SPR 672 OCTOBER 2013

# Development of a Traffic Data Input System in Arizona for the MEPDG



Arizona Department of Transportation Research Center



# Development of a Traffic Data Input System in Arizona for the MEPDG

Final Report 672 October 2013

# Prepared by:

Michael I. Darter Leslie Titus-Glover Dean J. Wolf Applied Research Associates, Inc. 100 Trade Centre Dr., Suite 200 Champaign, IL 61820

# **Prepared for:**

Arizona Department of Transportation 206 S. 17th Ave. Phoenix, AZ 85007

in cooperation with
U.S. Department of Transportation
Federal Highway Administration

This report was funded in part through grants from the Federal Highway Administration, U.S. Department of Transportation. The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data, and for the use or adaptation of previously published material, presented herein. The contents do not necessarily reflect the official views or policies of the Arizona Department of Transportation or the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names that may appear herein are cited only because they are considered essential to the objectives of the report. The U.S. government and the State of Arizona do not endorse products or manufacturers.

Technical Report Documentation Page

| 1. Report No.                               | 2. Government Accession No.   | 3. Recipient's Catalog No.            |
|---------------------------------------------|-------------------------------|---------------------------------------|
| FHWA-AZ-13-672                              |                               |                                       |
|                                             |                               |                                       |
| 4. Title and Subtitle                       |                               | 5. Report Date                        |
| Development of a Traffic Data Input Sys     | stem in Arizona for the MEPDG | October 2013                          |
|                                             |                               | 6. Performing Organization Code       |
|                                             |                               |                                       |
| 7. Author                                   |                               | 8. Performing Organization Report No. |
| Michael I. Darter, Leslie Titus-Glover, I   | Dean J. Wolf                  |                                       |
|                                             |                               |                                       |
| 9. Performing Organization Name and Address |                               | 10. Work Segment No.                  |
| Applied Research Associates, Inc.           |                               |                                       |
| 100 Trade Centre Dr., Suite 200             |                               | 11. Contract or Grant No.             |
| Champaign, IL 61820                         |                               | SPR-PL1(175) 672                      |
| 12. Sponsoring Agency Name and Address      |                               | 13.Type of Report & Period Covered    |
| Research Center                             |                               | FINAL October 2009-October 2011       |
| Arizona Department of Transportation        |                               | 14. Sponsoring Agency Code            |
| 206 S. 17th Ave.                            |                               |                                       |
| Phoenix, AZ 85007                           |                               |                                       |

15. Supplementary Notes

Prepared in cooperation with the U.S. Department of Transportation, Federal Highway Administration

16. Abstract

Accurate traffic data is one of the key data elements required for the cost-effective design of all rehabilitation and reconstruction of pavement structures. This research study addresses the collection, preparation, and use of traffic data required for pavement design by the Arizona Department of Transportation (ADOT), focusing on data required as inputs for the American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG) design procedures. ADOT's current traffic data collection and preparation processes are not adequate to meet the needs of the MEPDG procedure, and improvements are needed. These improvements include enhanced volume, classification, and weight data collection for vehicles, processing data and performing quality assurance checks, and the preparation/analysis of the data for use in the MEPDG. Use of the MEPDG in Arizona will require (1) an annual flow of updated key traffic data and (2) the ability to collect on-site (MEPDG Level 1) data in a timely manner for key projects.

An action plan (Chapter 8) calls for the establishment of an Arizona Traffic Segment Database that includes all state highways (or the expansion of an existing traffic database). This database would include all traffic inputs required for the AASHTO MEPDG and AASHTO 1993 design procedures, as well as ADOT pavement management activities. Traffic segments would be identified by beginning and ending milepost numbers and global positioning system (GPS) coordinates along each highway.

The researchers propose, and have partly developed, a system for traffic data collection for the MEPDG in Arizona. Level 1 data collection procedures are provided for selected traffic inputs. ADOT's traffic data collection group will need to develop a process for collecting Level 1 data in a timely manner for important projects requested from the pavement design group. This report also discusses recommended Level 2 and Level 3 inputs, which were prepared based on the best historical data available. These data represent a good initial set of inputs that can be used over the next few years. However, the inputs should be updated annually using improved data collection methods beginning as soon as possible.

| 17. Key Words  Traffic, trucks, axle weights, Wdesign, MEPDG | IM, vehicle classification,                 | 18. Distribution Statemer<br>Document is availab<br>public through the N<br>Technical Information<br>Springfield, Virginia | ole to the U.S.<br>National<br>on Service, | 23. Registrant's Seal |
|--------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------|
| 19. Security Classification Unclassified                     | 20. Security Classification<br>Unclassified | 21. No. of Pages 358                                                                                                       | 22. Price                                  |                       |

|                                                       |                                                                                                                                                  | METRIC) CONVENTION                                                                                                                                                   | ERSION FACTORS S TO SI UNITS                                                                                                                        |                                                                   |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Symbol                                                | When You Know                                                                                                                                    | Multiply By                                                                                                                                                          | To Find                                                                                                                                             | Symbol                                                            |
|                                                       |                                                                                                                                                  | LENGTH                                                                                                                                                               |                                                                                                                                                     |                                                                   |
| n                                                     | inches                                                                                                                                           | 25.4                                                                                                                                                                 | millimeters                                                                                                                                         | mm                                                                |
| ft                                                    | feet                                                                                                                                             | 0.305                                                                                                                                                                | meters                                                                                                                                              | m                                                                 |
| yd                                                    | yards                                                                                                                                            | 0.914                                                                                                                                                                | meters                                                                                                                                              | m                                                                 |
| mi                                                    | miles                                                                                                                                            | 1.61                                                                                                                                                                 | kilometers                                                                                                                                          | km                                                                |
| 2                                                     |                                                                                                                                                  | AREA                                                                                                                                                                 |                                                                                                                                                     | 2                                                                 |
| n <sup>2</sup>                                        | square inches                                                                                                                                    | 645.2                                                                                                                                                                | square millimeters                                                                                                                                  | mm²                                                               |
| t <sup>2</sup>                                        | square feet                                                                                                                                      | 0.093                                                                                                                                                                | square meters                                                                                                                                       | $m_{2}^{2}$                                                       |
| ∕d²                                                   | square yard                                                                                                                                      | 0.836                                                                                                                                                                | square meters                                                                                                                                       | m <sup>2</sup>                                                    |
| ac<br>ni <sup>2</sup>                                 | acres                                                                                                                                            | 0.405                                                                                                                                                                | hectares                                                                                                                                            | ha<br>km²                                                         |
| nı-                                                   | square miles                                                                                                                                     | 2.59                                                                                                                                                                 | square kilometers                                                                                                                                   | km <sup>-</sup>                                                   |
|                                                       |                                                                                                                                                  | VOLUME                                                                                                                                                               |                                                                                                                                                     |                                                                   |
| loz                                                   | fluid ounces                                                                                                                                     | 29.57                                                                                                                                                                | milliliters                                                                                                                                         | mL                                                                |
| gal<br>t <sup>3</sup>                                 | gallons                                                                                                                                          | 3.785                                                                                                                                                                | liters                                                                                                                                              | L<br>m³                                                           |
| r <sup>s</sup><br>′d <sup>3</sup>                     | cubic feet                                                                                                                                       | 0.028                                                                                                                                                                | cubic meters                                                                                                                                        | m²<br>m³                                                          |
| ď                                                     | cubic yards                                                                                                                                      | 0.765                                                                                                                                                                | cubic meters                                                                                                                                        | m.                                                                |
|                                                       | NOTE: VOI                                                                                                                                        | umes greater than 1000 L sha                                                                                                                                         | III DE SHOWII III III                                                                                                                               |                                                                   |
| _                                                     |                                                                                                                                                  | MASS                                                                                                                                                                 |                                                                                                                                                     | _                                                                 |
| )Z                                                    | ounces                                                                                                                                           | 28.35                                                                                                                                                                | grams                                                                                                                                               | g                                                                 |
| b<br>-                                                | pounds                                                                                                                                           | 0.454                                                                                                                                                                | kilograms                                                                                                                                           | kg                                                                |
| Γ                                                     | short tons (2000 lb)                                                                                                                             | 0.907                                                                                                                                                                | megagrams (or "metric ton")                                                                                                                         | Mg (or "t")                                                       |
| _                                                     |                                                                                                                                                  | MPERATURE (exact d                                                                                                                                                   |                                                                                                                                                     | 0 -                                                               |
| F                                                     | Fahrenheit                                                                                                                                       | 5 (F-32)/9                                                                                                                                                           | Celsius                                                                                                                                             | °C                                                                |
|                                                       |                                                                                                                                                  | or (F-32)/1.8                                                                                                                                                        |                                                                                                                                                     |                                                                   |
|                                                       |                                                                                                                                                  | ILLUMINATION                                                                                                                                                         |                                                                                                                                                     |                                                                   |
| С                                                     | foot-candles                                                                                                                                     | 10.76                                                                                                                                                                | lux                                                                                                                                                 | lx 2                                                              |
| I                                                     | foot-Lamberts                                                                                                                                    | 3.426                                                                                                                                                                | candela/m²                                                                                                                                          | cd/m <sup>2</sup>                                                 |
|                                                       | FOR                                                                                                                                              | CE and PRESSURE or                                                                                                                                                   | STRESS                                                                                                                                              |                                                                   |
| bf                                                    | poundforce                                                                                                                                       | 4.45                                                                                                                                                                 | newtons                                                                                                                                             | N                                                                 |
| bf/in <sup>2</sup>                                    | poundforce per square inch                                                                                                                       | 6.89                                                                                                                                                                 | kilopascals                                                                                                                                         | kPa                                                               |
|                                                       | APPROXIMA                                                                                                                                        | ATE CONVERSIONS                                                                                                                                                      | FROM SI UNITS                                                                                                                                       |                                                                   |
| Symbol                                                | When You Know                                                                                                                                    | Multiply By                                                                                                                                                          | To Find                                                                                                                                             | Symbol                                                            |
|                                                       |                                                                                                                                                  | LENGTH                                                                                                                                                               |                                                                                                                                                     |                                                                   |
| mm                                                    | millimeters                                                                                                                                      | 0.039                                                                                                                                                                | inches                                                                                                                                              | in                                                                |
| n                                                     | meters                                                                                                                                           | 3.28                                                                                                                                                                 | feet                                                                                                                                                | ft                                                                |
| n                                                     | meters                                                                                                                                           | 1.09                                                                                                                                                                 | yards                                                                                                                                               | yd                                                                |
| m                                                     | kilometers                                                                                                                                       | 0.621                                                                                                                                                                | miles                                                                                                                                               | mi                                                                |
|                                                       |                                                                                                                                                  | AREA                                                                                                                                                                 |                                                                                                                                                     |                                                                   |
| nm²                                                   | square millimeters                                                                                                                               | 0.0016                                                                                                                                                               | square inches                                                                                                                                       | in <sup>2</sup>                                                   |
| $n^2$                                                 | square meters                                                                                                                                    | 10.764                                                                                                                                                               | square feet                                                                                                                                         | ft <sup>2</sup>                                                   |
| 2                                                     | •                                                                                                                                                |                                                                                                                                                                      | square yards                                                                                                                                        | yd <sup>2</sup>                                                   |
| n <sup>-</sup>                                        | square meters                                                                                                                                    | 1.195                                                                                                                                                                |                                                                                                                                                     |                                                                   |
| na                                                    | square meters<br>hectares                                                                                                                        | 2.47                                                                                                                                                                 | acres                                                                                                                                               | ac                                                                |
| na                                                    |                                                                                                                                                  |                                                                                                                                                                      |                                                                                                                                                     | ac<br>mi <sup>2</sup>                                             |
| na                                                    | hectares                                                                                                                                         | 2.47                                                                                                                                                                 | acres                                                                                                                                               | ac<br>mi²                                                         |
| m <sup>2</sup><br>na<br>km <sup>2</sup><br>mL         | hectares                                                                                                                                         | 2.47<br>0.386                                                                                                                                                        | acres                                                                                                                                               | ac<br>mi <sup>2</sup><br>fl oz                                    |
| na<br>km²<br>mL                                       | hectares<br>square kilometers                                                                                                                    | 2.47<br>0.386<br><b>VOLUME</b>                                                                                                                                       | acres<br>square miles                                                                                                                               | mi <sup>2</sup> fl oz                                             |
| na<br>km²<br>nL<br>-<br>n³                            | hectares<br>square kilometers<br>milliliters                                                                                                     | 2.47<br>0.386<br><b>VOLUME</b><br>0.034                                                                                                                              | acres square miles fluid ounces                                                                                                                     | mi <sup>2</sup> fl oz gal ft <sup>3</sup>                         |
| na<br>km²<br>nL<br>-<br>n³                            | hectares<br>square kilometers<br>milliliters<br>liters                                                                                           | 2.47<br>0.386<br><b>VOLUME</b><br>0.034<br>0.264<br>35.314<br>1.307                                                                                                  | acres<br>square miles<br>fluid ounces<br>gallons                                                                                                    | mi <sup>2</sup> fl oz gal                                         |
| na<br>km²<br>nL                                       | hectares square kilometers milliliters liters cubic meters                                                                                       | 2.47<br>0.386<br><b>VOLUME</b><br>0.034<br>0.264<br>35.314                                                                                                           | acres square miles  fluid ounces gallons cubic feet                                                                                                 | mi <sup>2</sup> fl oz gal ft <sup>3</sup>                         |
| na<br>m²<br>nL<br>-<br>n³<br>n³                       | hectares square kilometers milliliters liters cubic meters                                                                                       | 2.47<br>0.386<br><b>VOLUME</b><br>0.034<br>0.264<br>35.314<br>1.307                                                                                                  | acres square miles  fluid ounces gallons cubic feet                                                                                                 | mi <sup>2</sup> fl oz gal ft <sup>3</sup>                         |
| a<br>m²<br>nL<br>n³<br>n³                             | hectares<br>square kilometers<br>milliliters<br>liters<br>cubic meters<br>cubic meters                                                           | 2.47<br>0.386<br><b>VOLUME</b><br>0.034<br>0.264<br>35.314<br>1.307<br><b>MASS</b>                                                                                   | acres square miles  fluid ounces gallons cubic feet cubic yards                                                                                     | mi <sup>2</sup> fl oz  gal  ft <sup>3</sup> yd <sup>3</sup>       |
| a<br>m²<br>nL<br>.3<br>n³<br>n³                       | hectares square kilometers  milliliters liters cubic meters cubic meters grams                                                                   | 2.47<br>0.386<br><b>VOLUME</b><br>0.034<br>0.264<br>35.314<br>1.307<br><b>MASS</b><br>0.035                                                                          | acres square miles  fluid ounces gallons cubic feet cubic yards  ounces                                                                             | mi <sup>2</sup> fl oz gal ft <sup>3</sup> yd <sup>3</sup>         |
| na<br>m²<br>nL<br><br>n³<br>n³<br>l<br>g<br>g(or "t") | hectares square kilometers  milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton")                             | 2.47<br>0.386<br><b>VOLUME</b><br>0.034<br>0.264<br>35.314<br>1.307<br><b>MASS</b><br>0.035<br>2.202<br>1.103                                                        | acres square miles  fluid ounces gallons cubic feet cubic yards  ounces pounds short tons (2000 lb)                                                 | mi <sup>2</sup> fl oz gal ft <sup>3</sup> yd <sup>3</sup> oz lb T |
| a<br>m²<br>n¹<br>n³<br>g<br>g(or "t")                 | hectares square kilometers  milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton")                             | 2.47<br>0.386<br><b>VOLUME</b><br>0.034<br>0.264<br>35.314<br>1.307<br><b>MASS</b><br>0.035<br>2.202                                                                 | acres square miles  fluid ounces gallons cubic feet cubic yards  ounces pounds short tons (2000 lb)                                                 | mi <sup>2</sup> fl oz gal ft <sup>3</sup> yd <sup>3</sup> oz lb   |
| a<br>m²<br>n¹<br>n³<br>g<br>g(or "t")                 | hectares square kilometers  milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton")                             | 2.47<br>0.386<br>VOLUME<br>0.034<br>0.264<br>35.314<br>1.307<br>MASS<br>0.035<br>2.202<br>1.103<br>MPERATURE (exact d<br>1.8C+32                                     | acres square miles  fluid ounces gallons cubic feet cubic yards  ounces pounds short tons (2000 lb)  egrees)                                        | mi <sup>2</sup> fl oz gal ft <sup>3</sup> yd <sup>3</sup> oz lb T |
| na<br>m²<br>nL<br>n³<br>n³<br>ng<br>gg (or "t")       | hectares square kilometers  milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton")  TE Celsius                 | 2.47<br>0.386<br>VOLUME<br>0.034<br>0.264<br>35.314<br>1.307<br>MASS<br>0.035<br>2.202<br>1.103<br>MPERATURE (exact d<br>1.8C+32<br>ILLUMINATION                     | acres square miles  fluid ounces gallons cubic feet cubic yards  ounces pounds short tons (2000 lb)  egrees) Fahrenheit                             | mi <sup>2</sup> fl oz gal ft <sup>3</sup> yd <sup>3</sup> oz lb T |
| na<br>m²<br>nL<br>n³<br>n³<br>g<br>g<br>Mg (or "t")   | hectares square kilometers  milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton")  TE Celsius                 | 2.47<br>0.386<br>VOLUME<br>0.034<br>0.264<br>35.314<br>1.307<br>MASS<br>0.035<br>2.202<br>1.103<br>MPERATURE (exact d<br>1.8C+32<br>ILLUMINATION<br>0.0929           | acres square miles  fluid ounces gallons cubic feet cubic yards  ounces pounds short tons (2000 lb)  egrees) Fahrenheit foot-candles                | mi <sup>2</sup> fl oz gal ft <sup>3</sup> yd <sup>3</sup> oz lb T |
| a<br>m²<br>nL<br>n³<br>n³<br>g<br>g(or "t")           | hectares square kilometers  milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton")  TE Celsius  lux candela/m² | 2.47<br>0.386<br>VOLUME<br>0.034<br>0.264<br>35.314<br>1.307<br>MASS<br>0.035<br>2.202<br>1.103<br>MPERATURE (exact d<br>1.8C+32<br>ILLUMINATION<br>0.0929<br>0.2919 | acres square miles  fluid ounces gallons cubic feet cubic yards  ounces pounds short tons (2000 lb)  egrees) Fahrenheit  foot-candles foot-Lamberts | mi <sup>2</sup> fl oz gal ft <sup>3</sup> yd <sup>3</sup> oz lb T |
| na<br>.m²<br>nL<br>-<br>n³                            | hectares square kilometers  milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton")  TE Celsius  lux candela/m² | 2.47<br>0.386<br>VOLUME<br>0.034<br>0.264<br>35.314<br>1.307<br>MASS<br>0.035<br>2.202<br>1.103<br>MPERATURE (exact d<br>1.8C+32<br>ILLUMINATION<br>0.0929           | acres square miles  fluid ounces gallons cubic feet cubic yards  ounces pounds short tons (2000 lb)  egrees) Fahrenheit  foot-candles foot-Lamberts | mi <sup>2</sup> fl oz gal ft <sup>3</sup> yd <sup>3</sup> oz lb T |

<sup>\*</sup>SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. (Revised March 2003)

# **CONTENTS**

| CHAPTER 1. INTRODUCTION                                                                 | 1   |
|-----------------------------------------------------------------------------------------|-----|
| Brief Background                                                                        | 1   |
| Objectives                                                                              | 2   |
| Brief Summary of Findings                                                               | 2   |
| Organization of Report                                                                  | 3   |
| CHAPTER 2. CURRENT AND FUTURE TRAFFIC DATA REQUIREMENTS FOR                             |     |
| PAVEMENT DESIGN                                                                         | 5   |
| Current ADOT Traffic Data Requirements                                                  | 5   |
| MEPDG Traffic Data Requirements                                                         |     |
| CHAPTER 3. FRAMEWORK FOR DEVELOPING THE ADOT MEPDG TRAFFIC                              | •   |
| DATA INPUT SYSTEM                                                                       | 23  |
| Step 1: Traffic Data Identification and Assembly                                        | 23  |
| Step 2: Traffic Data Processing, Review, Identification of Anomalies and Error,         |     |
| and Data Cleansing                                                                      |     |
| Step 3: Statistical Analysis to Assign Measured Traffic Data into Clusters with Similar |     |
| Characteristics and Distribution Patterns                                               |     |
| Step 4: Determination of Optimum Number of Clusters Within Arizona                      | 40  |
| Step 5: Performance of Sensitivity Analysis and Interpretation of Sensitivity Analysis  |     |
| Results                                                                                 |     |
| Step 6: Development of Default Statewide Level 2/3 Traffic Inputs                       |     |
| CHAPTER 4. STATISTICAL CLUSTER ANALYSIS                                                 |     |
| Vehicle Class Distribution                                                              |     |
| Hourly Truck Traffic Distribution                                                       |     |
| Axle Load Distribution                                                                  |     |
| Axles Per Truck                                                                         |     |
| CHAPTER 5. SENSITIVITY ANALYSIS                                                         |     |
| Description of Baseline Pavement Designs                                                |     |
| MEPDG Traffic Inputs Used for Sensitivity Analysis                                      |     |
| Sensitivity Analysis Results                                                            | 85  |
| CHAPTER 6. DEVELOPMENT OF STATEWIDE LEVEL 2/3 MEPDG TRAFFIC                             |     |
| INPUTS                                                                                  |     |
| Vehicle Class Distribution                                                              | 95  |
| Hourly Truck Distribution                                                               | 95  |
| Monthly Adjustment Factor                                                               |     |
| Axle Load Distribution                                                                  |     |
| Axles Per Truck                                                                         | 97  |
| CHAPTER 7. DETAILED SYSTEM FOR ADOT TRAFFIC DATA INPUTS FOR                             |     |
| THE MEPDG DESIGN PROCESS                                                                |     |
| Overall Summary of Arizona Traffic Data Input System                                    |     |
| Detailed Description of Traffic Segment Database                                        | 115 |

| Locations of WIM Equipment                                 |
|------------------------------------------------------------|
| Type of WIM Equipment 14:                                  |
| Type of white Equipment                                    |
| Cost of Equipment                                          |
| Recommended Business Process Overview                      |
| REFERENCES                                                 |
| APPENDIX A. REVIEW OF HISTORICAL ADOT TRAFFIC DATA         |
| COLLECTION PRACTICES 153                                   |
| APPENDIX B. SUMMARY OF VCD DATA USED FOR ANALYSIS17        |
| APPENDIX C. SUMMARY OF HOURLY TRUCK DISTRIBUTION DATA USED |
| FOR ANALYSIS                                               |
| APPENDIX D. SUMMARY OF MAF DATA USED FOR ANALYSIS21        |
| APPENDIX E. SUMMARY OF ALD DATA USED FOR ANALYSIS 26       |
| APPENDIX F. SUMMARY OF AXLES-PER-TRUCK DATA USED FOR       |
| ANALYSIS                                                   |
| APPENDIX G. RECOMMENDED ADOT BUSINESS PROCESS OVERVIEW     |
| FOR MEPDG AND PAVEMENT MANAGEMENT SYSTEM335                |

# LIST OF FIGURES

| Figure 1. Illustration of Vehicle Class Distribution (FHWA Vehicle Classes 4 through 13) for |      |
|----------------------------------------------------------------------------------------------|------|
| Selected LTPP Sites.                                                                         |      |
| Figure 2. Comparison between Concrete and Asphalt Pavement ESALs.                            | 8    |
| Figure 3. Comparison between Flexible Pavement ESALs and Computed ESALs-per-Truck            |      |
| Ratios (ARA, 2009; Alavi and Senn, 1999).                                                    | 9    |
| Figure 4. Comparison between Rigid Pavement ESALs and Computed ESALs-per-Truck               |      |
| Ratios (ARA, 2009; Alavi and Senn, 1999).                                                    | 9    |
| Figure 5. Comparison between Computed Rural and Urban Flexible Pavement                      |      |
| ESALs-per-Truck Ratios.                                                                      |      |
| Figure 6. Example of Distance from the Outer Edge of the Wheel to the Pavement Marking       |      |
| Figure 7. Illustration of Truck Wheelbase Definition                                         | 19   |
| Figure 8. Axle Wheel Configuration Inputs (Average Axle Width Edge to Edge), Dual Tire       |      |
| Spacing, Axle Wheel Spacing (Tandem, Tridem, and Quad Axles)                                 |      |
| Figure 9. Locations of the Arizona ATR Data Collection Sites.                                |      |
| Figure 10. LTPP Sites across Arizona.                                                        |      |
| Figure 11. Plot of Vehicle Class Distribution for Site 4_0100 (Prior to September 2001)      | 32   |
| Figure 12. Plot of Vehicle Class Distribution for Site 4_0100 (Prior to and After September  |      |
| 2001) Showing Significant Reduction in Class 9 Trucks.                                       |      |
| Figure 13. Plot of Hourly Truck Distribution for Site 4 100070.                              |      |
| Figure 14. Plot of Monthly Adjustment Factors for LTPP 0100 (Class 4 Vehicles Only)          |      |
| Figure 15. Plot of Vehicle Class Distribution for LTPP 1001.                                 |      |
| Figure 16. Plot Showing Number of Single Axles per Truck for LTPP 0500                       |      |
| Figure 17. Plot Showing Tandem-Axle Load Distribution for LTPP 1001                          |      |
| Figure 18. Typical Arizona Interstate Highway Single Peak VCD.                               | 45   |
| Figure 19. Typical Arizona Non-Interstate Highway Double Peak VCD Found in Urban             |      |
| Areas or Other Rural Highways                                                                | 46   |
| Figure 20. Plot of VCD for Rural Principal Arterial – Interstate (Project 4_0200R, I-10,     |      |
| Maricopa County).                                                                            | 49   |
| Figure 21. Plot of VCD for Rural Principal Arterial – Interstate (Project 4_1024, I-40,      |      |
| Yavapai County).                                                                             | 50   |
| Figure 22. Plot of VCD for Rural Principal Arterial – Other (Project 4_6055_R, SR 85,        |      |
| 1 7                                                                                          | 50   |
| Figure 23. Plot of VCD for Rural Principal Arterial – Other (Project 4_102094, U.S. 93,      |      |
| Yavapai County).                                                                             | 51   |
| Figure 24. Plot of VCD for Urban Principal Arterial (Project 4_101602, SR 303, Maricopa      |      |
| County).                                                                                     | 51   |
| Figure 25. Plot of VCD for Urban Principal Arterial (Project 4_7079_R, SR 101, Maricopa      |      |
| County).                                                                                     | 52   |
| Figure 26. Plot of VCD for Site Rural Major Arterial (Project 4_100854, SR 79,               |      |
| Pinal County).                                                                               | 52   |
| Figure 27. Plot of VCD for Rural Major Arterial (Project 4_101622, SR 347, Pinal County).    | 53   |
| Figure 28. Plot of VCD for Rural Major Collector (Project 4_102230, U.S. 191, Graham         |      |
| County).                                                                                     |      |
| Figure 29. Plot of VCD for Rural Major Collector (Project 4_100767, SR 72, La Paz County)    | . 54 |

| Figure 30. Location of AVC Sites in Arizona Used in the Hourly Traffic Analysis              | 55 |
|----------------------------------------------------------------------------------------------|----|
| Figure 31. Illustration of a Cluster Analysis for "Correlation Coefficient" to Distinguish   |    |
| between Hourly Truck Distributions.                                                          | 56 |
| Figure 32. Plot of Typical Rural Truck Hourly Distribution for Site 4_100537 Located in      |    |
| Coconino County on I-40                                                                      | 58 |
| Figure 33. Plot of Typical Urban Truck Hourly Distribution for Site 4_100800 Located in      |    |
| Urban Pima County (Tucson) on SR 77.                                                         |    |
| Figure 34. Plot of Relatively Flat Hourly Distribution for Site 4_100070 from a Far-Western, |    |
| Long-Haul Section on I-10 in the Desert.                                                     |    |
| Figure 35. Plot of Three Hourly Truck Distributions.                                         | 59 |
| Figure 36. Locations of AVC Sites Used in the Analysis of Monthly Truck Adjustment           |    |
| Factors                                                                                      | 61 |
| Figure 37. Results from the Correlation Coefficient Method for Monthly Truck Adjustment      |    |
| Factors                                                                                      | 63 |
| Figure 38. Plot of MAF for Site 4_100188 (Vehicle Class 5), I-10 in Cochise County           | 64 |
| Figure 39. Plot of MAF for Site 4_100188 (Vehicle Class 9), I-10 in Cochise County           | 64 |
| Figure 40. Plot of MAF for Site 4_100541 (Vehicle Class 5), I-40 in Coconino County          | 65 |
| Figure 41. Plot of MAF for Site 4_100541 (Vehicle Class 9), I-40 in Coconino County          | 65 |
| Figure 42. Locations of the LTPP Sites with WIM Data                                         | 66 |
| Figure 43. Typical Arizona Highway Class 5 Truck Single-Axle Load Distribution               | 67 |
| Figure 44. Typical Arizona Highway Class 9 Truck Single-Axle Load Distribution               | 68 |
| Figure 45. Typical Arizona Highway Class 9 Truck Tandem-Axle Load Distribution               | 68 |
| Figure 46. Single-Axle Load Distribution for Truck Class 5.                                  | 72 |
| Figure 47. Single-Axle Load Distribution for Truck Class 9.                                  | 72 |
| Figure 48. Tandem-Axle Load Distribution for Truck Class 9.                                  | 73 |
| Figure 49. Map of Sites Used for the Axles-Per-Truck Analysis.                               | 75 |
| Figure 50. Plot of Axles per Truck for Site 4_0500 (Vehicle Class 9)                         | 77 |
| Figure 51. Plot of Axles per Truck for Site 4_1002 (Vehicle Class 9)                         |    |
| Figure 52. Plot of Axles per Truck for Site 4_1007 (Vehicle Class 9)                         |    |
| Figure 53. Plot of Axles per Truck for Site 4_6055 (Vehicle Class 9)                         | 78 |
| Figure 54. Baseline Traffic Volume Inputs Used for Sensitivity Analysis.                     | 80 |
| Figure 55. Location of Climate Stations for Baseline HMA Pavement Project                    |    |
| Figure 56. Location of Climate Stations for Baseline HMA Pavement Project                    | 81 |
| Figure 57. Plot of VCD for Clusters 1 and 2 and the MEPDG Default                            | 82 |
| Figure 58. Plot of Single ALD for Clusters 1, 2, and 3 (Class 5 Trucks Only)                 |    |
| Figure 59. Plot of Single ALD for Clusters 1 and 2 (Class 9 Trucks Only).                    | 83 |
| Figure 60. Plot of Tandem ALD for Clusters 1 and 2 (Class 9 Trucks Only)                     | 84 |
| Figure 61. Plot of Hourly Distribution for Clusters 1 and 2 and the MEPDG Default            |    |
| Figure 62. Plot Showing the Effect of VCD Clusters 1 and 2 on New HMA Pavement               |    |
| Alligator Cracking.                                                                          | 85 |
| Figure 63. Plot Showing the Effect of VCD Clusters 1 and 2 on New HMA                        |    |
| Pavement Rutting                                                                             | 86 |
| Figure 64. Plot Showing the Effect of VCD Clusters 1 and 2 on New HMA Pavement IRI           |    |
| Figure 65. Plot Showing the Effect of VCD Clusters 1 and 2 on New JPCP                       |    |
| Transverse Cracking.                                                                         | 87 |
| Figure 66. Plot Showing the Effect of VCD Clusters 1 and 2 on New JPCP Faulting              |    |

| Figure 67. Plot Showing the Effect of VCD Clusters 1 and 2 on New JPCP IRI             | 88     |
|----------------------------------------------------------------------------------------|--------|
| Figure 68. Plot Showing the Effect of ALD Clusters 1 through 3 on New HMA Pavement     |        |
| Alligator Cracking.                                                                    | 89     |
| Figure 69. Plot Showing the Effect of ALD Clusters 1 through 3 on New HMA Pavement     |        |
| Rutting                                                                                | 89     |
| Figure 70. Plot Showing the Effect of ALD Clusters 1 through 3 on New HMA Pavement II  | RI. 90 |
| Figure 71. Plot Showing the Effect of ALD Clusters 1 through 3 on New JPCP Transverse  |        |
| Cracking                                                                               | 90     |
| Figure 72. Plot Showing the Effect of ALD Clusters 1 through 3 on New JPCP Faulting    | 91     |
| Figure 73. Plot Showing the Effect of ALD Clusters 1 through 3 on New JPCP IRI         | 91     |
| Figure 74. Plot Showing the Effect of Hourly Distribution Clusters 1 and 2 on New JPCP |        |
| Transverse Cracking.                                                                   | 92     |
| Figure 75. Plot Showing the Effect of Hourly Distribution Clusters 1 and 2 on New JPCP |        |
| Faulting.                                                                              | 93     |
| Figure 76. Plot Showing the Effect of Hourly Distribution Clusters 1 and 2 on          |        |
| New JPCP IRI.                                                                          | 93     |
| Figure 77. Map of Sites Where Lateral Wander of Trucks Was Measured in Arizona         | 111    |
| Figure 78. Histogram and Fitted Normal Distribution Curve Showing the Distribution of  |        |
| Wheel Lateral Wander.                                                                  |        |
| Figure 79. Typical Arizona Rural 24-Hour Distribution of Trucks                        | 124    |
| Figure 80. Typical Arizona 24-Hour Urban Distribution of Trucks                        | 124    |
| Figure 81. Typical 24-Hour Long-Haul Distance Desert Distribution of Trucks            | 125    |
| Figure 82. Map of Recommended WIM Sites.                                               | 146    |
| Figure 83. TDC/Piezo GVW Distribution.                                                 | 148    |
| Figure 84. LTPP SPS-2 GVW Distribution.                                                | 149    |
| Figure 85. Recommended Business Process Overview                                       | 151    |

# LIST OF TABLES

| Table 1. Estimate of Overall ESALs-per-Truck Factor for ADOT (Alavi & Senn, 1999)       | 6     |
|-----------------------------------------------------------------------------------------|-------|
| Table 2. LTPP Sites from Which WIM Data Were Assembled and Used for Analysis            | 7     |
| Table 3. Computed ESALs for Several Sites in Arizona (ARA, 2004)                        | 8     |
| Table 4. Initial Year Traffic Data.                                                     | 12    |
| Table 5. Truck Traffic Volume Adjustment Factors.                                       | 13    |
| Table 6. Descriptions of MEPDG Default TTC Groups (ARA, 2004).                          | 15    |
| Table 7. Default Vehicle Class Distribution for Each MEPDG TTC Group (ARA, 2004)        | 16    |
| Table 8. Recommendations for Selecting MEPDG TTC Groups Based on Highway                |       |
| Functional Class (ARA, 2004).                                                           | 17    |
| Table 9. Truck Traffic Volume Other Adjustment Factors.                                 | 17    |
| Table 10. Recommended Level of Input for MEPDG Traffic Input Variables                  | 20    |
| Table 11. Arizona ATR Sites Used in the Analysis of VCD.                                |       |
| Table 12. LTPP Data Tables from Which Data Were Obtained for Analysis                   | 26    |
| Table 13. Detailed Description of LTPP Sites in Arizona                                 |       |
| Table 14. Arizona Truck Wheelbase Distribution at Two Sites (Classes 8 through 13 Only) | 30    |
| Table 15. Summary of Traffic Data Availability for Analysis in Arizona.                 | 36    |
| Table 16. Criteria for Selecting the Optimum Number of Clusters                         |       |
| Table 17. National Highway TTC VCD Defaults in the MEPDG.                               |       |
| Table 18. VCD TTCs Based on Arizona Data That Are Closely Related to the                |       |
| National TTCs                                                                           | 44    |
| Table 19. Differences between MEPDG and Arizona TTC Recommendations for VCD             | 45    |
| Table 20. Selection Criteria for Level 3 MEPDG Arizona TTCs Based on Functional Class   | 46    |
| Table 21. Summary of Cluster Analysis for VCD Using ADOT and LTPP Datasets              | 47    |
| Table 22. Matching Cluster 1 to TTC 2 and Cluster 2 to TTC 12                           | 49    |
| Table 23. Summary of Sites and Clusters Determined for Hourly Truck Traffic             |       |
| Distribution.                                                                           | 57    |
| Table 24. AVC Sites Used in the Monthly Truck Adjustment Factors.                       | 62    |
| Table 25. Summary of Outlier Data Excluded from the Cluster Analysis                    | 70    |
| Table 26. Summary of Cluster Analysis for ALD Using ADOT and LTPP Datasets              | 74    |
| Table 27. Summary of All Sites Used in the Axles-per-Truck Cluster Analysis             | 76    |
| Table 28. HMA Pavement Materials Properties.                                            | 79    |
| Table 29. JPCP Materials Properties.                                                    | 81    |
| Table 30. MEPDG Traffic Input Data Clusters Used for Sensitivity Analysis               | 82    |
| Table 31. Summary of Sensitivity Results for VCD                                        | 88    |
| Table 32. Summary of Sensitivity Results for ALD.                                       | 92    |
| Table 33. Recommended MEPDG VCD Inputs for Level 2/3 Design in Arizona                  |       |
| Table 34. Recommended MEPDG Hourly Truck Distribution Input for Design in Arizona       |       |
| Table 35. Recommended MEPDG MAF Input for Design in Arizona.                            |       |
| Table 36. Recommended Cluster 1 Single Axle MEPDG ALD Input for Design                  |       |
| in Arizona                                                                              | 98    |
| Table 37. Recommended Cluster 1 Tandem Axle MEPDG ALD Input for Design                  |       |
| in Arizona                                                                              | 99    |
| Table 38. Recommended Cluster 1 Tridem Axle MEPDG ALD Input for Design                  |       |
| in Arizona                                                                              | . 100 |

| Table 39. Recommended Cluster 1 Quad Axle MEPDG ALD Input for Design in Arizona    | . 101 |
|------------------------------------------------------------------------------------|-------|
| Table 40. Recommended Cluster 2 Single Axle MEPDG ALD Input for Design             |       |
| in Arizona                                                                         | . 102 |
| Table 41. Recommended Cluster 2 Tandem Axle MEPDG ALD Input for Design             |       |
| in Arizona                                                                         | . 103 |
| Table 42. Recommended Cluster 2 Tridem Axle MEPDG ALD Input for Design             |       |
| in Arizona                                                                         | . 104 |
| Table 43. Recommended Cluster 2 Quad Axle MEPDG ALD Input for Design in Arizona    | . 105 |
| Table 44. Recommended Cluster 3 Single Axle MEPDG ALD Input for Design             |       |
| in Arizona                                                                         | . 106 |
| Table 45. Recommended Cluster 3 Tandem Axle MEPDG ALD Input for Design             |       |
| in Arizona                                                                         | . 107 |
| Table 46. Recommended Cluster 3 Tridem Axle MEPDG ALD Input for Design             |       |
| in Arizona                                                                         | . 108 |
| Table 47. Recommended Cluster 3 Quad Axle MEPDG ALD Input for Design               |       |
| in Arizona                                                                         | . 109 |
| Table 48. Recommended MEPDG Axles-per-Truck Statistics Default Input for Design    |       |
| in Arizona                                                                         | . 110 |
| Table 49. Wheelbase Distribution.                                                  | . 113 |
| Table 50. ADOT Comprehensive Traffic Data Input System for the MEPDG               | . 116 |
| Table 51. Traffic Volume Inputs Required for the MEPDG.                            |       |
| Table 52. Recommended Selection Criteria for Level 3 Arizona TTCs Based on Highway |       |
| Functional Class.                                                                  | . 120 |
| Table 53. Recommended Level 3 VCDs for Specific Arizona TTCs                       |       |
| Table 54. Percent Trucks in Design Lane for Arizona Sections                       |       |
| Table 55. Summary of 24-Hour Truck Distributions Recommended for Arizona MEPDG     |       |
| for Input Level 2/3 by Rural and Urban Functional Class                            | . 125 |
| Table 56. Traffic Weight Inputs Required.                                          |       |
| Table 57. Summary of Level 2/3 Single Axle ALD Recommended for Arizona Rural       |       |
| Principal Arterials, Interstate.                                                   | . 127 |
| Table 58. Summary of Level 2/3 Tandem Axle ALD Recommended for Arizona Rural       |       |
| Principal Arterials, Interstate.                                                   | . 128 |
| Table 59. Summary of Level 2/3 Tridem Axle ALD Recommended for Arizona Rural       |       |
| Principal Arterials, Interstate.                                                   | . 129 |
| Table 60. Summary of Level 2/3 Quad Axle ALD Recommended for Arizona Rural         | ,     |
| Principal Arterials, Interstate.                                                   | . 130 |
| Table 61. Summary of Level 2/3 Single Axle ALD Recommended for Arizona Urban       |       |
| Freeways and Rural Minor Arterials/Collectors.                                     | . 131 |
| Table 62. Summary of Level 2/3 Tandem Axle ALD Recommended for Arizona Urban       |       |
| Freeways and Rural Minor Arterials/Collectors.                                     | . 132 |
| Table 63. Summary of Level 2/3 Tridem Axle ALD Recommended for Arizona Urban       |       |
| Freeways and Rural Minor Arterials/Collectors.                                     | . 133 |
| Table 64. Summary of Level 2/3 Quad Axle ALD Recommended for Arizona Urban         |       |
| Freeways and Rural Minor Arterials/Collectors.                                     | . 134 |
| Table 65. Summary of Level 2/3 Single Axle ALD Recommended for Arizona Rural       |       |
| Principal Arterials, Non-Interstate.                                               | . 135 |
| • • • • • • • • • • • • • • • • • • • •                                            |       |

| Table 66. Summary of Level 2/3 Tandem Axle ALD Recommended for Arizona Rural      |     |
|-----------------------------------------------------------------------------------|-----|
| Principal Arterials, Non-Interstate.                                              | 136 |
| Table 67. Summary of Level 2/3 Tridem Axle ALD Recommended for Arizona Rural      |     |
| Principal Arterials, Non-Interstate.                                              | 137 |
| Table 68. Summary of Level 2/3 Quad Axle ALD Recommended for Arizona Rural        |     |
| Principal Arterials, Non-Interstate.                                              | 138 |
| Table 69. Traffic Geometric Inputs Required                                       | 139 |
| Table 70. Recommended Values of Axles per Truck for Arizona Design.               | 140 |
| Table 71. Other Traffic Inputs Required                                           | 142 |
| Table 72. Action Plan for Development of an ADOT Comprehensive Traffic Data Input |     |
| System for the MEPDG.                                                             | 144 |
| Table 73. Action Plan Summary of What, Who, and When                              | 144 |
| Table 74. Recommended WIM Sites: New, Upgrades, and POEs                          | 147 |
| Table 75. Functional Class for Recommended WIM sites.                             | 147 |
| Table 76. Options for Meeting the Recommended WIM Site Requirements               | 147 |
| Table 77. TDC/LTPP Weight Measurement Comparison.                                 | 149 |
| Table 78. Axle Spacing Measurement Comparison.                                    | 149 |
| Table 79. Performance and Cost of WIM Equipment.                                  | 150 |

# ACRONYMS AND ABBREVIATIONS

AADT Annual average daily traffic AADTT Annual average daily truck traffic

AASHO American Association of State Highway Officials

AASHTO American Association of State Highway and Transportation Officials

ADOT Arizona Department of Transportation

ADR Automatic data recorder ALD Axle load distribution

ATLAS Advanced Traffic Loading and Analysis System

ATR Automated traffic recorder

ATRC Arizona Transportation Research Center

AVC Automatic vehicle classification
CCC Cubic clustering criterion
ESAL Equivalent single-axle load
FHWA Federal Highway Administration

GPS Global positioning system
GPS General Pavement Studies
GVW Gross vehicle weight
HMA Hot mix asphalt

IRI International Roughness Index
JPCP Jointed plain concrete pavement

LDF Load distribution factor LEF Load equivalency factor

LTPP Long-Term Pavement Performance

MEPDG Mechanistic-Empirical Pavement Design Guide

MAF Monthly adjustment factors

MP Milepost

MPD Multimodal Planning Division

MVD Motor Vehicle Division

NCHRP National Cooperative Highway Research Program

PCC Portland cement concrete

POE Port-of-entry
PSF Pseudo F-value
PST2 Pseudo t<sup>2</sup> value

R<sup>2</sup> Cumulative and partial squared multiple correlation

SHRP Strategic Highway Research Program

SPS Specific Pavement Studies

TPD Transportation Planning Division

TTC Truck traffic classification

VAR Eigenvalue and associated variance

VCD Vehicle class distribution

WIM Weigh-in-motion

# **CHAPTER 1. INTRODUCTION**

The Arizona Department of Transportation (ADOT) maintains over 7,000 miles of highways that require new construction, reconstruction of existing alignments, maintenance, resurfacing, and rehabilitation, including lane widening, to carry future heavy truck traffic. Approximately one-half of the ADOT highway construction budget is dedicated to pavement. Accurate estimates of traffic are important for the cost-effective design of new and rehabilitated pavement.

