

-

MEDIAN LOWER UPPER	1007		10/0	2 (7
		MEDIAN	LOWER	UPPER 10%

с=

.

.

		MINIMUM	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.80	0.33	2.04

		MAXIMUM	
	MEDIAN	LOWER	UPPER
1994	1.85	1.67	4.25

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
<u> </u>	1.11	0.66	3.57

172

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Useful Economic Life of Sign - SEG NUMBER OF RESPONSES:

11

	STANL	ARD DEVL	TION
	MEDIAN	LOWER	UPPER 10%
1994	1.30	1.15	1.87

:

5 3

-

	1. C. S.	AVERAGE	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	9.55	7.36	11.64

	MEDIAN	LOWER	UPPER 10%
1994	7.00	6.00	8.00

		MAXIMUM	
	MEDIAN	LOWER	UPPER.
1004	11.00	10%	10%

	VALUES REC	BYHICK	LING
M	EDIAN LO	WER	UPPER
		10%	10%
1994	9.55	7.361	11.64

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Maximum Useful Economic Life of Sign - SEG NUMBER OF RESPONSES:

10

	STAN	DARD DEVL	TION
	MEDIAN	LOWER	UPPER
		10%	10%
1994	2.80	1.72	5.91

1994	13.60	10.201	18.20
	MELIAN	LOWER 10%	UPPER 10%
		AVERAGE	

		MINIMUM	e salesta de la co
	MEDIAN	LOWER	UPPER
		10%	10%
1994	9.00	7.00	11.00

		MAXIMUM	an a
	MEDIAN	LOWER U	PPER.
		10%	10%
1994	20.00	13.00	30.00

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	13.60	10.20	18.20

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Years Until Labor Productivity Reaches 50% - SEG NUMBER OF RESPONSES:

3

	STAN	DARD DEVL	TION
	MEDIAN	LOWER	UPPER
1994	0.00	10% 0.00	

:

-

MEDIAN LOWER UPPER	100.	0.00	0.00	0.00
		MILLAPIN	10%	10%

-

	a da da ang	MINIMUM	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

	gerige saaa	MAXIMUM	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Years Until Labor Productivity Reaches 95% - SEG NUMBER OF RESPONSES:

3

	STAN	DARD DEVI	TION
	MEDIAN	LOWER	UPPER
1994	0.00	<u>10%</u> 0.00	<u>10%</u> 0.00

:

•

		AVERAGE	a an an an Arithman
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

. .

-

	Section and the section of the secti	MINIMUM	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

		MAXIMUM	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Average Square Feet of Sign Material per Sign - SEG NUMBER OF RESPONSES:

2

	STANL	DARD DEVLA	TION
	MEDIAN	LOWER	UPPER
1994	0.00	10%	0.00

:

: :

		AVERAGE	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	9.00	8.00	10.00

		MINIMUM	
	MEDIAN	LOWER	UPPER.
1994	9.00	8.00	10.00

	States (States	MAXIMUM	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	9.00	8.00	10.00

Section Section	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
1994	9.00	8.00	10%

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Sign-Sheeting Cost per Square Foot - SEG NUMBER OF RESPONSES:

6

		DARD DEVLA	
	MEDIAN	LOWER	UPPER
1994	0.02	<u>10%</u> 0.00	<u>10%</u> 0.00

:

.

1.1

	MEDIAN	AVERAGE	10050
	MEDAAN	10%	10%
1994	2.11	1.95	2.35

.

		MINIMUM	ant an early
	MEDIAN	LOWER	UPPER
1994	2.10	1.95	2.35

	e an	MAXIMUM	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	2.15	1.95	2.35

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	2.11	1.95	2.35

;

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Average Square Feet of Sign Material per Sign - HI NUMBER OF RESPONSES:

3

	STAN	DARD DEVIA	TION
	MEDIAN	LOWER	UPPER
1994	1.41	0.50	1.50

. •

.

.

	Selon Stephen	AVERAGE	a an an the state
	MEDIAN	LOWER	UPPER
	e anale	10%	10%
1994	10.00	8.50	11.50

.

•

		MINIMUM	
	MEDIAN	LOWER	UPPER.
		10%	10%
1994	9.00	8.00	10.00

aller of the state of	MAXIMUM			
	MEDIAN	LOWER.	UPPER 10%	
1994	12.00	9.00	13.00	

	VALUES REC. BY HICKLING			
	MEDIAN	LOWER	UPPER 10%	
1994	10.00	8.50	11.50	

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Sign-Sheeting Cost per Square Foot - HI NUMBER OF RESPONSES: 6

 STANDARD DEVIATION

 MEDIAN
 LOWER
 UPPER

 10%
 10%
 10%

٠.

·. •:

	19. Other services in the service of	AVERAGE	
	MEDIAN	LOWER	UPPER 10%
1994	3.74	3.72	3.75

•

22030222	i da serie de la composición de la comp	MINIMUM	e, produktivni s
	MEDIAN	LOWER	UPPER 10%
1994	3.74	3.70	3.74

		MAXIMUM	
	MEDIAN	LOWER	UPPER.
1004	2 74	10%	10%
1994	3.74	3.73	<u> </u>

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
1994	3.74	3.72	3.75

180

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Useful Economic Life of Sign - HI NUMBER OF RESPONSES:

10

	STANDARD DEVIATION			
	MEDIAN	LOWER	UPPER	
100.4	1.06	10%	10%	
<u> </u>	1.82	1.09	2.43	

. .

_

		AVERAGE	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	10.30	8.40	13.10

.

	erzzenie daars.	MINIMUM	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	7.00	6.00	8.00

		MAXIMUM	
	MEDIAN	LOWER	UPPER
1004	12.00	10%	10%
1994	12.00	10.001	10.00

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	10.30	8.40	13.10

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Maximum Useful Economic Life of Sign - HI NUMBER OF RESPONSES:

10

	STANL	DARD DEVIATIO	ÎN 🔤
	MEDIAN	LOWER U	PPER
1994	3.00	2.11	6.58

.

.

	<u> an airteac</u>	AVERAGE	er en stalen stalen stalen som
	MEDIAN	LOWER	UPPER
1994	15.70	107	20.10

	8.076)2 (2004)2	MINIMUM	아이지 않는 것이다.
	MEDIAN	LOWER	UPPER
		10%	10%
1994	12.00	7.00	14.00

		XIMUM	
	MEDIAN	LOWER	UPPER 10%
1994	20.00	15.00	30.00

	VALUES RE	C. BY HICK	LING
	MEDIAN L	ower t	PPER
		10%	10%
1994	15.70	11.40	20.10

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Maintenance Labor Productivity - HI NUMBER OF RESPONSES: .

8

	STANDARD DEVIATION			
	MEDIAN	LOWER	UPPER	
1994	0.30	0.37	0.75	

MEDIAN LOWER UPPER 10% 10%	100	1 20	0.71	3 61
		MEDIAN	LOWER	UPPER 10%

.

	an a	MINIMUM	
	MEDIAN	LOWER U	IPPER 10%
1994	1.00	0.50	2.04

	reise weer	MAXIMUM	
1	MEDIAN	LOWER	UPPER.
	Section 1	10%	10%
1994	1.85	1.67	4.25

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	1.20	0.71	3.63

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Years Until Labor Productivity Reaches 50% - HI NUMBER OF RESPONSES:

3	

		ARD DEVL	TION
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

	1991년 (1994년 1997년) 1997년 - 1997년 (1997년 1997년 1997년 1997년 - 1997년 199	AVERAGE	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

		MINIMUM	
	MEDIAN	LOWER	UPPER 10%
1994	0.00	0.00	0.00

	MAXIMUM		
	MEDIAN	LOWER	UPPER
1994	0.00	107	0.00

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
	Corrent and	10%	10%
1994	0.00	0.00	0.00

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Years Until Labor Productivity Reaches 95% - HI NUMBER OF RESPONSES:

3

	STANE	ARD DEVL	TION
	MEDIAN	LOWER.	UPPER
1994	0.00	0.00	0.00

. .

.

1

		AVERAGE	
	MEDIAN	LOWER	UPPER
	아이에 관심을 했다.	10%	10%
1994	0.00	0.00	0.00

.

<u>r</u>		MINIMUM	agaalaan ayaa
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

ing time at the	genining the	MAXIMUM	an an airt ga
	MEDIAN	LOWER	UPPER.
		1074	1074
<u> </u>	0.00	0.00	0.00

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
<u></u>		10%	10%
1994	0.00	0.00	0.00

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Average Square Feet of Sign Material per Sign - HIP NUMBER OF RESPONSES:

2

	STANE	ARD DEVLA	TION
	MEDIAN	LOWER	UPPER
		10%	10%
<u> </u>	0.00	0.00	0.00

1994	9.00	8.00	10.00
	MEDIAN	LOWER	UPPER 10%
		AVERAGE	김 사람 사진 다양하지

MEDIAN LOWER UPPER 10% 10%		a a secondaria	MINIMUM	
		MEDIAN	Congradus, conferenda principalizad	
	1004	9.00	10%	10%

	MAXIMUM		
	MEDIAN	LOWER	UPPER 10%
1994	9.00	8.00	10.00

	VALUES REC. BY HICKLING		
	MEDIAN	LOWER	UPPER
		10%	10%
1994	9.00	8.00	10.00

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Sign-Sheeting Cost per Square Foot - HIP NUMBER OF RESPONSES:

6

	STANDARD DEVIATION			
[[MEDIAN	LOWER	UPPER	
1994	0.00	0.00	0.02	

		AVERAGE	· · · · · · · · · · · · · · · · · · ·
	MEDIAN	LOWER 10%	UPPER 10%
1994	3.74	3.71	3.75

		MINIMUM	
	MEDIAN	LOWER	UPPER
1994	3.74	3.70	3.74

	a da kana sa ka sa ka	MAXIMUM	
	MEDIAN	LOWER	UPPER
1994	3.74	3.71	3.80

	VALUES REC. BY HICKLING		
	MEDIAN	LOWER	UPPER
		10%	10%
1994	3.74	3.71	3.75

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Useful Economic Life of Sign - HIP NUMBER OF RESPONSES:

10

	AVERAGE			
	MEDIAN	LOWER	UPPER 10%	
1994	9.80	8.00	12.20	

	STANL	ARD DEVIA	TION
	MEDIAN	LOWER	UPPER
		10%	10%
<u> </u>	1.99	1.73	2.64

. .

. .

	MEDIAN	LOWER	UPPER.
1994	12.00	10.00	16.00

•

		MINIMUM	
	MEDIAN	LOWER	UPPER
1994	7.00	10% 6.00	8.00

	VALUES REC. BY HICKLING			
	MEDIAN	LOWER	UPPER 10%	
1994	9.80	8.00	12.20	

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Maximum Useful Economic Life of Sign - HIP NUMBER OF RESPONSES:

10

	STANDARD DEVIATION			
	MEDIAN	LOWER	UPPER	
1994	3.79	10%	7.21	

-

	legit mar estador	AVERAGE	en en se te de fil afri
	MEDIAN	LOWER	UPPER 10%
1994	15.00	10.70	19.40

.

	a de la subsecció	MINIMUM	alialian and
	MEDIAN	LOWER	UPPER
		10%	10%
1994	8.00	6.00	10.00

	et and Sellen.	MAXIMUM	e e de la gale
	MEDIAN	LOWER 10%	UPPER 10%
1994	20.00	15.00	30.00

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	15.00	10.70	19.40

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Maintenance Labor Productivity - HIP NUMBER OF RESPONSES: 8

i i i a calini i	STANI	ARD DEVL	TION
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.30	0.37	0.75

	e je se	AVERAGE	
	MEDIAN	LOWER L	IPPER
1994	1.20	0.71	3.63

	ana ana amin'ny sora	MINIMUM	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	1.00	0.50	2.04

	a dan seri dari dari dari dari dari dari dari da	MAXIMUM	
	MEDIAN	LOWER	UPPER 10%
1994	1.85	1.67	4.25

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	1.20	0.71	3.63

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Years Until Labor Productivity Reaches 50% - HIP NUMBER OF RESPONSES:

3

	STANDARD DEVIATION		
	MEDIAN	LOWER	UPPER 10%
1994	0.00	0.00	0.00

.

.

	ri∙istekistekistek	AVERAGE	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

.

	os de la com	MINIMUM	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

		MAXIMUM	i i prospisso
	MEDIAN	LOWER	UPPER
1004		10%	10%

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
1994	0.00	0.00	0.00

ADOT COST-BENEFIT AND RISK ANALYSIS OF REGULATORY SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Years Until Labor Productivity Reaches 95% - HIP NUMBER OF RESPONSES:

3

	STANL	ARD DEVIA	TION
	MEDIAN	LOWER	UPPER 10%
1994	0.00	0.00	0.00

C. C. C. Star		AVERAGE	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

i

.

	Sector A.M.S.	MINIMUM	allar ng bara
	MEDIAN	LOWER	UPPER. 10%
1994	0.00	0.00	0.00

	MAXIMUM		- 699999
	MEDIAN	LOWER U	IPPER
1994	0.00	0.00 i	0.00

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Maintenance Labor Productivity - EG NUMBER OF RESPONSES: 8

	STAN	DARD DEVIATIO) N
	MEDIAN	LOWER L	PPER
1004	0.21	10%	10%

MEDIAN LOWER UPPER	1994	2.03 j	10%	<u>10%</u> 3.76
		MEDIAN	LOWER	UPPER

		MINIMUM	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	1.85	0.75	2.04

	aanta ah ay ah	MAXIMUM	
	MEDIAN	LOWER	UPPER 10%
1994	2.50	1.67	4.25

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	2.03	1.02	3.76

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Sign-Sheeting Cost per Square Foot - EG NUMBER OF RESPONSES: 8

	STANI	ARD DEVI	TION
	LOWER 10%	UPPER 10%	
1994	0.09	0.07	0.09

.

.

1004	0.87	0.73	0.92
	MELAAN	10%	10%
	METHAN	TOPER	TIDDED

•

	MEDIAN	LOWER	UPPER 10%
1994	0.75	0.70	0.80

		MAXIMUM	
	MEDIAN	LOWER	UPPER
1994	1.10	0.90	1.15

	VALUES REC. BY HICKLING		
	MEDIAN	LOWER	UPPER
1994	0.87	10%	10%

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Useful Economic Life of Sign - EG NUMBER OF RESPONSES:

1	1	

	STAND	ARD DEVL	TION
	MEDIAN	LOWER	UPPER
1994	1.60	1.45	2.39

. .

.

	MEDIAN	LOWER	UPPER
1994	6.36	5.10	8.10

.

.

٠

	an a	MINIMUM	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	3.50	3.00	4.00

		MAXIMUM	an a
	MEDIAN	LOWER	UPPER.
1004	9.00	10%	10%

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	6.36	5.10	8.10

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Maximum Useful Economic Life of Sign - EG NUMBER OF RESPONSES:

10

		ARD DEVL	TION
	MEDIAN	LOWER 10%	UPPER 10%
1994	2.13	1.31	4.18

		AVERAGE	er (szadá
	MEDIAN	LOWER	UPPER 10%
1994	9.45	7.05	13.75

		MINIMUM	este la composite
	MEDIAN	LOWER	UPPER
		10%	10%
1994	7.00	4.50	10.00

en in de la service de la s	MAXIMUM	2 - S.X. (1997)
MEDIAN	LOWER	UPPER
1994 14.00	10%	10%

	VALUES	REC. BY HICK	DING
	MEDIAN	LOWER	JPPER
		10%	10%
1994	9.45	7.05	13.75

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Years Until Labor Productivity Reaches 50% - EG NUMBER OF RESPONSES:

4

	STAN	ARD DEVIA	TION
	MEDIAN	LOWER	UPPER
1994	0.00	0.00	0.00

1994	0.00	0.00	0.00
	MEDIAN	LOWER	UPPER 10%
		AVERAGE	

		MINIMUM	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

	MEDIAN	LOWER	LIPPER
		10%	10%
1994	0.00	0.00	0.00

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Years Until Labor Productivity Reaches 95% - EG NUMBER OF RESPONSES:

	STANDA MEDIAN I	RD DEVIA	TION UPPER
<u>1994</u>	0.00	<u>10%</u> 0.00	<u>10%</u> 0.00

	MEDIAN	LOWER 10%	UPPER. 10%
1994	0.00	0.00	0.00

	MEDIAN	LOWER 1	JPPER.
1994	0.00	0.001	0.00

	/	MAXIMUM	an a
	MEDIAN	LOWER	UPPER.
1994	0.00	0.00	0.00

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER 10%
1994	0.00	0.00	0.00

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Average Square Feet of Sign Material per Sign - EG NUMBER OF RESPONSES:

2
-

MEDIAN LOWER UPPER			
	MELIAN	LOWER	UPPER 10%

.

	STANL	DARD DEVL	TION
	MEDIAN	LOWER	UPPER
1994	0.00	0.00	0.00

.

-

MEDIAN LOWER UPPER	1004	16 001	10%	1076
		MEDIAN	LOWER	UPPER

[MINIMUM	
	MEDIAN	LOWER	UPPER.
L		10%	10%
1994	16.00	14.00	17.00

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
<u> </u>	16.00	14.00	17.00

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Maintenance Labor Productivity - SEG NUMBER OF RESPONSES:

8

	STAN	DARD DEVI	TION
	MEDIAN	LOWER	UPPER
	<u> </u>	10%	10%
1994	0.21	0.81	0.68

.

	45	7	10	%	10%
--	----	---	----	---	-----

.

		MINIMUM	e galier (*
	MEDIAN	LOWER.	UPPER.
		10%	10%
1994	1.85	0.75	2.04

		MAXIMUM	
	MEDIAN	LOWER U	PPER
1004	2.60	10%	10%
1994	2.50	3.301	4.25

	VALUES	REC. BY HICK	LING
	MEDIAN	LOWER	UPPER
1994	2.03	1.28	3.76

ł

200

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Useful Economic Life of Sign - SEG NUMBER OF RESPONSES:

11

		AVERAGE	
	MEDIAN	LOWER	UPPER
1994	9.55	7.55	11.64

	STANL	ARD DEVL	TION
	MEDIAN	LOWER	UPPER
1004	1 30	10%	10%
1994	1.30	1.10	1.8/

.

	dia Sili yar	MINIMUM	(antestas) in terre o
	MEDIAN	LOWER	UPPER
		10%	10%
1994	7.00	6.00	8.00

MAXIMUM

LOWER

10%

10.00

UPPER

10%

15.00

MEDIAN

11.00

1994

MEDIAN LOWER	TIDDED
	UFEER
	10%

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Maximum Useful Economic Life of Sign - SEG NUMBER OF RESPONSES: 10

	STAN	ARD DEVI	TION
	MEDIAN	LOWER	UPPER
1994	2.80	1.72	5.91

. .

- -

.

1994	13.60	10.20	18.20
	MEDIAN	LOWER	UPPER 10%
		AVERAGE	

•

		MINIMUM	
	MEDIAN	LOWER	UPPER.
		10%	10%
1994	9.00	7.00	11.00

	inter anglaggia.	MAXIMUM	
	MEDIAN	LOWER	UPPER. 10%
1994	20.00	13.00	30.00

	VALUES REC. BY HICKLING		
	MEDIAN	LOWER	UPPER
		10%	10%
1994	13.60	10.20	18.20

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Years Until Labor Productivity Reaches 50% - SEG NUMBER OF RESPONSES:

-

4

	STANDARD DEVIATION		
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

	MEDIAN	LOWER	UPPER
1994	0.00	10%	10%

		MINIMUM	a ser a ser a s
	MEDIAN	LOWER	UPPER.
		10%	10%
1994	0.00	0.00	0.00

	an an that a g		
	MEDIAN	LOWER	UPPER.
1994	0.00	0.00	0.00

	VALUES	REC. BY HICK	LING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Years Until Labor Productivity Reaches 95% - SEG NUMBER OF RESPONSES:

4

	STAN	DARD DEVIA	TON
	MEDIAN	LOWER	UPPER
1994	0.00	0.00	0.00

.

.

1994	0.00	0.00	0.00
278, AR		10%	10%
	MEDIAN	LOWER	TIPPER
	· • 아님 아 생각했는	AVERAGE	

. •

1994	0.00	0.00	0.00
	MEDIAN	LOWBK 10%	UPPER 10%
		MINIMUM	

		MAXIMUM	a se
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

	VALUES	REC. BY HICK	LING
	MEDIAN	LOWER L	PPER
		10%	10%
1994	0.00	0.00	0.00

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Average Square Feet of Sign Material per Sign - SEG NUMBER OF RESPONSES:

2

	STAND	ARD DEVL	TION
	MEDIAN	LOWER	UPPER
1994	0.00	0.00	0.00

199	94	16.00	14.00	17.00
	ME		LOWER 10%	UPPER 10%
North States	e. 1000088	er de la compaña 🗛	VERAGE	

		MINIMUM	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	16.00	14.00	17.00

	la constanta da	MAXIMUM	
	MEDIAN	LOWER	UPPER
ļ		10%	10%
1994	16.00	14.00	17.00

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	16.00	14.00	17.00

- ---

_

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Sign-Sheeting Cost per Square Foot - SEG NUMBER OF RESPONSES:

8

	STAN	DARD DEVLA	TION
	MEDIAN	LOWER	UPPER 10%
1994	0.02	0.01	0.00

	IV A	10/4
	10%	10%
MEDIAN	LOWER	LIPPER
	ATEMAL	

	M	INIMUM	
	MEDIAN	LOWER	PPER
		10%	10%
1994	2.10	1.93	2.35

	MAXIMUM		4	
	MEDIAN	LOWER	UPPER 10%	
1994	2.15	1.95	2.35	

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	2.11	1.95	2.35

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Average Square Feet of Sign Material per Sign - HI NUMBER OF RESPONSES:

3

	STANI	ARD DEVIA	TION
	MEDIAN	LOWER	UPPER 10%
1994	0.00	0.00	0.00

.

.

.

	MEDIAN	LOWER	UPPER
1004	16.00	10%	10%

•

	ree. egi ta kiine	MINIMUM	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	16.00	14.00	17.00

	MAXIMUM		
	MEDIAN	LOWER	UPPER. 10%
1994	16.00	14.00	17.00

	VALUES REC. BY HICKLING		
	MEDIAN	LOWER	UPPER 10%
1994	16.00	14.00	17.00

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Sign-Sheeting Cost per Square Foot - HI NUMBER OF RESPONSES:

8

	STANDARD DEVIATION		
	MEDIAN	LOWER	UPPER 10%
1994	0.00	0.01	0.02

	MEDIAN	LOWER	IPPEP
····/ ··//#0. 030-	mennin	LOWLK	
		10%	10%
1994	3.74	3.72	3.75

. .

		MINIMUM	destruction and a
	MEDIAN	LOWER	UPPER.
L		10%	10%
1994	3.74	3.70	3.74

	79	MAXIMUM	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	3.74	3.73	3.80

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
<u>1994</u>	3.74	3.72	3.75

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Useful Economic Life of Sign - HI NUMBER OF RESPONSES;

11

	STAN	ARD DEVL	TION
	MEDIAN	LOWER	UPPER
1994	1.83	10%	2.33

. . .

	in e an the same	AVERAGE	e de la competition de
	MEDIAN	LOWER	UPPER
		10%	10%
1994	10.45	8.55	13.18

		MINIMUM	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	7.00	6.00	8.00

		MAXIMUM	Althy
	MEDIAN	LOWER U	PPER.
1994	12.00	10.00	16.00

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	10.45	8.55	13.18

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Maximum Useful Economic Life of Sign - HI NUMBER OF RESPONSES:

10

	STAN	DARD DEVL	TION
	MEDIAN	LOWER	UPPER
1004	3.00	10%	10%
1224	5.00	4.11	00

	MELAAN	LOWER 10%	10%
1994	15.70	11.40	20.10

.

		MINIMUM	
	MEDIAN	LOWER	UPPER
100.4	10.00	10%	10%
1994	12.00	7.00	14.00

	arte de de la	MAXIMUM	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	20.00	15.00	

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	15.70	11.40	20.10

:

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Maintenance Labor Productivity - HI NUMBER OF RESPONSES: 8

	STAN	ARD DEVI	TION
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.19	0.25	0.71

1994	2 09	1.08	3 82
	MELANIN	10%	10%
	MEDIAN	LOWER	IDDED

		MINIMUM	ann thailte an th
	MEDIAN	LOWER	UPPER
	an a	10%	10%
1994	1.85	0.75	2.04

	an a	MAXIMUM	
	MEDIAN	LOWER U	PTER.
1994	2.50	1.67	4.25

	VALUES	REC, BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	2.09	1.08	3.82

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Years Until Labor Productivity Reaches 50% - HI NUMBER OF RESPONSES:

4

	STAN	ARD DEVL	TION
	MEDIAN	LOWER	UPPER 10%
1994	0.00	0.00	0.00

1994	0.00	0.00	0.00
	MEDIAN	LOWER	UPPER 10%
	8•333	AVERAGE	Sector Children

Ň

	Stangel at the s	MINIMUM	an state of the
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

	ere and the	MAXIMUM	
	MEDIAN	LOWER	UPPER
1004	0.00	10%	10%

P	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Years Until Labor Productivity Reaches 95% - HI NUMBER OF RESPONSES:

	STANL	ARD DEVIA	TION
	MEDIAN	LOWER	UPPER
1994	0.00	<u> </u>	<u>10%</u> 0.00

		AVERAGE	i stradigiji
	MEDIAN	LOWER	UPPER 10%
1994	0.00	0.00	0.00

	edicie y litera	MINIMUM	
	MEDIAN	LOWER	UPPER.
1994	0.00	0.00	0.00

1994	0.00	0.00	0.00
	MEDIAN	LOWER	UPPER
		MAXIMUM	

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Average Square Feet of Sign Material per Sign - HIP NUMBER OF RESPONSES:

2

	STANE	DARD DEVIA	TION
	MEDIAN	LOWER	UPPER
1994	0.00	0.00	0.00

		AVERAGE	TIMOLTO
	MELIAN	LOWER	UPTER
Concernance of the		10%	10%
1994	16.00	14.00	17.00

•	MEDIAN	MINIMUM LOWER	UPPER.
1994	16.00	14.00	17.00

1994 - 1993	1997 B. A. B. K.	MAXIMUM	
	MEDIAN	LOWER	UPPER.
		10%	10%
1994	16.00	14.00	17.00

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
1994	16.00	14.00	17.00

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Sign-Sheeting Cost per Square Foot - HIP NUMBER OF RESPONSES:

ð	

	STANE	DARD DEVL	TION
	MEDIAN	LOWER	UPPER
1994	0.00	0.00	0.02

-

	10%	10%
MEDIAN	LOWER	UPPER

	an series and	MINIMUM	
	MEDIAN	LOWER	UPPER.
		10%	10%
1994	3.74	3.70	3.74

		MAXIMUM	
	MEDIAN	LOWER	UPPER.
		10%	10%
1994	3.74	3.71	3.80

Contact Station	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	3.74	3.71	3.75

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Useful Economic Life of Sign - HIP NUMBER OF RESPONSES: 10

	STANI	DARD DEVL	TION
	MEDIAN	LOWER	UPPER 10%
1994	1.99	1.73	2.64

.

.

1994	9.80	8.00	12 20
		10%	10%
	MEDIAN	LOWER	UPPER
		AVERAGE	

1994	7.00	6.00	8.00
	MEDIAN	LOWER	UPPER 10%
		MINIMUM	

		MAXIMUM	
	MEDIAN	LOWER	UPPER,
<u> </u>		10%	10%
1994	12.00	10.00	16.00

	VALUES	REC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	9.80	8.00	12.20

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Maximum Useful Economic Life of Sign - HIP NUMBER OF RESPONSES;

	STANL	DARD DEVI	TION
	MEDIAN	LOWER	UPPER
1994	3.79	2.57	7.21

.