This research study, SPR-672, addresses the collection, preparation, and use of traffic data for the design of new and rehabilitated pavement. The study focuses primarily on traffic data that ADOT will require for implementing the American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG) (AASHTO, 2008).

# **BRIEF BACKGROUND**

Currently, the only traffic data available to ADOT's Pavement Design Section for designing pavements in Arizona are the annual average daily traffic (AADT) data obtained from the ADOT Multimodal Planning Division (MPD) and the equivalent single-axle load (ESAL) data predicted by the pavement management software. These predictions are based on the statewide traffic weight data and vehicle class data collected in the 1990s. Truck volume data have been updated to the present time to compute growth rate. The future growth rates are based on AADT and does not account for the types of vehicles in the traffic stream (Federal Highway Administration [FHWA] Classes 4 through 13). Essentially, the predictions are based on very old classification and weight information, as well as growth rate based on total traffic growth. Using old data could lead to significant errors in predictions of traffic loadings, which could affect design and construction costs. Therefore, it is extremely important that ADOT use current traffic volume, classification, and weight data based on periodic traffic surveys and measurements.

The MEPDG uses much of the same information as that required for the AASHTO 1993 *Guide for Design of Pavement Structures* procedure (AASHTO, 1993), but it requires major changes in the way ADOT has been acquiring and compiling traffic data. For example, the MEPDG uses truck axle load spectra data directly instead of calculating ESALs. There are also other inputs needed that are not currently being collected. Therefore, it is imperative that ADOT has a comprehensive traffic data input system that is kept current. This type of traffic data input system will ultimately save the State of Arizona substantial costs by providing more accurate and cost-effective designs. After Indiana implemented the MEPDG, they found that they saved a total of \$36 million on 136 projects designed using the MEPDG instead of the 1993 AASHTO procedure (Nantung, 2011).

# **OBJECTIVES**

ADOT initiated efforts to implement the MEPDG (1) as a design tool for new, reconstructed, and rehabilitated pavements and (2) for conducting forensic evaluation of existing pavements. A key aspect of the MEPDG implementation effort in Arizona is to develop an MEPDG traffic data input system. Developing an MEPDG traffic data input system requires:

- Identification of MEPDG traffic data input needs.
- Evaluation of current ADOT traffic data collection, storage, and analysis practices to determine whether the system can adequately meet MEPDG traffic data needs.
- Performance of quality checks of existing traffic data to determine that they are reasonable and to identify anomalies.
- Development of a detailed action plan to satisfy future MEPDG traffic data needs.
- Documentation of findings and recommendations.

# **BRIEF SUMMARY OF FINDINGS**

ADOT's current traffic data collection and preparation practices require several improvements to be compatible with MEPDG data needs. For example, ADOT needs to improve data collection on truck volume and weight, perform quality assurance checks of those data, and prepare/analyze the data for use in the MEPDG. Using the MEPDG in Arizona will require (1) an annual flow of updated key traffic data for use as MEPDG Level 2/3 defaults and (2) the ability to collect Level 1 data for key projects being designed.

An action plan in Chapter 8 for developing a traffic data collection system for the MEPDG in Arizona has been prepared. This plan calls for the establishment of a homogeneous traffic segment database that includes all highways in Arizona (Interstate, U.S., and state). This database would include all traffic inputs required for the MEPDG and AASHTO 1993 design procedures. Traffic segments would include milepost (MP) to MP limits, as well as global positioning system (GPS) coordinates of the beginning and ending MP. The traffic segment database would include segment beginning and ending MP and GPS coordinates, traffic volume inputs, traffic weight inputs, traffic geometry inputs, and other inputs.

This report discusses types of equipment recommended for collecting traffic data based on the accuracies needed in support of the MEPDG. Cost estimates are provided for the equipment, installation, site maintenance, equipment calibration, monitoring (data retrieval), and data analyses.

This report documents procedures to collect Level 1 traffic inputs. Level 2/3 recommended inputs and defaults are provided based on the best historical data available to date. These data can be used for MEPDG design for now, but they will need annual updates from improved traffic volume, classification, and weight stations. ADOT also will need to develop the ability to collect on-site data for requested key projects where current data are deficient or the size of the project requires more accurate Level 1 data, as requested by pavement designers.

# ORGANIZATION OF REPORT

This report provides the results of work accomplished to satisfy the project objectives. Following is brief description of the report contents:

- Chapter 2 summarizes ADOT's current and future MEPDG traffic data requirements.
- Chapter 3 provides a framework for developing an ADOT traffic data input system.
- Chapter 4 provides a statistical analysis of traffic input clusters.
- Chapter 5 provides the results of a sensitivity analysis.
- Chapter 6 provides detailed default recommendations for Level 2/3 statewide traffic inputs for Arizona.
- Chapter 7 provides a detailed input system for ADOT traffic inputs for the MEPDG.
- Chapter 8 summarizes an action plan for future work.
- Appendix A presents a review of historical ADOT traffic data collection practices.
- Appendixes B through F summarize various data used in the analyses for this study, including vehicle class distribution (VCD), hourly truck distribution, monthly adjustment factors (MAFs), axle load distribution (ALD), and axles per truck.
- Appendix G presents a recommended business process overview for obtaining MEPDG and pavement management system traffic data.

# CHAPTER 2. CURRENT AND FUTURE TRAFFIC DATA REQUIREMENTS FOR PAVEMENT DESIGN

# **CURRENT ADOT TRAFFIC DATA REQUIREMENTS**

### **ESAL Truck Factors**

ADOT performs highway pavement design using the 1993 AASHTO Design Guide. The traffic data required for this procedure are ESALs. The ESAL concept was developed using data assembled from the American Association of State Highway Officials (AASHO) Road Test (1958 to 1960), and it establishes a damage relationship between the reference 18,000-lb single axle with dual tires and different axle types carrying different loads. Design ESALs used for pavement design are, in effect, a cumulative traffic load summary statistic (over the design period) representing a mixed stream of axle types and loads converted into an equivalent number of 18,000-lb single-axle loads totaled over that design period.

The ADOT Pavement Management Section estimates design ESALs using the equation below: (Alavi and Senn, 1999)

# Rigid ESALs:

Yearly 
$$ESAL_{seg} = 0.5*(AADT_{seg})*365*(\%Trucks)*[(\%VC4)*(ESAL4) + (\%VC5)*(ESAL5) + ..... + (\%VC13)*(ESAL13)]$$
 (Eq. 1)

## Where

ESAL<sub>seg</sub> = total yearly one-way ESALs for all lanes for a network segment AADT<sub>seg</sub> = average annual daily traffic collected by ADOT for the total twoway traffic for all lanes for a single network segment

%Trucks = percentage of trucks in the traffic system

%VC# = percentage of vehicle Classes 4 through 13 in the truck lane determined

from weigh-in-motion (WIM) data

ESAL# = average ESAL of Classes 4 through 13 in the truck lane determined

from WIM data

# Flexible ESALs:

Yearly 
$$ESAL_{seg} = 0.5*(AADT_{seg})*365*(%Trucks)*[(%VC4)*(ESAL4) + (%VC5)*(ESAL5) + ..... + 1.1*(%VC9)*(ESAL9) + ..... + 1.1*%(VC13)*(ESAL13) (Eq. 2)$$

# Where

ESAL<sub>seg</sub> = total yearly one-way ESALs for all lanes for a network segment AADT<sub>seg</sub> = average annual daily traffic collected by ADOT for the total two-

way traffic for all lanes for a single network segment

%Trucks = percentage of trucks in the traffic system

%VC# = percentage of vehicle Classes 4 through 13 in the truck lane determined

from WIM data

ESAL# = average ESALs of Class 4 through 13 vehicles in the truck lane determined from WIM data

Vehicle Classes 9 through 13 were multiplied by a safety factor of 1.1 for flexible pavements.

In general, AADT and percent of trucks information is provided for each highway segment by the ADOT Multimodal Planning Division. VCD and ESALs-per-truck information is computed using data from the nearest appropriate WIM station. For highway segments with only volume counts data available, Alavi and Senn (1999) developed an overall ESAL per truck factor of 1.08 for flexible pavements, as shown in Table 1.

Table 1. Estimate of Overall ESALs-per-Truck Factor for ADOT (Alavi & Senn, 1999).

| Vehicle<br>Class | Average ESALs per Class | Average %<br>Class | ESALs x<br>Average % Class |
|------------------|-------------------------|--------------------|----------------------------|
| 4                | 0.87                    | 4.8                | 0.04                       |
| 5                | 0.21                    | 21.8               | 0.04                       |
| 6                | 0.82                    | 10.4               | 0.09                       |
| 7                | 1.64                    | 2.4                | 0.04                       |
| 8                | 0.61                    | 16.1               | 0.10                       |
| 9                | 1.71                    | 36.1               | 0.62                       |
| 10               | 1.31                    | 2.0                | 0.03                       |
| 11               | 1.86                    | 5.1                | 0.09                       |
| 12               | 0.97                    | 0.6                | 0.01                       |
| 13               | 3.73                    | 0.5                | 0.02                       |
|                  |                         | 100                | 1.08                       |

As part of this study, analyses were performed to update the ESAL truck factors developed in the early 1990s. This was accomplished using WIM data available from the FHWA Long-Term Pavement Performance (LTPP) program database (up to 2009 data).

# **Updated ESAL Truck Factors**

Using the most recent WIM data from several Arizona LTPP project sites, a comprehensive analysis updated the ESAL truck factors published by Alavi and Senn (1999). Those LTPP sites are shown in Table 2. For each project selected, the following data were assembled:

- VCD over all years with data available.
- ALD for single, tandem, tridem, and quad axles over all years with data available.
- Mean number of single, tandem, tridem, and quad axles per truck over all years with data available.
- For computing ESALs, load equivalency factors (LEF) for 6-inch hot mix asphalt (HMA) and 9-inch portland cement concrete (PCC) pavement were assumed.
- Initial (base year) truck traffic = 1,500 trucks.
- Truck traffic annual linear growth rate = 3 percent.
- Analysis period = 20 years.

Table 2. LTPP Sites from Which WIM Data Were Assembled and Used for Analysis.

| LTPP Site | Route No. | Rural or Urban  | County     | Direction | Milepost |
|-----------|-----------|-----------------|------------|-----------|----------|
| 0100      | U.S93     | Rural           | Mohave     | NB        | 53.6     |
| 0500      | I-8       | Rural           | Pinal      | EB        | 159      |
| 0600      | I-40      | Rural           | Coconino   | EB        | 202.2    |
| 1002      | I-40      | Rural           | Yavapai    | WB        | 135.4    |
| 1024      | I-40      | Rural           | Yavapai    | EB        | 107      |
| 6060      | I-19      | Rural           | Santa Cruz | NB        | 14.9     |
| 6055      | SR-85     | Rural and Urban | Maricopa   | SB        | 141.8    |
| 7079      | SR-101    | Urban           | Maricopa   | NB        | 11.9     |

Figure 1 presents VCD of the selected LTPP projects.

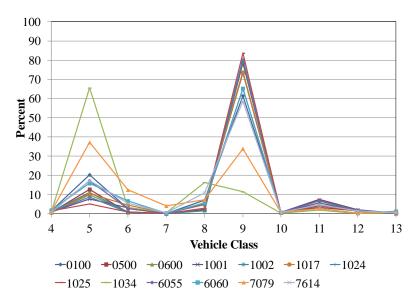



Figure 1. Illustration of Vehicle Class Distribution (FHWA Vehicle Classes 4 through 13) for the Selected LTPP Sites.

Using the assembled data, the following tasks were performed to obtain estimates of ESALs-pertruck factors:

- Estimate cumulative number of trucks (for each individual vehicle class) for the 20-year analysis period for all of the LTPP sites analyzed.
- Estimate cumulative number of flexible and rigid ESALs (for each individual vehicle class) for the 20-year analysis period for all of the LTPP sites analyzed.
- Mean ESALs-per-truck factors for each site, vehicle class, and pavement type.

The results are summarized in Table 3. Several comparisons for the estimated ESALs-per-truck factors are presented in Figure 2 through Figure 5.

Table 3. Computed ESALs for Several Sites in Arizona (ARA, 2004).

|      |       | Rural | Rural | Rural    | Rural   | Rural   | Rural         | Urban    | Urban    |
|------|-------|-------|-------|----------|---------|---------|---------------|----------|----------|
| LTTF | Site  | 0100  | 0500  | 0600     | 1002    | 1024    | 6060          | 6055     | 7079     |
| Rout | e No. | U.S93 | I-8   | I-40     | I-40    | I-40    | I-19          | SR-85    | SR-101   |
| Cou  | unty  |       | Pinal | Coconino | Yavapai | Yavapai | Santa<br>Cruz | Maricopa | Maricopa |
| Dire | ction | NB    | EB    | EB       | WB      | EB      | NB            | SB       | NB       |
| Mile | post  | 53.6  | 159.0 | 202.2    | 135.4   | 107.0   | 14.9          | 141.8    | 11.9     |
|      | 4     | 1.36  | 1.09  | 0.83     | 1.99    | 1.79    | 0.82          | 0.59     | 0.74     |
|      | 5     | 0.13  | 0.28  | 0.11     | 0.65    | 0.24    | 0.33          | 0.16     | 0.26     |
|      | 6     | 1.07  | 0.67  | 0.78     | 1.23    | 0.00    | 0.79          | 0.99     | 0.99     |
|      | 7     |       |       |          |         |         |               |          | 2.09     |
| PCC  | 8     | 0.37  | 0.40  | 0.36     | 1.33    | 0.69    | 1.19          | 0.98     | 1.02     |
| 2    | 9     | 2.00  | 1.40  | 2.64     | 3.85    | 2.60    | 1.89          | 1.39     | 1.72     |
|      | 10    | 1.85  | 2.25  | 1.98     | 4.10    | 2.36    | 4.31          | 1.24     |          |
|      | 11    | 1.73  | 1.50  | 2.31     | 2.95    | 1.78    | 1.09          |          | 2.36     |
|      | 12    | 0.90  | 1.30  | 1.49     | 3.94    | 1.45    | 0.75          | 0.71     | 0.91     |
|      | 13    | 1.34  | 9.18  |          |         |         | 2.83          |          | 3.90     |
|      | 4     | 0.95  | 0.93  | 0.67     | 1.43    | 1.21    | 0.67          | 0.48     | 0.63     |
|      | 5     | 0.12  | 0.27  | 0.11     | 0.60    | 0.23    | 0.32          | 0.16     | 0.25     |
|      | 6     | 0.71  | 0.51  | 0.55     | 0.85    |         | 0.58          | 0.65     | 0.72     |
|      | 7     |       |       |          |         |         |               |          | 1.38     |
| AC   | 8     | 0.32  | 0.37  | 0.33     | 1.08    | 0.61    | 0.93          | 0.79     | 0.80     |
| <    | 9     | 1.28  | 0.92  | 1.62     | 2.32    | 1.56    | 1.18          | 0.88     | 1.11     |
|      | 10    | 1.04  | 1.26  | 1.10     | 2.17    | 1.22    | 2.51          | 0.67     |          |
|      | 11    | 1.73  | 1.48  | 2.31     | 2.82    | 1.77    | 1.03          |          | 2.32     |
|      | 12    | 0.81  | 1.19  | 1.40     | 3.32    | 1.32    | 0.65          | 0.65     | 0.86     |
|      | 13    | 0.85  | 5.17  |          |         |         | 2.14          |          | 2.38     |

Note: No current data available for Class 7 trucks; previous values used.

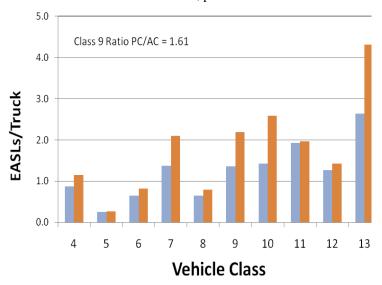



Figure 2. Comparison between Concrete and Asphalt Pavement ESALs.

The ratio of Class 9 trucks for concrete and asphalt is 1.61, which is a typical value.

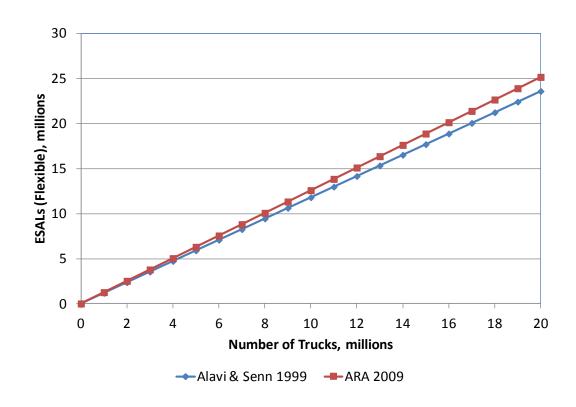



Figure 3. Comparison between Flexible Pavement ESALs Estimated Using Current 2009 Data (Labeled ARA 2009) and Older Data (Labeled Alavi and Senn 1999).

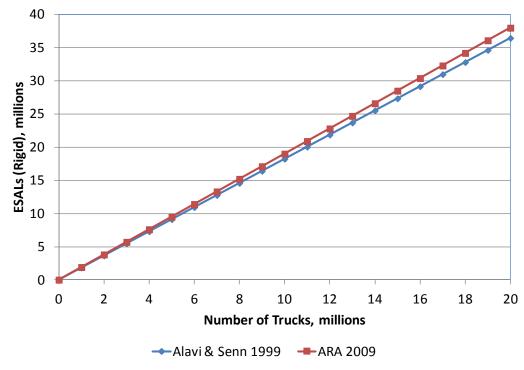



Figure 4. Comparison between Rigid Pavement ESALs Estimated Using Current 2009 Data (Labeled ARA 2009) and Older Data (Labeled Alavi and Senn 1999).

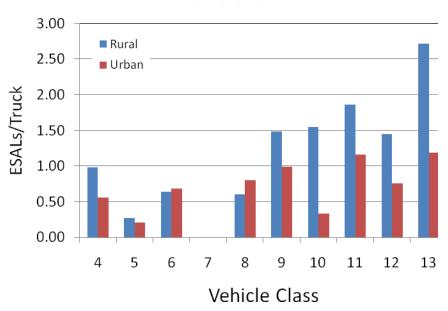



Figure 5. Comparison between Computed Rural and Urban Flexible Pavement ESALs-per-Truck Ratios.

The comparisons illustrated in Figure 2 through Figure 5 show the following:

- Truck factors have not changed significantly between 1999 and 2009.
- There were considerable differences in ESALs-per-truck factors for urban and rural sites, with rural factors being higher for most truck classes.

Appendix A presents a summary of current ADOT traffic data collection practices.

# MEPDG TRAFFIC DATA REQUIREMENTS

The MEPDG software requires (1) base year traffic inputs and traffic volume adjustment factors and (2) general traffic inputs for pavement design. Descriptions of these traffic input requirements are presented in this section.

# Which MEPDG Level of Input (1 through 3) is Recommended for Each Traffic Variable?

Levels of input to the MEPDG are described briefly as follows:

- Level 1. Direct measure of the traffic input at the project site. Examples include portable WIM equipment on the project or visual counting of trucks across multiple lanes at a point on the project.
- Level 2. Correlation of measured traffic inputs with field-measured traffic inputs. VCD based on specific highways or districts is an example.
- Level 3. Mean statewide or regional traffic inputs. Examples would include ALD for a certain class of highway.

The recommended level of input depends on the significance that the input has on the pavement design (i.e., the impact of future pavement damage and distress predictions) and the ability to measure it.

# **Initial Year Traffic Inputs and Traffic Volume Adjustment Factors**

Detailed descriptions of the required traffic inputs are presented in Table 4 through Table 9. An illustration of the distance from the outer edge of tire to the paint stripe input is shown in Figure 6, of the truck tractor wheelbase input in Figure 7, and various truck input variables in Figure 8. The column labeled "General Factors that Influence Input" in Tables 4 and 5 provides information on how the many traffic inputs vary across the highways of Arizona. Although a factor may influence an input, it does not necessarily indicate that the factor significantly impacts pavement design.

# **Summary of MEPDG Traffic Inputs Required**

Table 10 presents recommended levels of input for all MEPDG traffic input variables based on national sensitivity analysis results and engineering experience.

**Table 4. Initial Year Traffic Data.** 

| MEPDG Traffic Input<br>Variable                                                                                                   | Description                                                                                                                                                                                                                                                                                                                      | Typical Source                                                                      | General Factors that<br>Influence Input                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Analysis period or pavement design life                                                                                           | Time in years for which the new or rehabilitated pavement is being designed. Information used to project future traffic volumes.                                                                                                                                                                                                 | Obtained from pavement design manual                                                | Highway surface type, functional class                                                                                                              |
| Date newly<br>constructed or<br>rehabilitated and date<br>pavement is opened<br>to traffic (each are first<br>of month specified) | Date on which the new or rehabilitated pavement is opened for use to public traffic. Note that the pavement will be subjected to some form of construction traffic prior to this date, but this is not considered.                                                                                                               | Project specific                                                                    | Local climate,<br>contracting policy, traffic<br>management,<br>construction type                                                                   |
| Base year two-way<br>AADTT                                                                                                        | <ul> <li>(a) Total volume of truck traffic (the total number of heavy vehicles [Classes 4 to 13] in the traffic stream) passing a point or segment of a road facility to be designed in both directions during a 24-hour period.</li> <li>(b) Determined for the opening to traffic year.</li> </ul>                             | Obtained from<br>on-site vehicle<br>counts data<br>(AVC, WIM)                       | Site specific. To obtain<br>AADTT, the total AADT<br>and percent of trucks<br>must be known                                                         |
| Number of lanes in design direction                                                                                               | The number of lanes in the design direction. Represents the total number of lanes in one direction                                                                                                                                                                                                                               | Obtained from geometric design                                                      | Traffic volumes,<br>highway capacity,<br>congestion                                                                                                 |
| Truck traffic direction<br>distribution factor, also<br>referred to as<br>directional distribution<br>factor                      | Percentage of all two-way AADTT in the design lane direction. It is used to quantify a difference in the overall volume of trucks in two directions. It is usually assumed to be 50 percent; however, this is not always the case as using a different route for transporting goods to and from some facilities is quite common. | Obtained from<br>on-site vehicle<br>counts data<br>(AVC, WIM) in<br>both directions | Site specific                                                                                                                                       |
| LDF                                                                                                                               | It is the percentage of trucks in the design lane as a proportion of all truck traffic in the design lane direction. For two-lane, two-way highways (one lane in one direction), this factor is 1.0 because all truck traffic in any one direction must use the same lane.                                                       | Obtained from<br>on-site vehicle<br>counts data<br>(AVC, WIM)                       | Number of lanes in design direction, entrance/exit ramps in area, AADT                                                                              |
| Operational speed                                                                                                                 | Truck operational speed or average travel speed. A description of a detailed methodology used for determining operational speeds can be found in the Transportation Research Board Highway Capacity Manual or AASHTO's Policy on Geometric Design of Highways and Streets (often referred to as the "Green Book").               | Arizona Department of Public Safety and Police databases                            | Close to speed limit, has little effect at higher speeds, but special steep grades will greatly have an effect, as well as signalized intersections |

AADTT = annual average daily truck traffic; AVC = automatic vehicle classification; LDF = load distribution factor; other abbreviations and acronyms are as previously defined.

**Table 5. Truck Traffic Volume Adjustment Factors.** 

| Traffic<br>Input<br>Variable                                          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Source                                                                 | Factors That Influence Input                                                                                                     |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| MAF                                                                   | MAF are used to distribute estimates of annual truck traffic volumes across the 12 months that make up a year. Note that although the MEPDG assumes an even distribution of annual traffic across 12 months (this implies that the same number of trucks was applied each month within a year, default MAF =1.0), in reality, truck volumes vary across the months. Distribution is performed separately for each vehicle class or truck type. The MEPDG assumes that MAF remains stable for the typical pavement design period.                                                                                                                                                      | Obtained<br>from vehicle<br>counts data<br>(AVC, WIM)                  | Agricultural and industrial activities, seasonal climatic effects, functional class                                              |
| Vehicle class distribution factors                                    | VCD factors are used to distribute annual truck traffic volumes across the 10 truck types (FHWA vehicle Classes 4 through 13) considered by the MEPDG. The MEPDG assumes that VCD factors remain stable over the pavement design period. The MEPDG provides 17default VCD factors called TTC groups. These default TTC groups represented different mixes of truck traffic in a given traffic stream. A detailed definition and descriptions of the MEPDG TTC groups is presented in Table 6. VCD factors for each of the MEPDG default TTC groups is presented in Table 7, while recommendations for assigning TTC groups based on highway functional class is presented in Table 8. | Obtained<br>from vehicle<br>counts data<br>(AVC &<br>WIM)              | Agricultural<br>and industrial<br>activities,<br>functional<br>class, land-<br>use (urban or<br>rural)                           |
| Truck<br>hourly<br>distribution<br>factors                            | Used to distribute estimates of daily truck traffic volumes across the 24 hours that make up a day. The MEPDG assumes that truck hourly distribution factors remains stable over the typical pavement design period. The MEPDG provides default hourly truck traffic distribution values.                                                                                                                                                                                                                                                                                                                                                                                             | Obtained<br>from hourly<br>vehicle<br>counts data<br>(AVC, WIM)        | Agricultural and industrial activities, functional class, landuse (urban or rural), desert conditions                            |
| Truck<br>traffic<br>growth<br>factors<br>(growth<br>rate and<br>type) | Used to forecast future truck traffic volumes (over the design period). For new highways/alignments, both are estimated using historical truck traffic volumes adjusted using trip generation models/factors. For existing highways/alignments, historical traffic volume counts for the given site is mostly adequate. Growth type can be none (zero percent growth), linear, or compound. The rate of truck traffic growth is the average annual percent change in truck traffic over the analysis period. Note that both truck growth rate and type can be assigned individually for each of the 10 truck types/vehicle classes considered by the MEPDG.                           | Obtained<br>from<br>historical<br>vehicle<br>counts data<br>(AVC, WIM) | Economic,<br>(agricultural,<br>industrial,<br>recreational<br>activities),<br>climate, land-<br>use (urban or<br>rural), terrain |

TTC = truck traffic classification; other abbreviations and acronyms are as previously defined.

Table 5. Truck Traffic Volume Adjustment Factors, continued.

| Traffic<br>Input<br>Variable                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Source                            | Factors That Influence Input                                                                                                                                           |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Axles per truck                               | Described as the mean number of single, tandem, tridem, and quad axles per vehicle class/truck type. It is estimated for each of the 10 truck types/vehicle classes considered by the MEPDG. It is used to estimate the total number of single, tandem, tridem, and quad axles applied at a given site over the design period.                                                                                                                                                                                                                                                                                                                                                                    | Obtained from WIM site data       | Vehicle<br>classification,<br>truck size,<br>and weight<br>regulations                                                                                                 |
| Axle load<br>distribution<br>(ALD)<br>factors | Used to distribute estimates of single, tandem, tridem, and quad axles over up to 40 load intervals for each axle type as follows:  • Single axles – 3,000 lb to 40,000 lb at 1,000-lb intervals.  • Tandem axles – 6,000 lb to 80,000 lb at 2,000-lb intervals.  • Tridem and quad axles – 12,000 lb to 102,000 lb at 3,000-lb intervals.  The MEPDG allows for separate estimates of ALD factors for the combination of truck type/vehicle class and month of the year. The MEPDG software provides default normalized percentage of axle weights for each vehicle class that falls within each weight range for each month of the year. Default values were developed using LTPP traffic data. | Obtained<br>from WIM<br>site data | Axle type, vehicle classification, truck size, and weight regulations; economic, (agricultural, industrial, and recreational activities) and land-use (urban or rural) |

Table 6. Descriptions of MEPDG Default TTC Groups (ARA, 2004).

| Buses in               | Commodities Being Transported by Type of Truck |                                                                                                      |              |  |  |
|------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------|--|--|
| Traffic Stream         | Multi-Trailer                                  | Single-Trailers and Single-<br>Segments                                                              | Group<br>No. |  |  |
|                        |                                                | Predominantly single-trailer trucks                                                                  | 5            |  |  |
|                        | Relatively high                                | High percentage of single-trailer trucks, but some single-segment trucks                             | 8            |  |  |
|                        | amount of multi-<br>trailer trucks             | Mixed truck traffic with a higher percentage of single-trailer trucks                                | 11           |  |  |
| Low to none            | (>10%)                                         | Mixed truck traffic with approximately equal percentages of single-segment and single-trailer trucks | 13           |  |  |
| (<2%)                  |                                                | Predominantly single-segment trucks                                                                  | 16           |  |  |
|                        |                                                | Predominantly single-trailer trucks                                                                  | 3            |  |  |
|                        | Moderate                                       | Mixed truck traffic with a higher percentage of single-trailer trucks                                | 7            |  |  |
|                        | amount of multi-<br>trailer trucks (2-<br>10%) | Mixed truck traffic with approximately equal percentages of single-segment and single-trailer trucks | 10           |  |  |
|                        |                                                | Predominantly single-segment trucks                                                                  | 15           |  |  |
|                        |                                                | Predominantly single-trailer trucks                                                                  | 1            |  |  |
|                        |                                                | Predominantly single-trailer trucks, but with a low percentage of single-segment trucks              | 2            |  |  |
| Low to                 |                                                | Predominantly single-trailer trucks with a low to moderate amount of single-segment trucks           | 4            |  |  |
| moderate (>2%)         | Low to none (<2%)                              | Mixed truck traffic with a higher percentage of single-trailer trucks                                | 6            |  |  |
| (2270)                 |                                                | Mixed truck traffic with approximately equal percentages of single-segment and single-trailer trucks | 9            |  |  |
|                        |                                                | Mixed truck traffic with a higher percentage of single-segment trucks                                | 12           |  |  |
|                        |                                                | Predominantly single-segment trucks                                                                  | 14           |  |  |
| Major bus route (>25%) | Low to none (<2%)                              | Mixed truck traffic with approximately equal single-segment and single-trailer trucks                | 17           |  |  |

Table 7. Default Vehicle Class Distribution for Each MEPDG TTC Group (ARA, 2004).

| TTC   | TTC Description                                                    | Vehicle/Truck Class Distribution (percent) |      |      |     |      |      |      |     |     |      |
|-------|--------------------------------------------------------------------|--------------------------------------------|------|------|-----|------|------|------|-----|-----|------|
| Group | TTC Description                                                    | 4                                          | 5    | 6    | 7   | 8    | 9    | 10   | 11  | 12  | 13   |
| 1     | Major single-trailer truck route (Type I)                          | 1.3                                        | 8.5  | 2.8  | 0.3 | 7.6  | 74.0 | 1.2  | 3.4 | 0.6 | 0.3  |
| 2     | Major single-trailer truck route (Type II)                         | 2.4                                        | 14.1 | 4.5  | 0.7 | 7.9  | 66.3 | 1.4  | 2.2 | 0.3 | 0.2  |
| 3     | Major single- and multi-<br>trailer truck route (Type I)           | 0.9                                        | 11.6 | 3.6  | 0.2 | 6.7  | 62.0 | 4.8  | 2.6 | 1.4 | 6.2  |
| 4     | Major single-trailer truck route (Type III)                        | 2.4                                        | 22.7 | 5.7  | 1.4 | 8.1  | 55.5 | 1.7  | 2.2 | 0.2 | 0.4  |
| 5     | Major single- and multi-<br>trailer truck route (Type II).         | 0.9                                        | 14.2 | 3.5  | 0.6 | 6.9  | 54.0 | 5.0  | 2.7 | 1.2 | 11.0 |
| 6     | Intermediate light and single-trailer truck route (Type I)         | 2.8                                        | 31.0 | 7.3  | 0.8 | 9.3  | 44.8 | 2.3  | 1.0 | 0.4 | 0.3  |
| 7     | Major mixed truck route (Type I)                                   | 1.0                                        | 23.8 | 4.2  | 0.5 | 10.2 | 42.2 | 5.8  | 2.6 | 1.3 | 8.4  |
| 8     | Major multi-trailer truck route (Type I)                           | 1.7                                        | 19.3 | 4.6  | 0.9 | 6.7  | 44.8 | 6.0  | 2.6 | 1.6 | 11.8 |
| 9     | Intermediate light and single-trailer truck route (Type II)        | 3.3                                        | 34.0 | 11.7 | 1.6 | 9.9  | 36.2 | 1.0  | 1.8 | 0.2 | 0.3  |
| 10    | Major mixed truck route (Type II)                                  | 0.8                                        | 30.8 | 6.9  | 0.1 | 7.8  | 37.5 | 3.7  | 1.2 | 4.5 | 6.7  |
| 11    | Major multi-trailer truck route (Type II)                          | 1.8                                        | 24.6 | 7.6  | 0.5 | 5.0  | 31.3 | 9.8  | 0.8 | 3.3 | 15.3 |
| 12    | Intermediate light and<br>single-trailer truck route<br>(Type III) | 3.9                                        | 40.8 | 11.7 | 1.5 | 12.2 | 25.0 | 2.7  | 0.6 | 0.3 | 1.3  |
| 13    | Major mixed truck route (Type III)                                 | 0.8                                        | 33.6 | 6.2  | 0.1 | 7.9  | 26.0 | 10.5 | 1.4 | 3.2 | 10.3 |
| 14    | Major light truck route (Type I)                                   | 2.9                                        | 56.9 | 10.4 | 3.7 | 9.2  | 15.3 | 0.6  | 0.3 | 0.4 | 0.3  |
| 15    | Major light truck route (Type II)                                  | 1.8                                        | 56.5 | 8.5  | 1.8 | 6.2  | 14.1 | 5.4  | 0.0 | 0.0 | 5.7  |
| 16    | Major light and multi-trailer truck route                          | 1.3                                        | 48.4 | 10.8 | 1.9 | 6.7  | 13.4 | 4.3  | 0.5 | 0.1 | 12.6 |
| 17    | Major bus route                                                    | 36.2                                       | 14.6 | 13.4 | 0.5 | 14.6 | 17.8 | 0.5  | 0.8 | 0.1 | 1.5  |

Table 8. Recommendations for Selecting MEPDG TTC Groups Based on Highway Functional Class (ARA, 2004).

| Highway Functional Class Descriptions                                       | Applicable Truck Traffic Classification Group Number |
|-----------------------------------------------------------------------------|------------------------------------------------------|
| Principal arterials – Interstate and defense routes                         | 1,2,3,4,5,8,11,13                                    |
| Principal arterials – Intrastate routes, including freeways and expressways | 1,2,3,4,6,7,8,9,10,11,12,14,16                       |
| Minor arterials                                                             | 4,6,8,9,10,11,12,15,16,17                            |
| Major collectors                                                            | 6,9,.12,14,15,17                                     |
| Minor collectors                                                            | 9,12,14,17                                           |
| Local routes and streets                                                    | 9,12,14,17                                           |

**Table 9. Truck Traffic Volume Other Adjustment Factors.** 

| Traffic Input<br>Variable                                                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Source                                                                                                                        | Factors That<br>Influence Input                                                                                                      |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Mean Wheel<br>Location (from Lane<br>Marking) and Truck<br>Traffic Wander | Mean wheel location is the mean distance from the outer edge of the wheel to the lane longitudinal pavement marking. Truck traffic wander is the standard deviation of the distribution of actual wheel locations (see Figure 6) as a truck travels along the traffic lane.  MEPDG uses a default mean wheel location of 18 inches and a mean truck traffic wander standard deviation of 10 inches. These values were used in the national calibration. They should not be changed without measured data indicating other values. | Past research<br>national/local<br>studies. Can be<br>measured through<br>use of video<br>camera, spots on<br>pavements, etc. | Lane width,<br>shoulder type, deep<br>valleys/drop offs,<br>mountain sides,<br>etc.                                                  |
|                                                                           | Information on mean wheel location and traffic wander is obtained from actual field measurements. A review of past literature indicates very little information available on both mean wheel location and associated variability. Default mean wheel location values of 18 inches and truck traffic wander of 10 inches is provided by the MEPDG based on information presented in national literature.                                                                                                                           |                                                                                                                               |                                                                                                                                      |
| Truck Wheelbase<br>Distribution                                           | Distance from the steering axle to the first next axle for trucks Class 8 and above is called the wheelbase. Three levels are specified as short, medium, and long. This input affects top-down cracking of JPCP. Figure 7 illustrates the truck wheelbase.                                                                                                                                                                                                                                                                       | WIM data                                                                                                                      | This factor has not<br>been measured<br>generally before,<br>but is affected by<br>the length of haul of<br>trucks on the<br>highway |
| Axle Configuration                                                        | Axle configuration inputs required by the MEPDG are as described in Figure 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Manufacturers'<br>specifications,<br>measurements of<br>individual trucks at<br>WIM sites, etc.                               | Legal requirements                                                                                                                   |

JPCP = jointed plain concrete pavement. All other abbreviations and acronyms are as previously defined.

Table 9. Truck Traffic Volume Other Adjustment Factors, continued.

| Traffic Input<br>Variable | Description                                                                                                                                                                                                                                                                                                                                                                                                                                     | Source                                                                               | Factors That Influence Input                      |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------|
| Tire Pressure             | This input is the typical hot rolling tire pressure of FHWA vehicle Class 4 through 13 trucks. The MEPDG assumes a default hot tire pressure of 120 psi. The hot inflation pressure is typically approximately 10 to 15 percent greater than the cold inflation pressure. A mean tire inflation pressure of 120 psi was used in the national calibration and should not be changed without measured data indicating another value.  Description | Manufacturers' specifications, measurements of individual trucks at rest areas, etc. | Manufacturers' specifications and recommendations |



Figure 6. Example of Distance from the Outer Edge of the Wheel to the Pavement Marking.

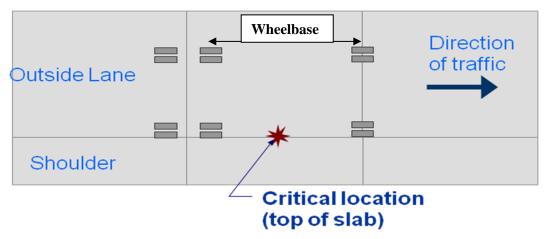



Figure 7. Illustration of Truck Wheelbase Definition.

The percentage of short, medium, and long wheelbase truck tractors is a critical factor in MEPDG input.

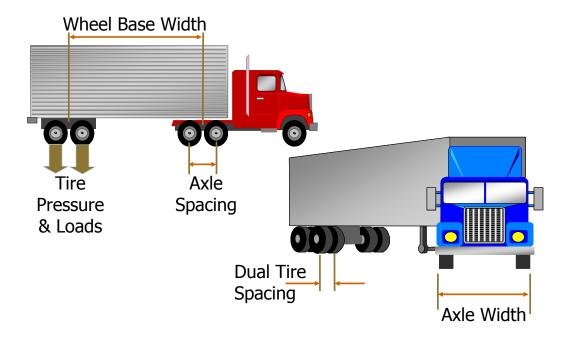



Figure 8. Axle Wheel Configuration Inputs (Average Axle Width Edge to Edge), Dual Tire Spacing, Axle Wheel Spacing (Tandem, Tridem, and Quad Axles).

Table 10. Recommended Level of Input for MEPDG Traffic Input Variables.

| MEPDG Traffic Input Variable                                                                                       | Overall Impact<br>on Pavement<br>Design                                                               | Level of Effort                                                            | Ability to Measure? | Recommended<br>Level of Input                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Analysis period or pavement design life                                                                            | High                                                                                                  | Low                                                                        | Yes                 | Level 1 (site specific)                                                                                                                        |
| Date newly constructed or rehabilitated and date pavement is opened to traffic (each are first of month specified) | Moderate                                                                                              | N/A (best estimate based on construction expectations)                     | No                  | Level 2/3<br>(estimate only)                                                                                                                   |
| Base year two-way average initial AADTT                                                                            | High                                                                                                  | Moderate                                                                   | Yes                 | Level 1 (site specific)                                                                                                                        |
| Number of lanes in design direction                                                                                | High                                                                                                  | Low                                                                        | Yes                 | Level 1 (site specific)                                                                                                                        |
| Truck traffic direction<br>distribution factor, also referred<br>to as directional distribution<br>factor          | Low                                                                                                   | Moderate                                                                   | Yes                 | Level 2/3 (site specific)                                                                                                                      |
| LDF                                                                                                                | Moderate                                                                                              | High (requires an on-site AVC across all lanes with an appropriate sample) | Yes                 | Level 2/3 (site specific)                                                                                                                      |
| Operational speed                                                                                                  | Low, however if<br>speed < 30 mph,<br>can be moderate<br>to high for HMA                              | Moderate (requires<br>an AVC on-site<br>with an appropriate<br>sample)     | Yes                 | Level 2/3<br>(based on<br>speed limit and<br>topography)                                                                                       |
| MAF                                                                                                                | Low, however<br>could be moderate<br>if significant<br>seasonal<br>variations exist                   | High (requires on-<br>site AVC over an<br>entire year)                     | Yes                 | Level 2/3<br>(based on<br>statewide<br>defaults)                                                                                               |
| Vehicle class distribution factors                                                                                 | Moderate,<br>however could be<br>high if special<br>recreational or<br>industrial<br>conditions exist | Moderate (requires<br>an on-site AVC<br>with an appropriate<br>sample)     | Yes                 | Level 1 or 2/3 based on functional class (e.g., urban versus rural, principal arterials versus collectors and minor arterials)                 |
| Truck hourly distribution factors                                                                                  | HMA: None<br>JPCP: Low                                                                                | Moderate (requires<br>an on-site AVC<br>with an appropriate<br>sample)     | Yes                 | Level 2/3 based<br>on functional<br>class (e.g.,<br>urban versus<br>rural, principal<br>arterials versus<br>collectors and<br>minor arterials) |

Table 10. Recommended Level of Input for MEPDG Traffic Input Variables, continued.

| MEPDG Traffic Input Variable                                   | Overall Impact<br>on Pavement<br>Design | Level of Effort                                                                                               | Ability to Measure?                                                          | Recommended<br>Level of Input                                          |
|----------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Truck traffic growth factors (growth rate and type)            | High                                    | Moderate (requires historical truck volume data and expectations of future land use, population growth, etc.) | No, past growth only                                                         | Level 1 (site-<br>specific<br>historical traffic<br>and other data)    |
| Axles per truck                                                | Low                                     | Moderate (requires<br>AVC or WIM data<br>with an appropriate<br>sample)                                       | Yes                                                                          | Level 2/3<br>(statewide or<br>national<br>defaults)                    |
| ALD factors                                                    | LD factors Moderate                     |                                                                                                               | Yes                                                                          | Level 2/3 based<br>on urban versus<br>rural versus<br>long desert haul |
| Mean wheel location (from lane marking to outer edge of wheel) | HMA: None<br>JPCP: Moderate<br>to high  | High (requires an on-site video measurement system or manual observations)                                    | Yes,<br>pavement<br>markings<br>and<br>observations<br>from top of<br>bridge | Level 2/3<br>(statewide or<br>national<br>defaults)                    |
| Truck traffic lateral wander within lane                       | High                                    | High (requires an on-site video measurement system or manual observations)                                    | Yes, same<br>as wheel<br>location                                            | Level 2/3<br>(statewide or<br>national<br>defaults)                    |
| Axle spacings                                                  | Low                                     | Moderate, WIM equipment                                                                                       | Yes                                                                          | Level 2/3<br>(statewide or<br>national<br>defaults)                    |
| Tire pressure                                                  | HMA: Moderate<br>JPCP: Low              | High                                                                                                          | Yes                                                                          | Level 2/3<br>(statewide or<br>national<br>defaults)                    |
| Truck wheelbase                                                | HMA: None<br>JPCP: Moderate             | Moderate (requires WIM)                                                                                       | Yes                                                                          | Level 2/3<br>(statewide or<br>national<br>defaults)                    |

## CHAPTER 3. FRAMEWORK FOR DEVELOPING THE ADOT MEPDG TRAFFIC DATA INPUT SYSTEM

The framework for developing the ADOT MEPDG traffic data input system is presented below:

- 1. Traffic data identification and assembly.
- 2. Traffic data processing, review, identification of anomalies and errors, and data cleansing.
- 3. Statistical analysis to assign measured traffic data into subsets or natural groupings (called clusters) with similar characteristics and distribution patterns.
- 4. Determination of optimum number of clusters within Arizona for each of the following MEPDG traffic data types:
  - a. MAF.
  - b. Hourly truck distribution.
  - c. VCD (for a given highway section, VCD affects the computation of the number of single, tandem, tridem, and quad axles that pass over the design period and is thus an important MEPDG input).
  - d. ALD factors.
  - e. Number of axles per truck.
- 5. Performance of sensitivity analysis and interpretation of sensitivity analysis results.
- 6. Development of default statewide Level 2/3 traffic inputs for the MEPDG implementation in Arizona.