-

. .

	10%	10%
	LOWER	10%

.

1994	8.00	6.00	10.00
	MESTICAN	10%	10%
	ACTIVANT	1801222	
Catting the second	and the second second	LEDND AT MA	ang kanalana ang ka

		MAXIMUM	
	MEDIAN	LOWER	UPPER
1994	20.00	15.00	30.00

	VALUES	REC. BY HIC	KLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	15.00	10.701	19.40

ADOT COST-BENEFIT AND KISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Maintenance Labor Productivity - HIP NUMBER OF RESPONSES:

8

	STAN	ARD DEVI	TION
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.19	0.25	0.71

	so in the state of the	AVERAGE	in Arthumail
	MEDIAN	LOWER	UPPER
		10%	10%
1994	2.09	1.08	3.82

э

		MINIMUM	Statute
	MEDIAN	LOWER U	PPER
		10%	10%
1994	1.85	0.75	2.04

		MAXIMUM	
	MEDIAN	LOWER	UPPER 10%
1994	2.50	1.67	4.25

	VALUES RE	C. BY HICKI	ING
	MEDIAN L	OWER U	PPER 10%
1994	2.09	1.08	3.82

ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Years Until Labor Productivity Reaches 50% - HIP NUMPER OF RESPONSES:

4

	STAN	ARD DEVI	TION
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

...

		AVERAGE	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

		MINIMUM	
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

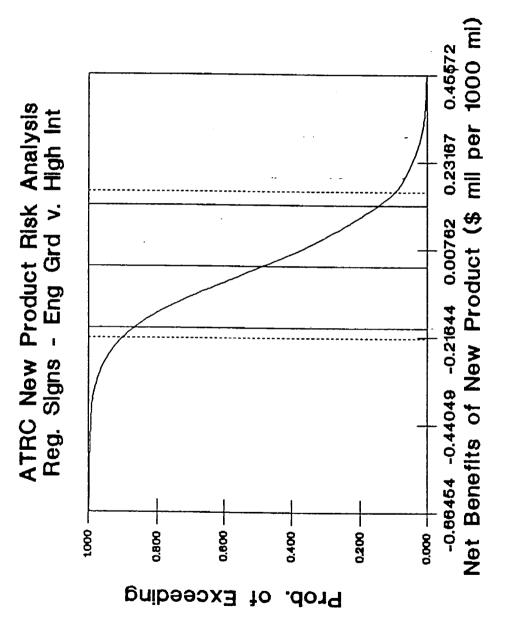
	i paros destructi	MAXIMUM	a te catalitati
	MEDIAN	LOWER	UPPER.
1994	0.00	0.00	0.00

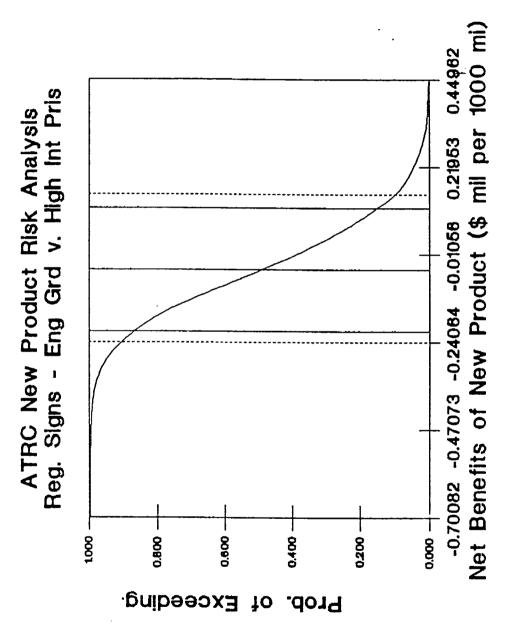
		RFC. BY HI	CKLING
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

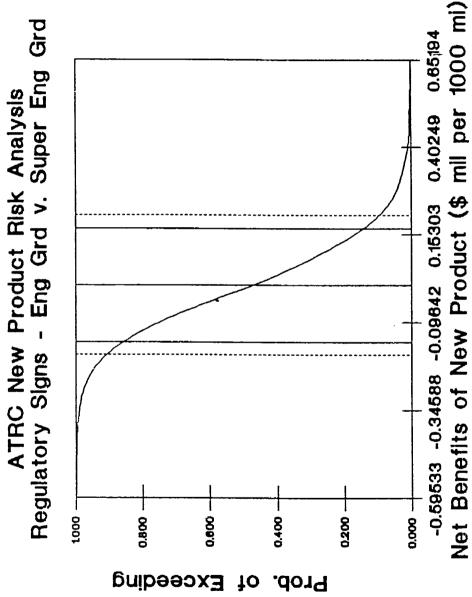
ADOT COST-BENEFIT AND RISK ANALYSIS OF WARNING SIGN-SHEETING MATERIAL SUMMARY OF RAP PANEL RANGES VARIABLE: Years Until Labor Productivity Reaches 95% - HIP NUMBER OF RESPONSES:

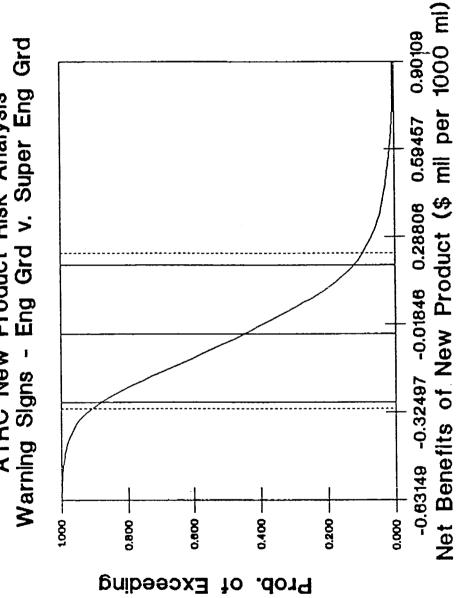
4	

	STAN	DARD DEVL	TION
	MEDIAN	LOWER	UPPER
		10%	10%
1994	0.00	0.00	0.00

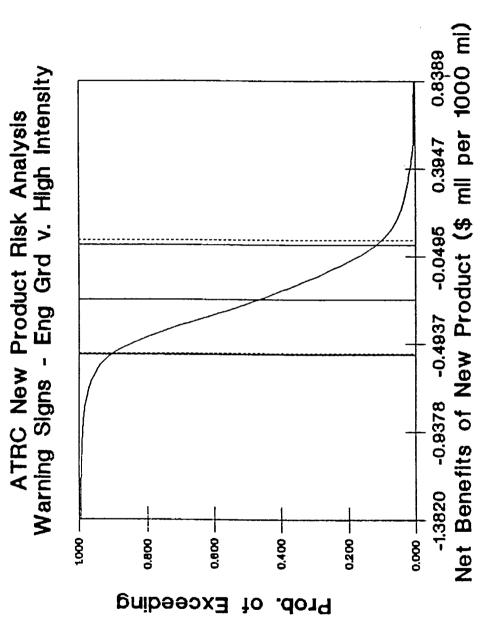

1994	0.00	0.00	0.00
	MELIAN	10%	10%
	MEDIAN	LOWER	TIDDED

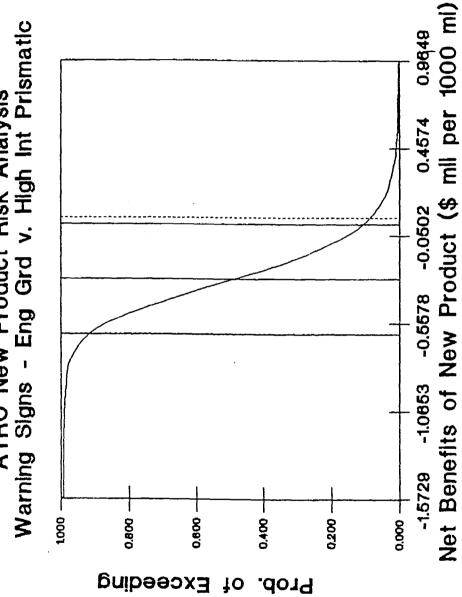

	MEDIAN	LOWER	UPPER.
1994	0.00	0.00	0.00


	Maria Carrier	MAXIMUM	~22.25S
	MEDIAN	LOWER	UPPER
1994	0.00	0.00 !	0.00


1994	0.00	0.00	0.00
	MEDIAN	LOWER	UPPER
	VALUES	REC. BY HI	CKLING

Probability Distribution Graphs of PEM Sign Sheeting Analysis


ļ


1

•

÷ . .

ATRC New Product Risk Analysis hing Signs - Eng Grd v. Super Eng Grd

ATRC New Product Risk Analysis Warning Signs - Eng Grd v. High Int Prismatic

HIGHWAY USER COST DATA

	Value
Highway Capacity	2000
Peak Period Factor	1.0642
Value of Life	\$2,987,054
Value of Injury	\$57,574
Value of PDO Accident	\$3,314
Average Value of Time	\$7.86
Maximum Pavement Effect on Accident Rates	0.02
Maximum Design Speed Effect on Accident Rates	0.02
Maximum Pavement Effect on Speed	0.10
Maximum Design Speed Effect on Speed	0.00
Maximum Disruption Effect on Accident Rates	0.10
Maximum Security Effect on Accident Rates	0.00
Fuel Price	\$1.00
Tire Price	\$80.00
Oil Price	\$3.40
Maintenance and Repair Costs	\$69.96
Depreciation Costs	\$10,057
Effect of Pavement on Vehicle Operating Costs, Slope	-0.1399
Effect of Pavement on Vehicle Operating Costs, Intercept	0.6643

Data needed for Cost Benefit Analysis

(for current product and new product)

Unit Product Cost (Material Cost)

Useful Economic Life (Years of Service)

Maximum Economic Life

Labor Productivity (how many units installed per day, etc...)

Equipment needed for installation and hourly cost

Crew size (and labor costs)

Time of day that installation or maintenance is performed

Estimated duration of traffic disruption .. lane closure/full width closure

Need for special start-up or additional equipment

Need for start-up training costs

The failure rate path (pattern of product failures over time).

PEM COMPUTER SOURCE CODES

1 \$NOTRUNCATE 2 C 3 SUBROUTINE MODELO 4 C 5 C 6 \$INCLUDE: 'RA. INC' 7 C а COMMON / PAR1/METRIC, FTBC, FTNP, LANEBC, LANENP, LENGTH, AADTO, AADTI, PSIBC, PSIRAM, PSIRPM, PLIFBC, PXBC, HICAP, PPF, 9 £ 10 VLIFE, VINJ, VPDO, VTIME, MPEAR, MPES, MDEAR, FUEL, TIRE, æ 11 OIL, MANDR, DEPR, DRATE, PERIOD, UPABC, UPANP, £ 12 XBC, XNP, UBC, IABC, VANBC, VANNP, EULBC, EULNP, MULBC, MULNP, PABC, PANP, INVEC, YRSSEC, SSGEC, INVNP, YRSSNP, SSGNP, ADDEX, ADDTX, ADDYR, 13 Æ TEXNP, ICCBC, ICCNP, DISCBC, DISCNP, PLEGEC, PLEGNP, PCSBC, PCSNP, 14 R PCDBC, PCDNP, ASCBC, ASCNP, ACCBC, ACCNP, FADOTW, FPRDBC, FPRDNP, 15 £, T50PF, T95PF, FEQXBC, FEQXNP, FOMCBC, FOMCNP, FORBC, FORNP, FSRBC 16 æ 17 FSRNP, ADOTWG, PRODBC, PRODNP, T50PYP, T95PYP, EQXEC, EQXNP, DDELBC, æ 18 DDELNP, PADBC, PADNP, FRATP, FRATN, ADOTAW, ADPRO, T50APN, T95APN, £ 19 PSINP, PLIFNP, PXNP, VISP, VISI, VISF, FLOW 20 COMMON /RESCUT/NETB, BCAP, EMAIN, BVOC, BSAFE, BVOT, BLIA, BPRO, BDIS, 21 BENV, SMCAPE, SMMANB, SMVCCB, SMSAFB, SMVOTB, SMLIAB, SMPRCB, SMDISB, r, 22 & SMTCBC, SMCAPN, SMMANN, SMVOCN, SMSAFN, SMVOTN, SMLIAN, SMPRON, 23 SMDISN, SMTCNP £. 24 REAL METRIC, FTBC, FTNP, LANEBC, LANENP, LENGTH, AADTO, AADTI, PSIBC, PSIRAM, PSIRPM, PLIFBC, PXBC, HICAP, PPF, VLIFE, VINJ, 25 & 26 VPDO, VTIME, MPEAR, MPES, MDEAR, FUEL, TIRE, OIL, MANDR, 27 DEPR, DRATE, PERIOD, UPABC, UPANP, XBC, XNP, UBC, £ 28 IABC, VANBC, VANNP, EULBC, EULNP, MULBC, MULNP, PABC, PANP, INVEC, æ YRSSBC, SSGBC, INVNP, YRSSNP, SSGNP, ADDEX, ADDTX, ADDYR, TEXNP, ICCBC, 29 £ ICCNP, DISCBC, DISCNP, PLEGEC, PLEGNP, PCSBC, PCSNP, PCDBC, PCDNP, 30 æ ASCEC, ASCNP, ACCEC, ACCNP, FADOTW, FPRDEC, FPRDNP, T50PF, T95PF, FEQXBC, FEQXNP, FOMCBC, FOMCNP, FORBC, FORNP, FSRBC, FSRNP, ADOTWG 31 £ 32 £ PRODBC, PRODNP, T50PYP, T95PYP, EQXBC, EQXNP, DDELBC, DDELNP, PADEC, 33 æ 34 PADNP, FRATP, FRATN, ADOTAW, ADPRO, T50APN, T95APN, PSINP, PLIFNP, & 35 PXNP, VISP, VISI, VISF, FLOW £ 36 REAL NETB, BCAP, BMAIN, BVOC, BSAFE, BVOT, BLIA, BPRO, BDIS, BENV, & SMCAPB, SMMANB, SMVOCB, SMSAFB, SMVOTB, SMLIAB, SMPROB, SMDISB, 37 SMTCBC, SMCAPN, SMMANN, SMVOCN, SMSAFN, SMVOTN, SMLIAN, SMPRON, 38 Æ 39 5 SMDISN. SMTCNP 40 C 41 C -- INPUT VARIABLE DESCRIPTIONS 42 C METRIC - Metric Convertion (0=No,1=Yes) (Independent) - Facility Type (1-12) - BC (Independent) - Facility Type (1-12) - NP (Independent) 43 C FTBC 44 C FTNP Number of Lanes - Base Case (Independent)
 Number of Lanes - New Prod (Independent) 45 C LANEBC 46 C LANENP Roadway Length (Independent)
AADT in Year 0 (Independent) 47 C LENGTH 48 C AADTO AADT - Annual Increment (Independent)
 Current PSI - Base Case (Independent) 49 C AADTI 50 C PSIBC PSI Before Resurfacing (Independent)
 PSI After Resurfacing (Independent)
 Expected Pavement Life - BC (Independent) 51 C PSIRAM 52 C PSIRPM 53 C PLIFBC 54 C PXBC - Resurfacing Costs - Base Case (Independent) 55 C HICAP - Highway Capacity (Independent) 56 C PPF - Peak Period Factor (Independent) 57 C VLIFE - Value of Life (Independent) 58 C VINJ - Value of Injury (Independent) Value of PDO Accident (Independent)
Value of Time (Independent) 59 C VPDO 60 C VTIME Max Pav. Eff. on Acc. Rates (Independent)
Max Pav. Eff. on Speed (Independent)
Disruption Eff. on Accident Rates (Independent) 61 C MPEAR 62 C MPES 63 C MDEAR 64 C FUEL - Fuel Price (Independent) - Tire Price (Independent) 65 C TIRE Oil Price (Independent)
 M&R Costs (Independent) 66 C OIL 67 C MANDR 68 C DEPR 69 C DRATE Depreciation Costs (Independent) - Discount Rate (Independent) 70 C PERIOD - Period of Analysis (1 to 50) (Independent) 71 C UPABC