The following sections describe these steps in greater detail.

### STEP 1: TRAFFIC DATA IDENTIFICATION AND ASSEMBLY

Several government entities monitor and collect traffic data in Arizona, leading to significant variations in traffic data collection practices, data accuracy, and data storage practices and availability. For the SPR-672 study, a comprehensive effort was required to identify the historic traffic data available in Arizona.

A thorough review of ADOT and other state entities' business practices identified at least three entities that could potentially supply the traffic data required for this study:

- ADOT Motor Vehicle Division (MVD).
- ADOT Multimodal Planning Division (MPD).
- ADOT Arizona Transportation Research Center (ATRC).

The researchers made an initial effort to obtain Arizona traffic data and review the data for usefulness. AVC data collected at various sites across the state were obtained from the MVD. Data from 10 WIM sites and eight AVC sites across the state were available from the ADOT Research Center through the FHWA LTPP program. Although the MPD collects WIM data at port-of-entry (POE) sites across the state, efforts to obtain these data were not successful.

All of the data obtained were assembled in a project database. The following sections provide detailed descriptions of the data assembled.

## **Summary of Data Assembled from the MVD**

From the MVD, the researchers obtained VCD data from 21 sites across the state. Data obtained from all of the sites applied the FHWA 13-bin classification scheme. Table 11 presents general information and characteristics of the sites from which VCD data were available. Figure 9 presents a map showing the locations of the 21 automated traffic recorder (ATR) sites, illustrating the statewide coverage of the representative ATR sites.

Table 11. Arizona ATR Sites Used in the Analysis of VCD.

| Site   | Lanes | County   | Route       | Functional Class                                            | Latitude | Longitude |
|--------|-------|----------|-------------|-------------------------------------------------------------|----------|-----------|
| 100010 | 4     | Yuma     | I-08        | Rural Principal Arterial - Interstate                       | 32.6780  | -114.0380 |
| 100070 | 4     | La Paz   | I-10        | Rural Principal Arterial - Interstate                       | 33.6610  | -114.0060 |
| 100139 | 6     | Pima     | I-10        | Urban Principal Arterial -<br>Interstate                    | 32.4540  | -111.2050 |
| 100188 | 4     | Cochise  | I-10        | Rural Principal Arterial - Interstate                       | 32.3410  | -109.5680 |
| 100327 | 4     | Mohave   | I-15        | Rural Principal Arterial - Interstate                       | 36.9800  | -113.6540 |
| 100473 | 4     | Pima     | I-19        | Urban Principal Arterial -<br>Interstate                    | 32.1710  | -110.9850 |
| 100537 | 4     | Coconino | I-40        | Rural Principal Arterial - Interstate                       | 35.2300  | -111.8100 |
| 100541 | 4     | Coconino | I-40        | Urban Principal Arterial -<br>Interstate                    | 35.1730  | -111.6470 |
| 100767 | 2     | La Paz   | SR 72       | Rural Major Collector                                       | 33.8530  | -113.9070 |
| 100800 | 6     | Pima     | SR 77       | Urban Principal Arterial - Other                            | 32.3430  | -110.9770 |
| 100854 | 2     | Pinal    | SR 79       | Rural Minor Arterial                                        | 33.1550  | -111.3560 |
| 100922 | 4     | Maricopa | SR 85       | Rural Principal Arterial - Other                            | 33.2630  | -112.6340 |
| 101113 | 2     | Yuma     | SR 95       | Rural Principal Arterial - Other                            | 33.7580  | -114.2170 |
| 101248 | 10    | Maricopa | SR 101      | Urban Principal Arterial - Other Freeways or Expressways    | 33.4570  | -111.8900 |
| 101602 | 2     | Maricopa | SR 303      | Urban Principal Arterial - Other<br>Freeways or Expressways | 33.6360  | -112.4180 |
| 101622 | 4     | Pinal    | SR 347      | Rural Minor Collector                                       | 33.0920  | -112.0340 |
| 101849 | 4     | Maricopa | U.S. 60     |                                                             |          | -112.4150 |
| 101928 | 2     | Navajo   | U.S. 60     | Rural Minor Arterial                                        | 34.2090  | -110.0780 |
| 102068 | 4     | Coconino | U.S. 89     | Urban Principal Arterial - Other                            | 35.2590  | -111.5510 |
| 102094 | 2     | Yavapai  | U.S. 93     | Rural Principal Arterial - Other                            | 34.0120  | -112.7890 |
| 102230 | 2     | Graham   | U.S.<br>191 | Rural Major Collector                                       | 32.7960  | -109.5400 |

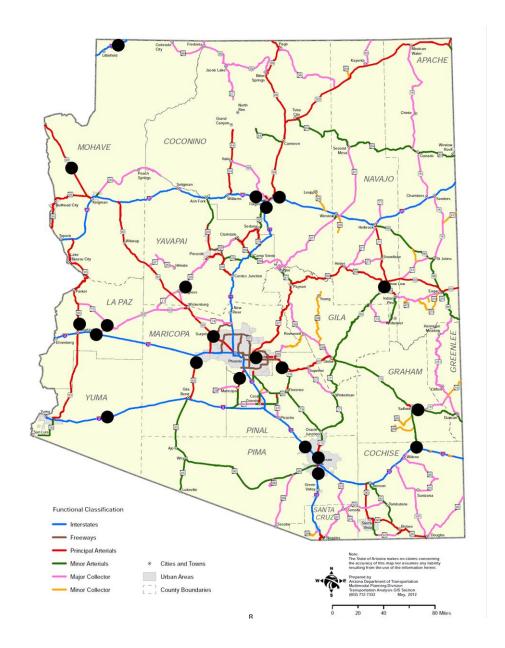



Figure 9. Locations of the Arizona ATR Data Collection Sites.

## Summary of Data Assembled from the LTPP Regional Center

The LTPP Western Regional Center collects WIM and AVC data in two Canadian provinces and 12 states in the United States, including Arizona. The LTPP program uses the raw AVC and WIM data to compute several of the parameters that are required MEPDG traffic inputs.

For this study, various MEPDG computed traffic inputs were estimated using raw data from 10 Regional Center WIM sites and eight Regional Center AVC sites. The data were obtained from the LTPP traffic and inventory databases (Standard Data Release 23.0, January 2009). Table 12 lists the LTPP data tables from which traffic and related data were obtained.

Table 12. LTPP Data Tables from Which Data Were Obtained for Analysis.

| LTPP Data Table           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TRF_MEPDG_MONTH_ADJ_FACTR | This table contains adjustment factors for ADTT for each truck class by month based on either classification or weight monitoring data as indicated by the code contained in the TRF_DATA_TYPE field. A value of four in the TRF_DATA_TYPE field indicates the estimate was based on only classification data, and a value of seven indicates the estimate was based on only weight data.                                                                                                                                                                                                                                                                                                                                                                             |
| TRF_MEPDG_HOURLY_DIST     | This table contains annual average hourly distribution of trucks by hour in the LTPP lane based on classification data. The computations were performed following the algorithm contained in the MEPDG developed under NCHRP project 1-37A. The table contains data from only SPS_1, -2, -5 and -6 sites, which have passed a validation study under the SPS WIM Pooled Fund study. Only years with at least 210 days of classification data are included.                                                                                                                                                                                                                                                                                                            |
| TRF_MEPDG_AX_DIST_ANL     | This table contains normalized axle distributions by month, truck class, and axle group. Records in this table are generated from the MM_AX table in the LTPP traffic database that contain at least 210 days of WIM data in that calendar year. The monthly distribution bin counts are based on day of the week averages. The 4,000-lb weight bins for quad axles in the LTPP traffic database are reduced to the MEPDG 3,000-lb weight bins using an assumption that the 4,000-lb bins have a uniform distribution between adjacent bins.                                                                                                                                                                                                                          |
| TRF_MEPDG_AX_PER_TRUCK    | This table contains the annual average number of number of axles by vehicle class and axle type by year. This is computed from the axles actually weighed as summed in the TRF_MONITOR_LTPP_LN table. In this beta release of data, records with average numbers of axles per truck less than 0.1 or greater than five have a RECORD_STATUS=C.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TRF_MEPDG_VEH_CLASS_DIST  | This table contains the percentage of trucks by vehicle class within the truck population (FHWA Classes 4 through 13) in the LTPP lane-based classification, weight, or a combination of classification and weight data as indicated by the code contained in the TRF_DATA_TYPE field. For some sections, up to three different estimates are provided. Estimates are provided by year. On SPS sites, the estimates are provided using a project-level Strategic Highway Research Program (SHRP) ID. In most cases, it is a good assumption that the project level traffic applies to all test sections on the project. The SPS_PROJECT_STATIONS table can be used to identify sites where test sections are located in both directions of travel on one SPS project. |
| INV_ID                    | This table contains section location coordinates by route number and milepost, longitude and latitude, direction of travel, identification if the location is part of the FHWA Highway Performance Monitoring System, and county/parish name. Location information is provided in this table for sections classified in a GPS experiment or an SPS maintenance and rehabilitation experiment where CONSTRUCTION_NO = 1 in the EXPERIMENT_SECTION table. Location information for SPS projects that is based on construction of a new pavement structure is stored in the SPS_ID table.                                                                                                                                                                                |

NCHRP = National Cooperative Highway Research Program; SPS = Specific Pavement Studies; GPS = General Pavement Studies; all other abbreviations and acronyms are as previously defined.

General information and characteristics of the LTPP sites with MEPDG traffic data available are presented in Table 13. A map showing the locations of the 32 LTPP projects is presented in Figure 10, which illustrates the statewide coverage of the representative LTPP sites. Two sets of LTPP pavement sites—0100, 0900, and A900 located on U.S. 93; and 1007 and B900 located on I-10—were so geographically close to each other that traffic data from these project sites were deemed the same.

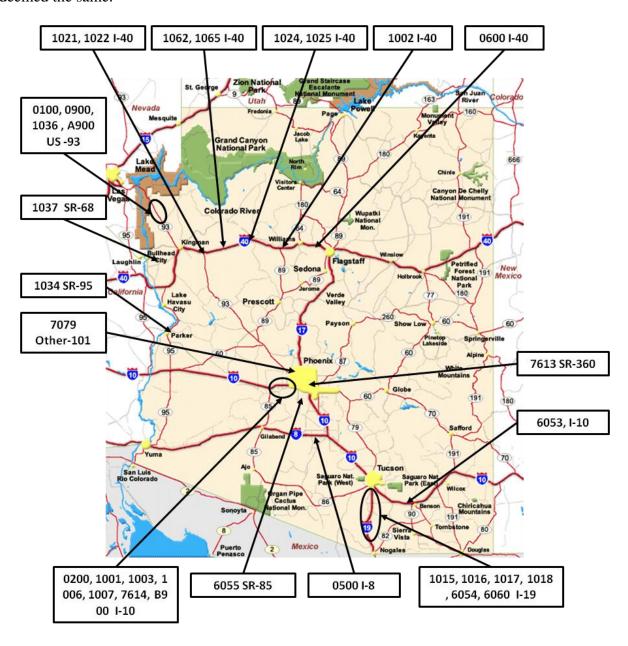



Figure 10. LTPP Sites across Arizona.

Table 13. Detailed Description of LTPP Sites in Arizona.

| No. | SHRP<br>ID | Total<br>Lanes<br>(Two-<br>Way) | Pavement Type | County     | FHWA<br>Functional<br>Class* | Travel<br>Direction | Milepost | Route No. |
|-----|------------|---------------------------------|---------------|------------|------------------------------|---------------------|----------|-----------|
| 1   | 0100       | 4                               | HMA           | Mohave     | RPA - US                     | Northbound          | 52.62    | U.S. 93   |
| 2   | 0200       | 4                               | PCC           | Maricopa   | RPA - I                      | Eastbound           | 109      | I-10      |
| 3   | 0500       | 4                               | HMA           | Pinal      | RPA - I                      | Eastbound           | 159.01   | I-8       |
| 4   | 0600       | 4                               | HMA           | Coconino   | RPA - I                      | Eastbound           | 202.16   | I-40      |
| 5   | 0900       |                                 | HMA           | Mohave     | RPA - US                     | Northbound          | 60.14    | U.S. 93   |
| 6   | 1001       | 4                               | HMA           | Maricopa   | RPA - I                      | Westbound           | 123.34   | I-10      |
| 7   | 1002       | 4                               | HMA           | Yavapai    | RPA - I                      | Westbound           | 145.37   | I-40      |
| 8   | 1003       | 4                               | HMA           | Maricopa   | RPA - I                      | Westbound           | 98.53    | I-10      |
| 9   | 1006       | 4                               | HMA           | Maricopa   | RPA - I                      | Westbound           | 110.65   | I-10      |
| 10  | 1007       | 4                               | HMA           | Maricopa   | RPA - I                      | Westbound           | 115.43   | I-10      |
| 11  | 1015       | 4                               | HMA           | Santa Cruz | RPA - I                      | Southbound          | 18.33    | I-19      |
| 12  | 1016       | 4                               | HMA           | Santa Cruz | RPA - I                      | Southbound          | 24.17    | I-19      |
| 13  | 1017       | 4                               | HMA           | Pima       | RPA - I                      | Northbound          | 32.98    | I-19      |
| 14  | 1018       | 4                               | HMA           | Pima       | RPA - I                      | Southbound          | 36.2     | I-19      |
| 15  | 1021       | 4                               | HMA           | Mohave     | RPA - I                      | Westbound           | 72.87    | I-40      |
| 16  | 1022       | 4                               | HMA           | Mohave     | RPA - I                      | Westbound           | 77.69    | I-40      |
| 17  | 1024       | 4                               | HMA           | Yavapai    | RPA - I                      | Eastbound           | 106.95   | I-40      |
| 18  | 1025       | 4                               | HMA           | Yavapai    | RPA - I                      | Westbound           | 113.03   | I-40      |
| 19  | 1034       | 2                               | HMA           | La Paz     | RMA                          | Southbound          | 145.25   | SR 95     |
| 20  | 1036       | 4                               | HMA           | Mohave     | RPA - US                     | Northbound          | 27.64    | U.S. 93   |
| 21  | 1037       | 2                               | HMA           | Mohave     | RPA - SR                     | Eastbound           | 1.4      | SR 68     |
| 22  | 1062       | 4                               | HMA           | Mohave     | RPA - I                      | Westbound           | 92.75    | I-40      |
| 23  | 1065       | 4                               | HMA           | Yavapai    | RPA - I                      | Eastbound           | 97.72    | I-40      |
| 24  | 6053       | 4                               | HMA over HMA  | Pima       | RPA - I                      | Eastbound           | 292.89   | I-10      |
| 25  | 6054       | 4                               | HMA over HMA  | Santa Cruz | RPA - I                      | Southbound          | 52.25    | I-19      |
| 26  | 6055       | 2                               | HMA over HMA  | Maricopa   | PRA - SR                     | Southbound          | 141.84   | SR 85     |
| 27  | 6060       | 4                               | HMA over HMA  | Santa Cruz | RPA - I                      | Northbound          | 14.88    | I-19      |
| 28  | 7079       | 6                               | CRCP          | Maricopa   | UPA – O                      | Northbound          | 11.9     | 101       |
| 29  | 7613       | 6                               | JPCP          | Maricopa   | UPA – SR                     | Westbound           | 180      | SR 360    |
| 30  | 7614       | 6                               | JPCP          | Maricopa   | RPA – I                      | Westbound           | 130.5    | I-10      |
| 31  | A900       | 4                               | HMA           | Mohave     | RPA - US                     | Northbound          | 60.14    | U.S. 93   |
| 32  | B900       | 4                               | HMA           | Maricopa   | RPA - I                      | Westbound           | 122.29   | I-10      |

RPA-I: Rural Principal Arterial-Interstate; RLC: Rural Local Collector; RPA-US: Rural Principal Arterial-US Route; RMA: Rural Minor Arterial; RMC: Rural Major Collector; UPA-State: Urban Principal Arterial-State Route; UPA-US: Urban Principal Arterial-US Route; CRCP = continuously reinforced concrete pavement; HMA = hot mixed asphalt.

# STEP 2: TRAFFIC DATA PROCESSING, REVIEW, IDENTIFICATION OF ANOMALIES AND ERROR, AND DATA CLEANSING

The reviewers performed step 2 based on published recommendations for reviewing traffic data (AASHTO, 2009; FHWA, 2009) as well as engineering judgment.

### **Data Processing**

Data processing consisted of the following:

- MVD raw AVC and WIM data:
  - Raw data in electronic format were collected by the MVD. The raw data were processed using ADOT-licensed TRADAS software to create Traffic Monitoring Guide classification (C-card) and weight (W-card) files (FHWA, 2001).
  - The MVD provided the Traffic Monitoring Guide C-card and W-card files to the researchers.
  - The C-card and W-card files were processed using ARA's Advanced Traffic Loading and Analysis System (ATLAS) software. The essential features of ATLAS that were used for data processing were:
    - Traffic import module that was used to process and read the Traffic Monitoring Guide C-card and W-card data.
    - Traffic export module that was used to create site-specific MEPDG traffic input files (vehicle classification, ALD, MAF, 24-hour truck counts, and growth rates based on historical data), a reference library database, and ESAL estimates.
    - Data analysis module to perform quality checks on the historical traffic data and perform data filtering on a site-by-site basis and by truck class.
  - Outputs from the ATLAS software was assembled in a project database for further review and consisted of the following data types for each site analyzed:
    - AADTT (by site, direction, lane number, year, and vehicle class).
    - Hourly truck distribution (by site, direction, and lane number).
    - Hourly truck volume (by site, direction, lane number, year, month, day, and week).
    - VCD (by site, direction, lane number, year, and month).
    - Wheelbase of truck Classes 8 through 13 was determined from two Arizona LTPP WIM sites. The results obtained for short, medium, and long truck wheelbases were very similar from site to site; however, additional data are desirable to provide a more accurate estimate. The results are summarized in Table 14.

Table 14. Arizona Truck Wheelbase Distribution at Two Sites (Classes 8 through 13 Only).

| Wheelbase Type | Wheelbase Length (feet) | Percent of Trucks<br>(Classes 8 through 13) |
|----------------|-------------------------|---------------------------------------------|
| Short          | 10.0 to 13.4            | 11                                          |
| Medium         | 13.5 to 16.5            | 17                                          |
| Long           | 16.6 to 20.0            | 72                                          |

### • Field measurements:

O ARA staff collected data on lateral wander (within a traffic lane) of trucks. This was done by making small marks at 6-inch spacings across the outer wheel path near an overhead bridge. Observations of the lateral offset of the outer edge of the truck/tire from the paint strip were made from the bridge. Data were obtained from four sites for a significant number of trucks. The mean and standard deviation of truck wander was computed and combined from all four sites.

## • Regional Center LTPP data:

o LTPP traffic data were received post-processing. The LTPP data received did not contain "raw" traffic data measurements (counts, weights, classification, etc.), but rather estimates of various MEPDG traffic input variables computed from the LTPP AVC and WIM sites in Arizona. (If required, the raw data can be obtained directly from LTPP.) Also, as part of the data processing, the LTPP data received various levels of quality assurance checks to ensure accuracy and reasonableness.

The processed MVD and LTPP traffic data were used to compute required MEPDG traffic inputs and put in a database for further review, identification of anomalies and error, and cleansing.

### **Data Review**

The MVD and LTPP traffic data were subjected to rigorous quality control checks. Review and identification of anomalies consisted of:

- Developing plots for use in accessing reasonableness of data and trends in data over the years:
  - O Plot of percent truck versus hour of the day (midnight through 11:00 pm) for all years with data available for a given site.
  - Plot of MAF versus month of the year (January through December) for all years with data available for a given site.
  - Plot of percent of trucks versus vehicle class (Classes 4 through 13) for all years with data available for a given site.
  - Plot of number of single, tandem, tridem, and quad axles per truck versus vehicle class (Classes 4 through 13) for all years with data available for a given site.
  - Plot of percent single, tandem, tridem, and quad trucks versus axle load (e.g., for single axles 3,000 lb to 41,000 lb in 1,000-lb increments) for all years with data available for a given site.

- Review of the plots for consistency, accuracy, and completeness (note that this did not involve basic quality assurance/quality control checks of the raw traffic data, but rather a check of MEPDG computed traffic inputs). Examples of the checks that were performed are as follows:
  - Whether hourly truck distribution factors add up to 100 percent or if the MAFs add up to 12.
  - Occurrences of long zero or "flat" periods in the monthly adjustment or hourly distribution data (several months or hours with no data).
  - O Whether plots of axle loads versus the percentage of all axles display distinct peaks as expected, and whether the percentage of all axles of a given axle type add up to 100.
  - o Was there consistency in trends over the years with data?

### **Identification of Anomalies and Error**

The plots developed for each site with data were reviewed and checked for reasonableness and consistency. Also, basic statistics such as mean, standard deviation, variance, etc., were computed to identify outliers and potential errors.

Data points and overall trends found to be inconsistent with expected trends were flagged. A tremendous effort was made during review to distinguish between unusual data, correct data, and incorrect data. For example, both breakdown in equipment and a special event could cause significant changes in expected traffic patterns. Generally, such data were identified and removed from the database, as the specific cause of the unusual data pattern was not important. Other causes of unusual traffic patterns were construction of new freeways in the Phoenix area that may have resulted in significant change in VCD and the stoppage of heavy trucks from using U.S. 93 since September 2001, resulting in significant change in VCD after 2001 on that highway (see Figures 11 and 12). Plots of all of the key MEPDG inputs for all sites with traffic data assembled are presented in Appendixes B through F. Examples of the plots used in data review and identification of anomalies are presented in Figures 11 through 17.

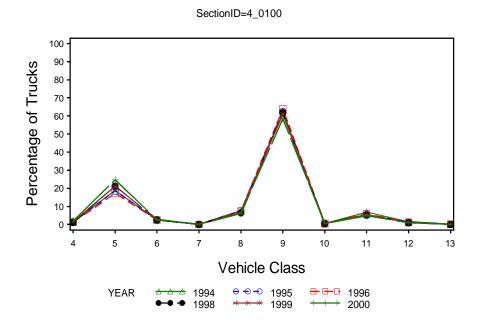



Figure 11. Plot of Vehicle Class Distribution for Site 4\_0100 (Prior to September 2001).

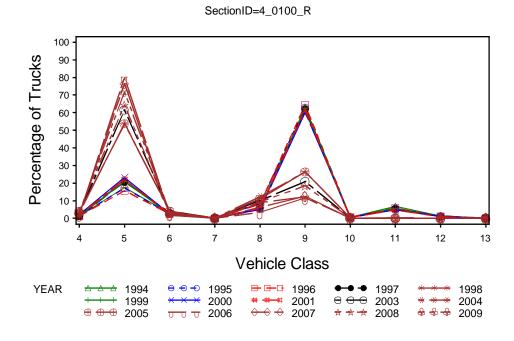



Figure 12. Plot of Vehicle Class Distribution for Site 4\_0100 (Prior to and After September 2001) Showing Significant Reduction in Class 9 Trucks.

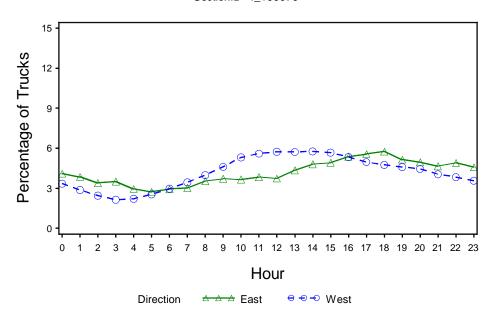



Figure 13. Plot of Hourly Truck Distribution for Site 4 100070.

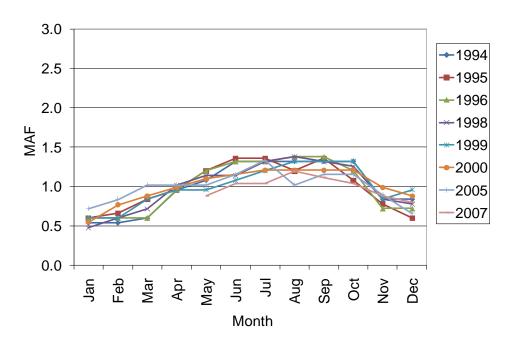



Figure 14. Plot of Monthly Adjustment Factors for LTPP 0100 (Class 4 Vehicles Only).

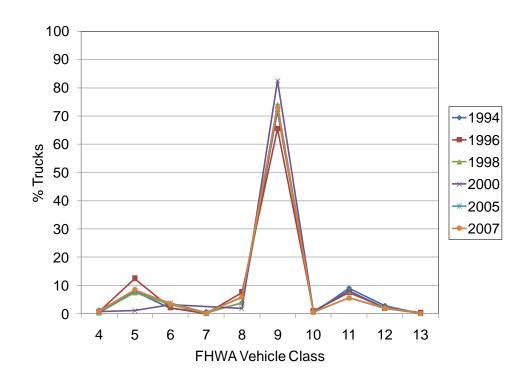



Figure 15. Plot of Vehicle Class Distribution for LTPP 1001.

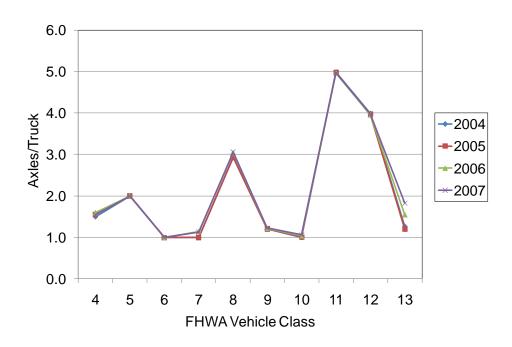



Figure 16. Plot Showing Number of Single Axles Per Truck for LTPP 0500.

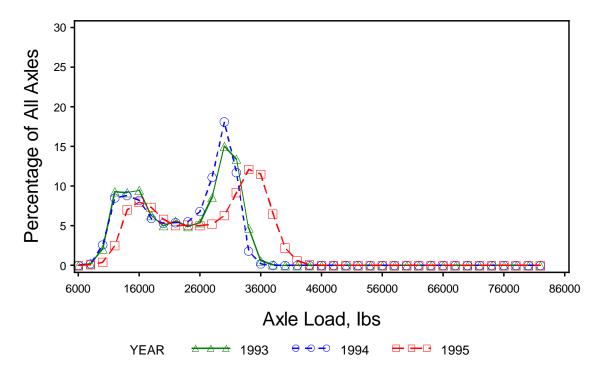



Figure 17. Plot Showing Tandem-Axle Load Distribution for LTPP 1001.

## **Data Cleansing**

The outcome of the data review process was the identification of all potentially anomalous or erroneous data. All suspected anomalous or erroneous data were removed from the project database and not used in the analysis. Table 15 lists the sites from which all reasonably good and accurate hourly distribution, MAFs, VCD, axles per truck, and ALD data were obtained. Note that only traffic data from the design lane (for highways with multiple lanes) were assembled for use in this analysis.

Table 15. Summary of Traffic Data Availability for Analysis in Arizona.

| CURRIE  | Lane   |       | Dire | ection |      |
|---------|--------|-------|------|--------|------|
| SHRP ID | Number | North | East | South  | West |
| 100010  | 1      |       | Х    |        | Х    |
| 100070  | 2      |       | Х    |        | Х    |
| 100139  | 2      |       | Х    |        | Х    |
| 100188  | 1      |       | Χ    |        | Х    |
| 100327  | 1      | Х     |      | Х      |      |
| 100473  | 2      | Х     |      | Х      |      |
| 100537  | 2      |       | X    |        | Х    |
| 100541  | 2      |       | Χ    |        | Х    |
| 100767  | 1      |       | X    |        | Х    |
| 100800  | 3      | Х     |      | Х      |      |
| 100854  | 1      | Х     |      | X      |      |
| 100922  | 1      | Х     |      | Х      |      |
| 101113  | 1      | Х     |      | X      |      |
| 101248  | 4      | Х     |      | X      |      |
| 101602  | 1      | Х     |      | Х      |      |
| 101622  | 2      | Х     |      | Х      |      |
| 101849  | 1      |       | X    |        | Х    |
| 101928  | 1      |       | Χ    |        | Х    |
| 102068  | 1      | Х     |      | Х      |      |
| 102084  | 1      | Х     |      | Х      |      |
| 102094  | 1      | Х     |      | Х      |      |
| 102230  | 1      | X     |      | X      |      |
| 0100    | 1      | X     |      |        |      |
| 0200    | 1      |       | Χ    |        |      |
| 0500    | 1      |       | X    |        |      |
| 0600    | 1      |       | X    |        |      |
| 0900    | 1      | Х     |      |        |      |
| 1001    | 1      |       |      |        | Χ    |
| 1002    | 1      |       |      |        | Χ    |
| 1003    | 1      |       |      |        | Х    |
| 1006    | 1      |       |      |        | Х    |
| 1007    | 1      |       |      |        | Х    |

Table 15. Summary of Traffic Data Availability for Analysis in Arizona, continued.

| CHBBID  | Lane   |       | Di   | rection |      |
|---------|--------|-------|------|---------|------|
| SHRP ID | Number | North | East | South   | West |
| 1015    | 1      |       |      | X       |      |
| 1016    | 1      |       |      | X       |      |
| 1017    | 1      | X     |      |         |      |
| 1018    | 1      |       |      | X       |      |
| 1021    | 1      |       |      |         | Χ    |
| 1022    | 1      |       |      |         | Χ    |
| 1024    | 1      |       | X    |         |      |
| 1025    | 1      |       |      |         | Χ    |
| 1034    | 1      |       |      | X       |      |
| 1036    | 1      | X     |      |         |      |
| 1037    | 1      |       | X    |         |      |
| 1062    | 1      |       |      |         | Χ    |
| 1065    | 1      |       | X    |         |      |
| 6053    | 1      |       | X    |         |      |
| 6054    | 1      |       |      | X       |      |
| 6055    | 1      |       |      | X       |      |
| 6060    | 1      | X     |      |         |      |
| 7079    | 1      | Χ     |      |         |      |
| 7613    | 1      |       |      |         | Χ    |
| 7614    | 1      |       |      |         | Χ    |
| A900    | 1      | Χ     |      |         |      |
| B900    | 1      |       |      |         | Χ    |

# STEP 3: STATISTICAL ANALYSIS TO ASSIGN MEASURED TRAFFIC DATA INTO CLUSTERS WITH SIMILAR CHARACTERISTICS AND DISTRIBUTION PATTERNS

The main objective of this traffic data analysis was to:

- Determine how representative the available traffic data are for pavement design in Arizona using the MEPDG.
- Detect natural groupings or clusters within the available traffic data.
- Develop defaults for Level 2/3 MEPDG traffic inputs for pavement design.
- Develop recommendations regarding traffic data collection practices and uses for pavement design in Arizona.

Satisfying the project objectives required performing statistical analysis to determine natural clusters within the traffic data, as well as the optimum number of clusters.

The researchers determined the natural clusters within the assembled data using statistical multivariate hierarchical cluster analysis. Multivariate hierarchical cluster analysis is a statistical procedure used to group "like" observations together when the underlying structure of the data is unknown. Hierarchical cluster analysis consists of a series of successive divisions of the assembled traffic dataset, which for analysis, considered a single cluster or a merger of data from individual sites to form a single cluster. The divisions or mergers are performed according to their similarities in the individual datasets. The similarities are based on distances between

individual datasets of clusters within the larger database. Thus, cluster analysis begins with grouping individual sites with the smallest distances between them to form the first set of clusters. Next, the individual sites with the next smallest distances between them and the clusters are added to the original set of clusters. This continues until all individual observations and clusters end up together in one large group. Although clusters can be developed using a variety of different methods, all of the methods available apply some measure of distance between observations as a basis for creating clusters.

Since the cluster analysis methodology does not require prior knowledge of the number of clusters within a given set of data, it is critical that a procedure be applied to determine, in an efficient manner, the optimum number of clusters within the database being analyzed. There is no clean-cut method for determining the optimum number of clusters within a dataset. Analysts must depend on a combination of diagnostic statistics to determine the optimum number of clusters. Although several of these statistics are available, for this study, the following five diagnostic statistics were selected for use in determining an optimum number of clusters:

- Cubic clustering criterion (CCC).
- Cumulative and partial squared multiple correlations (R<sup>2</sup>).
- Eigenvalue and associated variance (VAR).
- Pseudo F (PSF).
- Pseudo t<sup>2</sup> (PST2).

Criteria for selecting the optimum number of clusters based on these five statistics are summarized in Table 16.

Table 16. Criteria for Selecting the Optimum Number of Clusters.

| Statistic      | Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Source                                                                        |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| CCC            | Evaluate plot of CCC versus number of clusters. Local peaks indicate potential optimum number of clusters. If the local peak occurs when the value of the CCC is greater than 2 or 3, it is a good indication that the corresponding number of clusters is most likely the optimum. Local peaks occurring at CCC values between zero and two indicate potential clusters, however, they should be considered with caution while large negative values can indicate outliers.                                                                                                                          | Adapted after<br>SAS, 1999;<br>Fernandez, 2003;<br>Khattree and<br>Naik, 2000 |
| R <sup>2</sup> | Evaluate plot of R <sup>2</sup> versus number of clusters. As R <sup>2</sup> is an indicator of the proportion of variance accounted for by the clusters, typically, the optimum number of clusters must account for a significant proportion of variance in that raw data. Optimum number of clusters when the addition of the next additional cluster does not significantly change R <sup>2</sup> (e.g., increase in R <sup>2</sup> is less than five percent).                                                                                                                                    | Adapted after<br>SAS, 1999                                                    |
| VAR            | <ul> <li>The number of clusters is determined based on the following:</li> <li>VAR is greater than 1.0</li> <li>Proportion of variance for each cluster is greater than 5 percent</li> <li>Cumulative proportion of variance is greater than 70 percent</li> </ul>                                                                                                                                                                                                                                                                                                                                    |                                                                               |
| PSF            | Relatively large local peak values of this statistic generally indicate a potential optimum number of clusters. For most analysis, there are several local/global maximums (peaks) of the PSF statistic. In such situations, the appropriate value is the number of clusters value that corresponds to results from other statistics such as CCC.                                                                                                                                                                                                                                                     | Adapted after<br>SAS, 1999;<br>Fernandez, 2003;<br>Khattree and<br>Naik, 2000 |
| PST2           | A general rule for interpreting the values of PST2 is to evaluate the plot of t² versus the number of clusters (moving from right to left, decreasing the number of clusters). Identify all PST2 values markedly lager than the previous value. Move back one cluster (increasing) and this is a potential optimum number of clusters for the data being analyzed. For most analysis, there are several local/global maximums (peaks) of the PST2 statistic. In such situations, the appropriate value is the number of clusters value that corresponds to results from other statistics such as CCC. | Adapted after<br>SAS, 1999;<br>Fernandez, 2003;<br>Khattree and<br>Naik, 2000 |

## STEP 4: DETERMINATION OF OPTIMUM NUMBER OF CLUSTERS WITHIN ARIZONA

CCC, R<sup>2</sup>, VAR, PSF, and PST2 were used as needed in determining the optimum number of clusters for each traffic data type. As noted, since no one method was more accurate than the others, a consensus determination of the optimum number of clusters was developed based on the results from all of the statistics. A visual dendogram (a graphical representation of the clustering procedure as a hierarchical tree, where each step in the clustering process is illustrated by the joining of the tree) was produced and reviewed to confirm the results of the diagnostic statistics. Where no useful results were produced by the diagnostic statistics, an optimum number of clusters was determined by reviewing the dendogram plot alone. The optimum number of clusters for Arizona traffic data was determined for each key MEPDG traffic input individually, including:

- MAF.
- Hourly distribution.
- VCD (for a given highway section, VCD affects the computation of the number of single, tandem, tridem, and quad axles that pass over the design period and is thus an important MEPDG input).
- ALD factors.
- Number of axles per truck.

For this study, the Cluster and Aceclus procedures in the SAS statistical package were used for all analyses (SAS, 1999).

## STEP 5: PERFORMANCE OF SENSITIVITY ANALYSIS AND INTERPRETATION OF SENSITIVITY ANALYSIS RESULTS

As noted, statistical cluster analysis groups data in natural clusters with similar characteristics. However, although the VCD from the various sites in Arizona representing different highway functional classes (e.g., urban Interstate versus rural minor arterial), geographic locations (south versus north), and population centers (rural versus urban) may be grouped into various combinations of clusters, the effect of the typical VCD on actual pavement design may not be significant (e.g., < 0.5 in difference in design pavement thickness). Therefore, it is necessary to conduct a comprehensive sensitivity analysis using typical ADOT new HMA pavement and new JPCP to determine:

- If there are significant differences in pavement design due to the various clusters identified in step 4.
- Whether and how clusters that do not produce significantly different designs can be combined as needed.

### STEP 6: DEVELOPMENT OF DEFAULT STATEWIDE LEVEL 2/3 TRAFFIC INPUTS

The MEPDG requires several traffic data inputs, as described in Chapter 2. The required inputs are mostly obtained from a mix of traffic data monitoring and collection equipment (WIM, AVC, and Arizona research sites). In practice, for a given design project, traffic data are synthesized by combining data from many sources. The sources can be site-specific or statewide/regional or national in nature.

The following levels of traffic data input are defined for Arizona and have been simplified from the initial MEPDG definitions. The level of input depends on the source of the data, as follows:

- Level 1: Traffic data inputs are measured on or near the highway segment location. Traffic data measured at the site include vehicle counts, vehicle classification, truck lane percentage, monthly truck distribution, hourly truck distribution, and other inputs. These should be measured by lane and direction over a sufficiently long period of time to reliably establish patterns in these traffic inputs. It is possible only with an on-site WIM installation, and it is recommended for use in designing most high-volume highways.
- Level 2/3: Traffic data inputs are obtained from correlation or association with other traffic or other factors, or from averages of volume, growth, vehicle classification, axle weight data, hourly truck percentages, and other inputs. For example, some traffic inputs are directly related to functional classification of the highway, including VCD. Lane truck distribution is estimated using number of lanes and truck volume. These traffic data should be obtained from AVC and/or WIM installations from sites that exhibit similar traffic distributions and load patterns as the site in question.

Level 2 and Level 3 require some sort of regional or national default inputs for vehicle classification and/or ALD.

The primary objective of this study was to develop default Level 2/3 MEPDG traffic inputs for pavement design in Arizona. This was accomplished by synthesizing information and analysis outcomes resulting from steps 1 through 5 as follows:

- 1. Determine optimum number of natural clusters from the various project sites (AVC and WIM data) within Arizona for the following traffic inputs:
  - a. MAF.
  - b. Hourly distribution.
  - c. VCD.
  - d. ALD factors.
  - e. Number of axles per truck.

Note that, for monthly distribution, axles per truck, and ALD, the optimum number of clusters was determined using data from only the predominant vehicle classes (Classes 5 and 9, which accounted for more than 70 percent of all trucks).

2. For each of the five traffic inputs listed above, develop a detailed description of the site/traffic characteristics (functional class, location, predominant truck types, etc.) of each of the clusters identified.

- 3. For each of the five traffic inputs, compare each cluster identified to the MEPDG defaults (e.g., for VCD, MEPDG defaults are TTC groupings 1 through 17) and determine if they are very different from the national defaults.
- 4. Use the results of the sensitivity analysis to revise the optimum number of clusters.
- 5. For each of the five traffic inputs, develop default MEPDG inputs and recommendations for assigning default inputs based on the sensitivity analysis and revised optimum number of clusters. Note that the MEPDG default inputs are basically mean values for all sites that fall into a given cluster category.

## CHAPTER 4. STATISTICAL CLUSTER ANALYSIS

The results of the statistical cluster analysis for the key MEPDG traffic inputs are presented in this chapter.

#### VEHICLE CLASS DISTRIBUTION

### **Analysis of VCD Using ADOT Sites Only**

Data were evaluated from the 21 AVC sites to help derive Level 2/3 defaults for MEPDG traffic inputs. The MEPDG includes TTCs that include national recommendations or defaults (based on averages from over 100 sites located across the United States) for 13-bin vehicle classes. How well do these TTC VCDs match Arizona traffic? Based on this information, Arizona-specific TTCs can be derived as needed. The TTCs are based on functional class and a description of the truck mix. The initial step was to determine what MEPDG TTCs reasonably represent Arizona highways.

A significant challenge was presented by the presence of one of the most prevalent vehicles on Arizona roads—recreational vehicles. Although these vehicles do not have a significant impact on MEPDG pavement design when classified correctly, the cross-classifications of recreational vehicles between vehicle Classes 4, 5, 6 and 8 creates a disproportionate distribution of the types of vehicles. Recreational vehicles pulling two-axle trailers, or other Type 5 or Type 3 vehicles pulling campers, often are classified as Class 8 vehicles, which play a much more significant role in MEPDG design. For the Arizona AVC data that were analyzed, 60 percent of the vehicles were classified as Class 4, 5, 6, or 8. For current and future AVC installations, it is recommended that a manual classification study be performed to verify the accuracy of the classification algorithm being used by the data collection equipment.

In developing Arizona highway TTCs, significant emphasis was placed on the percentage of Class 9 trucks, which are typically classified correctly, barring any equipment problems. However, Class 5 percentages were also considered. In addition, the presence of one (usually Class 9) or two humps (Classes 5 and 9) in the distribution curves was considered.

For comparative purposes, the national MEPDG TTC classification distributions are shown in Table 17. The numbers of representative Arizona sections that follow these distributions relatively closely are shown in Table 18.

Table 17. National Highway TTC VCD Defaults in the MEPDG.

|     | Arizona                                |     | Percentage of All Trucks |      |     |      |      |      |      |      |      |  |
|-----|----------------------------------------|-----|--------------------------|------|-----|------|------|------|------|------|------|--|
| TTC | Representative<br>Highways<br>Included | VC4 | VC5                      | VC6  | VC7 | VC8  | VC9  | VC10 | VC11 | VC12 | VC13 |  |
| 1   | 11                                     | 1.3 | 8.5                      | 2.8  | 0.3 | 7.6  | 74.0 | 1.2  | 3.4  | 0.6  | 0.3  |  |
| 2   | 18                                     | 2.4 | 14.1                     | 4.5  | 0.7 | 7.9  | 66.3 | 1.4  | 2.2  | 0.3  | 0.2  |  |
| 3   |                                        | 0.9 | 11.6                     | 3.6  | 0.2 | 6.7  | 62.0 | 4.8  | 2.6  | 1.4  | 6.2  |  |
| 6   | 7                                      | 2.8 | 31.0                     | 7.3  | 0.8 | 9.3  | 44.8 | 2.3  | 1.0  | 0.4  | 0.3  |  |
| 9   | 12                                     | 3.3 | 34.0                     | 11.7 | 1.6 | 9.9  | 36.2 | 1.0  | 1.8  | 0.2  | 0.3  |  |
| 12  | 6                                      | 3.9 | 40.8                     | 11.7 | 1.5 | 12.2 | 25.0 | 2.7  | 0.6  | 0.3  | 1.3  |  |
| 14  | 24                                     | 2.9 | 56.9                     | 10.4 | 3.7 | 9.2  | 15.3 | 0.6  | 0.3  | 0.4  | 0.3  |  |

Table 18. VCD TTCs Based on Arizona Data That Are Closely Related to the National TTCs.

| Arizona        | Percentage of All Trucks |      |     |     |      |      |      |      |      |      |
|----------------|--------------------------|------|-----|-----|------|------|------|------|------|------|
| Derived<br>TTC | VC4                      | VC5  | VC6 | VC7 | VC8  | VC9  | VC10 | VC11 | VC12 | VC13 |
| 1              | 1.8                      | 6.5  | 1.9 | 0.2 | 10.3 | 73.2 | 1.0  | 3.1  | 1.9  | 0.1  |
| 2              | 3.1                      | 14.7 | 2.9 | 0.1 | 9.3  | 64.4 | 1.3  | 1.9  | 1.5  | 0.8  |
| 6              | 3.7                      | 21.3 | 5.7 | 0.4 | 19.0 | 45.6 | 1.7  | 1.5  | 0.7  | 0.4  |
| 9              | 5.3                      | 38.5 | 6.2 | 0.2 | 9.0  | 36.9 | 1.8  | 1.3  | 0.3  | 0.4  |
| 12             | 5.3                      | 46.3 | 5.7 | 0.7 | 16.1 | 24.1 | 1.1  | 0.3  | 0.1  | 0.3  |
| 14             | 7.8                      | 65.8 | 4.4 | 0.2 | 11.7 | 9.1  | 0.7  | 0.2  | 0.0  | 0.1  |

Classification data from 21 Arizona AVC segments were analyzed to develop clusters for Level 2/3 Arizona TTC development. These data provided 84 lanes of statistics for analysis. There were seven national TTCs represented by Arizona highways. The vehicle classification distributions for the representative lanes evaluated are presented in Appendix B.

Once representative Arizona vehicle classification distributions were developed from Arizona AVC data, they were compared with the national MEPDG defaults in the MEPDG software. The comparisons are presented in Table 19. For example, a Class 9 vehicle for TTC 1 in the MEPDG is 74 percent. A Class 9 vehicle for the TTCs derived for Arizona is 73.2 percent. The difference is 74 - 73.2 = 0.8 percent, as shown in Table 19.

From the table, it can be seen that the greatest discrepancy in distributions is among Class 5, 6, and 8 vehicles. This is mainly due to the cross-classification problems described earlier in this report. As stated, the percentage of Class 9 vehicles was the primary consideration in determining TTCs for Arizona. There are no major differences between the Level 3 MEPDG defaults and the Arizona truck distribution.

Table 19. Differences between MEPDG and Arizona TTC Recommendations for VCD.

| TTC |     | Percentage of All Trucks |      |      |      |      |      |      |      |      |  |
|-----|-----|--------------------------|------|------|------|------|------|------|------|------|--|
| 110 | VC4 | VC5                      | VC6  | VC7  | VC8  | VC9  | VC10 | VC11 | VC12 | VC13 |  |
| 1   | 0.5 | -2.0                     | -0.9 | -0.1 | 2.7  | -0.8 | -0.2 | -0.3 | 1.3  | -0.2 |  |
| 2   | 0.7 | 0.6                      | -1.6 | -0.6 | 1.4  | -1.9 | -0.1 | -0.3 | 1.2  | 0.6  |  |
| 6   | 0.9 | -9.7                     | -1.6 | -0.4 | 9.7  | 0.8  | -0.6 | 0.5  | 0.3  | 0.1  |  |
| 9   | 2.0 | 4.5                      | -5.5 | -1.4 | -0.9 | 0.7  | 0.8  | -0.5 | 0.1  | 0.1  |  |
| 12  | 0.5 | 7.9                      | -8.1 | -1.4 | 2.5  | 2.2  | -2.0 | -0.3 | -0.1 | -1.2 |  |
| 14  | 4.9 | 6.6                      | -5.4 | -3.3 | 3.2  | -5.7 | 0.3  | -0.1 | -0.4 | -0.2 |  |

Considerable time was spent examining the actual VCDs. The distributions divide into two major groups:

- Single peak Class 9 vehicles, as shown in Figure 18. This distribution is typical of Arizona Interstate highways in rural and urban areas. However, a few of these urban sites show double peaks.
- Double peak Class 5 and 9 vehicles as shown in Figure 19. This distribution is typical of all other functional classes, in particular urban sites.

Table 20 shows a possible Level 3 selection criterion for inputting MEPDG TTCs based on highway functional class. Arizona Interstates are represented primarily by TTCs 1, 2, and 3. This indicates that the classification distribution on these roads consists primarily of Class 5 and 9 vehicles. There are also a significant number of Class 8 vehicles, which may be a combination of semi-tractor trailers and recreational vehicles. Other arterial roadways, such as urban and rural roadways, also show Class 5 and 9 vehicle peaks; however, the number of Class 5 vehicles is greater on these roads than on Interstates. All other roadways are primarily represented by a mixture of Class 5 and 9 vehicles.

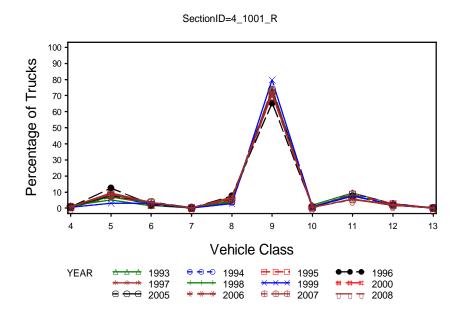



Figure 18. Typical Arizona Interstate Highway Single Peak VCD.

#### SectionID=4\_101849

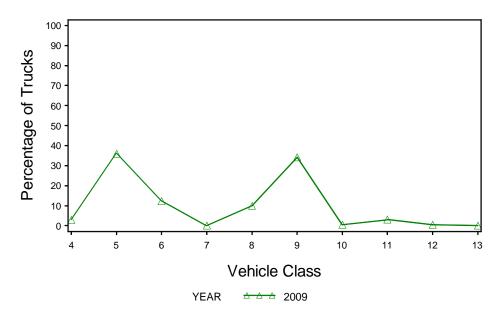



Figure 19. Typical Arizona Non-Interstate Highway Double Peak VCD Found in Urban Areas or Other Rural Highways.

Table 20. Selection Criteria for Level 3 MEPDG Arizona TTCs Based on Functional Class.

| Functional Class                         | Arizona<br>MEPDG<br>TTCs | Arizona Representative Highways                                                          |  |  |
|------------------------------------------|--------------------------|------------------------------------------------------------------------------------------|--|--|
| Rural Principal Arterial –<br>Interstate | 1, 2                     | I-8, I-10, I-15, I-19, I-40 (single peak for Class 9)                                    |  |  |
| Rural Principal Arterial – Other         | 6, 9, 12                 | SR 85, U.S. 60, SR 77, U.S. 93, SR 360, SR 101, SR 303 (double peak for Classes 5 and 9) |  |  |
| Rural Major Collector                    | 6, 9, 12                 | U.S. 91 (double peak for Classes 5 and 9)                                                |  |  |
| Rural Minor Arterial or Collector        | 6, 9, 12, 14             | SR 79, U.S. 60, SR 347<br>(double peak for Classes 5 and 9)                              |  |  |
| Urban Principal Arterial –<br>Interstate | 1, 2                     | I-10, I-19, I-40 (some in urban area had double peak Classes 5 and 9)                    |  |  |
| Urban Principal Arterial – Other         | 9, 12, 14                | SR 360, SR 101, SR 101, SR 303, SR 77 (double peak for Classes 5 and 9)                  |  |  |

## Analysis of VCD Using Combined ADOT and LTPP Vehicle Classification Data

A cluster analysis similar to that conducted for other inputs was conducted of the combined data sets of ADOT and LTPP. A summary of all of the sites used in the analysis is shown in Table 21. The table also shows the final results from the cluster analysis. There were two major groupings for VCD. A third cluster includes two sections that had a very high percentage of Class 4 vehicles (buses) as the only peak.

Table 21. Summary of Cluster Analysis for VCD Using ADOT and LTPP Datasets.

| ID       | Cluster/Peak | Latitude | Longitude | County     | Route      | Functional Class | Route<br>Type | AADTT |
|----------|--------------|----------|-----------|------------|------------|------------------|---------------|-------|
| 4_0200_R | 1P           | 33.453   | -112.74   | Maricopa   | I-10       | RPA-I            | I             | 4820  |
| 4_0500_R | 1P           | 32.829   | -112.006  | Pinal      | I-8        | RPA-I            | I             | 930   |
| 4_0600_R | 1P           | 35.218   | -111.564  | Coconino   | I-40       | RPA-I            | I             | 6225  |
| 4_100010 | 1 (2P)       | 32.7     | -114      | Yuma       | I-08       | RPA-I            | I             | 1256  |
| 4_100070 | 1P           | 33.661   | -114.006  | La Paz     | I-10       | RPA-I            | I             | 2978  |
| 4_100139 | 1P           | 32.454   | -111.205  | Pima       | I-10       | UPA-I            | I             | 1980  |
| 4_100188 | 1P           | 32.341   | -109.568  | Cochise    | I-10       | RPA-I            | I             | 2740  |
| 4_1001_R | 1P           | 33.461   | -112.45   | Maricopa   | I-10       | RPA-I            | I             | 4660  |
| 4_1002_R | 1P           | 35.219   | -112.49   | Yavapai    | I-40       | RPA-I            | 1             | 2310  |
| 4_100327 | 1P           | 36.98    | -113.654  | Mohave     | I-15       | UPA-I            | 1             | 1961  |
| 4_1003_R | 1P           | 33.481   | -112.864  | Maricopa   | I-10       | RPA-I            | 1             | 5681  |
| 4_100473 | 1(2P)        | 32.2     | -111      | Pima       | I-19       | UPA-I            | 1             | 1311  |
| 4_100537 | 1(2P)        | 35.23    | -111.81   | Coconino   | I-40       | RPA-I            | I             | 2671  |
| 4_100541 | 1(2P)        | 35.173   | -111.647  | Coconino   | I-40       | UPA-I            | I             | 3865  |
| 4_1006_R | 1P           | 33.435   | -112.661  | Maricopa   | I-10       | RPA-I            | 1             | 5740  |
| 4_1007_R | 1P           | 33.436   | -112.582  | Maricopa   | I-10       | RPA-I            | 1             | 5439  |
| 4_100922 | 1P           | 33.263   | -112.634  | Maricopa   | SR 85      | RPA-O            | SR            | 1202  |
| 4_1015_R | 1P           | 31.559   | -111.052  | Santa Cruz | I-19       | RPA-I            | I             | 1187  |
| 4_1016_R | 1P           | 31.643   | -111.058  | Santa Cruz | I-19       | RPA-I            | 1             | 1175  |
| 4_1017_R | 1P           | 31.765   | -111.036  | Pima       | I-19       | RPA-I            | 1             | 1164  |
| 4_1018_R | 1P           | 31.807   | -111.013  | Pima       | I-19       | RPA-I            | I             | 1139  |
| 4_102094 | 1(2P)        | 34.012   | -112.789  | Yavapai    | U.S.<br>93 | RPA-O            | US            | 764   |
| 4_1022_R | 1P           | 35.161   | -113.598  | Mohave     | I-40       | RPA-I            | 1             | 2729  |
| 4_1024_R | 1P           | 35.278   | -113.13   | Yavapai    | I-40       | RPA-I            | I             | 2830  |
| 4_1025_R | 1P           | 35.295   | -113.029  | Yavapai    | I-40       | RPA-I            | I             | 2858  |
| 4_1036_R | 1P           | 35.712   | -114.481  | Mohave     | U.S.<br>93 | RPA-O            | US            | 473   |
| 4_1062_R | 1P           | 35.191   | -113.347  | Mohave     | I-40       | RPA-I            | I             | 2808  |
| 4_1065_R | 1P           | 35.208   | -113.268  | Yavapai    | I-40       | RPA-I            | 1             | 2802  |
| 4_6053_R | 1P           | 31.974   | -110.506  | Pima       | I-10       | RPA-I            | 1             | 2140  |
| 4_6054_R | 1P           | 32.039   | -110.993  | Santa Cruz | I-19       | RPA-I            | I             | 1104  |
| 4_6055_R | 1P           | 33.246   | -112.638  | Maricopa   | SR 85      | RPA-O SR         |               | 3649  |
| 4_6060_R | 1P           | 31.519   | -111.017  | Santa Cruz | I-19       | RPA-I            | I             | 2121  |
| 4_7614_R | 1P           | 33.457   | -112.325  | Maricopa   | I-10       | RPA-I            | I             | 2667  |
| 4_B900_R | 1P           | 33.462   | -112.469  | Maricopa   | I-10       | RPA-I            | I             | 5439  |
| 4_100767 | 1P           | 33.853   | -113.907  | La Paz     | SR 72      | RMC              | SR            | 434   |
| 4_1021_R | 1P           | 35.161   | -113.681  | Mohave     | I-40       | RPA-I            | I             | 2746  |

Note: Cluster 1 typically has one large peak (1P) for Class 9; Cluster 2 has two peaks, indicated by 2P, for Classes 5 and 9; and Cluster 3 has one peak for Class 4.

Table 21. Summary of Cluster Analysis for VCD Using ADOT and LTPP Datasets, continued.

| ID       | Cluster/Peak | Latitude | Longitude | County Route |             | Functional Class | Route<br>Type | AADTT |
|----------|--------------|----------|-----------|--------------|-------------|------------------|---------------|-------|
| 4_100854 | 2(2P)        | 33.155   | -111.356  | Pinal        | SR 79       | RMA              | SR            | 269   |
| 4_101248 | 2(2P)        | 33.457   | -111.89   | Maricopa     | SR 101      | UPA-FE           | SR            | 210   |
| 4_101602 | 2(2P)        | 33.636   | -112.418  | Maricopa     | SR 303      | UPA-FE           | SR            | 826   |
| 4_101622 | 2(2P)        | 33.092   | -112.034  | Pinal        | SR 347      | RMA              | SR            | 986   |
| 4_101849 | 2(2P)        | 33.689   | -112.415  | Maricopa     | U.S. 60     | RPA-O            | US            | 925   |
| 4_101928 | 2(2P)        | 34.209   | -110.078  | Navajo       | U.S. 60     | RMA              | US            | 88    |
| 4_102084 | 2(2P)        | 35.834   | -114.565  | Mohave       | U.S. 93     | RPA-O            | US            | 299   |
| 4_102230 | 2(2P)        | 32.796   | -109.54   | Graham       | U.S.<br>191 | RMC              | US            | 159   |
| 4_7613_R | 2(2P)        | 33.386   | -111.839  | Maricopa     | SR 360      | UPA-O            | SR            | 916   |
| 4_100800 | 2(2P)        | 32.343   | -110.977  | Pima         | SR 77       | UPA-O            | SR            | 404   |
| 4_7079_R | 2(2P)        | 33.602   | -112.253  | Maricopa     | SR 101      | UPA-FE           | SR            | 4498  |
| 4_101113 | 3(Bus)       | 33.758   | -114.217  | Yuma         | SR 95       | RPA-O            | SR            | 201   |
| 4_102068 | 3(Bus)       | 35.259   | -111.551  | Coconino     | U.S. 89     | UPA-O            | US            | 279   |

1P: Denotes one peak for Class 9 vehicles; 2P denotes two peaks for Classes 5 and 9.

Cluster 1 had one large peak for Class 9 vehicles. The percentage ranged from 60 to 80 for this group. The Class 5 vehicles ranged from 5 to 20 percent. The main functional class highway was Rural Principal Arterial – Interstate. There were a few sections with two peaks, and these were usually Urban Principal Arterial – Interstate or Urban Principal Arterial – Other.

Cluster 2 had two large peaks for Class 5 and 9 vehicles. The percentage of Class 5 ranged from 20 to 70 for this group. The percentage of Class 9 ranged from 20 to 40 for this group. The main functional class highway was Urban Principal Arterial. There were also some Rural Major/Minor Arterials or Collectors.

Cluster 3 had one large peak for Class 4 vehicles. The percentage of Class 4 vehicles was approximately 90 percent. These were Rural Principal Arterial and Urban Principal Arterial.

Clusters 1 and 2 can be matched to TTC 2 and TTC 12 very closely, as shown in Table 22.

Note that the results from the two analyses (ADOT sites only, and ADOT and LTPP sites) were similar, and both were used to develop recommendations for Level 3 MEPDG inputs for VCD for Arizona's highway, as discussed in Chapter 6.

Table 22. Matching Cluster 1 to TTC 2 and Cluster 2 to TTC 12.

| TTC/Cluster                       | Description                                                              | VC4 | VC5  | VC6  | VC7 | VC8  | VC9  | VC10 | VC11 | VC12 | VC13 |
|-----------------------------------|--------------------------------------------------------------------------|-----|------|------|-----|------|------|------|------|------|------|
| TTC 2<br>(1 Peak)                 | Major<br>single-trailer<br>truck route<br>(Type II)                      | 2.4 | 14.1 | 4.5  | 0.7 | 7.9  | 66.3 | 1.4  | 2.2  | 0.3  | 0.2  |
| Arizona<br>Cluster 1<br>(1 Peak)  | Primarily<br>RPA-I                                                       | 1.8 | 14.1 | 2.7  | 0.1 | 7.6  | 66.8 | 0.7  | 4.3  | 1.4  | 0.5  |
| TTC 12<br>(2 Peaks)               | Intermediate<br>light and<br>single-trailer<br>truck route<br>(Type III) | 3.9 | 40.8 | 11.7 | 1.5 | 12.2 | 25.0 | 2.7  | 0.6  | 0.3  | 1.3  |
| Arizona<br>Cluster 2<br>(2 Peaks) | UPA_FE,<br>RMA, and<br>RMC (US<br>and state<br>routes)                   | 4.7 | 47.2 | 7.4  | 0.4 | 12.4 | 25.1 | 1.7  | 0.6  | 0.1  | 0.4  |

Several examples of Arizona VCDs that fit into the typical functional classes are provided in Figures 20 through 29. Appendix B provides plots for VCD for all sites used in this analysis.

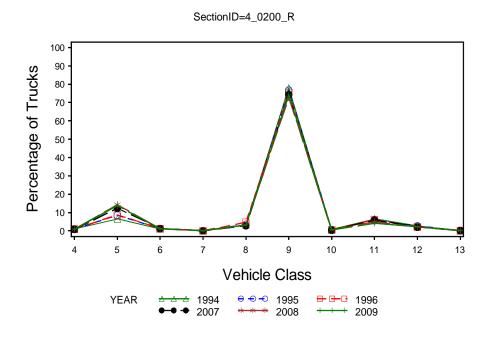



Figure 20. Plot of VCD for Rural Principal Arterial – Interstate (Project 4\_0200R, I-10, Maricopa County).



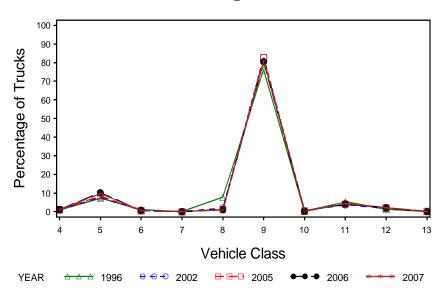



Figure 21. Plot of VCD for Rural Principal Arterial – Interstate (Project 4\_1024, I-40, Yavapai County).

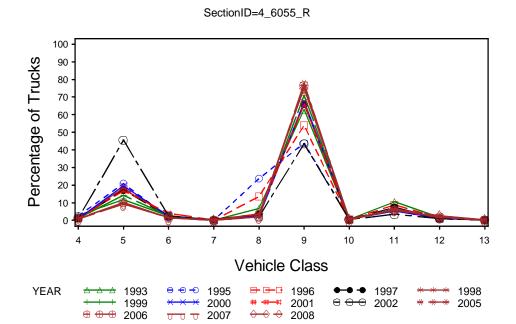



Figure 22. Plot of VCD for Rural Principal Arterial – Other (Project 4\_6055\_R, SR 85, Maricopa County).

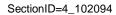





Figure 23. Plot of VCD for Rural Principal Arterial – Other (Project 4\_102094, U.S. 93, Yavapai County).

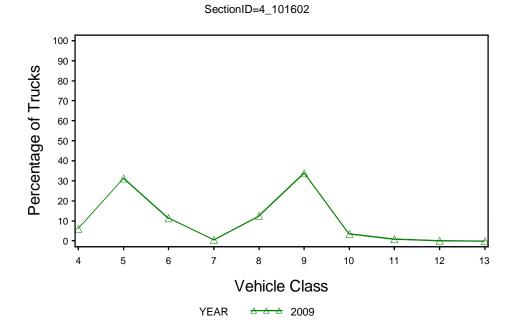
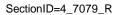




Figure 24. Plot of VCD for Urban Principal Arterial (Project 4\_101602, SR 303, Maricopa County).



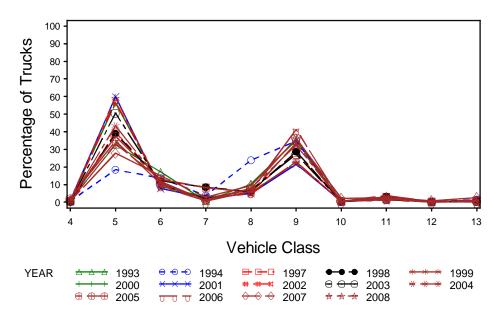



Figure 25. Plot of VCD for Urban Principal Arterial (Project 4\_7079\_R, SR 101, Maricopa County).

SectionID=4\_100854

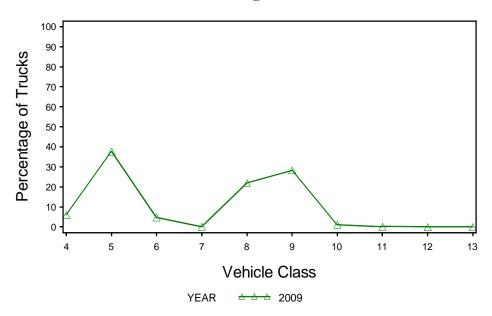



Figure 26. Plot of VCD for Site Rural Major Arterial (Project 4\_100854, SR 79, Pinal County).

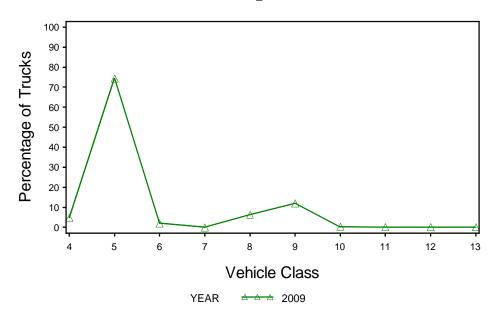



Figure 27. Plot of VCD for Rural Major Arterial (Project 4\_101622, SR 347, Pinal County).

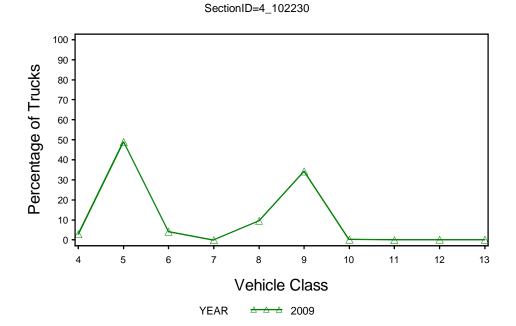



Figure 28. Plot of VCD for Rural Major Collector (Project 4\_102230, U.S. 191, Graham County).

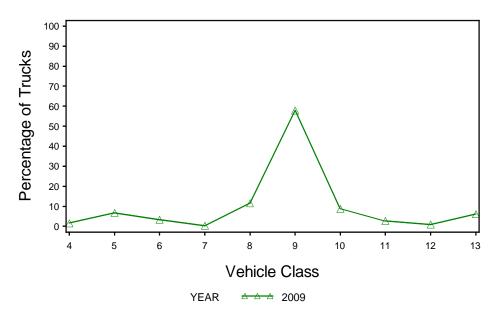



Figure 29. Plot of VCD for Rural Major Collector (Project 4\_100767, SR 72, La Paz County).

#### HOURLY TRUCK TRAFFIC DISTRIBUTION

Hourly truck distribution data over 24 hours is available for 21 AVC sites and for two LTPP sections (0100 and 0200). Figure 30 shows the geographical distribution of the AVC sites. A cluster analysis was performed for the AVC sections. A result of the correlation coefficient approach to cluster analysis that distinguishes significantly different hourly distributions is shown in Figure 31, which indicates that there are three distinct clusters. Table 23 summarizes the actual sections divided into the three clusters. (Note a single section cluster on the far right, a central cluster, and a cluster located on the right.) The three clusters are described as follows:

- 1. A cluster that generally represents typical "rural" highway truck distributions. These sections are labeled Cluster 1 in Table 23 and can be observed in Figure 31 in the center right (100139, 100327,100767, etc.). The difference between the nighttime and daytime truck traffic is significant (typically ranges from three to seven), but not as peaked as typical urban distribution. An example of this "rural" hourly truck distribution is shown in Figure 32, which is for a site in Coconino County on I-40 (range in hourly percent of trucks ranges from two at night to seven in the daytime).
- 2. A cluster that generally represents typical "urban" highway truck distributions. These sections are labeled Cluster 2 in Table 23 and can be observed in Figure 31 (far left 00473, 00922, 01602, etc.). There is a greater difference between the daytime and nighttime truck traffic than on rural sites. An example of an "urban" hourly truck distribution is shown in Figure 33, which is for site 4\_100800 located in urban Pima County on SR 77.

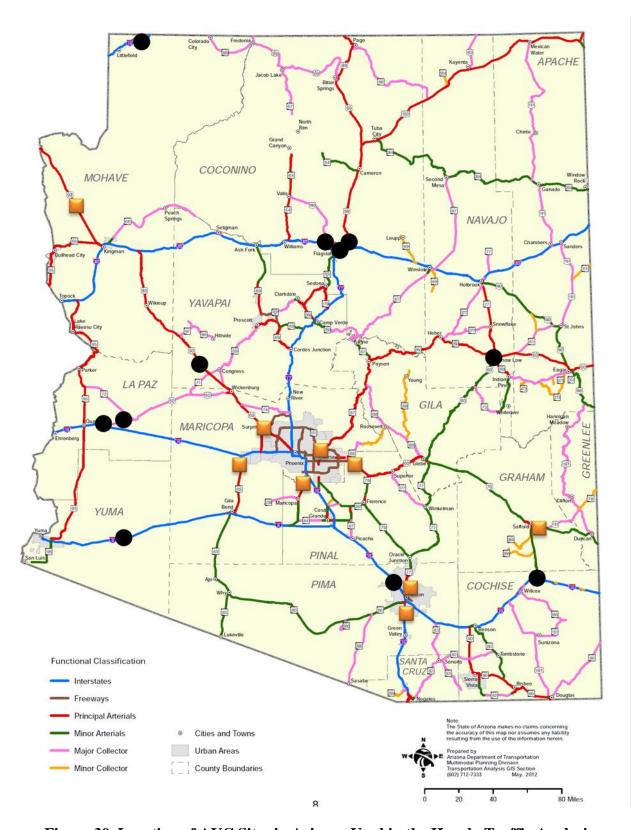



Figure 30. Location of AVC Sites in Arizona Used in the Hourly Traffic Analysis.

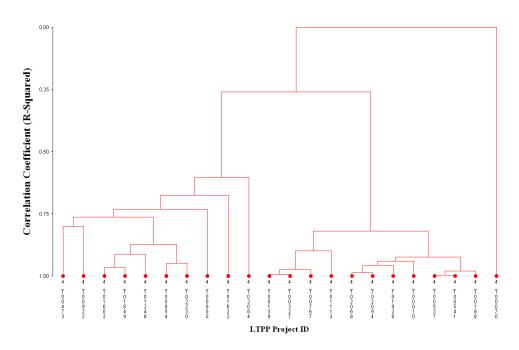



Figure 31. Illustration of a Cluster Analysis for "Correlation Coefficient" to Distinguish Between Hourly Truck Distributions.

Table 23. Summary of Sites and Clusters Determined for Hourly Truck Traffic Distribution.

| SHRP ID  | Cluster No. | County   | Route ID | Functional Class | Route Type | AADTT |
|----------|-------------|----------|----------|------------------|------------|-------|
| 4_100010 | 1           | Yuma     | I-08     | RPA-I            | I          | 1256  |
| 4_100139 | 1           | Pima     | I-10     | UPA-I            | I          | 1980  |
| 4_100188 | 1           | Cochise  | I-10     | RPA-I            | I          | 2740  |
| 4_100327 | 1           | Mohave   | I-15     | UPA-I            | I          | 1961  |
| 4_100537 | 1           | Coconino | I-40     | RPA-I            | I          | 2671  |
| 4_100541 | 1           | Coconino | I-40     | UPA-I            | I          | 3865  |
| 4_100767 | 1           | La Paz   | SR 72    | RMC              | SR         | 434   |
| 4_101113 | 1           | Yuma     | SR 95    | RPA-O            | SR         | 201   |
| 4_101928 | 1           | Navajo   | U.S. 60  | RMA              | US         | 88    |
| 4_102068 | 1           | Coconino | U.S. 89  | UPA-O            | US         | 279   |
| 4_102094 | 1           | Yavapai  | U.S. 93  | RPA-O            | US         | 764   |
| 4_100473 | 2           | Pima     | I-19     | UPA-I            | I          | 1311  |
| 4_100800 | 2           | Pima     | SR 77    | UPA-O            | SR         | 404   |
| 4_100854 | 2           | Pinal    | SR 79    | RMA              | SR         | 269   |
| 4_100922 | 2           | Maricopa | SR 85    | RPA-O            | SR         | 1202  |
| 4_101248 | 2           | Maricopa | SR 101   | UPA-FE           | SR         | 210   |
| 4_101602 | 2           | Maricopa | SR 303   | UPA-FE           | SR         | 826   |
| 4_101622 | 2           | Pinal    | SR 347   | RMA              | SR         | 986   |
| 4_101849 | 2           | Maricopa | U.S. 60  | RPA-O            | US         | 925   |
| 4_102084 | 2           | Mohave   | U.S. 93  | RPA-O            | US         | 299   |
| 4_102230 | 2           | Graham   | U.S. 191 | RMC              | US         | 159   |
| 4_100070 | 3           | La Paz   | I-10     | RPA-I            | I          | 2978  |

3. A cluster that represents a long haul section of rural highway across the desert (section 100070 on the western end of I-10 in La Paz County). This section is located in Figure 31 at the far right side. The distribution is shown in Figure 34 and is a very flat truck hourly distribution with 3 to 4 percent of all trucks being applied at nighttime and increasing to only 5 percent in the daytime. A similar flat hourly distribution on the same I-10 located near Phoenix is shown in Figure 35. The U.S. 93 distribution shown in Figure 35 is in a rural area in the northeastern region of Arizona, which is representative of Cluster 1. The MEPDG default hourly distribution fits generally between these two distributions.

Plots of all of the hourly data identified for use in this analysis are presented in Appendix C. This analysis has shown that hourly truck distributions vary across the state and that three Level 2/3 defaults can be provided for three cluster types. Recommendations for the MEPDG Level 2/3 will include three hourly truck distributions representing "rural," "urban," and "long-haul desert" types of highways. The 2/3 level indicates that the hourly truck distributions are correlated to type of land use for the highway under consideration.



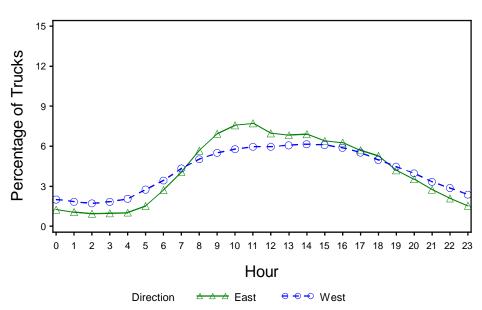



Figure 32. Plot of Typical Rural Truck Hourly Distribution for Site 4\_100537 Located in Coconino County on I-40.

The range in hourly distribution of trucks is from 2 percent at nighttime to 7 percent in daytime.

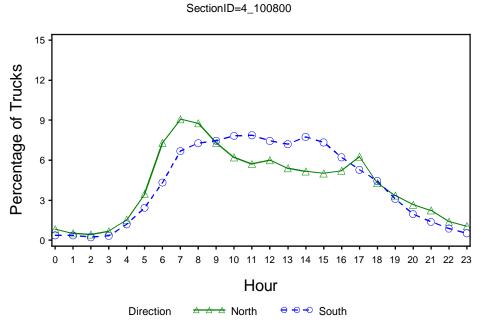
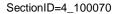




Figure 33. Plot of Typical Urban Truck Hourly Distribution for Site 4\_100800 Located in Urban Pima County (Tucson) on SR 77.

The range in hourly distribution of trucks is from less than 1 percent at nighttime to more than 9 percent in daytime.



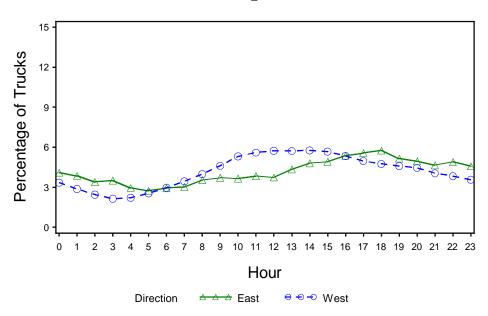



Figure 34. Plot of Relatively Flat Hourly Distribution for Site 4\_100070 from a Far–Western, Long-Haul Section on I-10 in the Desert.

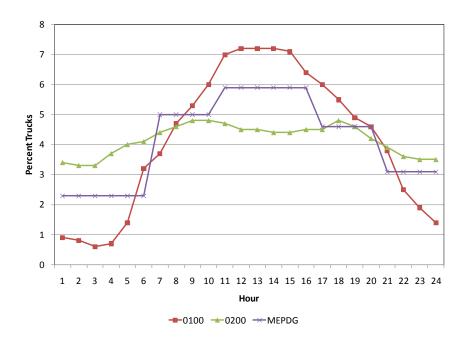



Figure 35. Plot of Three Hourly Truck Distributions.

The hourly truck distributions are (1) site LTPP 0200 west of Phoenix on I-10 showing a relatively flat long-haul desert distribution, (2) site LTPP 0100 in northwestern Arizona showing a rural peaked distribution, and (3) the default MEPDG distribution.

## **Monthly Truck Adjustment**

The MAF input in the MEPDG provides the opportunity to fine-tune the design considering month-to-month truck volumes. The national defaults were 1.00 for each month, which provides for the same truck volume each month of a given year.

The MAF was computed for a number of sites in Arizona to determine variations around the state. A cluster analysis was conducted using the data from 22 AVC sites in Arizona, as shown on the map in Figure 36. Details of the 22 sites are provided in Table 24.

A cluster analysis similar to that conducted for other MEPDG traffic inputs was conducted. Results from the correlation coefficient approach are shown in Figure 37. These analyses were conducted using Class 5 and Class 9 vehicles.

The overall results from this and the other methods show that the MAF factors break down into a single cluster with two outliers. It is certainly possible to have "outliers" that represent a significantly different MAF; however, by far the most Arizona sections had MAF that do not vary significantly from each other in terms of Class 5 and Class 9 trucks. The analysis included only sections with all 12 months of MAF.



Figure 36. Locations of AVC Sites Used in the Analysis of Monthly Truck Adjustment Factors.

Table 24. AVC Sites Used in the Monthly Truck Adjustment Factors.

| SHRP ID  | Cluster<br>No. | Vehicle<br>Class | Latitude,<br>deg. | Longitude, deg. | County   | Route<br>ID | Functional Class | Route<br>Type | AADTT |
|----------|----------------|------------------|-------------------|-----------------|----------|-------------|------------------|---------------|-------|
| 4_100010 | 1              | MAF5             | 32.7              | -114            | Yuma     | I-08        | RPA-I            | I             | 1256  |
| 4_100010 | 1              | MAF9             | 32.7              | -114            | Yuma     | I-08        | RPA-I            | I             | 1256  |
| 4_100139 | 1              | MAF9             | 32.454            | -111.205        | Pima     | I-10        | UPA-I            | I             | 1980  |
| 4_100188 | 1              | MAF5             | 32.341            | -109.568        | Cochise  | I-10        | RPA-I            | I             | 2740  |
| 4_100188 | 1              | MAF9             | 32.341            | -109.568        | Cochise  | I-10        | RPA-I            | I             | 2740  |
| 4_100473 | 1              | MAF5             | 32.2              | -111            | Pima     | I-19        | UPA-I            | I             | 1311  |
| 4_100473 | 1              | MAF9             | 32.2              | -111            | Pima     | I-19        | UPA-I            | I             | 1311  |
| 4_100537 | 1              | MAF9             | 35.23             | -111.81         | Coconino | I-40        | RPA-I            | I             | 2671  |
| 4_100541 | 1              | MAF5             | 35.173            | -111.647        | Coconino | I-40        | UPA-I            | I             | 3865  |
| 4_100541 | 1              | MAF9             | 35.173            | -111.647        | Coconino | I-40        | UPA-I            | I             | 3865  |
| 4_100767 | 1              | MAF5             | 33.853            | -113.907        | La Paz   | SR 72       | RMC              | SR            | 434   |
| 4_100767 | 1              | MAF9             | 33.853            | -113.907        | La Paz   | SR 72       | RMC              | SR            | 434   |
| 4_100854 | 1              | MAF5             | 33.155            | -111.356        | Pinal    | SR 79       | RMA              | SR            | 269   |
| 4_100854 | 1              | MAF9             | 33.155            | -111.356        | Pinal    | SR 79       | RMA              | SR            | 269   |
| 4_100922 | 1              | MAF5             | 33.263            | -112.634        | Maricopa | SR 85       | RPA-O            | SR            | 1202  |
| 4_100922 | 1              | MAF9             | 33.263            | -112.634        | Maricopa | SR 85       | RPA-O            | SR            | 1202  |
| 4_101622 | 1              | MAF5             | 33.092            | -112.034        | Pinal    | SR 347      | RMA              | SR            | 986   |
| 4_101622 | 1              | MAF9             | 33.092            | -112.034        | Pinal    | SR 347      | RMA              | SR            | 986   |
| 4_101849 | 1              | MAF5             | 33.689            | -112.415        | Maricopa | U.S. 60     | RPA-O            | US            | 925   |
| 4_101849 | 1              | MAF9             | 33.689            | -112.415        | Maricopa | U.S. 60     | RPA-O            | US            | 925   |
| 4_101928 | 1              | MAF5             | 34.209            | -110.078        | Navajo   | U.S. 60     | RMA              | US            | 88    |
| 4_101928 | 1              | MAF9             | 34.209            | -110.078        | Navajo   | U.S. 60     | RMA              | US            | 88    |
| 4_102084 | 1              | MAF5             | 35.834            | -114.565        | Mohave   | U.S. 93     | RPA-O            | US            | 299   |
| 4_102084 | 1              | MAF9             | 35.834            | -114.565        | Mohave   | U.S. 93     | RPA-O            | US            | 299   |
| 4_100139 | 2              | MAF5             | 32.454            | -111.205        | Pima     | I-10        | UPA-I            | I             | 1980  |
| 4_100537 | 3              | MAF5             | 35.23             | -111.81         | Coconino | I-40        | RPA-I            | I             | 2671  |

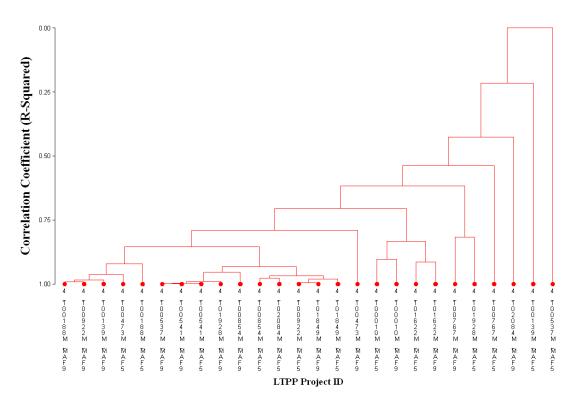



Figure 37. Results from the Correlation Coefficient Method for Monthly Truck Adjustment Factors.

Plots of MAF for several of the AVC sites are shown in Figure 38 through Figure 41. MAF plots for all of the projects used in this analysis are presented in Appendix D.

Statistically, all of these MAF factors are the same. The main question is whether these monthly variations will cause a significant change in the pavement design. While some of these plots show differences from month to month that may appear to be significant, some designs prepared with the MEPDG with these monthly distribution factors showed no significant thickness differences for HMA (fatigue damage) or PCC thickness (fatigue damage) to control structural damage.

Thus, it is concluded that while Level 1 MAFs can be obtained with on-site AVCs, using straight 1.00 for every month for Level 3 would not normally produce a different required thickness.

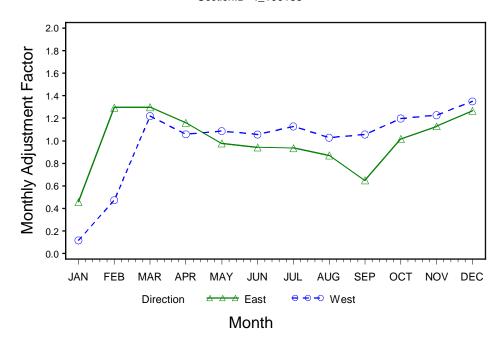



Figure 38. Plot of MAF for Site 4\_100188 (Vehicle Class 5), I-10 in Cochise County.

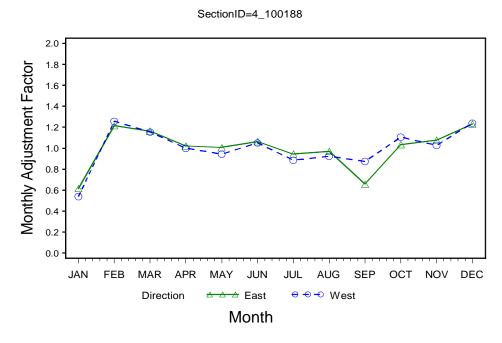



Figure 39. Plot of MAF for Site 4\_100188 (Vehicle Class 9), I-10 in Cochise County.

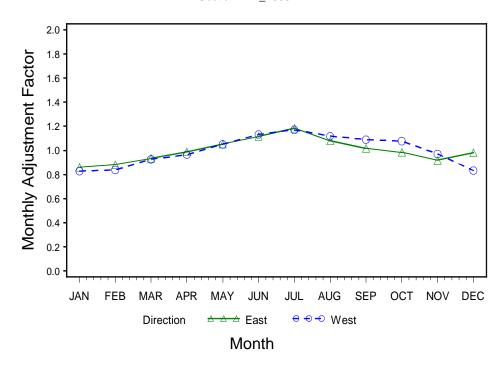



Figure 40. Plot of MAF for Site 4\_100541 (Vehicle Class 5), I-40 in Coconino County.

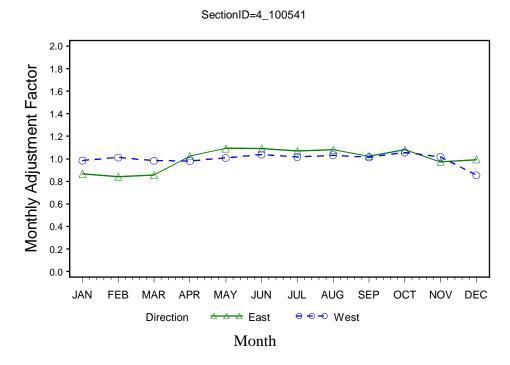



Figure 41. Plot of MAF for Site 4\_100541 (Vehicle Class 9), I-40 in Coconino County.

## **AXLE LOAD DISTRIBUTION**

The ALD for a given highway section affects the load applied to the pavement by each single, tandem, tridem, and quad axles that pass over the given section during the design period, and it is an important MEPDG input. ALD data were analyzed using data representing 29 ADOT LTPP project sites. A map showing the locations of the project sites is shown in Figure 42.



Figure 42. Locations of the LTPP Sites with WIM Data.

Data were evaluated from the 29 sites to help derive Level 3 defaults for MEPDG traffic inputs. The MEPDG includes national recommendations or default ALD (based on averages from over 100 sites located across the United States) for all four axle types. Of primary interest is how well the national defaults match local Arizona ALD, and if there is the need for Arizona-specific ALD defaults. Based on this information, Arizona-specific ALDs can be derived as needed.