 # of Units per Product - EC (Independent)
 # of Units per Product - NP (Independent) 72 C UPANP

-

PEM

73 С ХВС	 Material Cost per Unit - BC (Independent)
74 C XNP	 Material Cost per Unit - NP (Independent)
75 C UBC	 Current Products in Use - EC (Independent)
76 C IABC	 Annual Increase in Products - BC (Independent)
77 C VANEC	- % of Products Vand/Hit per Yr - BC (Independent)
78 C VANNP	- % of Products Vand/Hit per Yr - NP (Independent)
79 C EULBC	- Useful Economic Life - BC (Independent)
80 C EULNP	 Useful Ecoomic Life · NP (Independent)
81 C MULBC	 Max Useful Economic Life - BC (Dependent On eulbc)
82 C MULNP	 Max Useful Economic Life - NP (Dependent On eulnp)
83 C PABC	 % of Products Held as Inv - BC (Independent)
84 C PANP	 % of Products Held as Inv - NP (Independent)
85 C INVBC	- PO - Products at 1st YR of S.S. (Independent)
86 C YRSSBC	- PO - Years to Steady State. (Independent)
	- PO - Tears to steady state. (Independent)
87 C SSGBC	 PO - Steady State Product Growth (Independent)
88 C INVNP	 PI - Products at 1st Yr of S.S. (Independent)
89 C YRSSNP 90 C SSGNP	 PI - Years to Steady State (Independent)
90 C SSGNP	 PI - Steady State Product Growth (Independent)
91 C ADDEX	- Start-up Equipment Costs (Independent)
92 C ADDTX	 Start-up Training Costs (Independent)
	- Appual Training Could Tont Costs (Independent)
93 C ADDYR	
94 C TEXNP	 Testing & Evaluation Costs - NP (Independent)
95 C ICCBC	 Inventory & Carrying Costs - BC (Independent)
96 C ICCNP	 Inventory & Carrying Costs - NP (Independent)
97 C DISCEC	 Disposal & Salvage Costs - BC (Independent)
98 C DISCNP	- Disposal & Salvage Costs - NP (Independent)
99 C PLEGEC	- # of Claims per 100 Failures-BC (Independent)
100 C PLEGNP	- # of Claims per 100 Failures-NP (Independent)
101 C PCSBC	- % of Claims Settled - BC (Independent)
102 C PCSNP	 % of Claims Settled - NP (Independent)
103 C PCDBC	 % of Claims Dropped - BC (Independent)
104 C PCDNP	 % of Claims Dropped - NP (Independent)
105 C ASCBC	- Average Settlement Costs - BC (Independent)
106 C ASCNP	- Average Settlement Costs · NP (Independent)
100 C ASCNP	
107 C ACCBC	 Average Court Costs - BC (Independent)
108 C ACCNP	 Average Court Costs - NP (Independent)
108 C ACCNP 109 C FADOTW 110 C FPRDBC	 ADOT Fabrication Labor Wage (Independent)
110 C FPRDBC	- Fab. Labor Productivity - BC (Independent)
111 C FPRDNP	- Fab. Labor Productivity - NP (Independent)
112 C T50PF	- Time to F. L. Prod. = 50% (Independent)
113 C T95PF	· Chg in Time to F. L. Prod.= 95% (Independent)
114 C FEQXBC	
	- Hourly Fab. Equip Costs - BC (Independent)
115 C FEQXNP	 Hourly Fab. Equip Costs - NP (Independent)
116 C FOMCBC	
117 C FOMCNP	 Other Material Cost - NP (Independent)
118 C FORBC	 Overhead Rate · BC (Independent)
119 C FORNP	 Overhead Rate - NP (Independent)
120 C FSRBC	- Scrap Rate - BC (Independent)
121 C FSRNP	
	- Scrap Rate - NP (Independent)
122 C ADOTWG	
123 C PRODBC	
124 C PRODNP	- Main. Labor Productivity - NP (Independent)
125 C T50PYP	 Time to M. L. Prod. = 50% (Independent)
126 C T95PYP	 Chg in Time to M. L. Prod. = 95% (Independent)
127 C EQXBC	- Hourly Main. Equip Costs - BC (Independent)
128 C EQXNP	- Hourly Main. Equip Costs - NP (Independent)
129 C DDELBC	- Expected Disruption Delay - BC (Independent)
130 C DDELNP	 Expected Disruption Delay - NP (Independent) A for a standard but Disruption Delay - NP (Independent)
131 C PADBC	- % of AADT Effected by Dis BC (Independent)
132 C PADNP	 % of AADT Effected by Dis. NP (Independent)
133 C FRATP	 Failure Rate Path-BC(1,2,3,4) (Independent)
134 C FRATN	- Failure Rate Path-NP(1,2,3,4) (Independent)
135 C ADOTAW	- Annual Pers. Cost of Eff. Emp. (Independent)
136 C ADPRO	- % Admin Improv. Realized (Independent)
137 C T50APN	• Time to Admin Prod = 50% (Independent)
138 C T95APN	 Chg in Time to Admin Prod=95% (Independent)
139 C PSINP	 PSI of Pav. with New Prod (Independent)
140 C PLIFNP	- Exp. Pav. Life with New Prod (Independent)
141 C PXNP	- Resurf. Costs with New Prod (Independent)
142 C VISP	 % Red. in PDO Accidents w/NP (Independent)
	- % Red. in Injury Accidents w/NP (Independent)
143 C VISI	- 5 Red. In injury Accidents W/NP (Independent)
144 C VISF	 % Red. in Fatal Accidents w/NP (Independent)

Page 2

PEM

145 C FLOW - % Impr. in Speed/Flow w/NP (Independent) 146 C 147 C -- OUTPUT RESULT DESCIPTIONS 148 C NETB - Net Benefits of New Product - Net Capital Savings 149 C BCAP 150 C EMAIN - Net Maintenance Savings 151 C BVOC 152 C BSAFE - Net VOC Savings - Net Safety Savings - Net Time Savings 153 C BVOT 154 C BLIA Net Liability Savings 155 C BPRO - Net Productivity Savings 156 C BDIS · Net Disruption Savings 157 C BENT - A and E Threshold Base Case - Capital Costs
Base Case - Maintenance Costs 158 C SMCAPB 159 C SMMANB - Base Case - VOC Costs 160 C SMVOCB - Base Case - Safety Costs 161 C SMSAFB - Base Case - Time Costs 162 C SMVOTB - Base Case - Liability Costs 163 C SMLIAB - Base Case - Productivity Costs 164 C SMPROB 165 C SMDISB Base Case Disruption Costs 166 C SMTCBC - Base Case - Total Costs - New Prod - Capital Costs 167 C SMCAPN 168 C SMMANN - New Prod - Maintenance Costs 169 C SMVOCN New Prod -VOC Costs - New Prod -170 C SMSAFN Safety Costs - New Prod -Time Costs 171 C SMVOTN - New Frod - Liability Costs 172 C SMLIAN - New Prod - Productivity Costs 173 C SMPRON - New Prod - Disruption Costs 174 C SMDISN - New Prod - Total Costs 175 C SMTCNP 176 C 177 C OTHER USEABLE VARIABLES: NYEAR -- NUMBER OF YEARS IN SCENARIO ISYEAR -- START YEAR OF SCENARIO RANDOM (NFACT+1) WILL RETURN A RANDOM NUMBER [0..1] 178 C 179 C 180 C 181 C 182 C INTEGER YR, I, J, K, L, AGE REAL AADT(50), PSIWEP(50), PSIWNP(50), VCBC(50), VCNP(50) REAL AVSPBC(50), AVSPNP(50), ADSPBC(50), ADSPNP(50), 183 184 185 REAL PDOINC(50), INJINC(50), FATINC(50), ADSFBC(50), SAFETY(50) REAL PDOINP(50), INJINP(50), FATINP(50), ADSFNP(50), SAFENP(50) 186 187 REAL PDOINP(50), INJINP(50), FATINP(50), ADSRNP(50), SAPENP(50) REAL FUERTB(50), TIRRTB(50), OILRTB(50), MARRTB(50), DEPRTB(50) REAL FUERTN(50), TIRRTN(50), OILRTN(50), MARRTN(50), DEPRTN(50) REAL TOTVOC(50), VOTBC(50), VOTNP(50), PVVOTB(50), PVVOTN(50) REAL PVSAFB(50), PVSAFN(50), PVMXEC(50), PVMXNP(50), PRNP(50) REAL HISPDB(50), HISPDN(50), LOSPDB(50), TIME(50), RXNP(50) REAL LOSPCN(50), CYFUEB(50), CYTIRB(50), CYOILB(50), CYMARB(50) REAL CYDEFB(50), CYFUEN(50), CYTIRN(50), CYOILB(50), CYMARN(50) REAL CYDEFB(50), CYFUEN(50), TIBECCB(50), OLICCB(50), MARCCB(50) 188 189 190 191 192 193 191 REAL CYDEPB(50), CYFUEN(50), CYTIRN(50), CYOILN(50), CYMARN(50) REAL CYDEPB(50), FUECCB(50), TIRCCB(50), OLLCCB(50), MARCCB(50) REAL DEPCCB(50), FUECCN(50), TIRCCN(50), OLLCCN(50), MARCCN(50) REAL DEPCCN(50), VOCBC(50), VOCNP(50), ADVOCB(50), ADVOCN(50) REAL PVVCCB(50), PVVCCN(50), PAMXBC(50), PAMXNP(50), DEC(50) REAL PVICCB(50), PVVCCN(50), PAMXBC(50), PAMXNP(50), DEC(50) REAL PSIDM1, PSICM2, FR(50), TCAPBC, TCAPNP, REPBC(50), RXBC(50) REAL PVKBC(50), UNNP(50), CAPBC(50), CAPNP(50), REPNP(50) REAL PVKBC(50), PVKNP(50), TLSBC(50), TLSNEW(50), PVASSN(50) REAL PVTLBC(50), PVLNP(50), ACBC(50), PURBC(50), FPRNP(50) REAL LIXEC(50), PVLXNP(50), T1, T2, ACNP(50), PURNP(50) REAL LIXNP(50), PVLXNP(50), COLD(50), CNEW(50), DUMYR, APRNP(50) REAL PRMXBC(50), TMXEC(50), MHRBC(50), MHRNP(50), DHRNP(50) 195 196 197 198 199 200 201 202 203 204 205 206 REAL DXBC(50), DXNP(50), MHRBC(50), MHRNP(50), DHRBC(50) REAL DABC(50), DARP(50), MARBE(50), MARRY(50), DARBE(50) REAL TACBC(50), TACNP(50), TASBC(50), TASNP(50), PVTABC(50) REAL PVTANP(50), TAPBC, TAPNP, ALPHA, BETA, DISBC(50), DISNP(50) REAL VECBC(50), VECNP(50), DSBC(50), DSNP(50), DVCBC(50) REAL DVCNP(50), PVDISB(50), PVDISN(50), INVNEW(50) DECD(50), CVCM(50), DECCDV(50), DCCDV(50), DVCBC(50) 207 208 209 210 REAL TOLD (50), TNEW (50), PRECPB (50), PRECPN (50), ASSNP (50) REAL DTNP (50), DTBC (50), FDUMB, FDUMN, LIXNEW (50) 211 212 REAL APPBC(50), PRECPO(50), TCAPOL, CAPOLD(50), PUROLD(50) REAL INVB(50), TCSEC(50), REPOLD(50), LPFNP(50), LPFEC(50) 213 214 REAL TLSOLD(50), PRMXOL(50), PRMXNE(50), RXOLD(50), TACOLD(50) REAL ACNEW(50), ACOLD(50), LIXOLD(50), FRN(50), SCNP(50) 215 216