The predominant truck types on Arizona highways are Classes 5 and 9. Emphasis was placed on how ALD for Classes 5 and 9 match with national defaults. Note that the predominant axle type for Class 5 trucks is single, and Class 9 trucks include both single and tandem.

For comparative purposes, the default MEPDG ALD and ALD from selected ADOT LTPP sites are shown in Figure 43 through Figure 45. Also included in these plots are the MEPDG default ALD.

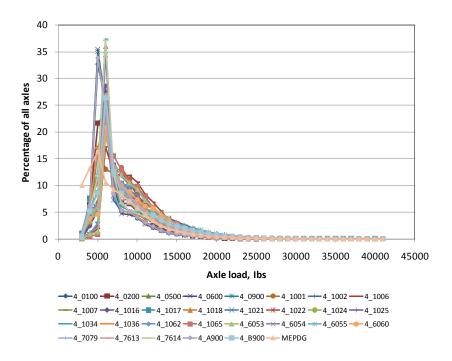



Figure 43. Typical Arizona Highway Class 5 Truck Single-Axle Load Distribution.

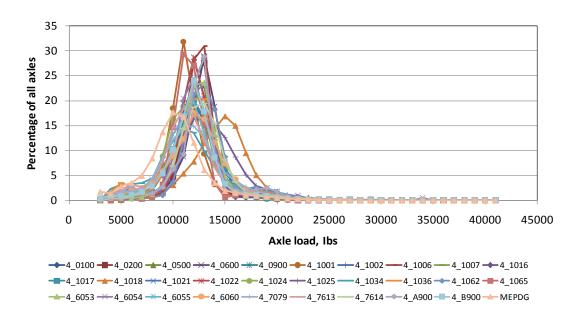



Figure 44. Typical Arizona Highway Class 9 Truck Single-Axle Load Distribution.

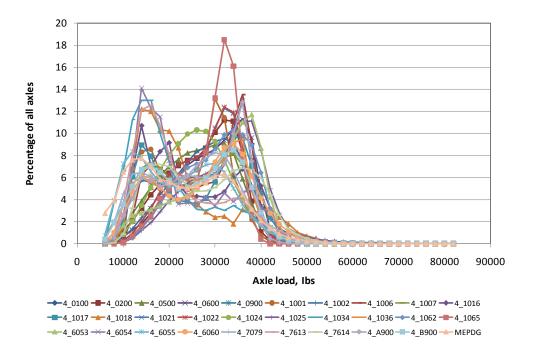



Figure 45. Typical Arizona Highway Class 9 Truck Tandem-Axle Load Distribution.

A review of the ALD plots showed the following:

- Class 5 and Class 9 single ALD exhibited a single peak load. The peak load ranged from 5,000 to 7,000 lb for Class 5 single axles and 11,000 to 15,000 lb for Class 9 single axles. This distribution is typical of Arizona highways in rural and urban areas; however, a few of these Class 9 trucks showed single axles with significantly higher axle loads when compared to other sites within the state.
- For both Class 5 and Class 9 single ALD, the Arizona sites exhibited higher peak loads when compared to the MEPDG national defaults.
- Class 9 tandem ALD exhibited two peak loads. The peak loads ranged from 12,000 to 18,000 lb and 32,000 to 38,000 lb.

ALD data from the 29 LTPP sites were analyzed to develop clusters for Level 3 Arizona ALD defaults. The results are presented in the following sections.

# **Cluster Analysis of ADOT LTPP ALD Data**

A cluster analysis similar to that conducted for other inputs was conducted using all LTPP sites with WIM and ALD data. The data were reviewed and cleaned as previously described prior to performing this cluster analysis. ALD data from specific years that were deemed outliers or obvious data errors were excluded from this analysis. The reasons for deviations from the typical distributions included local construction resulting in roadway closures, construction of new routes leading to the permanent diversion of traffic, and problems with WIM equipment. Specific data not included in this analysis are shown in Table 25.

Table 25. Summary of Outlier Data Excluded from the Cluster Analysis.

| Section ID | Year | Vehicle Class and Axle Type |
|------------|------|-----------------------------|
| 4_0100     | 2004 |                             |
| 4_0600     | 2002 |                             |
| 4_0600     | 2003 |                             |
| 4_0900     | 2004 | Class E. Single Ayles       |
| 4_6060     | 1998 | Class 5, Single Axles       |
| 4_A900     | 2004 |                             |
| 4_B900     | 1997 |                             |
| 4_B900     | 1998 |                             |
| 4_0100     | 2006 |                             |
| 4_0500     | 2008 |                             |
| 4_0600     | 2002 |                             |
| 4_0600     | 2003 |                             |
| 4_1002     | 1999 |                             |
| 4_1002     | 2005 |                             |
| 4_1007     | 2000 |                             |
| 4_1007     | 2001 |                             |
| 4_1007     | 2002 | Class 9, Single Axles       |
| 4_1007     | 2003 | Class 9, Single Axies       |
| 4_6055     | 2001 |                             |
| 4_6055     | 2002 |                             |
| 4_7079     | 1993 |                             |
| 4_7079     | 1994 |                             |
| 4_B900     | 2000 |                             |
| 4_B900     | 2001 |                             |
| 4_B900     | 2002 |                             |
| 4_B900     | 2003 |                             |
| 4_0100     | 2006 |                             |
| 4_0600     | 2002 |                             |
| 4_0600     | 2003 |                             |
| 4_1002     | 1999 |                             |
| 4_1007     | 2000 | Class 9, Tandem Axles       |
| 4_6055     | 2001 | Class 3, Talluelli Axies    |
| 4_6055     | 2002 |                             |
| 4_7079     | 1993 |                             |
| 4_7079     | 1994 |                             |
| 4_7614     | 1993 |                             |

Figure 46 through Figure 48 show ALD for Class 5 and Class 9 trucks, and Table 26 shows the final results from the ALD cluster analysis. The cluster analysis showed that there were three major groupings for ALD and a possible sub-grouping within Cluster 1. All of the three main Arizona groupings were different from the MEPDG default ALD for Class 5 and Class 9 single axles and Class 9 tandem axles.

Cluster 1: This distribution had one large peak for Class 5 single axles. The peak corresponded with approximately 6,000 lbs of weight. The percentage of single axles at this weight was approximately 25. The Class 9 single axles that also had a large peak corresponded with approximately 11,000 lbs of weight. The percentage of single axles at this weight was approximately 20. For Class 9 tandems, the ALD had two large peaks. The difference in percentage of axles at the peaks was quite small (i.e., 2 percent). The heavier peak exhibited a higher percentage of axles. The main functional class highway was Rural Principal Arterial – Interstate.

Cluster 2: This distribution had one large peak for Class 5 single axles. The peak corresponded with approximately 6,000 lbs of weight. The percentage of single axles at this weight was approximately 25. The Class 9 single axles that also had a large peak corresponded with approximately 11,000 lbs of weight. The percentage of single axles at this weight was approximately 16. For Class 9 tandems, ALD had two large peaks. The difference in percentage of axles at the peaks was quite small (i.e., 2.5 percent). The heavier peak exhibited a lower percentage of axles. The main functional class highway was urban freeways and rural minor arterials/collectors.

Cluster 3: This distribution had one large peak for Class 5 single axles. The peak corresponded with approximately 6,000 lbs of weight. The percentage of single axles at this weight was approximately 32.5. This was significantly higher than those reported for Clusters 1 and 2. The Class 9 single axles that also had a large peak corresponded with approximately 11,000 lbs of weight. The percentage of single axles at this weight was approximately 25 (higher than that reported for Clusters 1 and 2). For Class 9 tandems, ALD had two large peaks. The difference in percentage of axles at the peaks was significant (i.e., 10 percent). The heavier peak exhibited a significantly higher percentage of axles. The main functional class highway was rural principal arterial (non-Interstates).

None of the Arizona-derived clusters matched with the MEPDG defaults. Plots of ALD for all of the projects analyzed are presented in Appendix E.

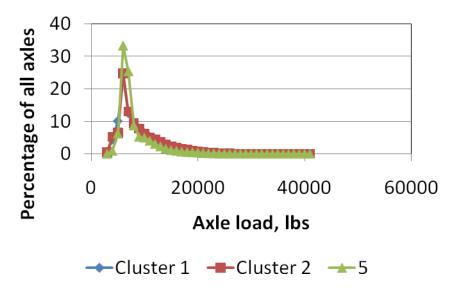



Figure 46. Single-Axle Load Distribution for Truck Class 5.

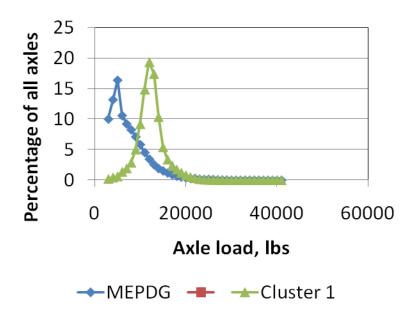



Figure 47. Single-Axle Load Distribution for Truck Class 9.

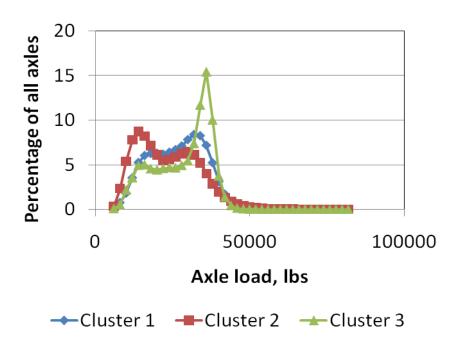



Figure 48. Tandem-Axle Load Distribution for Truck Class 9.

74

Table 26. Summary of Cluster Analysis for ALD Using ADOT and LTPP Datasets.

| ID       | S5,<br>Cluster | ID      | S9,<br>Cluster | ID      | T9,<br>Cluster | County     | Route   | FClass | Route Type | AADTT | Cluster Combined                       |
|----------|----------------|---------|----------------|---------|----------------|------------|---------|--------|------------|-------|----------------------------------------|
| 4_0500   | 1              | 4_0500  | 1              | 4_0500  | 1              | Pinal      | I-08    | RPA-I  | ı          | 930   |                                        |
| 4_1001   | 1              | 4_1001  | 1              | 4_1001  | 1              | Maricopa   | I-10    | RPA-I  | I          | 4660  |                                        |
| 4_1006   | 1              | 4_1006  | 1              | 4_1006  | 1              | Maricopa   | I-10    | RPA-I  | I          | 5740  |                                        |
| 4_1007   | 1              | 4_1007  | 1              | 4_1007  | 1              | Maricopa   | I-10    | RPA-I  | I          | 5439  |                                        |
| 4_6053   | 1              | 4_6053  | 1              | 4_6053  | 1              | Pima       | I-10    | RPA-I  | I          | 2140  |                                        |
| 4_B900   | 1              | 4_B900  | 1              | 4_B900  | 1              | Maricopa   | I-10    | RPA-I  | I          | 5439  |                                        |
| 4_0200** | 2              | 4_0200  | 1              | 4_0200  | 1              | Maricopa   | I-10    | RPA-I  | I          | 4820  |                                        |
| 4_7614** | 2              | 4_7614  | 1              | 4_7614  | 1              | Maricopa   | I-10    | RPA-I  | I          | 2667  |                                        |
| 4_1016   | 1              | 4_1016  | 1              | 4_1016  | 1              | Santa Cruz | I-19    | RPA-I  | I          | 1175  |                                        |
| 4_6054** | 2              | 4_6054  | 1              | 4_6054  | 1              | Santa Cruz | I-19    | RPA-I  | I          | 1104  |                                        |
| 4_1018** | 2              | 4_1018* | 2              | 4_1018* | 2              | Pima       | I-19    | RPA-I  | I          | 1139  | Rural principal arterial (Interstates) |
| 4_6060** | 3              | 4_6060  | 1              | 4_6060  | 1              | Santa Cruz | I-19    | RPA-I  | I          | 2121  | (interotates)                          |
| 4_1017** | 5              | 4_1017* | 4              | 4_1017  | 1              | Pima       | I-19    | RPA-I  | I          | 1164  |                                        |
| 4_1021   | 1              | 4_1021  | 1              | 4_1021  | 1              | Mohave     | I-40    | RPA-I  | I          | 2746  |                                        |
| 4_1022   | 1              | 4_1022  | 1              | 4_1022  | 1              | Mohave     | I-40    | RPA-I  | I          | 2729  |                                        |
| 4_1024   | 1              | 4_1024  | 1              | 4_1024  | 1              | Yavapai    | I-40    | RPA-I  | I          | 2830  |                                        |
| 4_1062   | 1              | 4_1062  | 1              | 4_1062  | 1              | Mohave     | I-40    | RPA-I  | I          | 2808  |                                        |
| 4_1065   | 1              | 4_1065  | 1              | 4_1065  | 1              | Yavapai    | I-40    | RPA-I  | I          | 2802  |                                        |
| 4_1025   | 1              | 4_1025* | 2              | 4_1025* | 3              | Yavapai    | I-40    | RPA-I  | I          | 2858  |                                        |
| 4_0600** | 2              | 4_0600  | 1              | 4_0600  | 1              | Coconino   | I-40    | RPA-I  | I          | 6225  |                                        |
| 4_1002** | 3              | 4_1002* | 5              | 4_1002* | 6              | Yavapai    | I-40    | RPA-I  | I          | 2310  |                                        |
| 4_7079   | 1              | 4_7079  | 1              | 4_7079  | 1              | Maricopa   | SR 101  | UPA-FE | SR         | 4498  |                                        |
| 4_7613   | 1              | 4_7613  | 1              | 4_7613  | 2              | Maricopa   | SR 360  | UPA-O  | SR         | 916   | Urban freeways and rural minor         |
| 4_6055   | 3              | 4_6055  | 1              | 4_6055  | 5              | Maricopa   | SR 85   | RPA-O  | SR         | 3649  | arterials/collectors                   |
| 4_1034   | 2              | 4_1034  | 1              | 4_1034  | 2              | LaPaz      | SR 95   | RMA    | SR         | 1111  |                                        |
| 4_0100   | 2              | 4_0100  | 1              | 4_0100  | 1              | Mohave     | U.S. 93 | RPA-O  | US         | 410   |                                        |
| 4_0900   | 2              | 4_0900  | 1              | 4_0900  | 1              | Mohave     | U.S. 93 | RPA-O  | US         | 420   | Rural principal arterial               |
| 4_1036   | 2              | 4_1036  | 1              | 4_1036  | 1              | Mohave     | U.S. 93 | RPA-O  | US         | 473   | (non-Interstates)                      |
| 4_A900   | 2              | 4_A900  | 1              | 4_A900  | 1              | Mohave     | U.S. 93 | RPA-O  | US         | 420   |                                        |
| MEPDG    | 4              | MEPDG   | 3              | MEPDG   | 4              |            |         |        |            |       | National default                       |

Cluster 1 typically has one large peak (1P) for Class 9; Cluster 2 has two peaks, indicated by 2P, for Classes 5 and 9; and Cluster 3 has one peak for Class 4.

### **AXLES PER TRUCK**

The numbers of single, tandem, tridem, and quad axles per truck are used to determine the total number of axles of each type to pass over the design traffic lane over the analysis period. For some trucks, such as Class 5, the number of single axles is set by the classification criteria at 2.00. For others, this value varies somewhat depending on the definition of the classification.

A cluster analysis was conducted using 33 LTPP sites in Arizona for Class 9 trucks to determine if there were any significant differences in axles per truck across the state. As a result, none are expected since a Class 9 truck is specified to have one single and two tandem axles. The sites are shown in Figure 49.




Figure 49. Map of Sites Used for the Axles-Per-Truck Analysis.

A summary of the cluster analysis is provided in Table 27. The cluster analysis indicates that a single cluster for Class 9 trucks and some outliers explain the data. This result indicates that the various sites shown in Figure 49 do not show significantly different axles per truck values. Several plots of the Class 9 tandem cluster of axles are provided as Figures 50 through 53. Plots of axles per truck for all of the projects analyzed are presented in Appendix F.

Table 27. Summary of All Sites Used in the Axles-per-Truck Cluster Analysis.

| ID     | Tandem<br>Axle<br>Cluster | Latitude, deg. | Longitud<br>e, deg. | County     | Route   | Functiona<br>I Class | Route<br>Type | AADTT |
|--------|---------------------------|----------------|---------------------|------------|---------|----------------------|---------------|-------|
| 4_1003 | 1                         | 33.48          | -112.86             | Maricopa   | I-10    | RPA-I                | I             | 5681  |
| 4_1015 | 1                         | 31.56          | -111.05             | Santa Cruz | I-19    | RPA-I                | I             | 1187  |
| 4_1037 | 1                         | 35.19          | -114.55             | Mohave     | SR 68   | RPA-O                | SR            | 2057  |
| 4_1065 | 2                         | 35.21          | -113.27             | Yavapai    | I-40    | RPA-I                | I             | 2802  |
| 4_6054 | 2                         | 32.04          | -110.99             | Santa Cruz | I-19    | RPA-I                | I             | 1104  |
| 4_0100 | 2                         | 35.40          | -114.26             |            | U.S. 93 | RPA-O                | US            | 410   |
| 4_0200 | 2                         | 33.45          | -112.74             | Maricopa   | I-10    | RPA-I                | 1             | 4820  |
| 4_0500 | 2                         | 32.83          | -112.01             | Pinal      | I-08    | RPA-I                | I             | 930   |
| 4_0600 | 2                         | 35.22          | -111.56             | Coconino   | I-40    | RPA-I                | 1             | 6225  |
| 4_0900 | 2                         | 35.39          | -114.26             |            | U.S. 93 | RPA-O                | US            | 420   |
| 4_1001 | 2                         | 33.46          | -112.45             | Maricopa   | I-10    | RPA-I                | 1             | 4660  |
| 4_1002 | 2                         | 35.22          | -112.49             | Yavapai    | I-40    | RPA-I                | I             | 2310  |
| 4_1006 | 2                         | 33.44          | -112.66             | Maricopa   | I-10    | RPA-I                | I             | 5740  |
| 4_1007 | 2                         | 33.44          | -112.58             | Maricopa   | I-10    | RPA-I                | 1             | 5439  |
| 4_1016 | 2                         | 31.64          | -111.06             | Santa Cruz | I-19    | RPA-I                | I             | 1175  |
| 4_1018 | 2                         | 31.81          | -111.01             | Pima       | I-19    | RPA-I                | I             | 1139  |
| 4_1021 | 2                         | 35.16          | -113.68             | Mohave     | I-40    | RPA-I                | I             | 2746  |
| 4_1022 | 2                         | 35.16          | -113.60             | Mohave     | I-40    | RPA-I                | I             | 2729  |
| 4_1024 | 2                         | 35.28          | -113.13             | Yavapai    | I-40    | RPA-I                | I             | 2830  |
| 4_1025 | 2                         | 35.30          | -113.03             | Yavapai    | I-40    | RPA-I                | I             | 2858  |
| 4_1034 | 2                         | 34.16          | -114.27             | La Paz     | SR 95   | RMA                  | SR            | 1111  |
| 4_1036 | 2                         | 35.71          | -114.48             | Mohave     | U.S. 93 | RPA-O                | US            | 473   |
| 4_1062 | 2                         | 35.19          | -113.35             | Mohave     | I-40    | RPA-I                | I             | 2808  |
| 4_6053 | 2                         | 31.97          | -110.51             | Pima       | I-10    | RPA-I                | I             | 2140  |
| 4_6055 | 2                         | 33.25          | -112.64             | Maricopa   | SR 85   | RPA-O                | SR            | 3649  |
| 4_6060 | 2                         | 31.52          | -111.02             | Santa Cruz | I-19    | RPA-I                | I             | 2121  |
| 4_7079 | 2                         | 33.60          | -112.25             | Maricopa   | SR 101  | UPA-FE               | SR            | 4498  |
| 4_7613 | 2                         | 33.39          | -111.84             | Maricopa   | SR 360  | UPA-O                | SR            | 916   |
| 4_7614 | 2                         | 33.46          | -112.33             | Maricopa   | I-10    | RPA-I                | I             | 2667  |
| 4_A900 | 2                         | 35.39          | -114.26             |            | U.S. 93 | RPA-O                | US            | 420   |
| 4_B900 | 2                         | 33.46          | -112.47             | Maricopa   | I-10    | RPA-I                | 1             | 5439  |
| 4_1017 | 3                         | 31.77          | -111.04             | Pima       | I-19    | RPA-I                | I             | 1164  |

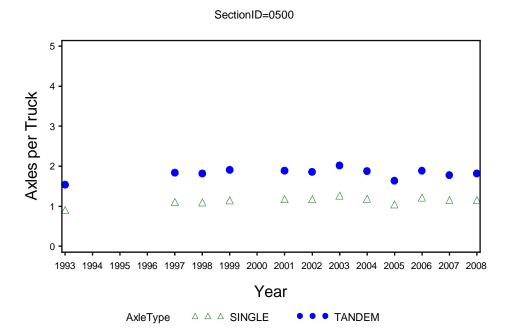



Figure 50. Plot of Axles per Truck for Site 4\_0500 (Vehicle Class 9).

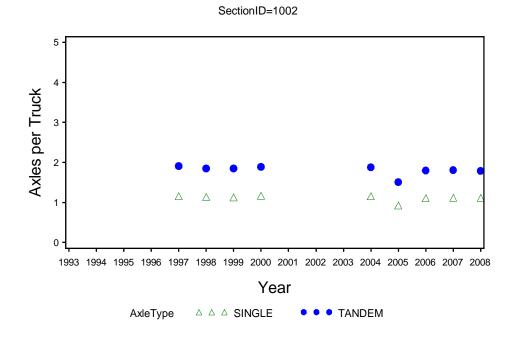



Figure 51. Plot of Axles per Truck for Site 4\_1002 (Vehicle Class 9).



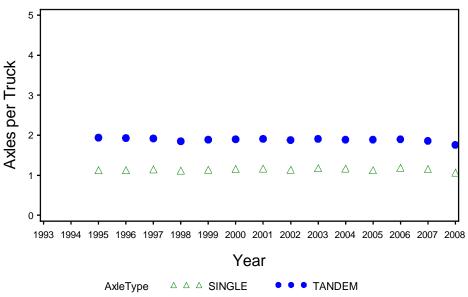



Figure 52. Plot of Axles per Truck for Site 4\_1007 (Vehicle Class 9).

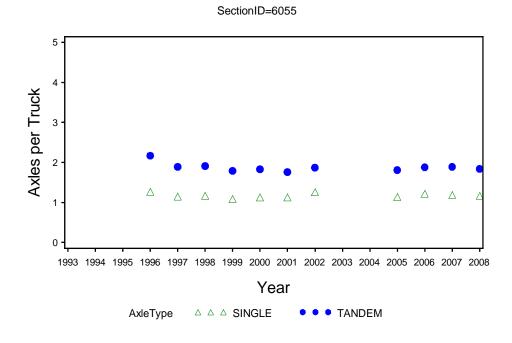



Figure 53. Plot of Axles per Truck for Site 4\_6055 (Vehicle Class 9).

### **CHAPTER 5. SENSITIVITY ANALYSIS**

A sensitivity analysis was conducted to determine the impact of the identified clusters on pavement design and to revise the clusters as needed. Typical ADOT designs for new HMA pavement and new JPCP were used as baseline pavement designs for the sensitivity analysis. This chapter presents a description of the baseline pavement designs along with traffic inputs (MEPDG inputs representing the various clusters identified) and sensitivity analysis results.

#### DESCRIPTION OF BASELINE PAVEMENT DESIGNS

## **Baseline New HMA Pavement Design**

The baseline HMA pavement was modeled after LTPP project 1003 in Arizona (located on I-10, Rural Principal Arterial, in Maricopa County). The project consisted of 6-inch HMA over a 6-inch AASHTO soil class A-1, and a granular base constructed over a granular subgrade (AASHTO soil class A-2-6). MEPDG default inputs for all of the materials were assumed (see Table 28). Traffic volume is shown in Figure 54. National defaults were assumed for all other MEPDG traffic inputs. Climate data were obtained from the four closest weather stations to the project in the Phoenix/Scottsdale area (see Figure 55). An analysis period of 20 years was assumed. Only the HMA pavement distress type influenced by traffic (namely alligator cracking, rutting, and International Roughness Index [IRI]) were considered in the sensitivity analysis.

**Table 28. HMA Pavement Materials Properties.** 

| Layer Type    | F                              | Properties                  |  |  |  |
|---------------|--------------------------------|-----------------------------|--|--|--|
|               | Thickness: 6 inches            |                             |  |  |  |
|               | Gradation:                     |                             |  |  |  |
|               | Sieve Size                     | Percent Retained or Passing |  |  |  |
|               | ¾-inch                         | 7                           |  |  |  |
|               | ³⁄₃-inch                       | 32.5                        |  |  |  |
| HMA           | No. 4                          | 48                          |  |  |  |
|               | No. 200 (passing)              | 4.1                         |  |  |  |
|               | Volumetric Properties:         |                             |  |  |  |
|               | Effective binder content       | 11.6 percent by volume      |  |  |  |
|               | Air voids                      | 7 percent                   |  |  |  |
|               | Bulk unit weight               | 150 pcf                     |  |  |  |
|               | AASHTO soil class              | A-1-a                       |  |  |  |
| Granular Base | Resilient modulus (at optimum) | 29,500 psi                  |  |  |  |
| Granulai base | Maximum dry density            | 127.7 pcf                   |  |  |  |
|               | Optimum moisture content       | 7.4 percent                 |  |  |  |
|               | AASHTO soil class              | A-2-6                       |  |  |  |
| Subgrade      | Resilient modulus (at optimum) | 20,500 psi                  |  |  |  |
| Subgrade      | Max. dry density               | 121.9 pcf                   |  |  |  |
|               | Optimum moisture content       | 10.0 percent                |  |  |  |

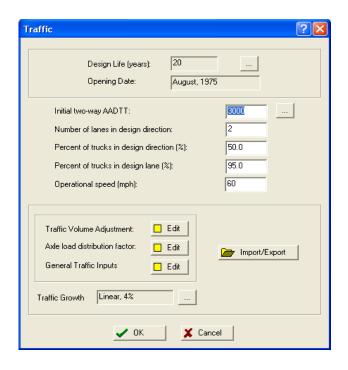



Figure 54. Baseline Traffic Volume Inputs Used for Sensitivity Analysis.

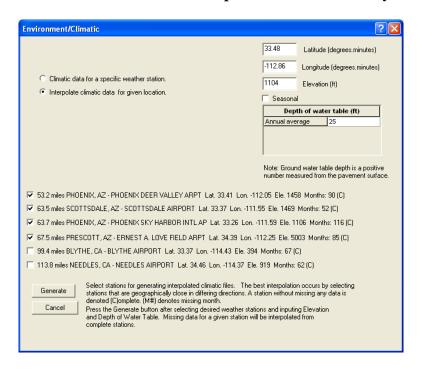



Figure 55. Location of Climate Stations for Baseline HMA Pavement Project.

## **Baseline New JPCP Design**

The baseline JPCP was modeled after LTPP project 7613 in Arizona (located on SR 360/60, Urban Principal Arterial, in Maricopa County). The project consisted of 9-inch PCC over a 12-inch AASHTO soil class 2-2-7 granular base constructed over a granular subgrade (AASHTO soil class A-2-7). MEPDG default inputs for all of the materials were assumed (see Table 29). The traffic volume was as shown in Figure 54 (for new HMA pavement). National defaults were assumed for all other MEPDG traffic inputs for the baseline project. Climate data were obtained from the three closest weather stations to the project in the Phoenix/Scottsdale area (see Figure 56). An analysis period of 30 years was assumed. Only the JPCP distress types influenced by traffic (transverse cracking, faulting, and IRI) were considered in the sensitivity analysis.

**Table 29. JPCP Materials Properties.** 

| Layer Type    | Properties                     |              |  |  |  |  |
|---------------|--------------------------------|--------------|--|--|--|--|
|               | Thickness: 9 inches            |              |  |  |  |  |
|               | Strength                       |              |  |  |  |  |
| PCC           | 28-day flexural strength       | 684 psi      |  |  |  |  |
|               | 28-day elastic modulus         | 3,770,000    |  |  |  |  |
|               | Coef. of thermal expansion     | 5.5/deg. C   |  |  |  |  |
|               | AASHTO soil class              | A-2-7        |  |  |  |  |
| Granular Base | Resilient modulus (at optimum) | 16,000 psi   |  |  |  |  |
| Granulai base | Maximum dry density            | 121.0 pcf    |  |  |  |  |
|               | Optimum moisture content       | 10.8 percent |  |  |  |  |
|               | AASHTO soil class              | A-2-6        |  |  |  |  |
| Cubarada      | Resilient modulus (at optimum) | 16,000 psi   |  |  |  |  |
| Subgrade      | Maximum dry density            | 120.4 pcf    |  |  |  |  |
|               | Optimum moisture content       | 10.8 percent |  |  |  |  |

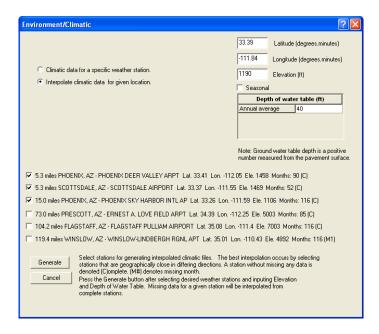



Figure 56. Location of Climate Stations for Baseline HMA Pavement Project.

### MEPDG TRAFFIC INPUTS USED FOR SENSITIVITY ANALYSIS

All of the natural clusters identified in Chapter 4 were considered for use in this sensitivity analysis. The representative MEPDG input for a given cluster (e.g., ALD) was the average of all ALD for projects that fall within the given cluster. Based on the outcome of this cluster analysis, the clusters presented in Table 30 were used for this sensitivity analysis. Figures 57 through 61 show plots of the clusters used for sensitivity analysis for VCD, ALD, and hourly distribution.

Table 30. MEPDG Traffic Input Data Clusters Used for Sensitivity Analysis.

| MEPDG Data Type            | Number of Clusters |
|----------------------------|--------------------|
| Vehicle class distribution | 2                  |
| Axle load distribution     | 3                  |
| Hourly distribution        | 3*                 |
| Monthly adjustment factors | 1                  |
| Axles per truck            | 1**                |

<sup>\*</sup>The third cluster consisted of a single project. This cluster was not considered.

<sup>\*\*</sup>Identified outliers were not considered.



Figure 57. Plot of VCD for Clusters 1 and 2 and the MEPDG Default.

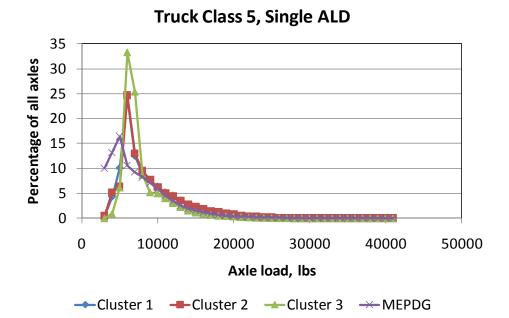



Figure 58. Plot of Single ALD for Clusters 1, 2, and 3 (Class 5 Trucks Only).

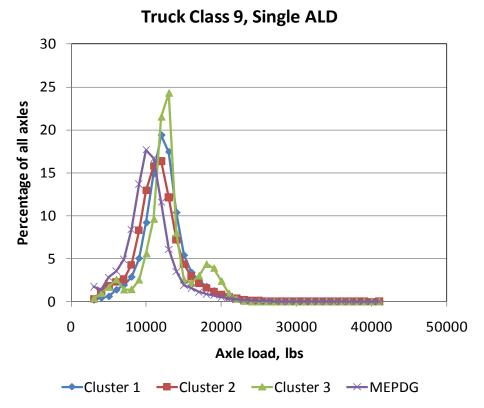



Figure 59. Plot of Single ALD for Clusters 1 and 2 (Class 9 Trucks Only).

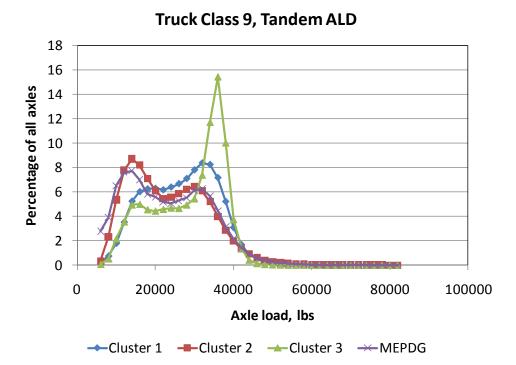



Figure 60. Plot of Tandem ALD for Clusters 1 and 2 (Class 9 Trucks Only).

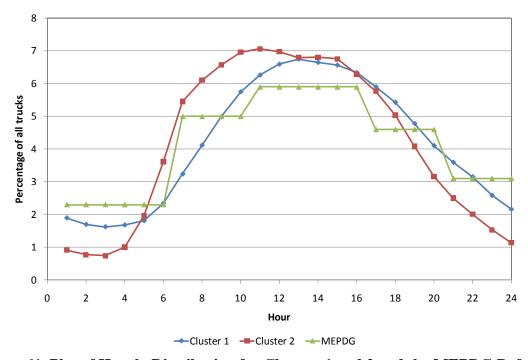



Figure 61. Plot of Hourly Distribution for Clusters 1 and 2 and the MEPDG Default.

#### SENSITIVITY ANALYSIS RESULTS

### **Vehicle Class Distribution**

Sensitivity analysis results showing the impact of VCD from the two Arizona clusters are presented in Figures 62 through 67. A sensitivity analysis was performed using typical Arizona HMA and JPCP projects (LTPP projects 1003 and 7613 for HMA and JPCP, respectively, with some modifications to JPCP design features and base year AADTT).

HMA thickness was varied from 4 to 14 inches until an adequate design was achieved. All distresses were below terminal values: alligator cracking = 20 percent lane area, total rutting = 0.75 inches. It is worth noting that it is obvious from these analyses that rutting is over-predicting and will need local calibration, and IRI = 172 inches/mile at 90 percent reliability.

PCC thickness was varied from 8 to 12 inches until an adequate design was achieved. All distresses were below terminal values: faulting = 0.12 inches, cracking = 15 percent, and IRI = 172 inches/mile at 90 percent reliability. The sensitivity analysis results are summarized in Table 31.

The sensitivity analysis results show a significant impact of VCD (Arizona Clusters 1 and 2) on both HMA and JPCP design. For HMA pavements, the difference in HMA thickness (depending on the selected failure criterion) ranged from 4.3 to 28.6 percent. For JPCP, the difference in PCC thickness (depending on the selected failure criterion) ranged from 2.9 to 9.4 percent. The difference in overall design thickness was 4.3 percent for new HMA pavements and 5.7 percent for new JPCP. The impact of this on pavement construction costs will be significant.

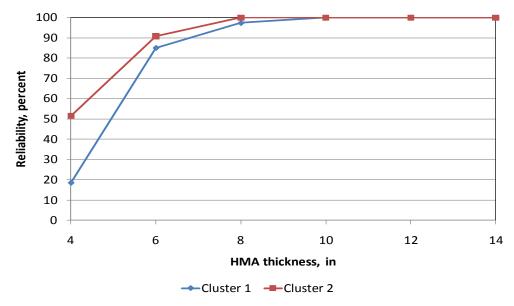



Figure 62. Plot Showing the Effect of VCD Clusters 1 and 2 on New HMA Pavement Alligator Cracking.

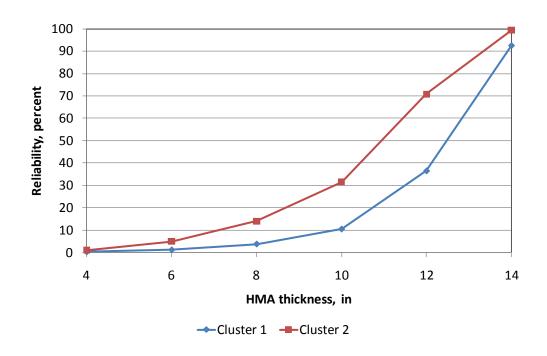



Figure 63. Plot Showing the Effect of VCD Clusters 1 and 2 on New HMA Pavement Rutting.

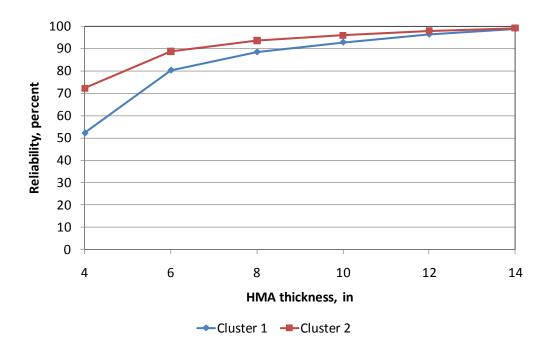



Figure 64. Plot Showing the Effect of VCD Clusters 1 and 2 on New HMA Pavement IRI.

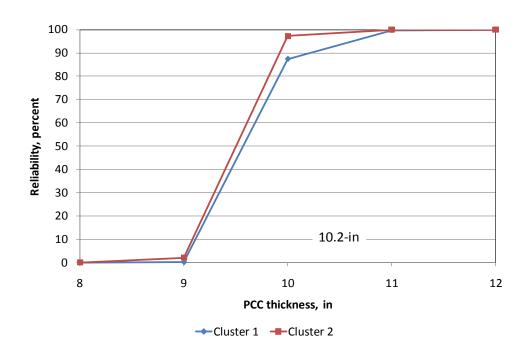



Figure 65. Plot Showing the Effect of VCD Clusters 1 and 2 on New JPCP Transverse Cracking.

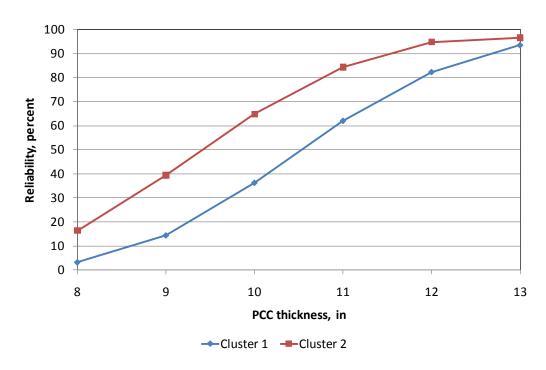



Figure 66. Plot Showing the Effect of VCD Clusters 1 and 2 on New JPCP Faulting.

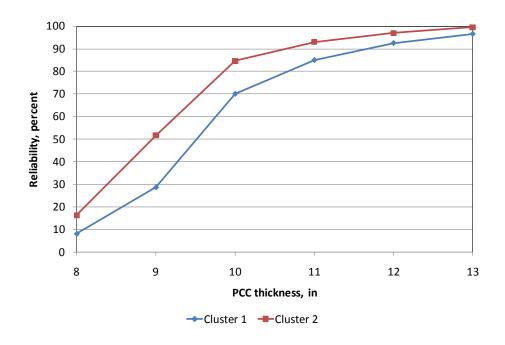



Figure 67. Plot Showing the Effect of VCD Clusters 1 and 2 on New JPCP IRI.

Table 31. Summary of Sensitivity Results for VCD.

| Pavement | Distress/IRI        | Design HMA/PC Percent Re | Percent<br>Difference |            |
|----------|---------------------|--------------------------|-----------------------|------------|
| Туре     |                     | Cluster 1                | Cluster 2             | Dillerence |
|          | Alligator cracking  | 6.9                      | 6.1                   | 11.6       |
| HMA      | Rutting             | 13.9                     | 13.3                  | 4.3        |
|          | IRI                 | 9.1                      | 6.5                   | 28.6       |
| HMA      | HMA overall design  |                          | 13.3                  | 4.3        |
|          | Transverse cracking | 10.2                     | 9.9                   | 2.9        |
| JPCP     | Faulting            | 12.2                     | 11.5                  | 5.7        |
|          | IRI                 | 11.7                     | 10.6                  | 9.4        |
| JPCF     | P overall design    | 12.2                     | 11.5                  | 5.7        |

#### **Axle Load Distribution**

Sensitivity analysis results showing the impact of ALD from the three Arizona clusters and MEPDG national defaults are presented in Figures 68 through 73. Sensitivity analysis was performed using the typical Arizona LTPP projects as described for VCD. The sensitivity analysis results are summarized in Table 32.

The sensitivity analysis showed mixed results. Depending on the distress type of interest in setting the design criteria, the ALD could have a significant impact on thickness (6.7 percent difference in HMA thickness for alligator cracking, 7.1 percent difference in HMA thickness for HMA IRI, and a 3.9 percent difference in PCC thickness for transverse cracking).

However, the analysis results showed no significant impact of ALD (Arizona clusters and MEPDG national default) on overall HMA and JPCP design. This was because, for new HMA

pavement, overall HMA thickness was based on rutting, which showed no significant difference for ALD. For both HMA rutting and JPCP faulting and IRI, it may be that the very high axle loads that cause most of the permanent strains in HMA, fatigue damage, and faulting erosion in PCC are not very different for the three clusters.

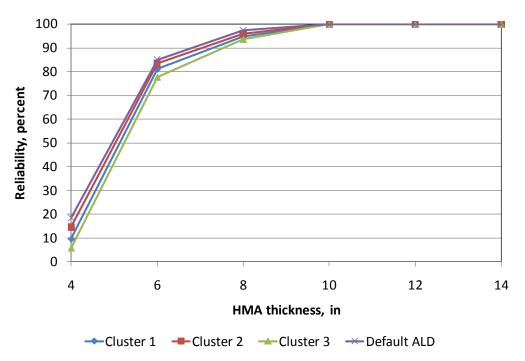



Figure 68. Plot Showing the Effect of ALD Clusters 1 through 3 on New HMA Pavement Alligator Cracking.

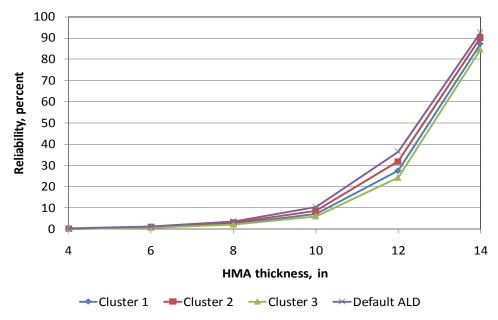



Figure 69. Plot Showing the Effect of ALD Clusters 1 through 3 on New HMA Pavement Rutting.

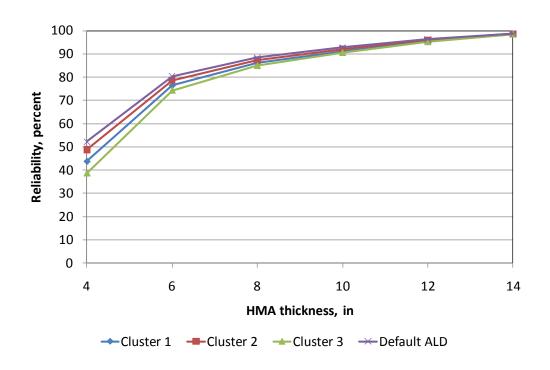



Figure 70. Plot Showing the Effect of ALD Clusters 1 through 3 on New HMA Pavement IRI.

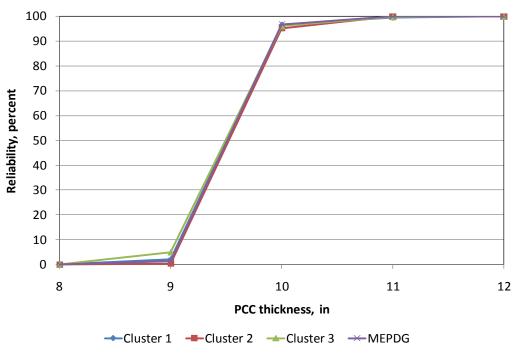



Figure 71. Plot Showing the Effect of ALD Clusters 1 through 3 on New JPCP Transverse Cracking.

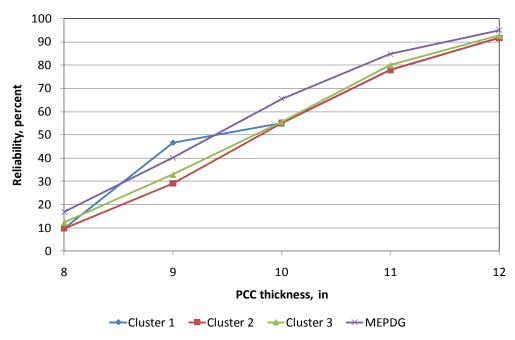



Figure 72. Plot Showing the Effect of ALD Clusters 1 through 3 on New JPCP Faulting.

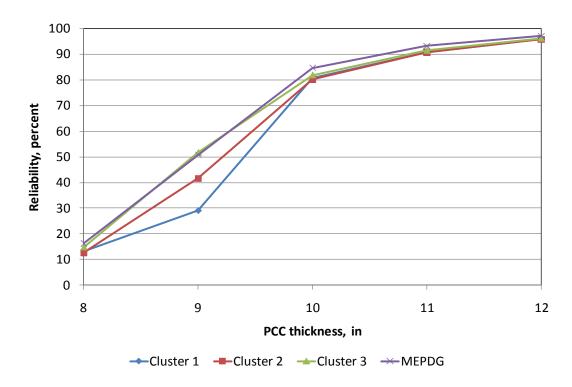



Figure 73. Plot Showing the Effect of ALD Clusters 1 through 3 on New JPCP IRI.

Table 32. Summary of Sensitivity Results for ALD.

| Pavement | Distress/IRI        | Design H  | Percent<br>Difference* |           |       |            |
|----------|---------------------|-----------|------------------------|-----------|-------|------------|
| Туре     |                     | Cluster 1 | Cluster 2              | Cluster 3 | MEPDG | Dillerence |
| НМА      | Alligator cracking  | 7.3       | 7.0                    | 7.5       | 6.8   | 6.7        |
|          | Rutting             | 14.1      | 14                     | 14.1      | 13.9  | 0.7        |
|          | IRI                 | 9.5       | 9.1                    | 9.8       | 8.7   | 7.1        |
| HMA ov   | erall design        | 14.1      | 14                     | 14.1      | 13.9  | 0.7        |
| IDCD     | Transverse cracking | 9.9       | 9.9                    | 10.3      | 9.9   | 3.9        |
| JPCP     | Faulting            | 11.9      | 11.9                   | 11.8      | 11.5  | 0.8        |
|          | IRI                 | 10.9      | 10.9                   | 10.8      | 10.6  | 0.9        |
| JPCP ov  | verall Design       | 11.9      | 11.9                   | 11.8      | 11.5  | 8.0        |

<sup>\*</sup>Computed using the maximum and minimum thickness required for the three Arizona clusters.

# **Hourly Distribution**

Sensitivity analysis results showing the impact of hourly truck distribution are presented in Figures 74 through 76. Sensitivity analysis results are presented only for JPCP, as the hourly truck distribution has no impact on HMA pavements. The sensitivity analysis results show that the Arizona hourly truck distribution clusters had no significant impact on PCC thickness and the overall design.

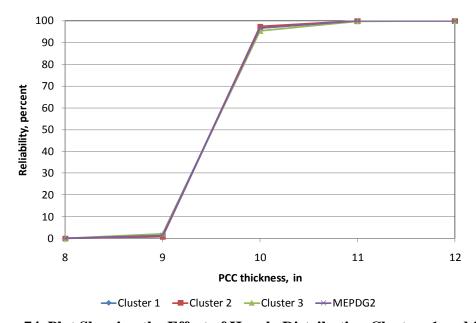



Figure 74. Plot Showing the Effect of Hourly Distribution Clusters 1 and 2 on New JPCP Transverse Cracking.

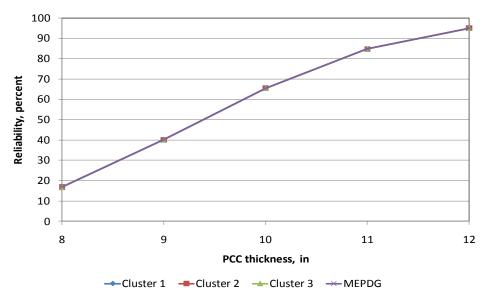



Figure 75. Plot Showing the Effect of Hourly Distribution Clusters 1 and 2on New JPCP Faulting.

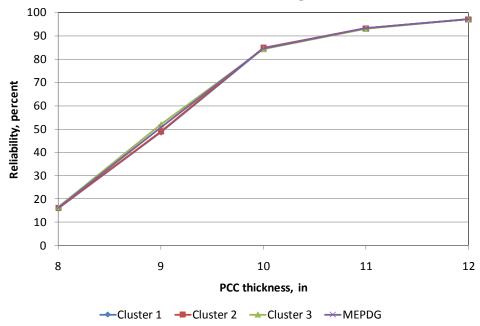



Figure 76. Plot Showing the Effect of Hourly Distribution Clusters 1 and 2 on New JPCP IRI.

# CHAPTER 6. DEVELOPMENT OF STATEWIDE LEVEL 2/3 MEPDG TRAFFIC INPUTS

The results of the statistical cluster analysis and sensitivity analysis were used to develop typical MEPDG Level 2/3 traffic inputs. This chapter presents the defaults developed for the following:

- VCD.
- Hourly distribution.
- MAF.
- ALD.
- Number of axles per truck.
- Lateral wander.
- Truck wheelbase.

#### VEHICLE CLASS DISTRIBUTION

The statistical analysis identified two VCD clusters in Arizona. The sensitivity analysis confirms that the three identified clusters produced significantly different new HMA and new JPCP designs. Thus, the application of two VCD clusters for MEPDG pavement design is recommended. A description of the two VCD clusters is presented in Table 33.

Table 33. Recommended MEPDG VCD Inputs for Level 2/3 Design in Arizona.

| Vehicle<br>Class | Cluster 1—Major Single Truck<br>Trailer Route, Primarily Rural<br>Principal Arterial | Cluster 2—Intermediate Light and Single Trailer<br>Route, Primarily Urban Principal Arterial, Rural<br>Minor Arterials |
|------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 4                | 1.8                                                                                  | 4.7                                                                                                                    |
| 5                | 14.1                                                                                 | 47.2                                                                                                                   |
| 6                | 2.7                                                                                  | 7.4                                                                                                                    |
| 7                | 0.1                                                                                  | 0.4                                                                                                                    |
| 8                | 7.6                                                                                  | 12.4                                                                                                                   |
| 9                | 66.8                                                                                 | 25.1                                                                                                                   |
| 10               | 0.7                                                                                  | 1.7                                                                                                                    |
| 11               | 4.3                                                                                  | 0.6                                                                                                                    |
| 12               | 1.4                                                                                  | 0.1                                                                                                                    |
| 13               | 0.5                                                                                  | 0.4                                                                                                                    |

# HOURLY TRUCK DISTRIBUTION

Statistical analysis identified three hourly truck distribution clusters in Arizona. Sensitivity analysis, however, indicated that there was no significant change in pavement design (PCC thickness, HMA not affected) due to application of the identified hourly distribution clusters. However, the sensitivity analysis was limited, and it is still recommended that these three distributions be used as appropriate, as it is the true representation of actual truck loading throughout the 24-hour period. The recommended hourly distributions are shown in Table 34.

Table 34. Recommended MEPDG Hourly Truck Distribution Input for Design in Arizona.

| Time of Day,<br>Hours | Cluster 1—Rural<br>Highways | Cluster 2—Urban<br>Highways | Cluster 3—Long Haul<br>Sections of Rural<br>Highways |
|-----------------------|-----------------------------|-----------------------------|------------------------------------------------------|
| 0                     | 1.9                         | 0.9                         | 3.7                                                  |
| 1                     | 1.7                         | 0.8                         | 3.4                                                  |
| 2                     | 1.6                         | 0.7                         | 2.9                                                  |
| 3                     | 1.7                         | 1.0                         | 2.8                                                  |
| 4                     | 1.8                         | 2.0                         | 2.6                                                  |
| 5                     | 2.3                         | 3.6                         | 2.6                                                  |
| 6                     | 3.2                         | 5.5                         | 3.0                                                  |
| 7                     | 4.1                         | 6.1                         | 3.2                                                  |
| 8                     | 5.0                         | 6.6                         | 3.8                                                  |
| 9                     | 5.8                         | 7.0                         | 4.2                                                  |
| 10                    | 6.3                         | 7.1                         | 4.5                                                  |
| 11                    | 6.6                         | 7.0                         | 4.7                                                  |
| 12                    | 6.8                         | 6.8                         | 4.7                                                  |
| 13                    | 6.7                         | 6.8                         | 5.0                                                  |
| 14                    | 6.6                         | 6.8                         | 5.3                                                  |
| 15                    | 6.3                         | 6.3                         | 5.3                                                  |
| 16                    | 5.9                         | 5.8                         | 5.4                                                  |
| 17                    | 5.4                         | 5.0                         | 5.3                                                  |
| 18                    | 4.8                         | 4.1                         | 5.3                                                  |
| 19                    | 4.1                         | 3.2                         | 4.9                                                  |
| 20                    | 3.6                         | 2.5                         | 4.7                                                  |
| 21                    | 3.2                         | 2.0                         | 4.4                                                  |
| 22                    | 2.6                         | 1.5                         | 4.4                                                  |
| 23                    | 2.2                         | 1.1                         | 4.1                                                  |

## MONTHLY ADJUSTMENT FACTOR

Statistical analysis identified a single cluster for MAF for Arizona. Thus, a sensitivity analysis was not necessary. The statewide default Arizona MEPDG MAF input recommended for design is presented in Table 35. Heavier truck traffic in the winter is reflected in these values.

Table 35. Recommended MEPDG MAF Input for Design in Arizona.

| Month     | Statewide Default Monthly Adjustment Factors |      |      |      |      |      |      |      |      |      |  |  |  |
|-----------|----------------------------------------------|------|------|------|------|------|------|------|------|------|--|--|--|
| Month     | VC4                                          | VC5  | VC6  | VC7  | VC8  | VC9  | VC10 | VC11 | VC12 | VC13 |  |  |  |
| January   | 0.99                                         | 0.87 | 0.85 | 1.11 | 0.90 | 0.86 | 1.03 | 0.69 | 0.62 | 1.23 |  |  |  |
| February  | 1.03                                         | 0.97 | 0.90 | 0.87 | 0.94 | 0.92 | 0.95 | 0.78 | 0.85 | 0.96 |  |  |  |
| March     | 1.02                                         | 0.99 | 0.92 | 0.94 | 1.02 | 0.94 | 0.88 | 0.85 | 0.98 | 0.84 |  |  |  |
| April     | 0.97                                         | 0.91 | 0.94 | 1.13 | 0.92 | 0.93 | 0.91 | 0.81 | 1.00 | 0.91 |  |  |  |
| May       | 0.96                                         | 0.95 | 0.91 | 0.78 | 0.92 | 0.93 | 0.83 | 0.97 | 0.91 | 0.79 |  |  |  |
| June      | 0.89                                         | 0.96 | 0.93 | 0.96 | 0.93 | 0.98 | 1.00 | 1.13 | 1.13 | 0.79 |  |  |  |
| July      | 0.91                                         | 0.98 | 0.92 | 0.64 | 0.91 | 0.92 | 0.84 | 1.13 | 0.95 | 1.00 |  |  |  |
| August    | 0.95                                         | 0.99 | 1.01 | 0.86 | 0.93 | 1.08 | 0.95 | 1.25 | 1.20 | 0.74 |  |  |  |
| September | 1.05                                         | 0.95 | 0.90 | 0.84 | 0.90 | 0.90 | 0.82 | 0.96 | 0.91 | 0.67 |  |  |  |
| October   | 1.06                                         | 1.01 | 1.05 | 1.00 | 1.08 | 1.00 | 0.96 | 1.00 | 0.99 | 1.05 |  |  |  |
| November  | 1.10                                         | 1.24 | 1.35 | 1.25 | 1.40 | 1.25 | 1.42 | 1.14 | 1.22 | 1.41 |  |  |  |
| December  | 1.05                                         | 1.19 | 1.33 | 1.63 | 1.14 | 1.27 | 1.42 | 1.30 | 1.24 | 1.60 |  |  |  |

<sup>\*</sup>Winter months (October, November, December, and January) experienced higher levels of truck traffic.

#### **AXLE LOAD DISTRIBUTION**

Statistical analysis identified three ALD clusters in Arizona. Sensitivity analysis results were mixed, showing that ALD could significantly impact both HMA and JPCP design under different design scenarios. Thus, the application of three ALD clusters for MEPDG pavement design is recommended. A description of the three ALD clusters is presented in Tables 36 through 47 for single, tandem, tridem, and quad axles.

#### **AXLES PER TRUCK**

Statistical analysis identified a single cluster for axles-per-truck statistics for Arizona. Thus, sensitivity analysis was not necessary. The single statewide default for axles per truck recommended for design is presented in Table 48.

Table 36. Recommended Cluster 1 Single Axle MEPDG ALD Input for Design in Arizona.

| Axle     |        |        |        |        | Veh    | icle Class |        |       |        |        |
|----------|--------|--------|--------|--------|--------|------------|--------|-------|--------|--------|
| Load, lb | 4      | 5      | 6      | 7      | 8      | 9          | 10     | 11    | 12     | 13     |
| 3,000    | 0.038  | 0.486  | 0.000  | 0.973  | 4.537  | 0.210      | 0.310  | 0.460 | 0.271  | 1.896  |
| 4,000    | 0.050  | 4.309  | 0.002  | 0.325  | 7.207  | 0.443      | 0.102  | 1.552 | 1.152  | 1.431  |
| 5,000    | 0.050  | 10.099 | 0.374  | 0.604  | 4.568  | 0.610      | 0.107  | 2.697 | 2.160  | 1.439  |
| 6,000    | 0.561  | 24.219 | 2.839  | 1.130  | 12.103 | 1.374      | 0.952  | 4.161 | 4.024  | 2.560  |
| 7,000    | 1.186  | 12.469 | 3.379  | 1.569  | 8.580  | 1.938      | 1.709  | 5.079 | 6.453  | 3.890  |
| 8,000    | 2.753  | 8.969  | 3.971  | 2.240  | 7.778  | 2.871      | 3.149  | 6.035 | 7.945  | 4.738  |
| 9,000    | 5.038  | 7.621  | 6.495  | 4.258  | 8.637  | 5.029      | 6.124  | 7.079 | 8.436  | 6.337  |
| 10,000   | 7.637  | 6.402  | 10.604 | 1.845  | 9.136  | 9.190      | 11.881 | 8.643 | 9.645  | 7.880  |
| 11,000   | 9.989  | 5.215  | 14.328 | 9.324  | 8.390  | 14.862     | 17.107 | 9.816 | 10.853 | 10.451 |
| 12,000   | 13.469 | 4.577  | 16.163 | 9.040  | 7.190  | 19.357     | 19.704 | 9.964 | 11.722 | 12.204 |
| 13,000   | 14.165 | 3.573  | 13.318 | 5.189  | 5.256  | 17.404     | 15.820 | 8.913 | 10.620 | 11.182 |
| 14,000   | 12.605 | 2.770  | 8.826  | 10.954 | 3.797  | 10.360     | 9.559  | 7.502 | 8.067  | 8.574  |
| 15,000   | 9.455  | 2.186  | 6.182  | 9.957  | 2.941  | 5.397      | 5.321  | 6.415 | 6.276  | 5.654  |
| 16,000   | 6.763  | 1.714  | 4.304  | 6.482  | 2.287  | 3.385      | 3.034  | 5.554 | 4.598  | 4.316  |
| 17,000   | 4.416  | 1.347  | 3.049  | 7.679  | 1.877  | 2.393      | 1.907  | 4.641 | 3.063  | 3.721  |
| 18,000   | 3.101  | 1.067  | 1.991  | 6.646  | 1.467  | 1.745      | 1.319  | 3.730 | 1.884  | 2.777  |
| 19,000   | 2.432  | 0.804  | 1.323  | 4.462  | 1.119  | 1.240      | 0.695  | 2.730 | 1.201  | 2.466  |
| 20,000   | 1.873  | 0.601  | 0.878  | 3.590  | 0.816  | 0.824      | 0.407  | 1.917 | 0.667  | 2.301  |
| 21,000   | 1.367  | 0.446  | 0.650  | 2.700  | 0.551  | 0.514      | 0.233  | 1.250 | 0.362  | 1.282  |
| 22,000   | 0.944  | 0.311  | 0.396  | 1.885  | 0.374  | 0.307      | 0.122  | 0.744 | 0.244  | 1.167  |
| 23,000   | 0.661  | 0.207  | 0.281  | 2.898  | 0.259  | 0.171      | 0.097  | 0.462 | 0.140  | 0.747  |
| 24,000   | 0.513  | 0.146  | 0.205  | 1.663  | 0.164  | 0.099      | 0.048  | 0.248 | 0.095  | 0.626  |
| 25,000   | 0.296  | 0.094  | 0.114  | 1.586  | 0.105  | 0.064      | 0.038  | 0.139 | 0.039  | 0.521  |
| 26,000   | 0.219  | 0.064  | 0.089  | 1.231  | 0.059  | 0.039      | 0.031  | 0.079 | 0.017  | 0.367  |
| 27,000   | 0.131  | 0.037  | 0.056  | 0.732  | 0.043  | 0.026      | 0.044  | 0.055 | 0.016  | 0.299  |
| 28,000   | 0.118  | 0.029  | 0.044  | 0.280  | 0.028  | 0.018      | 0.026  | 0.035 | 0.011  | 0.166  |
| 29,000   | 0.055  | 0.026  | 0.033  | 0.050  | 0.020  | 0.007      | 0.007  | 0.020 | 0.006  | 0.177  |
| 30,000   | 0.045  | 0.013  | 0.014  | 0.112  | 0.012  | 0.003      | 0.031  | 0.009 | 0.000  | 0.145  |
| 31,000   | 0.015  | 0.006  | 0.018  | 0.125  | 0.005  | 0.004      | 0.005  | 0.004 | 0.001  | 0.063  |
| 32,000   | 0.016  | 0.007  | 0.011  | 0.000  | 0.003  | 0.003      | 0.005  | 0.005 | 0.000  | 0.032  |
| 33,000   | 0.006  | 0.006  | 0.005  | 0.000  | 0.002  | 0.002      | 0.002  | 0.003 | 0.000  | 0.038  |
| 34,000   | 0.004  | 0.003  | 0.003  | 0.308  | 0.002  | 0.006      | 0.007  | 0.002 | 0.001  | 0.032  |
| 35,000   | 0.002  | 0.004  | 0.005  | 0.000  | 0.001  | 0.001      | 0.006  | 0.002 | 0.000  | 0.032  |
| 36,000   | 0.001  | 0.003  | 0.001  | 0.029  | 0.002  | 0.001      | 0.018  | 0.003 | 0.000  | 0.018  |
| 37,000   | 0.009  | 0.004  | 0.004  | 0.000  | 0.003  | 0.000      | 0.004  | 0.002 | 0.000  | 0.023  |
| 38,000   | 0.001  | 0.002  | 0.003  | 0.057  | 0.001  | 0.001      | 0.005  | 0.000 | 0.001  | 0.028  |
| 39,000   | 0.004  | 0.002  | 0.004  | 0.048  | 0.000  | 0.001      | 0.003  | 0.002 | 0.000  | 0.004  |
| 40,000   | 0.004  | 0.002  | 0.004  | 0.019  | 0.001  | 0.001      | 0.000  | 0.000 | 0.000  | 0.007  |
| 41,000   | 0.010  | 0.002  | 0.011  | 0.000  | 0.002  | 0.014      | 0.030  | 0.000 | 0.000  | 0.065  |

Table 37. Recommended Cluster 1 Tandem Axle MEPDG ALD Input for Design in Arizona.

| Axle     |        |       |        |        | Vehicle | e Class |       |        |        |       |
|----------|--------|-------|--------|--------|---------|---------|-------|--------|--------|-------|
| Load, lb | 4      | 5     | 6      | 7      | 8       | 9       | 10    | 11     | 12     | 13    |
| 6,000    | 0.011  | 0.000 | 0.290  | 0.000  | 5.050   | 0.141   | 0.188 | 0.000  | 0.111  | 0.714 |
| 8,000    | 0.011  | 0.000 | 4.419  | 0.000  | 7.927   | 0.747   | 0.636 | 50.000 | 0.563  | 1.083 |
| 10,000   | 0.018  | 0.000 | 10.371 | 0.000  | 5.991   | 1.799   | 1.565 | 25.000 | 2.054  | 2.590 |
| 12,000   | 0.090  | 0.000 | 14.419 | 0.000  | 8.533   | 3.519   | 2.762 | 0.000  | 4.427  | 5.103 |
| 14,000   | 0.301  | 0.000 | 13.063 | 0.000  | 11.528  | 5.235   | 5.318 | 0.000  | 8.715  | 6.632 |
| 16,000   | 0.807  | 0.000 | 8.055  | 0.000  | 12.541  | 6.013   | 6.893 | 0.000  | 12.451 | 6.310 |
| 18,000   | 2.583  | 0.000 | 5.543  | 100.00 | 11.386  | 6.240   | 8.209 | 0.000  | 13.291 | 6.604 |
| 20,000   | 5.417  | 0.000 | 4.607  | 0.000  | 9.107   | 6.284   | 7.922 | 0.000  | 14.918 | 5.181 |
| 22,000   | 9.568  | 0.000 | 4.618  | 0.000  | 6.941   | 6.165   | 8.416 | 0.000  | 14.368 | 5.148 |
| 24,000   | 13.467 | 0.000 | 5.081  | 0.000  | 5.326   | 6.388   | 8.015 | 0.000  | 12.356 | 4.560 |
| 26,000   | 15.595 | 0.000 | 5.359  | 0.000  | 3.988   | 6.667   | 7.735 | 0.000  | 8.337  | 4.293 |
| 28,000   | 15.288 | 0.000 | 5.137  | 0.000  | 2.989   | 7.087   | 7.740 | 0.000  | 4.441  | 4.377 |
| 30,000   | 12.411 | 0.000 | 4.544  | 0.000  | 2.190   | 7.796   | 7.462 | 0.000  | 1.967  | 4.153 |
| 32,000   | 9.015  | 0.000 | 3.866  | 0.000  | 1.772   | 8.362   | 6.391 | 0.000  | 1.000  | 4.583 |
| 34,000   | 6.407  | 0.000 | 2.885  | 0.000  | 1.256   | 8.232   | 5.366 | 0.000  | 0.377  | 5.106 |
| 36,000   | 3.582  | 0.000 | 2.296  | 0.000  | 0.956   | 7.160   | 4.827 | 25.000 | 0.182  | 5.626 |
| 38,000   | 1.935  | 0.000 | 1.705  | 0.000  | 0.777   | 5.210   | 3.127 | 0.000  | 0.137  | 5.551 |
| 40,000   | 1.306  | 0.000 | 1.188  | 0.000  | 0.501   | 3.086   | 2.436 | 0.000  | 0.068  | 4.950 |
| 42,000   | 0.738  | 0.000 | 0.866  | 0.000  | 0.303   | 1.683   | 1.647 | 0.000  | 0.036  | 4.187 |
| 44,000   | 0.503  | 0.000 | 0.552  | 0.000  | 0.218   | 0.895   | 1.096 | 0.000  | 0.019  | 3.269 |
| 46,000   | 0.377  | 0.000 | 0.435  | 0.000  | 0.098   | 0.514   | 0.774 | 0.000  | 0.006  | 2.382 |
| 48,000   | 0.212  | 0.000 | 0.244  | 0.000  | 0.170   | 0.302   | 0.432 | 0.000  | 0.011  | 1.809 |
| 50,000   | 0.138  | 0.000 | 0.140  | 0.000  | 0.037   | 0.174   | 0.326 | 0.000  | 0.030  | 1.453 |
| 52,000   | 0.065  | 0.000 | 0.102  | 0.000  | 0.020   | 0.101   | 0.164 | 0.000  | 0.000  | 1.050 |
| 54,000   | 0.045  | 0.000 | 0.053  | 0.000  | 0.009   | 0.059   | 0.172 | 0.000  | 0.000  | 0.820 |
| 56,000   | 0.027  | 0.000 | 0.035  | 0.000  | 0.006   | 0.034   | 0.116 | 0.000  | 0.000  | 0.627 |
| 58,000   | 0.022  | 0.000 | 0.024  | 0.000  | 0.011   | 0.016   | 0.060 | 0.000  | 0.010  | 0.514 |
| 60,000   | 0.010  | 0.000 | 0.019  | 0.000  | 0.004   | 0.006   | 0.036 | 0.000  | 0.005  | 0.305 |
| 62,000   | 0.007  | 0.000 | 0.014  | 0.000  | 0.003   | 0.004   | 0.026 | 0.000  | 0.000  | 0.269 |
| 64,000   | 0.011  | 0.000 | 0.009  | 0.000  | 0.001   | 0.002   | 0.065 | 0.000  | 0.095  | 0.194 |
| 66,000   | 0.001  | 0.000 | 0.004  | 0.000  | 0.001   | 0.001   | 0.018 | 0.000  | 0.000  | 0.122 |
| 68,000   | 0.003  | 0.000 | 0.005  | 0.000  | 0.001   | 0.001   | 0.015 | 0.000  | 0.000  | 0.106 |
| 70,000   | 0.003  | 0.000 | 0.003  | 0.000  | 0.001   | 0.000   | 0.011 | 0.000  | 0.000  | 0.111 |
| 72,000   | 0.001  | 0.000 | 0.002  | 0.000  | 0.000   | 0.000   | 0.001 | 0.000  | 0.000  | 0.062 |
| 74,000   | 0.000  | 0.000 | 0.007  | 0.000  | 0.000   | 0.000   | 0.002 | 0.000  | 0.000  | 0.076 |
| 76,000   | 0.000  | 0.000 | 0.002  | 0.000  | 0.000   | 0.000   | 0.001 | 0.000  | 0.000  | 0.039 |
| 78,000   | 0.000  | 0.000 | 0.001  | 0.000  | 0.000   | 0.000   | 0.001 | 0.000  | 0.000  | 0.024 |
| 80,000   | 0.000  | 0.000 | 0.002  | 0.000  | 0.000   | 0.000   | 0.004 | 0.000  | 0.000  | 0.010 |
| 82,000   | 0.000  | 0.000 | 0.000  | 0.000  | 0.000   | 0.000   | 0.005 | 0.000  | 0.000  | 0.003 |

Table 38. Recommended Cluster 1 Tridem Axle MEPDG ALD Input for Design in Arizona.

| Axle     |       |       |       |        | Veh   | icle Class |       |       |        |        |
|----------|-------|-------|-------|--------|-------|------------|-------|-------|--------|--------|
| Load, Ib | 4     | 5     | 6     | 7      | 8     | 9          | 10    | 11    | 12     | 13     |
| 12,000   | 0.000 | 0.000 | 0.000 | 0.407  | 0.000 | 0.105      | 0.735 | 0.000 | 3.111  | 0.594  |
| 15,000   | 0.000 | 0.000 | 0.000 | 0.394  | 0.000 | 1.295      | 2.336 | 0.000 | 3.842  | 1.000  |
| 18,000   | 0.000 | 0.000 | 0.000 | 5.444  | 0.000 | 33.438     | 6.388 | 0.000 | 7.616  | 1.431  |
| 21,000   | 0.000 | 0.000 | 0.000 | 5.957  | 0.000 | 12.495     | 9.254 | 0.000 | 9.580  | 2.955  |
| 24,000   | 0.000 | 0.000 | 0.000 | 5.374  | 0.000 | 9.010      | 9.670 | 0.000 | 20.038 | 3.998  |
| 27,000   | 0.000 | 0.000 | 0.000 | 3.184  | 0.000 | 5.533      | 8.246 | 0.000 | 13.931 | 4.515  |
| 30,000   | 0.000 | 0.000 | 0.000 | 3.707  | 0.000 | 1.862      | 6.863 | 0.000 | 16.044 | 5.753  |
| 33,000   | 0.000 | 0.000 | 0.000 | 3.412  | 0.000 | 1.067      | 7.361 | 0.000 | 1.338  | 3.861  |
| 36,000   | 0.000 | 0.000 | 0.000 | 6.737  | 0.000 | 1.571      | 7.440 | 0.000 | 1.418  | 4.878  |
| 39,000   | 0.000 | 0.000 | 0.000 | 6.619  | 0.000 | 1.510      | 7.897 | 0.000 | 8.847  | 6.155  |
| 42,000   | 0.000 | 0.000 | 0.000 | 11.794 | 0.000 | 1.286      | 8.187 | 0.000 | 0.236  | 6.803  |
| 45,000   | 0.000 | 0.000 | 0.000 | 9.811  | 0.000 | 0.410      | 7.334 | 0.000 | 0.342  | 6.066  |
| 48,000   | 0.000 | 0.000 | 0.000 | 11.127 | 0.000 | 0.614      | 5.520 | 0.000 | 1.453  | 6.879  |
| 51,000   | 0.000 | 0.000 | 0.000 | 7.935  | 0.000 | 4.971      | 3.890 | 0.000 | 3.549  | 7.441  |
| 54,000   | 0.000 | 0.000 | 0.000 | 5.380  | 0.000 | 2.495      | 2.809 | 0.000 | 1.596  | 11.680 |
| 57,000   | 0.000 | 0.000 | 0.000 | 3.377  | 0.000 | 5.429      | 2.036 | 0.000 | 2.471  | 5.717  |
| 60,000   | 0.000 | 0.000 | 0.000 | 3.084  | 0.000 | 4.762      | 1.670 | 0.000 | 1.111  | 6.126  |
| 63,000   | 0.000 | 0.000 | 0.000 | 3.335  | 0.000 | 2.381      | 0.817 | 0.000 | 2.458  | 4.731  |
| 66,000   | 0.000 | 0.000 | 0.000 | 2.002  | 0.000 | 0.000      | 0.552 | 0.000 | 0.000  | 3.632  |
| 69,000   | 0.000 | 0.000 | 0.000 | 0.483  | 0.000 | 9.524      | 0.395 | 0.000 | 0.513  | 2.345  |
| 72,000   | 0.000 | 0.000 | 0.000 | 0.121  | 0.000 | 0.000      | 0.250 | 0.000 | 0.000  | 0.801  |
| 75,000   | 0.000 | 0.000 | 0.000 | 0.300  | 0.000 | 0.000      | 0.126 | 0.000 | 0.000  | 0.972  |
| 78,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000      | 0.074 | 0.000 | 0.000  | 1.026  |
| 81,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000      | 0.055 | 0.000 | 0.000  | 0.211  |
| 84,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000      | 0.026 | 0.000 | 0.000  | 0.218  |
| 87,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000      | 0.021 | 0.000 | 0.000  | 0.016  |
| 90,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000      | 0.009 | 0.000 | 0.000  | 0.037  |
| 93,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000      | 0.004 | 0.000 | 0.513  | 0.017  |
| 96,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000      | 0.002 | 0.000 | 0.000  | 0.011  |
| 99,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000      | 0.001 | 0.000 | 0.000  | 0.005  |
| 102,000  | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000      | 0.001 | 0.000 | 0.000  | 0.000  |

Table 39. Recommended Cluster 1 Quad Axle MEPDG ALD Input for Design in Arizona.

| Axle     |       |       |       |        | Vehi  | cle Class |        |       |        |       |
|----------|-------|-------|-------|--------|-------|-----------|--------|-------|--------|-------|
| Load, Ib | 4     | 5     | 6     | 7      | 8     | 9         | 10     | 11    | 12     | 13    |
| 12,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000     | 0.541  | 0.000 | 0.000  | 0.335 |
| 15,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 7.000     | 0.312  | 0.000 | 1.753  | 0.329 |
| 18,000   | 0.000 | 0.000 | 0.000 | 0.280  | 0.000 | 2.000     | 2.297  | 0.000 | 0.000  | 1.589 |
| 21,000   | 0.000 | 0.000 | 0.000 | 0.280  | 0.000 | 15.375    | 3.921  | 0.000 | 10.526 | 4.071 |
| 24,000   | 0.000 | 0.000 | 0.000 | 0.820  | 0.000 | 3.440     | 5.838  | 0.000 | 10.526 | 6.419 |
| 27,000   | 0.000 | 0.000 | 0.000 | 10.000 | 0.000 | 8.215     | 1.241  | 0.000 | 1.753  | 6.580 |
| 30,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 10.000    | 0.376  | 0.000 | 1.753  | 3.973 |
| 33,000   | 0.000 | 0.000 | 0.000 | 1.060  | 0.000 | 5.625     | 1.515  | 0.000 | 5.263  | 6.529 |
| 36,000   | 0.000 | 0.000 | 0.000 | 0.280  | 0.000 | 0.000     | 4.541  | 0.000 | 0.000  | 5.374 |
| 39,000   | 0.000 | 0.000 | 0.000 | 0.540  | 0.000 | 0.000     | 6.162  | 0.000 | 12.016 | 9.536 |
| 42,000   | 0.000 | 0.000 | 0.000 | 11.260 | 0.000 | 0.000     | 5.503  | 0.000 | 2.295  | 8.463 |
| 45,000   | 0.000 | 0.000 | 0.000 | 14.200 | 0.000 | 0.000     | 12.556 | 0.000 | 4.874  | 7.089 |
| 48,000   | 0.000 | 0.000 | 0.000 | 4.140  | 0.000 | 0.000     | 10.197 | 0.000 | 5.668  | 6.515 |
| 51,000   | 0.000 | 0.000 | 0.000 | 14.600 | 0.000 | 10.000    | 9.732  | 0.000 | 13.868 | 4.971 |
| 54,000   | 0.000 | 0.000 | 0.000 | 11.700 | 0.000 | 0.000     | 8.729  | 0.000 | 15.579 | 4.699 |
| 57,000   | 0.000 | 0.000 | 0.000 | 21.360 | 0.000 | 0.000     | 8.024  | 0.000 | 7.979  | 5.794 |
| 60,000   | 0.000 | 0.000 | 0.000 | 3.640  | 0.000 | 0.625     | 3.126  | 0.000 | 3.958  | 2.460 |
| 63,000   | 0.000 | 0.000 | 0.000 | 3.520  | 0.000 | 10.000    | 3.159  | 0.000 | 1.363  | 2.749 |
| 66,000   | 0.000 | 0.000 | 0.000 | 1.840  | 0.000 | 0.000     | 2.935  | 0.000 | 0.532  | 1.945 |
| 69,000   | 0.000 | 0.000 | 0.000 | 0.540  | 0.000 | 0.000     | 3.038  | 0.000 | 0.000  | 1.293 |
| 72,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000     | 0.544  | 0.000 | 0.274  | 1.304 |
| 75,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000     | 0.450  | 0.000 | 0.000  | 1.224 |
| 78,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000     | 2.382  | 0.000 | 0.000  | 1.979 |
| 81,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 15.000    | 0.000  | 0.000 | 0.000  | 1.696 |
| 84,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000     | 0.121  | 0.000 | 0.000  | 1.705 |
| 87,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000     | 0.000  | 0.000 | 0.000  | 0.234 |
| 90,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 7.500     | 0.782  | 0.000 | 0.000  | 0.406 |
| 93,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000     | 1.471  | 0.000 | 0.000  | 0.061 |
| 96,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000     | 0.000  | 0.000 | 0.000  | 0.036 |
| 99,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 2.500     | 0.000  | 0.000 | 0.000  | 0.001 |
| 102,000  | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000     | 0.000  | 0.000 | 0.000  | 0.000 |

Table 40. Recommended Cluster 2 Single Axle MEPDG ALD Input for Design in Arizona.

| Axle     |        |        |        |        | Veh    | icle Class |        |       |        |        |
|----------|--------|--------|--------|--------|--------|------------|--------|-------|--------|--------|
| Load, lb | 4      | 5      | 6      | 7      | 8      | 9          | 10     | 11    | 12     | 13     |
| 3,000    | 0.000  | 0.483  | 0.003  | 0.000  | 1.870  | 0.327      | 0.110  | 1.197 | 0.547  | 2.010  |
| 4,000    | 0.003  | 5.240  | 0.007  | 0.130  | 4.660  | 1.167      | 0.203  | 4.313 | 2.613  | 1.910  |
| 5,000    | 0.000  | 6.467  | 0.013  | 0.377  | 3.513  | 1.820      | 0.347  | 6.103 | 4.260  | 1.053  |
| 6,000    | 0.813  | 24.707 | 1.520  | 0.343  | 9.947  | 2.287      | 1.103  | 6.173 | 5.973  | 1.743  |
| 7,000    | 2.597  | 12.997 | 2.213  | 1.303  | 8.213  | 2.587      | 2.640  | 6.763 | 8.160  | 2.820  |
| 8,000    | 5.853  | 9.477  | 3.910  | 1.437  | 9.240  | 4.280      | 5.057  | 7.827 | 9.503  | 4.083  |
| 9,000    | 9.740  | 7.770  | 7.057  | 2.677  | 10.167 | 8.300      | 9.987  | 8.813 | 11.223 | 7.913  |
| 10,000   | 10.473 | 6.267  | 10.717 | 4.523  | 9.520  | 12.957     | 13.567 | 8.070 | 10.720 | 11.610 |
| 11,000   | 10.533 | 5.100  | 12.917 | 10.240 | 8.227  | 15.793     | 16.677 | 6.693 | 9.950  | 12.047 |
| 12,000   | 10.333 | 4.387  | 13.483 | 5.933  | 7.130  | 16.363     | 17.030 | 5.870 | 9.523  | 11.620 |
| 13,000   | 8.970  | 3.577  | 11.367 | 7.757  | 5.573  | 12.140     | 11.493 | 5.030 | 7.123  | 9.320  |
| 14,000   | 7.987  | 2.790  | 8.947  | 9.630  | 4.357  | 7.240      | 8.203  | 4.840 | 5.310  | 7.103  |
| 15,000   | 6.293  | 2.270  | 7.070  | 8.387  | 3.700  | 4.337      | 4.417  | 4.787 | 4.083  | 4.960  |
| 16,000   | 5.657  | 1.857  | 5.527  | 6.800  | 3.067  | 2.937      | 3.197  | 4.830 | 2.797  | 4.430  |
| 17,000   | 4.760  | 1.473  | 4.087  | 8.147  | 2.543  | 2.107      | 1.650  | 4.370 | 2.287  | 3.303  |
| 18,000   | 3.880  | 1.240  | 3.173  | 6.060  | 2.010  | 1.587      | 0.997  | 3.840 | 1.537  | 2.713  |
| 19,000   | 3.613  | 0.940  | 2.177  | 5.787  | 1.557  | 1.143      | 0.993  | 2.983 | 1.280  | 2.183  |
| 20,000   | 2.513  | 0.757  | 1.810  | 4.810  | 1.213  | 0.860      | 0.850  | 2.310 | 1.030  | 1.830  |
| 21,000   | 1.903  | 0.557  | 1.357  | 3.797  | 0.913  | 0.603      | 0.447  | 1.560 | 0.607  | 2.127  |
| 22,000   | 1.477  | 0.423  | 0.830  | 7.473  | 0.657  | 0.367      | 0.390  | 1.087 | 0.503  | 0.940  |
| 23,000   | 0.833  | 0.303  | 0.583  | 1.657  | 0.473  | 0.243      | 0.217  | 0.747 | 0.297  | 1.150  |
| 24,000   | 0.763  | 0.230  | 0.333  | 0.977  | 0.343  | 0.150      | 0.133  | 0.527 | 0.137  | 0.530  |
| 25,000   | 0.373  | 0.187  | 0.210  | 0.467  | 0.217  | 0.097      | 0.060  | 0.333 | 0.097  | 0.417  |
| 26,000   | 0.277  | 0.113  | 0.163  | 0.213  | 0.157  | 0.073      | 0.090  | 0.263 | 0.097  | 0.410  |
| 27,000   | 0.150  | 0.060  | 0.083  | 0.203  | 0.120  | 0.047      | 0.083  | 0.183 | 0.060  | 0.263  |
| 28,000   | 0.070  | 0.040  | 0.087  | 0.517  | 0.077  | 0.033      | 0.010  | 0.103 | 0.050  | 0.140  |
| 29,000   | 0.027  | 0.027  | 0.090  | 0.160  | 0.067  | 0.017      | 0.013  | 0.080 | 0.040  | 0.093  |
| 30,000   | 0.030  | 0.023  | 0.020  | 0.017  | 0.030  | 0.013      | 0.003  | 0.067 | 0.020  | 0.137  |
| 31,000   | 0.013  | 0.017  | 0.033  | 0.153  | 0.020  | 0.003      | 0.007  | 0.043 | 0.020  | 0.123  |
| 32,000   | 0.010  | 0.010  | 0.040  | 0.007  | 0.020  | 0.003      | 0.000  | 0.033 | 0.017  | 0.033  |
| 33,000   | 0.003  | 0.010  | 0.027  | 0.053  | 0.007  | 0.003      | 0.000  | 0.023 | 0.013  | 0.100  |
| 34,000   | 0.003  | 0.003  | 0.013  | 0.000  | 0.007  | 0.003      | 0.000  | 0.020 | 0.010  | 0.017  |
| 35,000   | 0.023  | 0.003  | 0.003  | 0.000  | 0.013  | 0.003      | 0.017  | 0.010 | 0.017  | 0.013  |
| 36,000   | 0.000  | 0.003  | 0.010  | 0.003  | 0.003  | 0.003      | 0.003  | 0.013 | 0.007  | 0.037  |
| 37,000   | 0.003  | 0.007  | 0.023  | 0.000  | 0.003  | 0.003      | 0.027  | 0.010 | 0.007  | 0.017  |
| 38,000   | 0.000  | 0.003  | 0.020  | 0.000  | 0.003  | 0.003      | 0.000  | 0.007 | 0.010  | 0.010  |
| 39,000   | 0.000  | 0.003  | 0.007  | 0.000  | 0.003  | 0.003      | 0.003  | 0.007 | 0.010  | 0.007  |
| 40,000   | 0.000  | 0.003  | 0.023  | 0.000  | 0.003  | 0.000      | 0.000  | 0.007 | 0.003  | 0.003  |
| 41,000   | 0.003  | 0.003  | 0.007  | 0.000  | 0.003  | 0.003      | 0.000  | 0.003 | 0.003  | 0.000  |

Table 41. Recommended Cluster 2 Tandem Axle MEPDG ALD Input for Design in Arizona.