Page 4

THU HUY I	011.55:57 1774 FEM
217 218	REAL VISP_YR(50), VISI_YR(50), VISF_YR(50), FLOW_YR(50), PI(50)
219 C	
220 C	**************************************
221	DIMENSION PDO(12,4)
222	DIMENSION INJ(12,4)
223	DIMENSION FAT (12,4)
224	DIMENSION SPD (12, 6)
225	DIMENSION SPDCYC (6,6)
226	DIMENSION VOC(5,4)
227	DIMENSION VOC(3,4)
228	DATA ((PDO(I,J),I=1,12), J=1,4)/-9.578875,-20.589380,
229	-11.304067, 20.677735, -9.987993, 8.496033, -14.017213,
230	& -11.512925, -11.512925, -11.844491, -6.701941, -13.881860,
231	6 0.000257,0.000236,0.000574,-0.000758,0.000847,-0.000501, 7 0.000500, 7 0.000500, 7 0.00050, 7 0.00050, 7 0.00050
232	G 0.000983,1.4109602E-23,1.4109602E-23,0.001374,0.001094,
233	
234	\$ 13,30,100,140,313,133,113,0,0,3,33,437
235	
236	DATA ((INJ(I,J), I=1, 12), $J=1,4$)/-9.13355,-9.13355,-14.01721,
237	£ 20.67773, ·10.17405, 5.43785, ·13.51453, ·11.51292, ·19.33034,
238	£ -11.61339, -6.34423, -11.14553, 0.00031, 0.00031, 0.00098,
239	6 -0.00076,0.00085,-0.00042,0.00097,1.4109602E-23,0.00114,
240	£ 0.00137,0.00069,0.00057,35,35,185,225,195,335,275,45,120,
241	£ 150,150,150,25,25,35,140,200,245,60,0,30,45,80,75/
242	
243	DATA ((FAT(I,J),I=1,12), J=1,4)/14.96449,-11.5129,13.94088,
244	s 20.67745,5.207635,8.100043,8.680754,16.08374,-11.5129,
245	& 16.08390,16.08392,19.33007,-0.00065,1.4E-23,-0.00098,
246	£ -0.00076,-0.00062,-0.00050,-0.00051,-0.00157,1.4E-23,_
247	£ -0.00157, ·0.00157, ·0.00114, 1, 1.5, 2, 2, 2, 2, 2, 1.5, 2.5, 3.5,
248	£ 3,3,1,0,1,0.5,2,4.5,2,0.5,0,1.5,2,0.5/
249	
250	DATA ((SPD(I,J),I=1,12), J=1,6)/-10.0,0.0,-14.0,-14.0,-8.8,
251	£ -19.1,-17.5,-13.8,-20.0,-15.0,-22.9,-19.4,60,60,60,60,35,48,
252	£ 48,55,55,60,60,60,0.8,0.0,0.5,0.5,0.9,0.8,0.8,0.8,0.8,0.9,
253	& 0.3,0.3,86.45466,58.56514,50.45392,50.45392,35.83187,29.08889,
254	& 34.40561,46.88923,41.89363,61.42606,51.91832,54.56714,
255	£ -58.49973,-27.31013,-22.33096,-22.33096,-15.62926,-12.50138,
256	-16.40951,-20.27812,-16.71812,-26.79303,-39.14072,-35.05980,
257	£ 3,10,10,10,10,10,10,10,10,3,3/
258	
259	DATA ((SPDCYC(I,J),I=1,6), J=1,6)/3.221, 17.604,1.121,0.006,
260	-1.717,0.006,0.442,0.657,0.085,0.000,0.110,0.000,-2.434,
261	\bullet 0.000, -0.792, 0.000, 0.000, -0.003, -0.253, 0.000, -0.017, -0.001,
262	\mathbf{s} -0.024,-0.0002,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,
263	£ -0.006,-0.001,0.000,-0.001,0.000/
264	
265	DATA ((VCC(I,J),I=1,5), J=1,4)/65.46896,-2.24359,2.57939,
266	45.27033,1.41670,-1.47217,0.05101,0.01924,0.23715,0.00000,
267	§ 0.00000, -0.30075, -0.83012, 0.00000, -0.22743, 0.02127,
268	& 0.00000,0.00000,0.00580,0.C0000/
269	
270 C	***************************************
271 C	********CONVERTION OF VOC PRICES INTO METRIC**********
272	
273	IF (METRIC.EQ. (1.0)) FUEL = FUEL + 3.7852
274	IF (METRIC.EQ.(1.0)) OIL = OIL * 0.9463
275	IF (METRIC.EQ.(1.0)) MANDR= MANDR* 0.6214
276	

279	
280	DO 10 YR=1, PERIOD
281	IF (YR.LT.YRSSNP) THEN
282	PI(YR) = (0.99/YRSSNP) + (YR)
283	ELSE
284	PI(YR)=1.0
285	ENDIF
286	
287	$VISP_YR(YR) = VISP + PI(YR)$
288	VISI_YR(YR) = VISI • PI(YR)

PEM Thu Nov 10 11:35:37 1994 289 VISF_YR(YR) = VISF * PI(YR) FLOW YR(YR) = FLOW * PI(YR)290 291 10 CONTINUE 292 295 296 DO 15 YR=1, PERIOD 297 AADT(YR) = AADTO + AADTI + (YR)298 15 CONTINUE 299 ____ 300 с •••••••••••••••••••••• 302 303 DO 20 YR=1, PERIOD 304 IF (YR.EQ.1) THEN PSIDM1 = PSIBC 305 306 ELSE PSIDM1 = PSIWEP(YR-1) 307 308 ENDIF IF (PSIDM1.GT.PSIRAM) THEN 309 310 PSIWEP(YR) = PSIEM1+(PSIRAM-PSIRPM)/PLIFBC 311 ELSE PSIWEP(YR) = PSIRPM 312 ENDIF 313 314 20 CONTINUE 315 316 C **********PSI BY YEAR WITH NEW PRODUCT********* 317 IF (PSINP.EQ.(0.0)) PSINP = PSIBC IF (PLIFNP.EQ.(0.0)) PLIFNP = PLIFBC IF (PXNP.EQ.(0.0)) PXNP = PXEC 318 319 320 321 CO 30 YR=1, PERIOD 322 IF (YR.EQ.1) THEN 323 324 PSIDM2 = PSINP325 ELSE 326 PSIDM2 = PSIWNP(YR-1) 327 ENDIF 328 IF (PSIDM2.GT.PSIRAM) THEN PSIWNP(YR) = PSIDM2+(PSIRAM-PSIRPM)/PLIFNP 329 330 ELSE PSIWNP(YR) = PSIRPM 331 ENDIF 332 333 30 CONTINUE 334 336 C *****************CALCULATING V/C RATIO BASE CASE************** 337 DO 40 YR=1, PERIOD 338 VCBC(YR) = AADT(YR) / 24 / LANEBC / HICAP 339 CONTINUE 340 40 341 342 C ***************CALCULATING V/C RATIO WITH NP************* 343 DO 45 YR=1,PERIOD VCNP(YR) = AADT(YR) / 24 / LANENP / HICAP 344 345 CONTINUE 346 45 347 349 C *****************CALCULATING AVG SPD BASE CASE*************** 350 DO 60 YR=1, PERIOD 351 IF (VCBC (YR).LE.SPD (FTBC, 3)) THEN AVSPBC (YR) = SPD (FTBC, 2) + SPD (FTBC, 1) • VCBC (YR) 352 353 354 ELSE AVSPBC (YR) =SPD (FTBC, 4) +SPD (FTBC, 5) *VCBC (YR) **SPD (FTBC, 6) 355 356 ENDIF 357 60 CONTINUE 358 360

361 DO 70 YR=1, PERIOD IF (PSIWEP(YR).LT.1) THEN 362 ADSPBC (YR) = AVSPBC (YR) * (1 - (5 - 1)/4 * MPES)363 364 ELSE ADSPBC(YR) = AVSPBC(YR) * (1 - (5 - PSIWEP(YR)) / 4 * MPES)365 366 ENDIE 367 70 CONTINUE 368 371 372 DO 80 YR=1, PERIOD IF (VCNP(YR).LE.SPD(FTNP,3)) THEN 373 AVSPNP(YR) = (SPD(FTNP, 2) + SPD(FTNP, 1) * VCNP(YR)) * 374 375 (1.0+FLOW_YR(YR)) æ 376 ELSE AVSPNP(YR) = (SPD(FTNP, 4) + SPD(FTNP, 5) * VCNP(YR) ** SPD(FTNP, 6)) 377 378 & *(1.0+FLOW_YR(YR)) ENDIF 379 380 80 CONTINUE 381 383 DO 90 YR=1, PERIOD 384 IF (PSIWNP(YR).LT.1) THEN 385 ADSPNP(YR) = AVSPNP(YR) * (1 - (5 - 1) / 4 * MPES)386 ELSE 387 ADSPNP(YR) = AVSPNP(YR) * (1 - (5 - PSIWNP(YR))/4 * MPES) 388 ENDIF 389 390 90 CONTINUE 391 392 396 397 DO 110 YR=1, PERIOD PDOINC(YR) = (PDO(FTBC, 3) + PDO(FTBC, 4) / (1 + EXP)398 (-(PDO(FTBC,1) + PDO(FTBC,2) * AADT(YR))))) 399 æ / 100000000. 400 & INJINC(YR) = (INJ(FTBC,3) + INJ(FTBC,4) / (1 + EXP (-(INJ(FTBC,1) + INJ(FTBC,2) * AADT(YR))))) 401 402 & 403 £ / 100000000. FATINC(YR) = (FAT(FTBC, 3) + FAT(FTBC, 4) / (1 + EXP (-(FAT(FTBC, 1) + FAT(FTBC, 2) * AADT(YR))))) 404 405 & 406 / 100000000. £ IF (METRIC.EQ.0) THEN 407 SAFETY (YR) = (PDOINC (YR) *VPDO) + (INJINC (YR) *VINJ) + 408 409 (FATINC(YR) *VLIFE) 8 410 ELSE 411 SAFETY(YR) = ((PDOINC(YR) *0.6214) *VPDO) + ((INJINC(YR) *0.6214) *VINJ) + ((FATINC(YR) *0.6214) *VLIFE) 412 æ ENDIE 413 CONTINUE 414 110 415 417 418 DO 120 YR=1, PERIOD IF (5 - PSIWEP(YR).LT.4) THEN 419 ADSFBC(YR) = SAFETY(YR) * (1 + (((5-PSIWEP(YR))/4) * MPEAR))420 421 ELSE 422 ADSFEC(YR) = SAFETY(YR) * (1 + MPEAR) 423 ENDIF 424 120 CONTINUE 425 427 C *****************CALCULATING INCIDENTS WITH NP********** 428 429 DO 130 YR=1, PERIOD 430 PDOINP(YR) = (PDO(FTNP, 3) + PDO(FTNP, 4) / (1 + EXP)(-(PDO(FTNP,1) + PDO(FTNP,2) * AADT(YR))))) 431 £ 432 æ / 100000000.

PEM

Thu Nov 10 11:35:37 1994

Thu Nov 10 11:35:37 1994 PEM 433 INJINP(YR) = (INJ(FTNP, 3) + INJ(FTNP, 4) / (1 + EXP)(-(INJ(FTNP,1) + INJ(FTNP,2) * AADT(YR))))) 434 ۶ 100000000. 435 £ FATINP(YR) = (FAT(FTNP, 3) + FAT(FTNP, 4) / (1 + EXP (-(FAT(FTNP, 1) + FAT(FTNP, 2) * AADT(YR))))) 436 437 £ / 100000000. 438 £ IF (METRIC.EQ.0) THEN 439 440 SAFENP(YR) = (PDOINP(YR) *VPDO) + (INJINP(YR) *VINJ) + (FATINP(YR) *VLIFE) 441 æ ELSE 442 SAFENP(YR) = ((PDOINP(YR) *0.6214) *VPDO) + ((INJINP(YR) *0.6214) 443 *VINJ) + ((FATINP(YR) *0.6214) *VLIFE) 444 £ 445 ENDIF 446 130 CONTINUE 447 449 450 DO 140 YR=1, PERIOD 451 IF ((5 - PSIWNP(YR)).LT.4) THEN ADSFNP(YR) = SAFENP(YR) + (1 + (((5 - PSIWNP(YR))/4) + MPEAR))452 453 ELSE 454 ADSFNP(YR) = SAFENP(YR) * (1 + MPEAR)ENDIF 455 CONTINUE 456 140 457 458 460 C ***********************CALCULATING VOC COSTS BASE CASE********** 461 462 DO 160 YR=1, PERIOD FUERTB (YR) = VOC (1, 1) + VOC (1, 2) * AVSPBC (YR) + VOC (1, 3) * 463 LOG10 (AVSPBC (YR)) +VOC (1,4) *AVSPBC (YR) **2 464 £ TIRRTB(YR) =EXP(VOC(2,1)+VOC(2,2) *AVSPBC(YR)+VOC(2,3) * 465 LOG10 (AVSPBC (YR)) + VOC (2,4) * AVSPBC (YR) **2) 466 ۶ / 100. 467 £ OILRTB (YR) = EXP (VOC (3, 1) + VOC (3, 2) + AVSPBC (YR) + VOC (3, 3) + 468 LOG10 (AVSPBC (YR)) + VOC (3, 4) * AVSPBC (YR) **2) 469 £ MARRTB (YR) = (VOC(4, 1) + VOC(4, 2) + AVSPBC(YR) + VOC(4, 3) +470 LOG10 (AVSPBC (YR)) +VCC (4,4) *AVSPBC (YR) **2) 471 Sc. / 100. 472 æ DEPRTB (YR) = (VOC (5, 1) +VOC (5, 2) *AVSPBC (YR) +VOC (5, 3) * LOG10 (AVSPBC (YR)) +VOC (5, 4) *AVSPBC (YR) **2) 473 474 £ 475 / 100. æ 476 160 CONTINUE 477 480 481 DO 165 YR=1, PERIOD FUERTN (YR) = VOC (1, 1) + VOC (1, 2) + AVSPNP (YR) + VOC (1, 3) + 482 483 £ LOG10 (AVSPNP(YR)) + VOC(1,4) * AVSPNP(YR) * * 2 EXP (VOC (2, 1) + VOC (2, 2) * AVSPNP (YR) + VOC (2, 3) * 484 TIRRTN(YR) =LOG10 (AVSPNP(YR)) + VOC(2,4) * AVSPNP(YR) * * 2) 485 £ / 100. 486 æ OILRTN (YR) = EXP (VOC (3, 1) + VOC (3, 2) * AVSPNP (YR) + VOC (3, 3) * 487 LOG10 (AVSPNP(YR)) +VOC(3,4) *AVSPNP(YR) **2) 488 £ 489 MARRTN(YR) = (VOC(4, 1) + VOC(4, 2) + AVSPNP(YR) + VOC(4, 3) +490 £ LOG10 (AVSPNP(YR)) + VOC(4,4) * AVSPNP(YR) **2) / 100. 491 æ DEPRTN (YR) = (VOC (5, 1) + VOC (5, 2) * AVSPNP (YR) + VOC (5, 3) * LOG10 (AVSPNP (YR)) + VOC (5, 4) * AVSPNP (YR) **2) 492 493 £ 494 / 100. s CONTINUE 495 165 496 499 500 DO 170 YR=1, PERIOD 501 IF (ADSPBC(YR).GT.10) THEN HISPDB(YR) = ADSPBC(YR) + 5.0 502 503 ELSE 504 HISPDB(YR) = ADSPBC(YR) + 1.5