| Axle     |        |       |       |       | Vehi   | cle Class |       |       |        |        |
|----------|--------|-------|-------|-------|--------|-----------|-------|-------|--------|--------|
| Load, lb | 4      | 5     | 6     | 7     | 8      | 9         | 10    | 11    | 12     | 13     |
| 6,000    | 0.000  | 0.000 | 0.487 | 0.000 | 1.720  | 0.340     | 0.230 | 0.000 | 0.070  | 0.253  |
| 8,000    | 0.017  | 0.000 | 4.410 | 0.000 | 7.433  | 2.333     | 1.273 | 0.000 | 1.070  | 1.060  |
| 10,000   | 0.090  | 0.000 | 6.453 | 0.000 | 6.467  | 5.373     | 2.423 | 0.000 | 3.877  | 3.793  |
| 12,000   | 0.373  | 0.000 | 7.197 | 0.000 | 9.687  | 7.783     | 6.507 | 0.000 | 9.180  | 7.917  |
| 14,000   | 0.807  | 0.000 | 7.500 | 0.000 | 10.947 | 8.717     | 8.117 | 0.000 | 16.933 | 10.177 |
| 16,000   | 1.670  | 0.000 | 7.300 | 0.000 | 10.387 | 8.217     | 9.567 | 0.000 | 17.207 | 8.763  |
| 18,000   | 3.877  | 0.000 | 6.697 | 0.000 | 8.320  | 7.120     | 9.403 | 0.000 | 15.760 | 6.820  |
| 20,000   | 10.083 | 0.000 | 6.373 | 0.000 | 7.063  | 6.110     | 8.683 | 0.000 | 11.910 | 4.950  |
| 22,000   | 11.833 | 0.000 | 6.150 | 0.000 | 5.307  | 5.460     | 7.567 | 0.000 | 6.963  | 3.857  |
| 24,000   | 14.067 | 0.000 | 6.410 | 0.000 | 4.727  | 5.593     | 6.893 | 0.000 | 6.037  | 4.053  |
| 26,000   | 14.563 | 0.000 | 6.407 | 0.000 | 4.270  | 5.863     | 5.847 | 0.000 | 4.307  | 4.277  |
| 28,000   | 11.913 | 0.000 | 6.173 | 0.000 | 3.900  | 6.240     | 5.907 | 0.000 | 2.640  | 4.203  |
| 30,000   | 9.687  | 0.000 | 5.530 | 0.000 | 3.847  | 6.450     | 4.920 | 0.000 | 1.177  | 4.330  |
| 32,000   | 6.043  | 0.000 | 4.713 | 0.000 | 3.463  | 6.103     | 4.453 | 0.000 | 0.970  | 4.870  |
| 34,000   | 4.753  | 0.000 | 3.990 | 0.000 | 2.957  | 5.213     | 4.053 | 0.000 | 0.517  | 4.533  |
| 36,000   | 3.437  | 0.000 | 3.450 | 0.000 | 2.517  | 4.003     | 2.590 | 0.000 | 0.343  | 3.907  |
| 38,000   | 2.640  | 0.000 | 2.653 | 0.000 | 1.957  | 2.857     | 2.283 | 0.000 | 0.337  | 3.527  |
| 40,000   | 1.833  | 0.000 | 2.250 | 0.000 | 1.353  | 1.967     | 2.227 | 0.000 | 0.130  | 3.023  |
| 42,000   | 0.940  | 0.000 | 1.793 | 0.000 | 0.980  | 1.323     | 1.940 | 0.000 | 0.120  | 2.593  |
| 44,000   | 0.527  | 0.000 | 1.103 | 0.000 | 0.787  | 0.907     | 1.417 | 0.000 | 0.067  | 2.447  |
| 46,000   | 0.273  | 0.000 | 0.810 | 0.000 | 0.587  | 0.610     | 1.073 | 0.000 | 0.063  | 1.883  |
| 48,000   | 0.247  | 0.000 | 0.707 | 0.000 | 0.347  | 0.410     | 0.717 | 0.000 | 0.050  | 1.550  |
| 50,000   | 0.133  | 0.000 | 0.413 | 0.000 | 0.253  | 0.290     | 0.447 | 0.000 | 0.043  | 1.553  |
| 52,000   | 0.080  | 0.000 | 0.287 | 0.000 | 0.143  | 0.183     | 0.473 | 0.000 | 0.077  | 1.013  |
| 54,000   | 0.080  | 0.000 | 0.223 | 0.000 | 0.097  | 0.123     | 0.327 | 0.000 | 0.023  | 1.100  |
| 56,000   | 0.037  | 0.000 | 0.133 | 0.000 | 0.057  | 0.077     | 0.227 | 0.000 | 0.023  | 0.713  |
| 58,000   | 0.013  | 0.000 | 0.093 | 0.000 | 0.033  | 0.060     | 0.110 | 0.000 | 0.027  | 0.713  |
| 60,000   | 0.003  | 0.000 | 0.073 | 0.000 | 0.013  | 0.040     | 0.143 | 0.000 | 0.030  | 0.437  |
| 62,000   | 0.003  | 0.000 | 0.040 | 0.000 | 0.017  | 0.023     | 0.077 | 0.000 | 0.017  | 0.493  |
| 64,000   | 0.003  | 0.000 | 0.030 | 0.000 | 0.017  | 0.020     | 0.063 | 0.000 | 0.020  | 0.320  |
| 66,000   | 0.000  | 0.000 | 0.027 | 0.000 | 0.013  | 0.017     | 0.020 | 0.000 | 0.017  | 0.257  |
| 68,000   | 0.000  | 0.000 | 0.003 | 0.000 | 0.003  | 0.013     | 0.010 | 0.000 | 0.013  | 0.163  |
| 70,000   | 0.000  | 0.000 | 0.013 | 0.000 | 0.007  | 0.010     | 0.007 | 0.000 | 0.003  | 0.107  |
| 72,000   | 0.000  | 0.000 | 0.013 | 0.000 | 0.000  | 0.007     | 0.003 | 0.000 | 0.000  | 0.107  |
| 74,000   | 0.000  | 0.000 | 0.017 | 0.000 | 0.000  | 0.007     | 0.000 | 0.000 | 0.000  | 0.083  |
| 76,000   | 0.000  | 0.000 | 0.000 | 0.000 | 0.000  | 0.007     | 0.000 | 0.000 | 0.000  | 0.043  |
| 78,000   | 0.000  | 0.000 | 0.000 | 0.000 | 0.000  | 0.003     | 0.000 | 0.000 | 0.000  | 0.020  |
| 80,000   | 0.000  | 0.000 | 0.003 | 0.000 | 0.000  | 0.000     | 0.000 | 0.000 | 0.000  | 0.023  |
| 82,000   | 0.000  | 0.000 | 0.000 | 0.000 | 0.000  | 0.000     | 0.000 | 0.000 | 0.003  | 0.010  |

Table 42. Recommended Cluster 2 Tridem Axle MEPDG ALD Input for Design in Arizona.

| Axle     | Vehicle Class |       |       |        |       |        |        |       |        |       |  |
|----------|---------------|-------|-------|--------|-------|--------|--------|-------|--------|-------|--|
| Load, Ib | 4             | 5     | 6     | 7      | 8     | 9      | 10     | 11    | 12     | 13    |  |
| 12,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 1.187  | 0.000 | 0.000  | 0.177 |  |
| 15,000   | 0.000         | 0.000 | 0.000 | 0.017  | 0.000 | 0.000  | 4.453  | 0.000 | 7.288  | 2.030 |  |
| 18,000   | 0.000         | 0.000 | 0.000 | 4.223  | 0.000 | 66.667 | 13.067 | 0.000 | 14.169 | 3.180 |  |
| 21,000   | 0.000         | 0.000 | 0.000 | 0.313  | 0.000 | 0.000  | 9.680  | 0.000 | 14.750 | 4.303 |  |
| 24,000   | 0.000         | 0.000 | 0.000 | 2.490  | 0.000 | 0.044  | 7.483  | 0.000 | 19.200 | 3.123 |  |
| 27,000   | 0.000         | 0.000 | 0.000 | 3.347  | 0.000 | 0.133  | 7.557  | 0.000 | 10.631 | 3.933 |  |
| 30,000   | 0.000         | 0.000 | 0.000 | 1.907  | 0.000 | 1.167  | 5.907  | 0.000 | 0.000  | 1.653 |  |
| 33,000   | 0.000         | 0.000 | 0.000 | 3.587  | 0.000 | 2.456  | 7.013  | 0.000 | 8.506  | 3.487 |  |
| 36,000   | 0.000         | 0.000 | 0.000 | 7.653  | 0.000 | 1.533  | 6.147  | 0.000 | 0.675  | 2.563 |  |
| 39,000   | 0.000         | 0.000 | 0.000 | 7.900  | 0.000 | 1.589  | 5.463  | 0.000 | 3.300  | 3.720 |  |
| 42,000   | 0.000         | 0.000 | 0.000 | 10.507 | 0.000 | 3.222  | 6.010  | 0.000 | 1.550  | 5.807 |  |
| 45,000   | 0.000         | 0.000 | 0.000 | 11.580 | 0.000 | 2.678  | 5.750  | 0.000 | 0.694  | 6.150 |  |
| 48,000   | 0.000         | 0.000 | 0.000 | 18.143 | 0.000 | 1.856  | 4.740  | 0.000 | 2.938  | 9.500 |  |
| 51,000   | 0.000         | 0.000 | 0.000 | 7.083  | 0.000 | 4.867  | 4.057  | 0.000 | 4.469  | 7.980 |  |
| 54,000   | 0.000         | 0.000 | 0.000 | 6.513  | 0.000 | 12.056 | 2.977  | 0.000 | 0.694  | 6.273 |  |
| 57,000   | 0.000         | 0.000 | 0.000 | 4.247  | 0.000 | 1.511  | 2.370  | 0.000 | 10.775 | 4.353 |  |
| 60,000   | 0.000         | 0.000 | 0.000 | 6.077  | 0.000 | 0.089  | 1.907  | 0.000 | 0.175  | 7.800 |  |
| 63,000   | 0.000         | 0.000 | 0.000 | 2.560  | 0.000 | 0.044  | 1.407  | 0.000 | 0.175  | 2.747 |  |
| 66,000   | 0.000         | 0.000 | 0.000 | 0.727  | 0.000 | 0.011  | 0.860  | 0.000 | 0.000  | 6.403 |  |
| 69,000   | 0.000         | 0.000 | 0.000 | 0.347  | 0.000 | 0.022  | 0.690  | 0.000 | 0.000  | 3.793 |  |
| 72,000   | 0.000         | 0.000 | 0.000 | 0.487  | 0.000 | 0.022  | 0.360  | 0.000 | 0.000  | 2.597 |  |
| 75,000   | 0.000         | 0.000 | 0.000 | 0.050  | 0.000 | 0.011  | 0.260  | 0.000 | 0.000  | 1.513 |  |
| 78,000   | 0.000         | 0.000 | 0.000 | 0.090  | 0.000 | 0.000  | 0.337  | 0.000 | 0.000  | 0.807 |  |
| 81,000   | 0.000         | 0.000 | 0.000 | 0.007  | 0.000 | 0.000  | 0.113  | 0.000 | 0.000  | 1.097 |  |
| 84,000   | 0.000         | 0.000 | 0.000 | 0.120  | 0.000 | 0.000  | 0.077  | 0.000 | 0.000  | 0.230 |  |
| 87,000   | 0.000         | 0.000 | 0.000 | 0.007  | 0.000 | 0.000  | 0.057  | 0.000 | 0.000  | 0.257 |  |
| 90,000   | 0.000         | 0.000 | 0.000 | 0.013  | 0.000 | 0.000  | 0.013  | 0.000 | 0.000  | 0.140 |  |
| 93,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.040  | 0.000 | 0.000  | 0.440 |  |
| 96,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.020  | 0.000 | 0.000  | 0.000 |  |
| 99,000   | 0.000         | 0.000 | 0.000 | 0.003  | 0.000 | 0.000  | 0.007  | 0.000 | 0.000  | 3.793 |  |
| 102,000  | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.050 |  |

Table 43. Recommended Cluster 2 Quad Axle MEPDG ALD Input for Design in Arizona.

| Axle     | Vehicle Class |       |       |        |       |        |        |       |        |       |  |
|----------|---------------|-------|-------|--------|-------|--------|--------|-------|--------|-------|--|
| Load, lb | 4             | 5     | 6     | 7      | 8     | 9      | 10     | 11    | 12     | 13    |  |
| 12,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.015 |  |
| 15,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.815 |  |
| 18,000   | 0.000         | 0.000 | 0.000 | 0.200  | 0.000 | 0.000  | 0.219  | 0.000 | 0.000  | 7.326 |  |
| 21,000   | 0.000         | 0.000 | 0.000 | 0.200  | 0.000 | 6.660  | 0.971  | 0.000 | 0.000  | 4.178 |  |
| 24,000   | 0.000         | 0.000 | 0.000 | 0.200  | 0.000 | 20.000 | 0.300  | 0.000 | 0.000  | 4.859 |  |
| 27,000   | 0.000         | 0.000 | 0.000 | 0.200  | 0.000 | 0.000  | 1.181  | 0.000 | 2.100  | 7.944 |  |
| 30,000   | 0.000         | 0.000 | 0.000 | 0.900  | 0.000 | 0.000  | 0.900  | 0.000 | 0.150  | 7.719 |  |
| 33,000   | 0.000         | 0.000 | 0.000 | 1.800  | 0.000 | 0.000  | 1.290  | 0.000 | 0.975  | 5.319 |  |
| 36,000   | 0.000         | 0.000 | 0.000 | 6.400  | 0.000 | 0.000  | 4.143  | 0.000 | 0.850  | 5.889 |  |
| 39,000   | 0.000         | 0.000 | 0.000 | 14.800 | 0.000 | 0.000  | 5.643  | 0.000 | 9.200  | 9.563 |  |
| 42,000   | 0.000         | 0.000 | 0.000 | 10.100 | 0.000 | 20.000 | 4.186  | 0.000 | 8.450  | 6.207 |  |
| 45,000   | 0.000         | 0.000 | 0.000 | 10.700 | 0.000 | 0.000  | 4.833  | 0.000 | 21.325 | 6.700 |  |
| 48,000   | 0.000         | 0.000 | 0.000 | 7.500  | 0.000 | 0.000  | 6.957  | 0.000 | 7.575  | 6.852 |  |
| 51,000   | 0.000         | 0.000 | 0.000 | 8.500  | 0.000 | 0.000  | 8.538  | 0.000 | 12.950 | 3.856 |  |
| 54,000   | 0.000         | 0.000 | 0.000 | 8.900  | 0.000 | 0.000  | 10.014 | 0.000 | 5.850  | 2.256 |  |
| 57,000   | 0.000         | 0.000 | 0.000 | 8.200  | 0.000 | 0.000  | 5.162  | 0.000 | 10.600 | 2.533 |  |
| 60,000   | 0.000         | 0.000 | 0.000 | 6.900  | 0.000 | 10.000 | 5.519  | 0.000 | 14.250 | 1.496 |  |
| 63,000   | 0.000         | 0.000 | 0.000 | 4.800  | 0.000 | 0.000  | 7.162  | 0.000 | 4.025  | 1.278 |  |
| 66,000   | 0.000         | 0.000 | 0.000 | 2.400  | 0.000 | 0.000  | 4.652  | 0.000 | 0.775  | 1.756 |  |
| 69,000   | 0.000         | 0.000 | 0.000 | 2.800  | 0.000 | 0.000  | 8.062  | 0.000 | 0.125  | 5.426 |  |
| 72,000   | 0.000         | 0.000 | 0.000 | 0.800  | 0.000 | 6.660  | 1.567  | 0.000 | 0.525  | 0.381 |  |
| 75,000   | 0.000         | 0.000 | 0.000 | 1.700  | 0.000 | 0.000  | 0.943  | 0.000 | 0.050  | 0.763 |  |
| 78,000   | 0.000         | 0.000 | 0.000 | 0.500  | 0.000 | 0.000  | 5.576  | 0.000 | 0.025  | 0.859 |  |
| 81,000   | 0.000         | 0.000 | 0.000 | 0.700  | 0.000 | 30.000 | 1.257  | 0.000 | 0.025  | 1.219 |  |
| 84,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 9.800  | 0.000 | 0.025  | 0.493 |  |
| 87,000   | 0.000         | 0.000 | 0.000 | 0.100  | 0.000 | 0.000  | 0.343  | 0.000 | 0.050  | 1.815 |  |
| 90,000   | 0.000         | 0.000 | 0.000 | 0.200  | 0.000 | 6.660  | 0.057  | 0.000 | 0.025  | 0.078 |  |
| 93,000   | 0.000         | 0.000 | 0.000 | 0.200  | 0.000 | 0.000  | 0.067  | 0.000 | 0.000  | 1.107 |  |
| 96,000   | 0.000         | 0.000 | 0.000 | 0.200  | 0.000 | 0.000  | 0.133  | 0.000 | 0.000  | 0.496 |  |
| 99,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.330 |  |
| 102,000  | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.529  | 0.000 | 0.000  | 0.470 |  |

Table 44. Recommended Cluster 3 Single Axle MEPDG ALD Input for Design in Arizona.

| Axle     |        |        |        |        | Veh    | icle Class | ;      |        |        |        |
|----------|--------|--------|--------|--------|--------|------------|--------|--------|--------|--------|
| Load, lb | 4      | 5      | 6      | 7      | 8      | 9          | 10     | 11     | 12     | 13     |
| 3,000    | 0.003  | 0.883  | 0.000  | 0.268  | 7.963  | 0.403      | 0.215  | 0.458  | 0.173  | 0.348  |
| 4,000    | 0.000  | 6.158  | 0.000  | 3.246  | 12.843 | 0.993      | 0.053  | 0.993  | 0.468  | 0.765  |
| 5,000    | 0.005  | 33.240 | 0.420  | 0.251  | 9.020  | 1.703      | 0.118  | 2.935  | 1.208  | 1.635  |
| 6,000    | 0.078  | 25.343 | 3.210  | 1.284  | 11.650 | 2.588      | 0.370  | 2.500  | 3.103  | 3.095  |
| 7,000    | 0.235  | 8.685  | 5.378  | 3.576  | 8.488  | 1.403      | 0.540  | 5.060  | 9.008  | 12.428 |
| 8,000    | 1.083  | 5.198  | 2.755  | 5.981  | 6.773  | 1.435      | 0.825  | 4.350  | 7.508  | 14.968 |
| 9,000    | 1.465  | 4.983  | 2.673  | 2.530  | 6.020  | 2.550      | 1.690  | 5.795  | 7.558  | 5.345  |
| 10,000   | 2.310  | 4.010  | 4.870  | 5.332  | 5.710  | 5.595      | 5.570  | 8.723  | 7.918  | 5.715  |
| 11,000   | 4.288  | 3.025  | 11.203 | 4.830  | 5.978  | 9.620      | 16.163 | 11.168 | 11.265 | 14.053 |
| 12,000   | 7.043  | 2.248  | 16.895 | 8.141  | 5.313  | 21.498     | 27.958 | 8.678  | 15.065 | 14.655 |
| 13,000   | 12.550 | 1.538  | 16.353 | 14.792 | 4.295  | 24.273     | 25.995 | 5.653  | 11.558 | 8.393  |
| 14,000   | 21.823 | 1.143  | 14.953 | 16.403 | 3.025  | 7.993      | 10.668 | 5.115  | 6.730  | 4.933  |
| 15,000   | 25.410 | 0.890  | 9.360  | 3.327  | 2.118  | 2.548      | 3.368  | 5.235  | 6.960  | 2.445  |
| 16,000   | 14.423 | 0.660  | 4.123  | 2.741  | 1.685  | 2.190      | 2.438  | 6.020  | 4.200  | 3.035  |
| 17,000   | 5.383  | 0.513  | 2.115  | 12.332 | 1.370  | 3.025      | 1.868  | 6.408  | 3.088  | 1.503  |
| 18,000   | 1.698  | 0.453  | 2.020  | 3.022  | 1.228  | 4.368      | 0.598  | 6.413  | 1.653  | 1.535  |
| 19,000   | 0.710  | 0.340  | 1.573  | 1.519  | 1.065  | 3.920      | 0.308  | 5.008  | 1.188  | 1.785  |
| 20,000   | 0.495  | 0.225  | 0.935  | 2.976  | 0.925  | 2.398      | 0.008  | 5.458  | 0.665  | 0.873  |
| 21,000   | 0.338  | 0.170  | 0.430  | 1.751  | 0.658  | 0.960      | 0.000  | 2.548  | 0.528  | 0.638  |
| 22,000   | 0.195  | 0.105  | 0.333  | 3.341  | 0.403  | 0.328      | 0.000  | 0.830  | 0.045  | 0.218  |
| 23,000   | 0.155  | 0.063  | 0.153  | 0.043  | 0.208  | 0.078      | 1.278  | 0.288  | 0.020  | 0.188  |
| 24,000   | 0.145  | 0.028  | 0.023  | 0.132  | 0.128  | 0.005      | 0.000  | 0.183  | 0.000  | 0.153  |
| 25,000   | 0.083  | 0.013  | 0.020  | 0.000  | 0.018  | 0.005      | 0.000  | 0.028  | 0.000  | 0.068  |
| 26,000   | 0.033  | 0.005  | 0.050  | 0.314  | 0.013  | 0.003      | 0.000  | 0.010  | 0.005  | 0.038  |
| 27,000   | 0.020  | 0.000  | 0.033  | 0.014  | 0.003  | 0.000      | 0.000  | 0.030  | 0.005  | 0.088  |
| 28,000   | 0.005  | 0.000  | 0.000  | 0.000  | 0.003  | 0.000      | 0.000  | 0.010  | 0.000  | 0.033  |
| 29,000   | 0.003  | 0.000  | 0.025  | 0.000  | 0.003  | 0.000      | 0.000  | 0.003  | 0.000  | 0.000  |
| 30,000   | 0.000  | 0.000  | 0.020  | 0.000  | 0.003  | 0.000      | 0.000  | 0.010  | 0.000  | 0.000  |
| 31,000   | 0.000  | 0.000  | 0.008  | 0.000  | 0.000  | 0.000      | 0.000  | 0.003  | 0.000  | 0.000  |
| 32,000   | 0.003  | 0.000  | 0.000  | 0.000  | 0.003  | 0.000      | 0.000  | 0.003  | 0.000  | 0.000  |
| 33,000   | 0.008  | 0.000  | 0.008  | 0.000  | 0.000  | 0.000      | 0.000  | 0.003  | 0.000  | 0.005  |
| 34,000   | 0.003  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000      | 0.000  | 0.000  | 0.000  | 0.000  |
| 35,000   | 0.000  | 0.000  | 0.003  | 0.924  | 0.000  | 0.000      | 0.000  | 0.003  | 0.000  | 0.000  |
| 36,000   | 0.008  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000      | 0.000  | 0.000  | 0.000  | 0.000  |
| 37,000   | 0.000  | 0.000  | 0.015  | 0.000  | 0.000  | 0.000      | 0.000  | 0.000  | 0.000  | 0.000  |
| 38,000   | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000      | 0.000  | 0.000  | 0.000  | 0.000  |
| 39,000   | 0.000  | 0.000  | 0.000  | 0.700  | 0.000  | 0.000      | 0.000  | 0.000  | 0.000  | 0.000  |
| 40,000   | 0.000  | 0.000  | 0.008  | 0.000  | 0.000  | 0.000      | 0.000  | 0.000  | 0.000  | 0.020  |
| 41,000   | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000      | 0.000  | 0.000  | 0.000  | 0.000  |

Table 45. Recommended Cluster 3 Tandem Axle MEPDG ALD Input for Design in Arizona.

| Axle     |        |       |        |       | Veh    | icle Class |        |       |        |        |
|----------|--------|-------|--------|-------|--------|------------|--------|-------|--------|--------|
| Load, lb | 4      | 5     | 6      | 7     | 8      | 9          | 10     | 11    | 12     | 13     |
| 6,000    | 0.000  | 0.000 | 0.013  | 0.000 | 14.135 | 0.078      | 0.168  | 0.000 | 0.000  | 0.165  |
| 8,000    | 0.000  | 0.000 | 0.275  | 0.000 | 7.453  | 0.525      | 0.220  | 0.000 | 0.015  | 0.795  |
| 10,000   | 0.023  | 0.000 | 3.400  | 0.000 | 2.855  | 2.173      | 0.415  | 0.000 | 0.108  | 2.188  |
| 12,000   | 0.035  | 0.000 | 12.353 | 0.000 | 4.743  | 3.555      | 0.808  | 0.000 | 0.368  | 15.225 |
| 14,000   | 0.073  | 0.000 | 7.678  | 0.000 | 9.233  | 4.945      | 2.640  | 0.000 | 9.020  | 19.918 |
| 16,000   | 0.173  | 0.000 | 7.775  | 0.000 | 12.365 | 5.000      | 5.895  | 0.000 | 8.268  | 12.485 |
| 18,000   | 0.468  | 0.000 | 6.498  | 0.000 | 10.983 | 4.555      | 8.575  | 0.000 | 12.258 | 5.343  |
| 20,000   | 0.450  | 0.000 | 4.740  | 0.000 | 8.248  | 4.443      | 10.300 | 0.000 | 15.963 | 4.453  |
| 22,000   | 2.275  | 0.000 | 3.103  | 0.000 | 6.398  | 4.583      | 8.048  | 0.000 | 17.083 | 3.888  |
| 24,000   | 4.103  | 0.000 | 2.650  | 0.000 | 4.850  | 4.690      | 5.968  | 0.000 | 14.728 | 2.725  |
| 26,000   | 7.488  | 0.000 | 3.558  | 0.000 | 2.983  | 4.663      | 6.428  | 0.000 | 10.870 | 2.795  |
| 28,000   | 12.265 | 0.000 | 7.030  | 0.000 | 1.800  | 4.943      | 7.815  | 0.000 | 8.008  | 2.058  |
| 30,000   | 16.505 | 0.000 | 9.960  | 0.000 | 1.468  | 5.450      | 7.990  | 0.000 | 1.900  | 3.215  |
| 32,000   | 20.985 | 0.000 | 9.523  | 0.000 | 1.505  | 7.398      | 6.708  | 0.000 | 0.930  | 2.915  |
| 34,000   | 21.285 | 0.000 | 7.458  | 0.000 | 2.043  | 11.720     | 6.898  | 0.000 | 0.058  | 4.153  |
| 36,000   | 11.315 | 0.000 | 5.953  | 0.000 | 2.935  | 15.453     | 6.535  | 0.000 | 0.015  | 3.065  |
| 38,000   | 2.223  | 0.000 | 3.580  | 0.000 | 2.335  | 10.035     | 3.970  | 0.000 | 0.015  | 4.400  |
| 40,000   | 0.203  | 0.000 | 1.850  | 0.000 | 0.945  | 3.743      | 2.598  | 0.000 | 0.000  | 2.315  |
| 42,000   | 0.083  | 0.000 | 0.940  | 0.000 | 0.355  | 1.373      | 1.305  | 0.000 | 0.000  | 1.933  |
| 44,000   | 0.005  | 0.000 | 0.623  | 0.000 | 0.150  | 0.420      | 1.058  | 0.000 | 0.000  | 1.420  |
| 46,000   | 0.003  | 0.000 | 0.438  | 0.000 | 0.148  | 0.138      | 0.820  | 0.000 | 0.000  | 1.088  |
| 48,000   | 0.000  | 0.000 | 0.193  | 0.000 | 0.095  | 0.063      | 1.008  | 0.000 | 0.000  | 1.358  |
| 50,000   | 0.000  | 0.000 | 0.120  | 0.000 | 0.050  | 0.030      | 2.068  | 0.000 | 0.000  | 0.510  |
| 52,000   | 0.000  | 0.000 | 0.068  | 0.000 | 0.015  | 0.020      | 0.688  | 0.000 | 0.000  | 0.345  |
| 54,000   | 0.000  | 0.000 | 0.038  | 0.000 | 0.010  | 0.003      | 0.305  | 0.000 | 0.000  | 0.240  |
| 56,000   | 0.000  | 0.000 | 0.060  | 0.000 | 0.010  | 0.003      | 0.245  | 0.000 | 0.000  | 0.240  |
| 58,000   | 0.000  | 0.000 | 0.030  | 0.000 | 0.000  | 0.000      | 0.068  | 0.000 | 0.000  | 0.058  |
| 60,000   | 0.000  | 0.000 | 0.013  | 0.000 | 0.000  | 0.000      | 0.038  | 0.000 | 0.000  | 0.053  |
| 62,000   | 0.000  | 0.000 | 0.013  | 0.000 | 0.000  | 0.000      | 0.158  | 0.000 | 0.000  | 0.128  |
| 64,000   | 0.000  | 0.000 | 0.003  | 0.000 | 0.000  | 0.000      | 0.058  | 0.000 | 0.000  | 0.150  |
| 66,000   | 0.000  | 0.000 | 0.000  | 0.000 | 0.000  | 0.000      | 0.120  | 0.000 | 0.000  | 0.008  |
| 68,000   | 0.000  | 0.000 | 0.005  | 0.000 | 0.000  | 0.000      | 0.053  | 0.000 | 0.000  | 0.120  |
| 70,000   | 0.000  | 0.000 | 0.008  | 0.000 | 0.000  | 0.000      | 0.013  | 0.000 | 0.000  | 0.010  |
| 72,000   | 0.000  | 0.000 | 0.020  | 0.000 | 0.000  | 0.000      | 0.053  | 0.000 | 0.000  | 0.045  |
| 74,000   | 0.000  | 0.000 | 0.000  | 0.000 | 0.000  | 0.000      | 0.013  | 0.000 | 0.000  | 0.015  |
| 76,000   | 0.000  | 0.000 | 0.000  | 0.000 | 0.000  | 0.000      | 0.000  | 0.000 | 0.000  | 0.015  |
| 78,000   | 0.000  | 0.000 | 0.000  | 0.000 | 0.000  | 0.000      | 0.000  | 0.000 | 0.000  | 0.000  |
| 80,000   | 0.000  | 0.000 | 0.000  | 0.000 | 0.000  | 0.000      | 0.000  | 0.000 | 0.000  | 0.000  |
| 82,000   | 0.000  | 0.000 | 0.000  | 0.000 | 0.000  | 0.000      | 0.000  | 0.000 | 0.000  | 0.000  |

Table 46. Recommended Cluster 3 Tridem Axle MEPDG ALD Input for Design in Arizona.

| Axle     | Vehicle Class |       |       |        |       |        |        |       |        |       |
|----------|---------------|-------|-------|--------|-------|--------|--------|-------|--------|-------|
| Load, Ib | 4             | 5     | 6     | 7      | 8     | 9      | 10     | 11    | 12     | 13    |
| 12,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.255  | 0.000 | 0.000  | 0.000 |
| 15,000   | 0.000         | 0.000 | 0.000 | 1.150  | 0.000 | 12.500 | 1.263  | 0.000 | 0.000  | 1.538 |
| 18,000   | 0.000         | 0.000 | 0.000 | 1.469  | 0.000 | 37.500 | 5.300  | 0.000 | 0.000  | 7.590 |
| 21,000   | 0.000         | 0.000 | 0.000 | 9.369  | 0.000 | 25.000 | 10.040 | 0.000 | 100.00 | 3.959 |
| 24,000   | 0.000         | 0.000 | 0.000 | 2.053  | 0.000 | 0.000  | 9.265  | 0.000 | 0.000  | 5.608 |
| 27,000   | 0.000         | 0.000 | 0.000 | 0.900  | 0.000 | 0.000  | 5.265  | 0.000 | 0.000  | 4.515 |
| 30,000   | 0.000         | 0.000 | 0.000 | 4.103  | 0.000 | 0.000  | 4.885  | 0.000 | 0.000  | 3.510 |
| 33,000   | 0.000         | 0.000 | 0.000 | 3.050  | 0.000 | 0.000  | 5.705  | 0.000 | 0.000  | 2.749 |
| 36,000   | 0.000         | 0.000 | 0.000 | 2.456  | 0.000 | 0.000  | 5.735  | 0.000 | 0.000  | 1.744 |
| 39,000   | 0.000         | 0.000 | 0.000 | 3.416  | 0.000 | 0.000  | 8.415  | 0.000 | 0.000  | 5.064 |
| 42,000   | 0.000         | 0.000 | 0.000 | 3.919  | 0.000 | 0.000  | 11.255 | 0.000 | 0.000  | 3.208 |
| 45,000   | 0.000         | 0.000 | 0.000 | 7.731  | 0.000 | 0.000  | 10.195 | 0.000 | 0.000  | 9.064 |
| 48,000   | 0.000         | 0.000 | 0.000 | 17.606 | 0.000 | 25.000 | 6.675  | 0.000 | 0.000  | 1.354 |
| 51,000   | 0.000         | 0.000 | 0.000 | 29.588 | 0.000 | 0.000  | 5.960  | 0.000 | 0.000  | 4.972 |
| 54,000   | 0.000         | 0.000 | 0.000 | 3.447  | 0.000 | 0.000  | 3.125  | 0.000 | 0.000  | 8.874 |
| 57,000   | 0.000         | 0.000 | 0.000 | 2.147  | 0.000 | 0.000  | 2.398  | 0.000 | 0.000  | 4.369 |
| 60,000   | 0.000         | 0.000 | 0.000 | 0.963  | 0.000 | 0.000  | 1.388  | 0.000 | 0.000  | 3.610 |
| 63,000   | 0.000         | 0.000 | 0.000 | 4.616  | 0.000 | 0.000  | 2.158  | 0.000 | 0.000  | 3.728 |
| 66,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.153  | 0.000 | 0.000  | 8.741 |
| 69,000   | 0.000         | 0.000 | 0.000 | 0.863  | 0.000 | 0.000  | 0.118  | 0.000 | 0.000  | 4.113 |
| 72,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.020  | 0.000 | 0.000  | 8.659 |
| 75,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.030  | 0.000 | 0.000  | 1.236 |
| 78,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.265  | 0.000 | 0.000  | 0.000 |
| 81,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.000 |
| 84,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.078  | 0.000 | 0.000  | 0.000 |
| 87,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.043  | 0.000 | 0.000  | 0.269 |
| 90,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.033  | 0.000 | 0.000  | 0.000 |
| 93,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.256 |
| 96,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.454 |
| 99,000   | 0.000         | 0.000 | 0.000 | 1.150  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.000 |
| 102,000  | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.000 |

Table 47. Recommended Cluster 3 Quad Axle MEPDG ALD Input for Design in Arizona.

| Axle     |       |       |       |        | Vehicle | Class  |        |       |        |        |
|----------|-------|-------|-------|--------|---------|--------|--------|-------|--------|--------|
| Load, lb | 4     | 5     | 6     | 7      | 8       | 9      | 10     | 11    | 12     | 13     |
| 12,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 0.000  |
| 15,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 0.000  |
| 18,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 100.00 | 0.000  | 0.000 | 0.000  | 1.777  |
| 21,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 7.517  |
| 24,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 15.687 |
| 27,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 9.017  |
| 30,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 100.00 | 4.937  |
| 33,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 1.967  |
| 36,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 83.333 | 0.000 | 0.000  | 0.930  |
| 39,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 9.200  |
| 42,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 5.830  |
| 45,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 13.100 |
| 48,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 2.867  |
| 51,000   | 0.000 | 0.000 | 0.000 | 7.700  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 5.993  |
| 54,000   | 0.000 | 0.000 | 0.000 | 11.550 | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 2.927  |
| 57,000   | 0.000 | 0.000 | 0.000 | 36.650 | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 6.670  |
| 60,000   | 0.000 | 0.000 | 0.000 | 32.400 | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 0.830  |
| 63,000   | 0.000 | 0.000 | 0.000 | 11.750 | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 0.647  |
| 66,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 0.450  |
| 69,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 0.000  |
| 72,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 0.450  |
| 75,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 0.000  |
| 78,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 0.327  |
| 81,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 0.197  |
| 84,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 0.000  |
| 87,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 0.000  |
| 90,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 0.000  |
| 93,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 0.000  |
| 96,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 0.457  |
| 99,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 0.130  |
| 102,000  | 0.000 | 0.000 | 0.000 | 0.000  | 0.000   | 0.000  | 16.667 | 0.000 | 0.000  | 8.104  |

Table 48. Recommended MEPDG Axles-per-Truck Statistics Default Input for Design in Arizona.

| Vehicle Class |        | Axle Type |        |      |  |  |  |  |  |  |
|---------------|--------|-----------|--------|------|--|--|--|--|--|--|
| venicie Ciass | Single | Tandem    | Tridem | Quad |  |  |  |  |  |  |
| 4             | 1.34   | 0.75      | 0.00   | 0.00 |  |  |  |  |  |  |
| 5             | 2.14   | 0.00      | 0.00   | 0.00 |  |  |  |  |  |  |
| 6             | 0.95   | 0.95      | 0.00   | 0.00 |  |  |  |  |  |  |
| 7             | 0.33   | 0.02      | 0.26   | 0.07 |  |  |  |  |  |  |
| 8             | 2.61   | 0.49      | 0.00   | 0.00 |  |  |  |  |  |  |
| 9             | 1.20   | 1.84      | 0.00   | 0.00 |  |  |  |  |  |  |
| 10            | 0.98   | 1.01      | 0.86   | 0.06 |  |  |  |  |  |  |
| 11            | 4.78   | 0.00      | 0.00   | 0.00 |  |  |  |  |  |  |
| 12            | 3.88   | 0.98      | 0.03   | 0.14 |  |  |  |  |  |  |
| 13            | 1.29   | 1.90      | 0.19   | 0.14 |  |  |  |  |  |  |

#### LATERAL WANDER OF TRUCKS WITHIN LANE

As vehicles drive down the traffic lane, they wander from side to side in normal driving. This lateral wander creates fewer full load repetitions for some locations and more repetitions for other locations. This distribution of lateral wander has been established to be normal and is defined as follows:

- Lateral Offset: Mean distance from the outer paint stripe to the outer edge of the wheel, in inches.
- Standard Deviation: Lateral variation of trucks within the lane, in inches. A normal distribution was assumed based on previous measurements.

Both the mean lateral offset and the standard deviation have been shown to be significant MEPDG inputs. They both affect the cracking and joint faulting of JPCP and the lateral standard deviation affects wheel path rutting for HMA pavements. Lateral truck wander was measured at four sites in Arizona, as shown in Figure 77. A summary of the data assembled and the computed MEPDG inputs are presented in Figure 78.

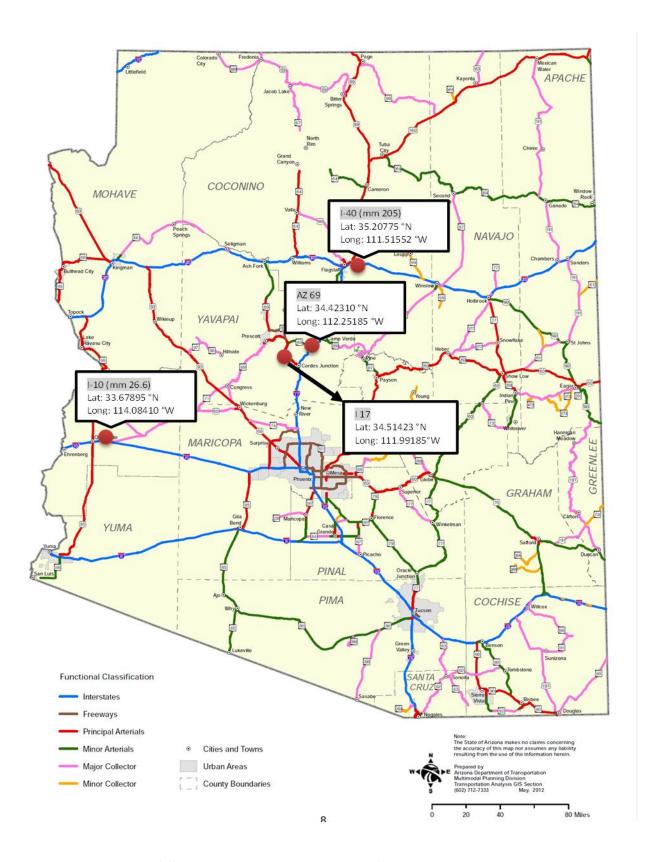



Figure 77. Map of Sites Where Lateral Wander of Trucks Was Measured in Arizona.

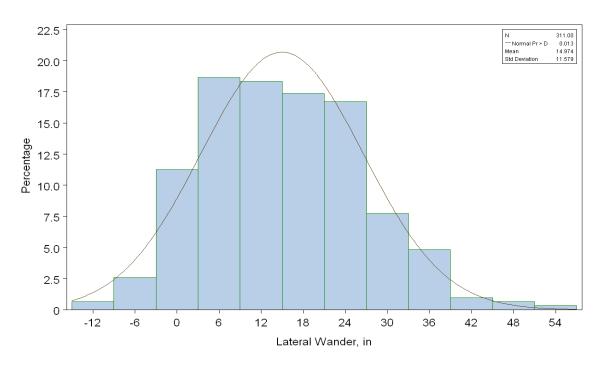



Figure 78. Histogram and Fitted Normal Distribution Curve Showing the Distribution of Wheel Lateral Wander.

The results of the analysis showed that the mean and standard deviation were as follows:

- Analysis: Mean lateral distribution and standard deviation were computed for Arizona sites:
  - o Mean lateral offset: 15 inches.
  - o Standard deviation: 12 inches.
- Recommendations: Use these values for pavement design. If the lane is narrower, reduce these values for design.
- Impact: Lateral wander has a significant effect on transverse cracking in concrete pavement and rutting in asphalt pavement.

These mean and standard deviation values are recommended for Arizona use, as they represent a refinement of the national calibration values and may show a significant difference in design.

#### TRUCK WHEELBASE

The truck wheelbase was previously defined as the distance from the steering axle to the first next axle for Classes 8 through 13 only. This distance varies from "short" to "medium" to "long" truck cabs.

WIM data were downloaded from two Arizona LTPP sites. The data were divided into three sections so that the average wheelbase for these three sections was 12, 15, and 18 feet. All trucks in Classes 8 through 13 were evaluated. The percentage of trucks for each average wheelbase section was determined (see Table 49).

Table 49. Wheelbase Distribution.

| Wheelbase Type | Wheelbase Length (feet) | Percent of Trucks<br>(Class 8 through 13) |
|----------------|-------------------------|-------------------------------------------|
| Short          | 10.0 to 13.4            | 11                                        |
| Medium         | 13.5 to 16.5            | 17                                        |
| Long           | 16.6 to 20.0            | 72                                        |

Results of the analysis showed that the mean and standard deviation were as follows:

- Analysis: Data were analyzed and the following results obtained:
  - o Short wheelbase: 11 percent.
  - o Medium wheelbase: 17 percent.
  - o Long wheelbase: 72 percent.
- Recommendations:
  - Level 1: Use WIM data to compute the percentage of trucks in Classes 8 through
     13 that have short, medium, and long wheelbases.
  - Level 2/3: Use the results above.

# CHAPTER 7. DETAILED SYSTEM FOR ADOT TRAFFIC DATA INPUTS FOR THE MEPDG DESIGN PROCESS

This chapter provides detailed inputs for the ADOT comprehensive traffic data input system for the MEPDG. This system recommends the following components:

- A homogeneous traffic segment database that includes all highways in Arizona (Interstate, U.S., and state). This database would include all traffic inputs required for the MEPDG and AASHTO 1993 design procedures. Traffic segments would include MP to MP limits, as well as GPS coordinates of the beginning and ending MP.
- Coordinates, traffic volume inputs, traffic weight inputs, traffic geometry inputs, and other inputs.

This chapter also discusses types of equipment recommended for collecting the traffic data, based on the accuracies needed in support of the MEPDG. A cost estimate is provided for the equipment, installation, site maintenance, equipment calibration, monitoring (data retrieval), and data analyses.

#### OVERALL SUMMARY OF ARIZONA TRAFFIC DATA INPUT SYSTEM

The traffic data input system includes field data collection equipment, procedures to process the raw data, a traffic segment database, and detailed procedures for obtaining the data required. The traffic segment database would include the section breakdown currently included in the pavement management system database used by pavement management and design groups. For each segment of highway, all inputs for the MEPDG would be provided. Recommendations for inputs for the initial version of the traffic segment database are provided in this chapter. The general traffic segment database is presented using the format shown in Table 50.

#### DETAILED DESCRIPTION OF TRAFFIC SEGMENT DATABASE

The development of a traffic segment database was recommended in SPR-402 Project No. 11, "Development of Design Guide Traffic Files for ADOT." (Witczak, 2008) That study recommended four major components of traffic information to be included in each section of the database:

- AADT.
- Traffic growth rate.
- Percent of trucks.
- Vehicle classification percentage.

Table 50. ADOT Comprehensive Traffic Data Input System for the MEPDG.

| MEPDG<br>Traffic<br>Input | Input<br>Level | Who Collects<br>and Processes<br>Input | How Is Input<br>Obtained?        | How Often Is Input<br>Provided?      | User of<br>Input |
|---------------------------|----------------|----------------------------------------|----------------------------------|--------------------------------------|------------------|
| Volume                    | 1              | MPD                                    | AVC for specific project         | As requested for<br>specific project | PD, PM           |
| Inputs                    | 2              | MPD                                    | AVC                              | Annually                             | PD, PM           |
|                           | 3              | MPD                                    | AVC                              | Annually                             | PD, PM           |
| Weight                    | 1              | MPD                                    | WIM for specific project         | As requested for<br>specific project | PD               |
| Inputs                    | 2/3            | MPD                                    | WIM: urban, rural,<br>desert     | Annually                             | PD               |
| Geometry                  | 1              | PD                                     | Measured for<br>specific project | As requested for<br>specific project | PD               |
| Inputs                    | 2/3            | PD                                     | AZ Default                       | Constant or annually                 | PD               |
| Other                     | 1              | MPD                                    | Measured for<br>specific project | As requested for<br>specific project | PD               |
| Inputs                    | 2/3            | MPD                                    | AZ Default                       | Constant or Annually                 | PD               |

MPD = ADOT Multimodal Planning Division; PD = Pavement Design; PM = Pavement Manager.

The traffic segment database would also include location inputs such as beginning and ending MP and GPS coordinates of these locations. The MEPDG requires additional inputs that should be stored in the database, including axle weight distribution data, truck lane percentage, directional distribution of trucks, hourly distribution of trucks, and monthly truck volume adjustments.

This database would provide a significant amount of information to pavement designers, pavement management staff, and several others in ADOT, as well as consultants who design projects for ADOT.