PEM

505 ENDIF 506 170 CONTINUE 507 508 DO 180 YR=1, PERIOD 509 IF (ADSPBC(YR).GT.10) THEN 510 LOSPDB(YR) = ADSPBC(YR) - 5.0511 ELSE 512 LOSPDB(YR) = ADSPBC(YR) * 0.5 ENDIF 513 514 180 CONTINUE 515 517 518 DO 190 YR=1, PERIOD 519 IF (ADSPNP(YR).GT.10) THEN HISPDN(YR) = ADSPNP(YR) + 5.0520 521 ELSE HISPDN(YR) = ADSPNP(YR) + 1.5522 523 ENDIF 524 190 CONTINUE 525 526 DO 200 YR=1, PERIOD IF (ADSPNP(YR).GT.10) THEN 527 LOSPDN(YR) = ADSPNP(YR) - 5.0528 529 ELSE LOSPDN(YR) = ADSPNP(YR) * 0.5 530 531 ENDIF 532 200 CONTINUE 533 536 537 DO 220 YR=1, PERIOD 538 IF (ADSPBC(YR).GT.40) THEN CYFUEB (YR) = SPDCYC (1,1) + SPDCYC (1,2) * HISPDB (YR) + SPDCYC (1,3) * LOGIO (HISPDB (YR)) + SPDCYC (1,4) 539 540 æ * LOSPDB(YR) + SPDCYC(1,5) * HISPDB(YR) ** 2 + SPDCYC(1,6) * LOSPDB(YR) ** 2 541 æ 542 £ ELSE 543 CYFUEB (YR) = SPDCYC (2,1) + SPDCYC (2,2) * HISPDB (YR) + SPDCYC (2,3) *LOG10 (HISPDB (YR)) + SPDCYC (2,4) * LOSPDB (YR) + SPDCYC (2,5) * HISPDB (YR) ** 2 + SPDCYC (2,6) * LOSPDB (YR) ** 2 544 545 £ 546 £ 547 £ ENDIF 548 549 220 CONTINUE 550 DO 230 YR=1, PERIOD 551 CYTIRB (YR) = (SPDCYC (3, 1) + SPDCYC (3, 2) * HISPDB (YR) + SPDCYC (3, 3) * 552 LOG10 (HISPDB (YR)) + SPDCYC (3, 4) * LOSPDB (YR) + 553 £ 554 SPDCYC(3,5) *HISPDB(YR) **2+SPDCYC(3,6) * £ 555 LOSPDB(YR) **2) / 100. £ CYOILB (YR) = SPDCYC (4, 1) + SPDCYC (4, 2) * HISPDB (YR) + SPDCYC (4, 3) * 556 LoG10 (HSPDB(YR)) + SPDCYC (4, 5) *HISPDB (YR) * 2+SPDCYC (4, 6) * 557 s. 558 Æ LOSPDB (YR) **2 559 8 CYMARB (YR) = (SPDCYC (5, 1) + SPDCYC (5, 2) * HISPDB (YR) + SPDCYC (5, 3) * 560 LOG10 (HISPDB (YR)) + SPDCYC (5,4) + LOSPDB (YR) + 561 æ 562 SPDCYC(5,5) *HISPDB(YR) **2+SPDCYC(5,6)* ŵ LOSPDB (YR) **2) / 100. CYDEPB (YR) = (SPDCYC (6, 1) + SPDCYC (6, 2) *HISPDB (YR) + SPDCYC (6, 3) * 563 æ 564 LOG10 (HISPDB (YR)) + SPDCYC (6,4) *LOSPDB (YR) + 565 & SPDCYC(6,5) *HISPDB(YR) **2+SPDCYC(6,6) * 566 £ LOSPDB(YR) **2) / 100. 567 æ CONTINUE 568 230 569 570 DO 240 YR=1, PERIOD 571 IF (CYFUEB(YR).LT.0) THEN 572 FUECCB(YR) = 0.573 ELSE FUECCB(YR) = CYFUEB(YR)574 ENDIF 575 576 IF (CYTIRB(YR).LT.0) THEN

PEM

```
Page 9
```

577 TIRCCB(YR) = 0.578 ELSE TIRCCB(YR) = CYTIRB(YR) 579 580 ENDIF 581 IF (CYOILB(YR).LT.0) THEN 582 OILCCB(YR) = 0.583 ELSE 584 OILCCB(YR) = CYOILB(YR)585 ENDIF IF (CYMARB(YR).LT.0) THEN 586 MARCCB(YR) = 0.587 588 ELSE 589 MARCCB(YR) = CYMARB(YR)590 ENDIF 591 IF (CYDEPB(YR).LT.0) THEN 592 DEPCCB(YR) = 0.593 ELSE DEPCCB(YR) = CYDEPB(YR)594 595 ENDIE 596 240 CONTINUE 597 600 601 DO 250 YR=1, PERIOD IF (ADSPNP(YR).GT.40) THEN 602 603 CYFUEN(YR) = SPDCYC(1,1) + SPDCYC(1,2) * HISPDN(YR) + 604 £ SPDCYC(1,3) * LOG10(HISPDN(YR)) + SPDCYC(1,4) * LOSPDN(YR) + SPDCYC(1,5) * HISPDN(YR) ** 2 + SPDCYC(1,6) * LOSPDN(YR) ** 2 605 £ 606 £ ELSE 607 CYFUEN(YR) = SPDCYC(2,1) + SPDCYC(2,2) + HISPDN(YR) + SPDCYC(2,3) + LOG10(HISPDN(YR)) + SPDCYC(2,4) 608 609 £ * LOSPDN(YR) + SPDCYC(2,5) * HISPDN(YR) ** 2 610 s 611 £ + SPDCYC(2,6) * LOSPDN(YR) ** 2 ENDIF 612 613 250 CONTINUE 614 615 DO 260 YR=1, PERIOD CYTIRN(YR) = (SPDCYC(3,1)+SPDCYC(3,2)*HISPDN(YR)+SPDCYC(3,3)* 616 617 £ LOG10 (HISPDN(YR)) + SPDCYC (3, 4) * LOSPDN(YR) + 618 SPDCYC(3,5) *HISPDN(YR) **2+SPDCYC(3,6) * £ 619 LOSPDN(YR) **2) / 100. £ CYOILN(YR) = SPDCYC(4, 1) + SPDCYC(4, 2) + HISPDN(YR) + SPDCYC(4, 3) + SPDCYC(4620 LOG10 (HISPDN(YR)) + SPDCYC(4,4) * LOSPDN(YR) + 621 £ SPDCYC(4,5)*HISPDN(YR)**2+SPDCYC(4,6)* 622 £ LOSPDN (YR) **2 623 £ CYMARN(YR) = (SPDCYC(5,1)+SPDCYC(5,2) *HISPDN(YR)+SPDCYC(5,3) * 624 625 £ LOG10 (HISPDN(YR)) + SPDCYC(5,4) * LOSPDN(YR) + 626 SPDCYC (5, 5) *HISPDN (YR) **2+SPDCYC (5, 6) * £ LOSPDN(YR) **2) / 100. 627 £ CYDEFN(YR) = (SPDCYC(6, 1) + SPDCYC(6, 2) + HISPDN(YR) + SPDCYC(6, 3) + SPDCYC(628 LOG10 (HISPDN (YR)) + SPDCYC (6, 4) + LOSPDN (YR) + SPDCYC (6, 5) + HISPDN (YR) = +2+SPDCYC (6, 6) + 629 £ 630 £ LOSPEN(YR) **2) / 100. 631 £ 632 260 CONTINUE 633 634 DO 270 YR=1, PERIOD 635 IF (CYFUEN(YR).LT.0) THEN 636 FUECCN(YR) = 0.637 ELSE FUECCN(YR) = CYFUEN(YR)638 ENDIF 639 IF (CYTIRN(YR).LT.3) THEN 640 641 TIRCCN(YR) = 0.642 ELSE 643 TIRCCN(YR) = CYTIRN(YR) 644 ENDIF IF (CYOILN(YR).LT.C) THEN 645 OILCCN(YR) = 0.646 647 ELSE 649 OILCCN(YR) = CYOILN(YR)

PEM

```
649
         ENDIF
         IF (CYMARN(YR).LT.0) THEN
650
651
            MARCCN(YR) = 0.
652
         ELSE
653
            MARCCN(YR) = CYMARN(YR)
654
         ENDIE
         IF (CYDEPN(YR).LT.0) THEN
655
656
            DEPCCN(YR) = 0.
657
         ELSE
658
           DEPCCN(YR) = CYDEPN(YR)
         ENDIF
659
660 270
         CONTINUE
661
664
665
         DO 280 YR=1, PERIOD
         IF (METRIC.EQ.0) THEN
666
            VOCEC (YR) = ( (FUERTB (YR) + FUECCB (YR) ) * FUEL+
667
                       (TIRRTB(YR)+TIRCCB(YR)) *TIRE+
668
         £
                       (OILRTB (YR) +OILCCB (YR) ) *OIL+
669
         £
670
         £
                       (MARRTB (YR) + MARCCB (YR) ) * MANDR+
671
                       (DEPRTB(YR) + DEPCCB(YR)) * DEPR) /1000.
         £
672
         ELSE
            VOCBC (YR) = ( ( (FUERTB (YR) + FUECCB (YR) ) *0.6214) * FUEL+
673
                       ((TIRRTB(YR)+TIRCCB(YR))*0.6214)*TIRE+
674
         £
                       ((OILRTB(YR)+OILCCB(YR))*0.6214)*01L+
675
         £
                       ((MARRTB(YR)+MARCCB(YR))*0.6214)*MANDR+
676
         æ
                       ((DEPRTB(YR)+DEPCCB(YR))*0.6214)*DEPR)/1000.
677
         æ
678
         ENDIE
679 280
         CONTINUE
680
682
         DO 290 YR=1, PERIOD
IF ((5-PSIWEP(YR)).LT.4) THEN
683
684
            ADVOCB(YR) = VOCEC(YR) * (1.0+(0.24*((5.0-PSIWEP(YR))/4.0)))
685
686
          ELSE
687
            ADVOCE (YR) = VOCEC (YR) + (1.0 + 0.24)
688
          ENDIF
689 290
          CONTINUE
690
693
694
          DO 300 YR=1, PERIOD
          IF (METRIC.EQ.0) THEN
695
             VCCNP(YR) = ((FUERTN(YR)+FUECCN(YR))*FUEL +
696
697
                        (TIRRTN(YR)+TIRCCN(YR))*TIRE +
         S.
                        (OILRTN(YR)+OILCCN(YR)) *OIL +
698
         å
                        (MARRTN (YR) + MARCON (YR) ) * MANDR +
699
         £.
                        (DEPRTN(YR)+DEPCCN(YR)) *DEPR) / 1000.
700
         £
701
          ELSE
702
             VOCNP(YR) = (((FUERTN(YR)+FUECCN(YR))*0.6214)*FUEL+
                        ((TIRRTN(YR)+TIRCCN(YR))*0.6214)*TIRE+
703
         Æ
                        ((OILRTN(YR)+OILCCN(YR))*0.6214)*OIL+
704
         æ
                        ( (MARRTN (YR) + MARCCN (YR) ) *0.6214) *MANDR+
705
         £
                        ((DEPRTN(YR)+DEPCCN(YR))*0.6214)*DEPR)/1000.
706
         ñ
707
          ENDIF
708 300
          CONTINUE
709
711
712
          DO 310 YR=1, PERIOD
          IF ((5-PSIWNP(YR)).LT.4) THEN
ADVOCN(YR)=VOCNP(YR)*(1.0+(0.24*((5.0-PSIWNP(YR))/4.0)))
713
714
715
          ELSE
716
             ADVOCN(YR) = VOCNP(YR) + (1.0 + 0.24)
          ENDIF
717
718 310
          CONTINUE
719
720
```

```
723
724
          DO 320 YR=1, PERIOD
725
          IF (METRIC.EQ.0) THEN
             VOTBC(YR) = (1 / ADSFEC(YR)) * VTIME
VOTNP(YR) = (1 / ADSPNP(YR)) * VTIME
726
727
728
          ELSE
             VOTEC (YR) = (1 / (ADSPEC (YR) *0.6214)) * VTIME
VOTNP (YR) = (1 / (ADSPNP (YR) *0.6214)) * VTIME
729
730
731
          ENDIF
732 320
          CONTINUE
733
734
736 C ********CALCULATION OF BASE CASE FAILURE RATE************
737
738
          LF (FRATP.EQ.1) THEN
739
             DO 330 YR=1, PERIOD
740
                IF (YR.LE.ZULBC) THEN
741
                   FR(YR) = (0.5/EULBC) * (YR)
742
                ELSE
743
                   FR(YR) = (0.49 / (MULBC - EULBC)) * (YR - EULBC) + 0.5
744
                ENDIF
745
                IF (FR(YR).GT.(.99)) FR(YR) = 1.0
746 330
          CONTINUE
747
          ELSEIF (FRATP.EQ.2) THEN
748
             ALPHA = ((LOG(1.0) * MULBC) - (LOG(99.0) * EULEC))
749
             / (MULBC - EULBC)
BETA = (LOG (99.0) - LOG (1.0)) / (MULBC - EULBC)
         £
750
751
           DO 340 YR=1, PERIOD
752
              FR(YR) = 1.0 / (1.0+(EXP(-(ALPHA+BETA*(YR)))))
753 340
          CONTINUE
754
          ELSEIF (FRATP.EQ.3) THEN
755
             BETA = (LOG(0.5) - LOG(0.99)) / (EULBC - MULBC)
756
             ALPHA = 0.5 / EXP(BETA * EULBC)
                DO 350 YR=1, PERIOD
FR (YR) = ALPHA * EXP(BETA * (YR))
757
758
                IF (FR(YR).GT.(.99)) FR(YR) = 1.0
759
760 350
          CONTINUE
761
          ELSEIF (FRATP.EQ.4) THEN
762
             DO 360 YR=1, PERICD
763
                FR(YR) = (0.99/MULBC) * (YR)
764
                IF (FR(YR).LT.(0.99)) FR(YR) = 0.0
                IF (FR(YR), GE, (0.99)) FR(YR) = 1.0
765
766 360
          CONTINUE
          ENDIF
767
768
770 C ********CALCULATION OF NEW PRODUCT FAILURE RATE*********
771
772
          IF (FRATN.EQ.1) THEN
773
             DO 371 YR=1, PERICD
774
                IF (YR.LE.EULNP) THEN
775
                   FRN(YR) = (0.5/EULNP) * (YR)
776
                ELSE
777
                   FRN(YR) = (0.49/(MULNP-EULNP)) * (YR-EULNP) + 0.5
778
                ENDIF
779
                IF (FRN(YR).GT.(.99)) FRN(YR) = 1.0
          CONTINUE
780 371
          ELSEIF (FRATN.EQ.2) THEN
781
             ALPHA = ((LOG(1.0) * MULNP) - (LOG(99.0) * EULNP))
782
783
                     /(MULNP-EULNP)
         £
             BETA = (LOG(99.0) \cdot LCG(1.0)) / (MULNP \cdot EULNP)
784
785
          DO 372 YR=1, PERIOD
             FRN (YR)
786
                       = 1.0 / (1.0+(EXP(-(ALPHA+BETA*(YR)))))
787 372
          CONTINUE
788
          ELSEIF (FRATN.EQ.3) THEN
789
             BETA = (LOG(0.5) \cdot LOG(0.99)) / (EULNP - MULNP)
790
             ALPHA = 0.5 / EXP(BETA * EULNP)
                DO 373 YR=1, PERIOD
791
792
                   FRN(YR) = ALPHA * EXP(BETA * (YR))
```

793 IF (FRN(YR).GT.(.99)) FRN(YR) = 1.0CONTINUE 794 373 795 ELSEIF (FRATN.EQ.4) THEN DO 374 YR=1, PERIOD 796 FRN(YR)=(0.99/MULNP) * (YR) IF (FRN(YR).LT.(0.99)) FRN(YR) = 0.0 797 798 IF (FRN(YR).GE.(0.99)) FRN(YR) = 1.0799 800 374 CONTINUE 801 ENDIF 802 805 806 DO 379 YR=1, PERIOD APPBC(YR) = UBC + (IABC*(YR)) INVB(YR) = APPBC(YR) * PABC TCSBC(YR) = APPBC(YR) + INVB(YR) 807 808 809 810 379 CONTINUE 811 814 815 DO 380 YR=1, PERIOD 816 IF (YR.LT.YRSSBC) THEN COLD(YR) = ((INVBC - UBC)/(YRSSBC)) + (YR) + UBC817 818 ELSE COLD(YR) = INVBC + (SSGBC + (YR + YRSSBC))819 ENDIF 820 821 INVOLD(YR) = COLD(YR) * PABC 822 TOLD(YR) = COLD(YR) + INVOLD(YR)823 380 CONTINUE 824 827 DO 390 YR=1, PERIOD 828 829 IF (YR.LT.YRSSNP) THEN 830 CNEW(YR) = (INVNP / YRSSNP) * (YR) 831 ELSE 832 CNEW(YR) = INVNP + (SSGNP * (YR - YRSSNP))ENDIF 833 INVNEW(YR) = CNEW(YR) * PANP834 TNEW (YR) = CNEW (YR) + INVNEW (YR) 835 836 390 CONTINUE 837 838 841 DO 400 AGE=1, MULBC 842 PRECPB(AGE) = UBC / MULBC * (1 - VANBC) 843 844 400 CONTINUE 845 DO 410 YR=1, PERIOD TCAPEC = 0. 846 DO 420 AGE=2, MULBC 847 CAPBC(AGE) = PRECPB(AGE-1) * (1 - ((FR(AGE) - FR(AGE-1)))848 / (1 - FR(AGE - 1)))TCAPBC = TCAPBC + CAPBC(AGE) 849 £ 850 851 420 CONTINUE 852 IF ((TCSBC(YR) - TCAPBC).LT.0) THEN 853 PURBC(YR) = 0.854 ELSE 855 PURBC(YR) = TCSBC(YR) - TCAPBCENDIF 856 IF ((PURBC(YR) INVB(YR)).LT.0) THEN 857 858 REPBC(YR) = 0.859 ELSE REPBC(YR) = PURBC(YR) - INVB(YR)860 ENDIF 861 862 CAPBC(1) = PURBC(YR)DO 430 AGE=1, MULBC 863 864 PRECPB(AGE) = CAPBC(AGE) + (1 - VANBC)

```
865 430
         CONTINUE
866 410
         CONTINUE
867
869
870
          DO 440 YR=1, PERIOD
871
          IF (YR.EQ.1) THEN
             FDUMB = UBC * (1 + PADBC)
872
873
          ELSE
            FDUMB = TCSBC(YR-1)
874
875
          ENDIF
            RXBC(YR) = PURBC(YR) + (FDUMB - TCSBC(YR))
IF (RXBC(YR).LT.(0.0)) RXBC(YR) = 0.0
876
877
878
             TACBC (YR) = ((PURBC (YR) * UPABC) * (1+FSRBC)) * XBC) +
879
         £
                       (((PURBC(YR) *UPABC) * (1+FSRBC)) *FOMCBC) +
880
         £
                       (RXEC (YR) *DISCEC) + (INVE (YR) *ICCEC)
881 440
         CONTINUE
882
883
885 C *******PHASE OUT - OLD PRODUCT ANNUAL EXPENDITURES******
886
887
          DO 490 AGE=1, MULBC
888
          PRECPO(AGE) = UBC / MULBC * (1 - VANEC)
889 490
          CONTINUE
890
          DO 500 YR=1, PERIOD
891
          TCAPOL = 0.
892
            DO 510 AGE=2, MULBC
               CAPOLD(AGE) = FRECFO(AGE-1) * (1 - ((FR(AGE) - FR(AGE-1))
/ (1 - FR(AGE-1))))
893
894
         £
895
               TCAPOL = TCAPOL + CAPOLD(AGE)
          CONTINUE
896 510
             IF ((TOLD(YR) - TCAPOL).LT.0) THEN
897
898
                 PUROLD(YR) = 0.
899
             ELSE
900
                 PUROLD (YR) = TOLD (YR) - TCAPOL
901
             ENDIF
902
             IF ((PUROLD(YR) - INVOLD(YR)).LT.0) THEN
                REPOLD(YR) = 0.
903
904
             ELSE
905
                REPOLD (YR) = PUROLD (YR) - INVOLD (YR)
906
             ENDIF
907
             CAPOLD(1) = PUROLD(YR)
908
          DO 515 AGE=1, MULBC
909
             PRECPO(AGE) = CAPOLD(AGE) + (1 - VANBC)
910 515
          CONTINUE
911 500
         CONTINUE
912
913 C ********PHASE CUT - OLD PRODUCT FAILURES********************
914
915
          DO 517 YR=1, PERIOD
916
          IF (YR.EQ.1) THEN
917
             FDUMB = UBC + (1 + PADBC)
918
          ELSE
919
             FDUMB = TOLD(YR \cdot 1)
920
          ENDIF
921
             RXOLD(YR) = PUROLD(YR) + (FDUMB - TOLD(YR))
922
             IF (RXOLD(YR), LT, (0.0)) RXOLD(YR) = 0.0
923
             TACOLD(YR) = ((PUROLD(YR) * UPAEC) * (1+FSRBC)) * XBC) +
924
         £
                        (((PUROLD(YR)*UPABC)*(1+FSRBC))*FOMCBC)+
925
                        (RXOLD (YR) *DISCBC) + (INVOLD (YR) *ICCBC)
         £
926 517
          CONTINUE
927
929 C *********PHASE IN - NEW PRODUCT ANNUAL EXPENDITURES******
930
931
          DO 519 AGE=1, MULNP
932
          PRECPN(AGE) = 0.
933 519
          CONTINUE
934
          DO 520 YR=1, PERIOD
935
          TCAPNP = 0.
936
            DO 530 AGE=2, MULNP
```

Thu Nov 10 11:35:37 1994 PEM CAPNP(AGE) = PRECPN(AGE-1) * (1 - ((FRN(AGE) - FRN(AGE-1)) 937 938 /(1-FRN(AGE-1)))) 939 TCAPNP = TCAPNP + CAPNP (AGE) 940 530 CONTINUE 941 IF ((TNEW(YR) TCAPNP).LT.0) THEN 942 PURNP(YR) = 0.943 ELSE 944 PURNP(YR) = TNEW(YR) - TCAPNP 945 ENDIF 946 IF ((PURNP(YR) - INVNEW(YR)).LT.0) THEN 947 REPNP(YR) = 0.948 ELSE 949 REPNP(YR) = PURNP(YR) - INVNEW(YR) 950 ENDIF 951 CAPNP(1) = PURNP(YR)952 DO 535 AGE=1, MULNP PRECPN(AGE) = CAPNP(AGE) * (1 - VANNP) 953 954 535 CONTINUE 955 520 CONTINUE 956 958 DO 540 YR=1, PERICD 959 IF (YR.EQ.1) THEN 960 961 FDUMN = 0. 962 ELSE 963 FOUMN = TNEW (YR-1) 964 ENDIF RXNP(YR) = PURNP(YR) + (FDUMN - TNEW(YR))
IF (RXNP(YR).LT.(0.0)) RXNP(YR) = 0.0 965 966 TACNP(YR) = ((PURNP(YR) * UPANP) * (1 + FSRNP)) * XNP) +967 968 £ (((PURNP(YR)*UPANP)*(1+FSRNP))*FOMCNP)+ 969 (RXNP(YR) *DISCNP) + (INVNEW(YR) *ICCNP) æ 970 540 CONTINUE 971 974 T1 = T50PYP975 T2 = T50PYP + T95PYP IF (T1.EQ.T2) THEN 976 977 EO 550 YR=1, PERIOD PRNP(YR) = PRODNP 978 979 980 550 CONTINUE 981 ELSE 982 DO 560 YR=1, PERIOD 983 IF (YR.LT.T2) THEN 984 TIME(YR) = (0.99 - 0.5) / (T2 - T1) * (YR)985 ELSE 986 TIME(YR) = 1.0987 ENDIF 988 PRNP(YR) = PRODNP * TIME(YR) 989 560 CONTINUE 990 ENDIF 991 993 C ****************CALCULATING ADMIN PRODUCTIVITY**************** 994 T1 = T50APN T2 = T50APN + T95AFN 995 996 997 IF (T1.EQ.T2) THEN 998 DO 600 YR=1, TERIOD 999 APRNP(YR) = ADPRO 1000 600 CONTINUE 1001 ELSE DO 610 YR=1, PERIOD 1002 IF (YR.LT.T2) THEN 1003 TIME(YR) = (0.99 - 0.5) / (T2 - T1) * (YR)1004 1005 ELSE 1006 TIME(YR) = 1.01007 ENDIF 1008 APRNP(YR) = ADPRO * TIME(YR)

PEM

```
1009 610
        CONTINUE
1010
         ENDIF
1011
1014
1015
        IF (FPRDBC.EQ.(0.0)) FPRDBC = 1.0
1016
        IF (FPRDNP.EQ. (0.0)) FPRDNP = 1.0
1017
1018
         T1 = T50PF
1019
         T2 = T50PF + T95PF
1020
         IF (T1.EQ.T2) THEN
           DO 632 YR=1, PERIOD
FPRNP(YR) = FPRDNP
1021
1022
         CONTINUE
1023 632
1024
         ELSE
1025
           DO 633 YR=1, PERIOD
1026
              IF (YR.LT.T2) THEN
1027
                TIME(YR) = (0.99 - 0.5) / (T2 - T1) * (YR)
1028
              ELSE
                TIME(YR) = 1.0
1029
1030
              ENDIF
           FPRNP(YR) = FPRDNP * TIME(YR)
1031
1032 633
         CONTINUE
1033
         ENDIF
1034
1036 C ***********CALCULATING PRODUCTIVITY SAVINGS***********
1037
1038
         DO 639 YR=1, PERIOD
           TLSBC(YR) = ((((1/PRODBC) *REPBC(YR)) *ADOT*G) +
1039
                     (((1/FPRDBC)*REPBC(YR))*FADOT*))/1000000.
1040
        £
1041
           TLSNEW (YR) = ((((1/PRNP(YR)) * REPNP(YR)) * ADOTWG) +
1042
                     (((1/FPRNP(YR))*REPNP(YR))*FADOTW))/1000000.
        æ
1043
           TLSOLD (YR) = (((1/PRODBC) * REPOLD (YR)) * ADOTWG) +
1044
                    (((1/FPRDEC) *REPOLD(YR)) *FADOTW))/1000000.
        <u>s</u>.
1045
           TASBC(YR) = 0
1046
           TASNP(YR) = (APRNP(YR) * ADOTAW) / 1000000.
1047 639
        CONTINUE
1048
1051
1052
         DO 640 YR=1, PERIOD
           PRMXBC(YR) = (((ADOTWG+EQXEC)*(1/PRODEC))*REPEC(YR))+
1053
1054
        £
                     (((FEQXEC+FOREC+FADOTW) * (1/FPRDEC)) *REPEC(YR))
1055
1056
           PRMXNE(YR) = ((ADOTWG+EQXNP) * (1/PRNP(YR))) * REFNP(YR)) +
                     (((FEOXNP+FORNP+FADOTW)*(1/FPRNP(YR)))*REPNP(YR))
1057
        5
1058
1059
           PRMXOL (YR) = ( ( (ADOTWG+EQXEC) * (1/PRODEC) ) * REPOLD (YR) ) +
                    (((FEQXEC+FOREC+FADOTW) * (1/FPRDEC)) *REPOLD(YR))
1060
        £
1061 640
        CONTINUE
1062
1065
1066
         DO 650 YR=1, PERIOD
         IF (PSIWEP(YR).EQ.PSIRPM) THEN
1067
1068
           PAMXBC(YR) = PXEC
1069
         ELSE
1070
           PAMXBC(YR) = 0.
1071
         ENDIF
1072
1073
         IF (PSIWNP(YR).EQ.PSIRFM) THEN
1074
           PAMXNP(YR) = PXNP
1075
         ELSE
           PAMXNP(YR) = 0.
1076
         ENDIF
1077
1078 650
         CONTINUE
1079
```

```
1082
1083
          DO 660 YR=1, PERIOD
             TMXBC(YR) = (PAMXBC(YR) + PRMXBC(YR)) / 1000000.
1084
             TMXNP(YR) = (PAMXNP(YR) + PRMXNE(YR) + PRMXOL(YR)) / 1000009.
1085
1086 660
          CONTINUE
1087
                1088 C ****
1090
1091
          DO 670 YR=1, PERIOD
             VECBC(YR) = (AADT(YR) * 365.25) * PADEC
1092
             DHRBC(YR) = (DDELBC/60.0) * VECBC(YR)
1093
1094
             DTBC (YR) = DHRBC (YR) * VTIME
1095
             DSEC(YR) = (ADSFEC(YR) *LENGTH*AADT(YR) *365.25) *
                        (MDEAR * PADEC)
1096
         £
             DVCBC(YR) = ((0.54*DHRBC(YR))*FUEL)+((5.23*(DHRBC(YR)/1000.0))
1097
                        *OIL) + ((0.0073*(DHRBC(YR)/1000.0))*DEPR) + ((0.583*
1098
         £
                        (DHRBC(YR)/1000.0)) *MANDR)
1099
         æ
             DISBC(YR) = (DTBC(YR) + DSBC(YR) + DVCBC(YR)) / 1000000.
1100
1101
             VECNP(YR) = (AADT(YR) * 365.25) * PADNP
1102
             DHRNP(YR) = (DDELNP/60.0) + VECNP(YR)
1103
             DTNP(YR) = DHRNP(YR) * VTIME
1104
             DSNP(YR) = (ADSFNP(YR) *LENGTH*AADT(YR) *365.25) *
1105
                        (MDEAR * PADNP)
1106
         æ
             DVCNP(YR) = ((0.54 * DHRNP(YR)) * FUEL) + ((5.23 * (DHRNP(YR) / 1000.0))
1107
                        *OIL) + ((0.0073*(DHRNP(YR)/1000.0)) *DEPR) + ((0.583*
1108
         s,
                        (DHRNP(YR)/1000.0)) *MANDR)
1109
         £
             DISNP(YR) = (DTNP(YR) + DSNP(YR) + DVCNP(YR)) / 1000000.
1110
1111 670
          CONTINUE
1112
1115
          DO 800 YR=1, PERIOD
1116
             ACBC(YR) = RXBC(YR) + (PLEGBC/100.0)
1117
             LPFBC (YR) = (ACBC (TR) - (TLCBC (TC) + (1 - (PCSBC + PCDBC)) + ACCBC))
LIXBC (YR) = (ACBC (YR) + LPFBC (YR)) / 1000000.
1118
1119
1120
             ACNEW(YR) = RXNP(YR) + (PLEGNP/100.0)
ACOLD(YR) = RXOLD(YR) + (PLEGBC/100.0)
1121
1122
              LPFNP(YR) = ((PCSNP*ASCNP) + ((1 - (PCSNP+PCDNP)) * ACCNP))
1123
              LIXNEW(YR) = (ACNEW(YR) \cdot LPFNP(YR)) / 1000000.
1124
              LIXOLD(YR) = (ACOLD(YR) * LPFBC(YR)) / 1000000.
1125
1126
1127 800
          CONTINUE
 1128
1130 C **************CALCULATION OF NP ACCIDENT SAVINGS************
1131
           DO 820 YR=1, PERIOD
1172
              IF (METRIC.EO.0) THEN
1133
               SCNP(YR) = ((PDOINP(YR) * (1 - VISP_YR(YR))) * VPDO) +
 1134
                       ((INJINP(YR)*(1-VISI_YR(YR)))*VINJ)+
((FATINP(YR)*(1-VISF_YR(YR)))*VLIFE)
 1135
          £
 1136
          £
 1137
              ELSE
               SCNP(YR) = (((PDOINP(YR)*(1-VISP_YR(YR)))*0.6214)*VPDO)+
 1138
                        (((INJINP(YR)*(1-VISI_YR(YR)))*0.6214)*VINJ)+
 1139
          æ
                        (((FATINP(YR)*(1-VISF_YR(YR)))*0.6214)*VLIFE)
1140
          æ
              ENDIF
 1141
           IF ((5 - PSIWNP(YR)).LT.4) THEN

ADSSNP(YR) = SCNP(YR) * (1 + (((5 - PSIWNP(YR))/4) * MPEAR))
 1142
 1143
 1144
           ELSE
 1145
              ADSSNP(YR) = SCNP(YR) * (1 + MPEAR)
 1146
           ENDIF
               ASSNP(YR) = (ADSSNP(YR) * LENGTH * AADT(YR) * 365.25) / 1000000.
 1147
           CONTINUE
 1148 820
 1149
 1152
```

PEM

1153 DO 900 YR=1, PERIOD PVVOCB(YR) = ((ADVOCB(YR) * LENGTH * AADT(YR) * 365.25)1154 . 1155 /(1+DRATE) **(YR))/1000000. s, PVVOCN(YR) = (ADVOCN(YR) * LENGTH * AADT(YR) * 365.25)1156 /(1+DRATE) ** (YR))/1000000. 1157 £ PVSAFN(YR) = ((ADSFNP(YR) * LENGTH * AADT(YR) * 365, 25)1158 /(1+DRATE) **(YR))/1000000. 1159 6 PVSAFB(YR) = ((ADSFEC(YR) *LENGTH*AADT(YR) *365.25) 1160 1161 /(1+DRATE) **(YR))/1000000. & PVVOTB (YR) = ((VOTBC (YR) * LENGTH * AADT (YR) * 365.25)1162 /(1+DRATE) **(YR))/1000000. 1163 £ PVVOTN (YR) = ((VOTNP (YR) * LENGTH * AADT (YR) * 365.25) 1164 /(1+DRATE)**(YR))/1000000. 1165 ۶

 PVMXBC(YR) = TMXBC(YR) / (1 + DRATE) ** (YR)

 PVMXNP(YR) = TMXNP(YR) / (1 + DRATE) ** (YR)

 PVLXBC(YR) = LIXBC(YR) / (1 + DRATE) ** (YR)

 1166 1167 1168 PVLXNP(YR) = (LIXNEW(YR)+LIXOLD(YR))/(1+DRATE)**(YR) 1169 1170 PVTLBC(YR) = TLSBC(YR) / (1 + DRATE) ** (YR)PVTLNP(YR) = (TLSNEW(YR) + TLSOLD(YR)) / (1 + DRATE) * (YR)1171 PVTABC (YR) = TASBC (YR) / (1 + DRATE) ** (YR)PVTAPP (YR) = TASPC (YR) / (1 + DRATE) ** (YR)1172 1173 PVKBC(YR) = (TACBC(YR)/(1+DRATE)**(YR))/1000000. 1174 1175 IF (YR.EQ.1) THEN 1176 PVKNP(YR) = ((TACNP(YR) +TACOLD(YR) + ADDEX + ADDTX + TEXNP) /(1+DRATE) **(YR))/1000000. 1177 £ 1178 ELSE PVKNP(YR) = ((TACNP(YR)+TACOLD(YR)+ADDYR)/(1+DRATE)**(YR)) 1179 1180 8 /1000000. 1181 ENDIF

 PVDISB(YR) = DISBC(YR) / (1 + DRATE) ** (YR)

 PVDISN(YR) = DISNP(YR) / (1 + DRATE) ** (YR)

 PVASSN(YR) = ASSNP(YR) / (1 + DRATE) ** (YR)

 1182 1183 1184 1185 900 CONTINUE 1126 SMCAPB = 0. 1187 1188 SMCAPN = 0. 1189 SMLIAB = 0.1190 SMLIAN = 0.SMMANB = 0. 1191 1192 SMMANN = 0.SMPROB = 0. 1193 SMPRON = 0. 1194 TAPBC = 0.TAPNP = 0.1195 1196 1197 SMSAFN = 0SMSAFB = 0. 1198 SMVOTB = 0. 1199 SMVOTN = 0. 1200 SMVCCB = 0. 1201 SMVOCN = 0. 1202 1203 SMDISB = 0.1204 SMDISN = 0.1205 DO 910 YR=1, PERIOD 1206 SMCAPB = SMCAPB + PVKBC(YR)SMCAPN = SMCAPN + PVKNP(YR) 1207 1208 SMLIAB = SMLIAB + PVLXEC(YR) SMLIAN = SMLIAN + PVLXNP(YR) 1209 SMMANB = SMMANB + PVMXBC (YR) 1210 SMMANN = SMMANN + PVMXNP(YR) 1211 SMPROB = SMPROB + PVTLBC (YR) + PVTABC (YR) 1212 SMPRON = SMPRON + PVTLNP(YR) + PVTANP(YR) 1213 TAPBC = TAPBC + PVTABC(YR) TAPNP = TAPNP + PVTANP(YR) 1214 1215 SMVOCB = SMVOCB + PVVOCB(YR)1216 SMVOCN = SMVOCN + PVVOCN(YR)1217 SMVOTB = SMVOTB + PVVOTB (YR) 1218 SMVOTN = SMVOTN + PVVOTN (YR) 1219 1220 SMSAFB = SMSAFB + PVSAFB(YR) 1221 SMSAFN = SMSAFN + PVSAFN(YR) - (PVSAFN(YR) - PVASSN(YR)) 1222 SMDISB = SMDISB + PVDISB(YR) 1223 SMDISN = SMDISN + PVDISN(YR) 1224 910 CONTINUE

_

L

PEM

Page 18

.

1225 1227 C ***********************CALCULATING NET SAVINGS********************** 1228 BVOC = SMVOCB - SMVOCN 1229 BLIA = SMLIAB - SMLIAN 1230 BLIA = SMUTH - SMUTH BVOT = SMUTH - SMUTH BSAFE = SMSAFB - SMSAFN SMUTH - SMUTH 1231 1232 BPRO = (SMPRAB + SMPRLB) - (SMPRAN + SMPRLN) 1233 BMAIN = SMMANB - SMMANN 1234 BCAP = SMCAPB - SMCAPN 1235 BDIS = SMDISB - SMDISN 1236 1237 1240 SMTCBC = SMVOCB+SMVOTB+SMSAFB+SMMANB+SMCAPB+SMDISB+SMLIAB 1241 1242 £ +TAPBC 1243 1246 SMTCNP = SMVOCN+SMVOTN+SMSAFN+SMMANN+SMCAPN+SMDISN+SMLIAN 1247 1248 & +TAPNP 1249 1252 NETB = BVOC+BSAFE+BVOT+BCAP+BLIA+ (TAPBC-TAPNP) +BDIS+BMAIN 1253 1254 1257 1258 BENV = NETB * 0.80 1259 1262 1263 C OPEN(113, FILE='DAT1.DAT', STATUS='OLD') WRITE (113, *) (PI (YR), YR=1, PERIOD) WRITE (113, *) (VISP_YR (YR), YR=1, PERIOD) WRITE (113, *) (VISI_YR (YR), YR=1, PERIOD) WRITE (113, *) (VISF_YR (YR), YR=1, PERIOD) WRITE (113, *) (VISF_YR (YR), YR=1, PERIOD) 1264 C 1265 C 1266 C 1267 C WRITE (113, *) (FLOW_YR(YR), YR=1, PERIOD) 1268 C 1269 C CLOSE (UNIT=113) 1270 1272 1273 RETURN 1274 END