This database would be updated annually, with the results from the previous year of the traffic data collection. Over time, it would become an excellent source of current and historical traffic data. The database would be managed and updated by the MPD for use by the pavement design and pavement management sections.

#### **ADOT MEPDG Traffic Volume Inputs**

The traffic segment database would provide all traffic volume inputs required for the MEPDG along every state highway in Arizona. The traffic volume inputs are shown in Table 51, with all recommendations provided for Levels 1, 2, and 3. Some further explanations are provided to more fully describe the recommendations. Table 51 also shows the specific traffic inputs required under this topic.

Table 51. Traffic Volume Inputs Required for the MEPDG.

| MEPDG Traffic Input | Input<br>Level | Who<br>Collects and<br>Processes<br>Input? | How Is Input<br>Obtained?                             | How Often Is Input<br>Provided?                               | User of Input |
|---------------------|----------------|--------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|---------------|
| Initial AADT        | 1              | MPD                                        | AVC for project                                       | As requested for project                                      | PD            |
|                     | 2/3            | MPD                                        | AVC                                                   | Annual tables, maps, pavement management system software      | PD, PM        |
| Growth AADT         | 1              | MPD                                        | AVC for project                                       | As requested for project                                      | PD, PM        |
|                     | 2/3            | MPD                                        | AVC                                                   | Annual tables and pavement management system software         | PD, PM        |
| Vehicle Class       | 1              | MPD                                        | AVC for project                                       | As requested for project                                      | PD            |
| Distribution        | 2              | MPD                                        | AVC                                                   | Annual tables and<br>pavement management<br>system software   | PD, PM        |
|                     | 3              | SPR-672                                    | Historical AVC                                        | Tables and guidelines                                         | PD            |
| Percent Trucks      | 1              | MPD                                        | AVC for project                                       | As requested for project                                      | PD            |
|                     | 2              | MPD                                        | AVC                                                   | Annual tables and<br>pavement management<br>system software   | PD, PM        |
|                     | 3              | SPR-672                                    | Historical AVC                                        | Tables and guidelines                                         | PD            |
| Truck Lane          | 1              | MPD                                        | AVC for project                                       | As requested for project                                      | PD            |
| Distribution        | 2/3            | SPR-672                                    | Historical AVC                                        | Guideline based on<br>number of lanes                         | PD            |
| Directional         | 1              | MPD                                        | AVC for project                                       | As requested for project                                      | PD            |
| Distribution        | 2/3            | SPR-672                                    | Historical AVC                                        | Set to 0.50                                                   | PD, PM        |
| Hourly AADTT        | 1              | MPD                                        | AVC for project                                       | As requested for project                                      | PD            |
|                     | 2/3            | SPR-672                                    | Historical AVC<br>by highway class<br>or urban/rural? | Annual update                                                 | PD            |
| Monthly             | 1              | MPD                                        | AVC for project                                       | As requested for project                                      | PD            |
| Distribution        | 2/3            | SPR-672                                    | Historical AVC by highway class or urban/rural?       | Set to 1.00, except for exceptions (recreational, industrial) |               |

*Initial Two-Way AADT* 

The initial two-way AADT is a significant input because any error in this value will project itself throughout the future design life of the pavement. When the initial AADT is multiplied by the percentage of buses and trucks (Classes 4 through 13), the expected number of buses and trucks (AADTT) in the base year is obtained. This is calculated from the AVC/WIM data or trip generation studies by averaging the number of trucks measured over multiple 24-hour periods of time in each season/month, and weighted between weekends and weekdays. The MPD collects this input through remote download of raw data files from each traffic data collection device. The data are then automatically processed and reduced using TRADAS software. AADTs for each equipment site are calculated and presented in the software. The software then validates the data through historical and multiple count AADT checks. The AADT is then assigned along each highway to the various homogenous segments.

The AADT values collected and developed annually are made available to ADOT's pavement design and pavement management system sections through the ADOT Web site. Spreadsheets

are populated annually with these data, which are entered into the Basic pavement management system software used by pavement design and management groups.

For MEPDG design at Level 1 and Level 2/3, data collection and processing consists of the following:

- Level 1: Temporary AVC equipment is installed on the project site and data are measured as described above over an appropriate sampling time. The data are then processed and used as described above.
- Level 2/3: AADT data are obtained from the annually updated and developed spreadsheets for the project segment under design and projected to the initial year AADT.

# *Growth of AADTT (Truck Traffic)*

Traditionally, ADOT has determined future truck traffic growth through a projection of historical AADT (all vehicles). This implies that future growth will be as significant as past growth, which may or may not be correct for various highway segments. It also assumes that truck volume growth will be the same as all vehicle growth. The proper input is truck traffic growth (Classes 4 through 13).

The MEPDG allows the user to specify the nature and rate of traffic growth relative to the base year. The MEPDG software (now called Pavement ME Design) can consider the growth for each truck class separately. The user can choose one of three growth functions:

- **No growth:** Truck volume remains the same throughout the design life.
- **Linear growth:** The truck volume increases by a constant percentage of the base year traffic across each truck class.
- **Compound growth:** The truck volume increases by the constant percentage of the preceding year's traffic across each truck class.

The user can select a different growth rate and growth function for each truck class by selecting the option for "vehicle-class specific traffic growth."

For MEPDG design at Level 1 and Level 2/3, data collection and processing consists of the following:

- Level 1: Determine the historic growth in AADTT by plotting AADTT over time for as many years as available. Five or more years' worth of data is desirable to reduce unrealistically high or low values. These data will likely reflect a downturn in AADTT due to the recession from 2007 to 2010. Then adjust this value up or down based on the relative expected growth in the area of the highway. The recommended range is from 0 to 10 percent per year. If the resulting value is negative growth, use +2 percent.
- Level 2/3: If no historical data are available for a highway segment, obtain data from another segment as close or as representative as possible to the highway segment under design. If no such data are available, use a value of +3 percent compound growth, which is typical of major highways in Arizona.

## Percent Trucks (T Factor)

Percent trucks is the percentage of the AADT volume generated by buses and trucks (percentage of all vehicles identified as Classes 4 to 13 from the entire two-way truck count). The T factor is the percentage of trucks to be used in the MEPDG design input and is multiplied by AADT to obtain the direct MEPDG input AADTT. The truck percentage should be selected from the existing ADOT spreadsheet, which is updated annually from data provided by the MPD. Since it was determined that the values that currently populate this spreadsheet are valid, this practice should continue.

For MEPDG design at Level 1 and Level 2/3, data collection and processing consists of the following:

- Level 1: The percent of trucks is determined from AVC equipment located on or near the project under design.
- Level 2/3: The percent of trucks is are determined from the ADOT spreadsheet, which is updated annually from data provided by the MPD.

#### Vehicle Class Distribution

The VCD for a given highway represents the percent of each type of vehicle (Classes 4 through 13). This input is important because it is used to compute the number of single, tandem, tridem, and quad axles that pass on a highway over a design period. This input can be obtained on site and from results of Arizona vehicle counts.

For MEPDG design at Level 1 and Level 2/3, data collection and processing consists of the following:

- Level 1: Measure the VCD on the highway section under design through placement of 13-bin AVC equipment in the design lane or in all lanes. This measurement must be in place for a minimum of 7 days, 24 hours per day.
- Level 2/3: The approximate percentage of VCDs is developed from Arizona AVC measured data. Table 52 shows the recommended selection criteria for TTCs based on highway functional class in Arizona. The Arizona TTC VCD percentages calculated for these TTCs are shown in Table 53.

Table 52. Recommended Selection Criteria for Level 3 Arizona TTCs Based on Highway Functional Class.

| Functional Class                      | AZ MEPDG<br>TTCs | AZ Representative Highways                                                               |
|---------------------------------------|------------------|------------------------------------------------------------------------------------------|
| Rural Principal Arterial – Interstate | 1, 2             | I-8, I-10, I-15, I-19, I-40 (single peak for Class 9)                                    |
| Rural Principal Arterial – Other      | 6, 9, 12         | SR 85, U.S. 60, SR 77, U.S. 93, SR 360, SR 101, SR 303 (double peak for Classes 5 and 9) |
| Rural Major Collector                 | 6, 9, 12         | U.S. 91 (double peak for Classes 5 and 9)                                                |
| Rural Minor Arterial or Collector     | 6, 9, 12, 14     | SR 79, U.S. 60, SR 347 (double peak for Classes 5 and 9)                                 |
| Urban Principal Arterial – Interstate | 1, 2             | I-10, I-19, I-40 (some in urban areas had double peak<br>Classes 5 and 9)                |
| Urban Principal Arterial – Other      | 9, 12, 14        | SR 360, SR 101, SR 101, SR 303, SR 77 (double peak for Classes 5 and 9)                  |

Table 53. Recommended Level 3 VCDs for Specific Arizona TTCs.

| AZ  |     |      |     |     | Vehicle | Class |     |     |     |     |
|-----|-----|------|-----|-----|---------|-------|-----|-----|-----|-----|
| TTC | 4   | 5    | 6   | 7   | 8       | 9     | 10  | 11  | 12  | 13  |
| 1   | 1.8 | 6.5  | 1.9 | 0.2 | 10.3    | 73.2  | 1.0 | 3.1 | 1.9 | 0.1 |
| 2   | 3.1 | 14.7 | 2.9 | 0.1 | 9.3     | 64.4  | 1.3 | 1.9 | 1.5 | 0.8 |
| 6   | 3.7 | 21.3 | 5.7 | 0.4 | 19.0    | 45.6  | 1.7 | 1.5 | 0.7 | 0.4 |
| 9   | 5.3 | 38.5 | 6.2 | 0.2 | 9.0     | 36.9  | 1.8 | 1.3 | 0.3 | 0.4 |
| 12  | 5.3 | 46.3 | 5.7 | 0.7 | 16.1    | 24.1  | 1.1 | 0.3 | 0.1 | 0.3 |
| 14  | 7.8 | 65.8 | 4.4 | 0.2 | 11.7    | 9.1   | 0.7 | 0.2 | 0.0 | 0.1 |

#### Percent Trucks in the Design Lane

The percentage of trucks in the design lane is the percentage of total trucks in one direction expected to use the design lane. If 100 trucks were using a highway with two lanes in one direction and 85 were in the outer driving lane and 15 were in the inner passing lane, the percent of trucks in the design lane would be 85 percent (outer lane). The percentage of trucks in the design lane is used to calculate the total number of trucks and then axles expected to travel in the design lane over the analysis period. A summary of data obtained for Arizona sections is shown in Table 50.

For MEPDG design at Level 1 and Level 2/3, data collection and processing consists of the following:

• Level 1: Install AVC equipment across all lanes in one direction and measure the number of trucks each hour over at least a 7-day, 24-hour per day count. If the highway is to be widened, the percentage of trucks in the design lane will likely be lower. Follow recommendations provided for Level 2/3 to make an adjustment. Level 1 is recommended specifically for unusual urban conditions where various ramp on/off situations exist along the project. The critical area along the project (highest percentage of trucks in one lane) should be used for the design.

- **Level 2/3:** Use the following statewide averages for truck lane distribution design (see Table 54):
  - One lane in design direction: 100 percent.
  - Two lanes in design direction: 81 percent (60 to 97 measured).
  - Three lanes in design direction: 51 percent (40 to 62 measured).
  - o Four or more lanes in design direction: 44 percent (44 percent measured).

Table 54. Percent of Trucks in Design Lane for Arizona Sections.

| Site   | Route       | Total No.<br>of Lanes<br>in Design<br>Direction | Arizona<br>County | Route<br>No. | Functional Class                                                  | Percent<br>Truck in<br>Design<br>Lane | Lane<br>Description |
|--------|-------------|-------------------------------------------------|-------------------|--------------|-------------------------------------------------------------------|---------------------------------------|---------------------|
| 100767 | SR 72       | 1                                               | La Paz            | SR 72        | Rural Major Collector                                             | 100                                   | East                |
| 100767 | SR 72       | 1                                               | La Paz            | SR 72        | Rural Major Collector                                             | 100                                   | West                |
| 100854 | SR 79       | 1                                               | Pinal             | SR 79        | Rural Minor Arterial                                              | 100                                   | North               |
| 100854 | SR 79       | 1                                               | Pinal             | SR 79        | Rural Minor Arterial                                              | 100                                   | South               |
| 101113 | SR 95       | 1                                               | Yuma              | SR 95        | Rural Principal<br>Arterial - Other                               | 100                                   | North               |
| 101113 | SR 95       | 1                                               | Yuma              | SR 95        | Rural Principal<br>Arterial - Other                               | 100                                   | South               |
| 101602 | SR 303      | 1                                               | Maricopa          | SR 303       | Urban Principal<br>Arterial - Other<br>Freeways or<br>Expressways | 100                                   | North               |
| 101602 | SR 303      | 1                                               | Maricopa          | SR 303       | Urban Principal<br>Arterial - Other<br>Freeways or<br>Expressways | 100                                   | South               |
| 101928 | U.S. 60     | 1                                               | Navajo            | U.S. 60      | Rural Minor Arterial                                              | 100                                   | East                |
| 101928 | U.S. 60     | 1                                               | Navajo            | U.S. 60      | Rural Minor Arterial                                              | 100                                   | West                |
| 102094 | U.S. 93     | 1                                               | Yavapai           | U.S. 93      | Rural Principal<br>Arterial - Other                               | 100                                   | North               |
| 102094 | U.S. 93     | 1                                               | Yavapai           | U.S. 93      | Rural Principal<br>Arterial - Other                               | 100                                   | South               |
| 102230 | U.S.<br>191 | 1                                               | Graham            | U.S.<br>191  | Rural Major Collector                                             | 100                                   | North               |
| 102230 | U.S.<br>191 | 1                                               | Graham            | U.S.<br>191  | Rural Major Collector                                             | 100                                   | South               |
| 100010 | I-08        | 2                                               | Yuma              | I-08         | Rural Principal<br>Arterial - Interstate                          | 90                                    | East                |
| 100010 | I-08        | 2                                               | Yuma              | I-08         | Rural Principal<br>Arterial - Interstate                          | 92                                    | West                |
| 100070 | U.S. 60     | 2                                               | La Paz            | U.S. 60      | Rural Principal<br>Arterial - Interstate                          | 71                                    | East                |
| 100070 | U.S. 60     | 2                                               | La Paz            | U.S. 60      | Rural Principal<br>Arterial - Interstate                          | 85                                    | West                |
| 100188 | I-10        | 2                                               | Cochise           | I-10         | Rural Principal<br>Arterial - Interstate                          | 91                                    | East                |
| 100188 | I-10        | 2                                               | Cochise           | I-10         | Rural Principal<br>Arterial - Interstate                          | 90                                    | West                |

Table 54. Percent of Trucks in Design Lane for Arizona Sections, continued.

| Site   | Route      | Lanes in<br>Design<br>Direction | Arizona<br>County | Rout<br>e No. | Functional Class                                                  | Percent<br>Truck in<br>Design<br>Lane | Lane<br>Description |
|--------|------------|---------------------------------|-------------------|---------------|-------------------------------------------------------------------|---------------------------------------|---------------------|
| 100327 | I-15       | 2                               | Mohave            | I-15          | Rural Principal<br>Arterial - Interstate                          | 88                                    | North               |
| 100327 | I-15       | 2                               | Mohave            | I-15          | Rural Principal<br>Arterial - Interstate                          | 89                                    | South               |
| 100473 | I-19       | 2                               | Pima              | I-19          | Urban Principal<br>Arterial - Interstate                          | 63                                    | North               |
| 100473 | I-19       | 2                               | Pima              | I-19          | Urban Principal<br>Arterial - Interstate                          | 65                                    | South               |
| 100537 | I-40       | 2                               | Coconino          | I-40          | Rural Principal<br>Arterial - Interstate                          | 85                                    | East                |
| 100537 | I-40       | 2                               | Coconino          | I-40          | Rural Principal<br>Arterial - Interstate                          | 88                                    | West                |
| 100541 | I-40       | 2                               | Coconino          | I-40          | Urban Principal<br>Arterial - Interstate                          | 80                                    | East                |
| 100541 | I-40       | 2                               | Coconino          | I-40          | Urban Principal<br>Arterial - Interstate                          | 83                                    | West                |
| 100922 | SR 85      | 2                               | Maricopa          | SR<br>85      | Rural Principal<br>Arterial - Other                               | 93                                    | North               |
| 100922 | SR 85      | 2                               | Maricopa          | SR<br>85      | Rural Principal<br>Arterial - Other                               | 93                                    | South               |
| 101622 | SR<br>347  | 2                               | Pinal             | SR<br>347     | Rural Minor Collector                                             | 73                                    | North               |
| 101622 | SR<br>347  | 2                               | Pinal             | SR<br>347     | Rural Minor Collector                                             | 75                                    | South               |
| 101849 | U.S.<br>60 | 2                               | Maricopa          | U.S.<br>60    | Rural Principal<br>Arterial - Other                               | 79                                    | East                |
| 101849 | U.S.<br>60 | 2                               | Maricopa          | U.S.<br>60    | Rural Principal<br>Arterial - Other                               | 60                                    | West                |
| 102068 | U.S.<br>89 | 2                               | Coconino          | U.S.<br>89    | Urban Principal<br>Arterial - Other                               | 75                                    | North               |
| 102068 | U.S.<br>89 | 2                               | Coconino          | U.S.<br>89    | Urban Principal<br>Arterial - Other                               | 67                                    | South               |
| 102084 | U.S.<br>93 | 2                               | Mohave            | U.S.<br>93    | Rural Principal<br>Arterial - Other                               | 97                                    | North               |
| 102084 | U.S.<br>93 | 2                               | Mohave            | U.S.<br>93    | Rural Principal<br>Arterial - Other                               | 78                                    | South               |
| 100139 | I-10       | 3                               | Pima              | I-10          | Urban Principal<br>Arterial - Interstate                          | 56                                    | East                |
| 100139 | I-10       | 3                               | Pima              | I-10          | Urban Principal<br>Arterial - Interstate                          | 62                                    | West                |
| 100800 | SR 77      | 3                               | Pima              | SR<br>77      | Urban Principal<br>Arterial - Other                               | 47                                    | North               |
| 100800 | SR 77      | 3                               | Pima              | SR<br>77      | Urban Principal<br>Arterial - Other                               | 40                                    | South               |
| 101248 | SR<br>101  | 5                               | Maricopa          | SR<br>101     | Urban Principal<br>Arterial - Other<br>Freeways or<br>Expressways | 44                                    | North               |
| 101248 | SR<br>101  | 5                               | Maricopa          | SR<br>101     | Urban Principal<br>Arterial - Other<br>Freeways or<br>Expressways | 44                                    | South               |

#### Percent Trucks in Design Direction

The percentage of trucks in the design direction is the percentage of trucks (from the entire two-way truck count) that is expected to travel in the design direction. Although this value should be very close to 50 percent, it is not necessarily so, especially in cases where truck traffic does not use the same route for both out and return trips.

For MEPDG design at Level 1 and Level 2/3, data collection and processing consists of the following:

- Level 1: Install AVC equipment across all lanes in both directions and compute the percentage of trucks in the design direction over a sufficient sample period on or near the project under design.
- Level 2: The Arizona statewide average is 50 percent (ranged from 36 to 64 percent). This is approximately the MEPDG Level 3 default and should be used for Arizona pavement designs.

#### Truck Hourly Distribution

Truck volume varies hour-to-hour over a 24-hour day. The following recommendations are provided for 24-hour truck distribution:

- Level 1: Measure the number of trucks (Classes 4 through 13) in the design lane each hour over a representative number of 24-hour periods. It is recommended that a 7-day, 24-hour per day minimum count be conducted. The number of trucks in each hour is divided by the total number of trucks counted over 24 hours to obtain a percentage for every hour of the day and night.
- Level 2/3: Three distinct hourly truck distributions are recommended for Arizona—rural, urban, and long-haul desert. These distributions are described as follows:
  - Moderate Peak for Rural Highways: A distribution that represents "rural" highway trucks over 24 hours. The difference between the nighttime and daytime truck traffic is significant (typically ranges from 3 to 7 percent), but not as peaked as typical urban distribution. An example of this "rural" hourly truck distribution is shown in Figure 79, which is for a site in Coconino County on I-40.
  - High Peak Distribution for Urban Highways: A distribution that represents "urban" highway trucks over 24 hours. The difference between the daytime and nighttime truck traffic is typically higher than for rural sites. The difference between nighttime and daytime truck traffic typically ranges from less than 1 percent at nighttime to greater than 9 percent at daytime. An example of an "urban" hourly truck distribution is shown in Figure 80, which is for site 4\_100800 located in urban Pima County on SR 77.
  - o **Desert Long-Haul Highways (Flat Distribution):** A distribution that represents a long-haul section of rural highway across the desert. This distribution is far flatter than either the rural or urban distributions. An example is section 100070 on the western end of I-10 in La Paz County, shown in Figure 81.

These three, 24-hour truck distributions, recommended for use in design for Level 2/3 input to the MEPDG, are provided in Table 55.

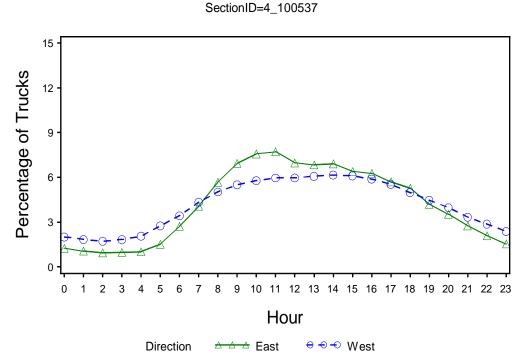



Figure 79. Typical Arizona Rural 24-Hour Distribution of Trucks.

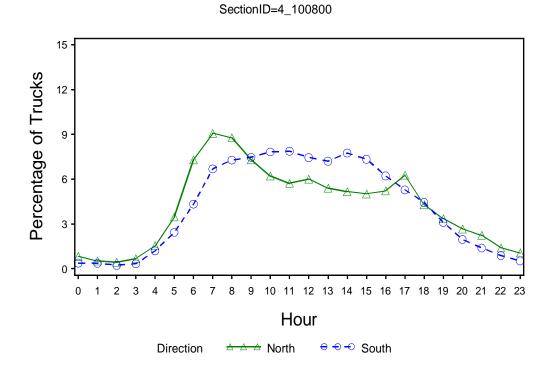
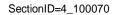




Figure 80. Typical Arizona 24-hour Urban Distribution of Trucks.



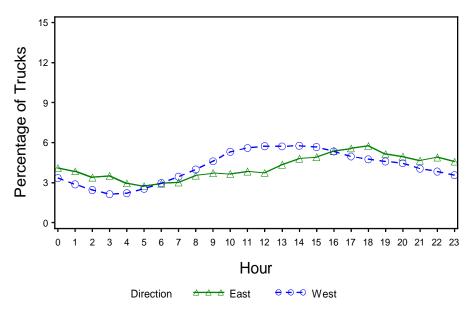



Figure 81. Typical 24-Hour Long-Haul Distance Desert Distribution of Trucks.

Table 55. Summary of 24-Hour Truck Distributions Recommended for Arizona MEPDG for Input Level 2/3 by Rural and Urban Functional Class.

| Time of Day (24-hour clock) | "Rural" Distribution | "Urban" Distribution | "Long-Haul Desert"<br>Distribution |
|-----------------------------|----------------------|----------------------|------------------------------------|
| 1 Early morning             | 1.9                  | 0.9                  | 3.7                                |
| 2                           | 1.7                  | 0.8                  | 3.4                                |
| 3                           | 1.6                  | 0.7                  | 2.9                                |
| 4                           | 1.7                  | 1.0                  | 2.8                                |
| 5                           | 1.8                  | 2.0                  | 2.6                                |
| 6                           | 2.3                  | 3.6                  | 2.6                                |
| 7                           | 3.2                  | 5.5                  | 3.0                                |
| 8                           | 4.1                  | 6.1                  | 3.2                                |
| 9                           | 5.0                  | 6.6                  | 3.8                                |
| 10                          | 5.8                  | 7.0                  | 4.2                                |
| 11                          | 6.3                  | 7.1                  | 4.5                                |
| 12 Noon                     | 6.6                  | 7.0                  | 4.7                                |
| 13                          | 6.8                  | 6.8                  | 4.7                                |
| 14                          | 6.7                  | 6.8                  | 5.0                                |
| 15                          | 6.6                  | 6.8                  | 5.3                                |
| 16                          | 6.3                  | 6.3                  | 5.3                                |
| 17                          | 5.9                  | 5.8                  | 5.4                                |
| 18                          | 5.4                  | 5.0                  | 5.3                                |
| 19                          | 4.8                  | 4.1                  | 5.3                                |
| 20                          | 4.1                  | 3.2                  | 4.9                                |
| 21                          | 3.6                  | 2.5                  | 4.7                                |
| 22                          | 3.2                  | 2.0                  | 4.4                                |
| 23                          | 2.6                  | 1.5                  | 4.4                                |
| 24 Midnight                 | 2.2                  | 1.1                  | 4.1                                |

#### Monthly Truck Adjustment

The MAF input in the MEPDG provides the opportunity to fine-tune the design considering month-to-month truck volumes. The national defaults were 1.00 for each month, which provides for the same truck volume each month of a given year. The MAF was computed for a number of sites in Arizona to determine its variation around the state. Results from the analysis showed that the MAF factors for various highways over a 12-month period were very similar, with a few exceptions.

For MEPDG design at Level 1 and Level 2/3, data collection and processing consists of the following:

- Level 1: Measure the MAF using AVC equipment on or near the highway section under design. A minimum of 7 days and 24 hours per day is required.
- Level 2/3: Use the values determined for Arizona for all months unless there is some known reason why truck traffic would vary significantly. For example, this could occur on a highway in mountainous area used only by recreational vehicles in the summer months. The MAF could then be varied to reflect this knowledge.

# **ADOT MEPDG Traffic Weight Inputs**

Recommended sources for truck traffic axle weight inputs are shown in Table 56. Some further explanations are provided to more fully describe the recommendations. Table 56 also shows the specific traffic inputs required under this topic. A summary of recommended truck weight inputs for Arizona MEPDG for input Level 2/3 is presented in Tables 57 through 68.

Table 56. Traffic Weight Inputs Required.

| MEPDG Traffic Input                                               | Input<br>Level | Who Collects<br>and Processes<br>Input | How Is Input<br>Obtained                          | How Often Is Input<br>Provided          | User of<br>Input |
|-------------------------------------------------------------------|----------------|----------------------------------------|---------------------------------------------------|-----------------------------------------|------------------|
| Axle Load<br>Distributions:<br>Single,<br>Tandem,<br>Tridem, Quad | 1              | MPD                                    | Representative<br>WIM                             | As requested for<br>project, normalized | PD               |
|                                                                   | 2              | MPD                                    | AZ WIM mean                                       | Annually updated, normalized tables     |                  |
|                                                                   | 3              | SPR-672                                | AZ WIM mean by<br>highway class or<br>urban/rural | SPR-672 final report                    |                  |

Table 57. Summary of Level 2/3 Single Axle ALD Recommended for Arizona Rural Principal Arterials, Interstate.

| Axle     |        |        |        |        | Vehi   | cle Class |        |       |        |        |
|----------|--------|--------|--------|--------|--------|-----------|--------|-------|--------|--------|
| Load, lb | 4      | 5      | 6      | 7      | 8      | 9         | 10     | 11    | 12     | 13     |
| 3,000    | 0.038  | 0.486  | 0.000  | 0.973  | 4.537  | 0.210     | 0.310  | 0.460 | 0.271  | 1.896  |
| 4,000    | 0.050  | 4.309  | 0.002  | 0.325  | 7.207  | 0.443     | 0.102  | 1.552 | 1.152  | 1.431  |
| 5,000    | 0.050  | 10.099 | 0.374  | 0.604  | 4.568  | 0.610     | 0.107  | 2.697 | 2.160  | 1.439  |
| 6,000    | 0.561  | 24.219 | 2.839  | 1.130  | 12.103 | 1.374     | 0.952  | 4.161 | 4.024  | 2.560  |
| 7,000    | 1.186  | 12.469 | 3.379  | 1.569  | 8.580  | 1.938     | 1.709  | 5.079 | 6.453  | 3.890  |
| 8,000    | 2.753  | 8.969  | 3.971  | 2.240  | 7.778  | 2.871     | 3.149  | 6.035 | 7.945  | 4.738  |
| 9,000    | 5.038  | 7.621  | 6.495  | 4.258  | 8.637  | 5.029     | 6.124  | 7.079 | 8.436  | 6.337  |
| 10,000   | 7.637  | 6.402  | 10.604 | 1.845  | 9.136  | 9.190     | 11.881 | 8.643 | 9.645  | 7.880  |
| 11,000   | 9.989  | 5.215  | 14.328 | 9.324  | 8.390  | 14.862    | 17.107 | 9.816 | 10.853 | 10.451 |
| 12,000   | 13.469 | 4.577  | 16.163 | 9.040  | 7.190  | 19.357    | 19.704 | 9.964 | 11.722 | 12.204 |
| 13,000   | 14.165 | 3.573  | 13.318 | 5.189  | 5.256  | 17.404    | 15.820 | 8.913 | 10.620 | 11.182 |
| 14,000   | 12.605 | 2.770  | 8.826  | 10.954 | 3.797  | 10.360    | 9.559  | 7.502 | 8.067  | 8.574  |
| 15,000   | 9.455  | 2.186  | 6.182  | 9.957  | 2.941  | 5.397     | 5.321  | 6.415 | 6.276  | 5.654  |
| 16,000   | 6.763  | 1.714  | 4.304  | 6.482  | 2.287  | 3.385     | 3.034  | 5.554 | 4.598  | 4.316  |
| 17,000   | 4.416  | 1.347  | 3.049  | 7.679  | 1.877  | 2.393     | 1.907  | 4.641 | 3.063  | 3.721  |
| 18,000   | 3.101  | 1.067  | 1.991  | 6.646  | 1.467  | 1.745     | 1.319  | 3.730 | 1.884  | 2.777  |
| 19,000   | 2.432  | 0.804  | 1.323  | 4.462  | 1.119  | 1.240     | 0.695  | 2.730 | 1.201  | 2.466  |
| 20,000   | 1.873  | 0.601  | 0.878  | 3.590  | 0.816  | 0.824     | 0.407  | 1.917 | 0.667  | 2.301  |
| 21,000   | 1.367  | 0.446  | 0.650  | 2.700  | 0.551  | 0.514     | 0.233  | 1.250 | 0.362  | 1.282  |
| 22,000   | 0.944  | 0.311  | 0.396  | 1.885  | 0.374  | 0.307     | 0.122  | 0.744 | 0.244  | 1.167  |
| 23,000   | 0.661  | 0.207  | 0.281  | 2.898  | 0.259  | 0.171     | 0.097  | 0.462 | 0.140  | 0.747  |
| 24,000   | 0.513  | 0.146  | 0.205  | 1.663  | 0.164  | 0.099     | 0.048  | 0.248 | 0.095  | 0.626  |
| 25,000   | 0.296  | 0.094  | 0.114  | 1.586  | 0.105  | 0.064     | 0.038  | 0.139 | 0.039  | 0.521  |
| 26,000   | 0.219  | 0.064  | 0.089  | 1.231  | 0.059  | 0.039     | 0.031  | 0.079 | 0.017  | 0.367  |
| 27,000   | 0.131  | 0.037  | 0.056  | 0.732  | 0.043  | 0.026     | 0.044  | 0.055 | 0.016  | 0.299  |
| 28,000   | 0.118  | 0.029  | 0.044  | 0.280  | 0.028  | 0.018     | 0.026  | 0.035 | 0.011  | 0.166  |
| 29,000   | 0.055  | 0.026  | 0.033  | 0.050  | 0.020  | 0.007     | 0.007  | 0.020 | 0.006  | 0.177  |
| 30,000   | 0.045  | 0.013  | 0.014  | 0.112  | 0.012  | 0.003     | 0.031  | 0.009 | 0.000  | 0.145  |
| 31,000   | 0.015  | 0.006  | 0.018  | 0.125  | 0.005  | 0.004     | 0.005  | 0.004 | 0.001  | 0.063  |
| 32,000   | 0.016  | 0.007  | 0.011  | 0.000  | 0.003  | 0.003     | 0.005  | 0.005 | 0.000  | 0.032  |
| 33,000   | 0.006  | 0.006  | 0.005  | 0.000  | 0.002  | 0.002     | 0.002  | 0.003 | 0.000  | 0.038  |
| 34,000   | 0.004  | 0.003  | 0.003  | 0.308  | 0.002  | 0.006     | 0.007  | 0.002 | 0.001  | 0.032  |
| 35,000   | 0.002  | 0.004  | 0.005  | 0.000  | 0.001  | 0.001     | 0.006  | 0.002 | 0.000  | 0.032  |
| 36,000   | 0.001  | 0.003  | 0.001  | 0.029  | 0.002  | 0.001     | 0.018  | 0.003 | 0.000  | 0.018  |
| 37,000   | 0.009  | 0.004  | 0.004  | 0.000  | 0.003  | 0.000     | 0.004  | 0.002 | 0.000  | 0.023  |
| 38,000   | 0.001  | 0.002  | 0.003  | 0.057  | 0.001  | 0.001     | 0.005  | 0.000 | 0.001  | 0.028  |
| 39,000   | 0.004  | 0.002  | 0.004  | 0.048  | 0.000  | 0.001     | 0.003  | 0.002 | 0.000  | 0.004  |
| 40,000   | 0.004  | 0.002  | 0.004  | 0.019  | 0.001  | 0.001     | 0.000  | 0.000 | 0.000  | 0.007  |
| 41,000   | 0.010  | 0.002  | 0.011  | 0.000  | 0.002  | 0.014     | 0.030  | 0.000 | 0.000  | 0.065  |

Table 58. Summary of Level 2/3 Tandem Axle ALD Recommended for Arizona Rural Principal Arterials, Interstate.

| Axle     |        |       |        |        | Veh    | icle Class |       |        |        |       |
|----------|--------|-------|--------|--------|--------|------------|-------|--------|--------|-------|
| Load, lb | 4      | 5     | 6      | 7      | 8      | 9          | 10    | 11     | 12     | 13    |
| 6,000    | 0.011  | 0.000 | 0.290  | 0.000  | 5.050  | 0.141      | 0.188 | 0.000  | 0.111  | 0.714 |
| 8,000    | 0.011  | 0.000 | 4.419  | 0.000  | 7.927  | 0.747      | 0.636 | 50.000 | 0.563  | 1.083 |
| 10,000   | 0.018  | 0.000 | 10.371 | 0.000  | 5.991  | 1.799      | 1.565 | 25.000 | 2.054  | 2.590 |
| 12,000   | 0.090  | 0.000 | 14.419 | 0.000  | 8.533  | 3.519      | 2.762 | 0.000  | 4.427  | 5.103 |
| 14,000   | 0.301  | 0.000 | 13.063 | 0.000  | 11.528 | 5.235      | 5.318 | 0.000  | 8.715  | 6.632 |
| 16,000   | 0.807  | 0.000 | 8.055  | 0.000  | 12.541 | 6.013      | 6.893 | 0.000  | 12.451 | 6.310 |
| 18,000   | 2.583  | 0.000 | 5.543  | 100.00 | 11.386 | 6.240      | 8.209 | 0.000  | 13.291 | 6.604 |
| 20,000   | 5.417  | 0.000 | 4.607  | 0.000  | 9.107  | 6.284      | 7.922 | 0.000  | 14.918 | 5.181 |
| 22,000   | 9.568  | 0.000 | 4.618  | 0.000  | 6.941  | 6.165      | 8.416 | 0.000  | 14.368 | 5.148 |
| 24,000   | 13.467 | 0.000 | 5.081  | 0.000  | 5.326  | 6.388      | 8.015 | 0.000  | 12.356 | 4.560 |
| 26,000   | 15.595 | 0.000 | 5.359  | 0.000  | 3.988  | 6.667      | 7.735 | 0.000  | 8.337  | 4.293 |
| 28,000   | 15.288 | 0.000 | 5.137  | 0.000  | 2.989  | 7.087      | 7.740 | 0.000  | 4.441  | 4.377 |
| 30,000   | 12.411 | 0.000 | 4.544  | 0.000  | 2.190  | 7.796      | 7.462 | 0.000  | 1.967  | 4.153 |
| 32,000   | 9.015  | 0.000 | 3.866  | 0.000  | 1.772  | 8.362      | 6.391 | 0.000  | 1.000  | 4.583 |
| 34,000   | 6.407  | 0.000 | 2.885  | 0.000  | 1.256  | 8.232      | 5.366 | 0.000  | 0.377  | 5.106 |
| 36,000   | 3.582  | 0.000 | 2.296  | 0.000  | 0.956  | 7.160      | 4.827 | 25.000 | 0.182  | 5.626 |
| 38,000   | 1.935  | 0.000 | 1.705  | 0.000  | 0.777  | 5.210      | 3.127 | 0.000  | 0.137  | 5.551 |
| 40,000   | 1.306  | 0.000 | 1.188  | 0.000  | 0.501  | 3.086      | 2.436 | 0.000  | 0.068  | 4.950 |
| 42,000   | 0.738  | 0.000 | 0.866  | 0.000  | 0.303  | 1.683      | 1.647 | 0.000  | 0.036  | 4.187 |
| 44,000   | 0.503  | 0.000 | 0.552  | 0.000  | 0.218  | 0.895      | 1.096 | 0.000  | 0.019  | 3.269 |
| 46,000   | 0.377  | 0.000 | 0.435  | 0.000  | 0.098  | 0.514      | 0.774 | 0.000  | 0.006  | 2.382 |
| 48,000   | 0.212  | 0.000 | 0.244  | 0.000  | 0.170  | 0.302      | 0.432 | 0.000  | 0.011  | 1.809 |
| 50,000   | 0.138  | 0.000 | 0.140  | 0.000  | 0.037  | 0.174      | 0.326 | 0.000  | 0.030  | 1.453 |
| 52,000   | 0.065  | 0.000 | 0.102  | 0.000  | 0.020  | 0.101      | 0.164 | 0.000  | 0.000  | 1.050 |
| 54,000   | 0.045  | 0.000 | 0.053  | 0.000  | 0.009  | 0.059      | 0.172 | 0.000  | 0.000  | 0.820 |
| 56,000   | 0.027  | 0.000 | 0.035  | 0.000  | 0.006  | 0.034      | 0.116 | 0.000  | 0.000  | 0.627 |
| 58,000   | 0.022  | 0.000 | 0.024  | 0.000  | 0.011  | 0.016      | 0.060 | 0.000  | 0.010  | 0.514 |
| 60,000   | 0.010  | 0.000 | 0.019  | 0.000  | 0.004  | 0.006      | 0.036 | 0.000  | 0.005  | 0.305 |
| 62,000   | 0.007  | 0.000 | 0.014  | 0.000  | 0.003  | 0.004      | 0.026 | 0.000  | 0.000  | 0.269 |
| 64,000   | 0.011  | 0.000 | 0.009  | 0.000  | 0.001  | 0.002      | 0.065 | 0.000  | 0.095  | 0.194 |
| 66,000   | 0.001  | 0.000 | 0.004  | 0.000  | 0.001  | 0.001      | 0.018 | 0.000  | 0.000  | 0.122 |
| 68,000   | 0.003  | 0.000 | 0.005  | 0.000  | 0.001  | 0.001      | 0.015 | 0.000  | 0.000  | 0.106 |
| 70,000   | 0.003  | 0.000 | 0.003  | 0.000  | 0.001  | 0.000      | 0.011 | 0.000  | 0.000  | 0.111 |
| 72,000   | 0.001  | 0.000 | 0.002  | 0.000  | 0.000  | 0.000      | 0.001 | 0.000  | 0.000  | 0.062 |
| 74,000   | 0.000  | 0.000 | 0.007  | 0.000  | 0.000  | 0.000      | 0.002 | 0.000  | 0.000  | 0.076 |
| 76,000   | 0.000  | 0.000 | 0.002  | 0.000  | 0.000  | 0.000      | 0.001 | 0.000  | 0.000  | 0.039 |
| 78,000   | 0.000  | 0.000 | 0.001  | 0.000  | 0.000  | 0.000      | 0.001 | 0.000  | 0.000  | 0.024 |
| 80,000   | 0.000  | 0.000 | 0.002  | 0.000  | 0.000  | 0.000      | 0.004 | 0.000  | 0.000  | 0.010 |
| 82,000   | 0.000  | 0.000 | 0.000  | 0.000  | 0.000  | 0.000      | 0.005 | 0.000  | 0.000  | 0.003 |

Table 59. Summary of Level 2/3 Tridem Axle ALD Recommended for Arizona Rural Principal Arterials, Interstate.

| Axle     | Vehicle Class |       |       |        |       |        |       |       |        |        |
|----------|---------------|-------|-------|--------|-------|--------|-------|-------|--------|--------|
| Load, Ib | 4             | 5     | 6     | 7      | 8     | 9      | 10    | 11    | 12     | 13     |
| 12,000   | 0.000         | 0.000 | 0.000 | 0.407  | 0.000 | 0.105  | 0.735 | 0.000 | 3.111  | 0.594  |
| 15,000   | 0.000         | 0.000 | 0.000 | 0.394  | 0.000 | 1.295  | 2.336 | 0.000 | 3.842  | 1.000  |
| 18,000   | 0.000         | 0.000 | 0.000 | 5.444  | 0.000 | 33.438 | 6.388 | 0.000 | 7.616  | 1.431  |
| 21,000   | 0.000         | 0.000 | 0.000 | 5.957  | 0.000 | 12.495 | 9.254 | 0.000 | 9.580  | 2.955  |
| 24,000   | 0.000         | 0.000 | 0.000 | 5.374  | 0.000 | 9.010  | 9.670 | 0.000 | 20.038 | 3.998  |
| 27,000   | 0.000         | 0.000 | 0.000 | 3.184  | 0.000 | 5.533  | 8.246 | 0.000 | 13.931 | 4.515  |
| 30,000   | 0.000         | 0.000 | 0.000 | 3.707  | 0.000 | 1.862  | 6.863 | 0.000 | 16.044 | 5.753  |
| 33,000   | 0.000         | 0.000 | 0.000 | 3.412  | 0.000 | 1.067  | 7.361 | 0.000 | 1.338  | 3.861  |
| 36,000   | 0.000         | 0.000 | 0.000 | 6.737  | 0.000 | 1.571  | 7.440 | 0.000 | 1.418  | 4.878  |
| 39,000   | 0.000         | 0.000 | 0.000 | 6.619  | 0.000 | 1.510  | 7.897 | 0.000 | 8.847  | 6.155  |
| 42,000   | 0.000         | 0.000 | 0.000 | 11.794 | 0.000 | 1.286  | 8.187 | 0.000 | 0.236  | 6.803  |
| 45,000   | 0.000         | 0.000 | 0.000 | 9.811  | 0.000 | 0.410  | 7.334 | 0.000 | 0.342  | 6.066  |
| 48,000   | 0.000         | 0.000 | 0.000 | 11.127 | 0.000 | 0.614  | 5.520 | 0.000 | 1.453  | 6.879  |
| 51,000   | 0.000         | 0.000 | 0.000 | 7.935  | 0.000 | 4.971  | 3.890 | 0.000 | 3.549  | 7.441  |
| 54,000   | 0.000         | 0.000 | 0.000 | 5.380  | 0.000 | 2.495  | 2.809 | 0.000 | 1.596  | 11.680 |
| 57,000   | 0.000         | 0.000 | 0.000 | 3.377  | 0.000 | 5.429  | 2.036 | 0.000 | 2.471  | 5.717  |
| 60,000   | 0.000         | 0.000 | 0.000 | 3.084  | 0.000 | 4.762  | 1.670 | 0.000 | 1.111  | 6.126  |
| 63,000   | 0.000         | 0.000 | 0.000 | 3.335  | 0.000 | 2.381  | 0.817 | 0.000 | 2.458  | 4.731  |
| 66,000   | 0.000         | 0.000 | 0.000 | 2.002  | 0.000 | 0.000  | 0.552 | 0.000 | 0.000  | 3.632  |
| 69,000   | 0.000         | 0.000 | 0.000 | 0.483  | 0.000 | 9.524  | 0.395 | 0.000 | 0.513  | 2.345  |
| 72,000   | 0.000         | 0.000 | 0.000 | 0.121  | 0.000 | 0.000  | 0.250 | 0.000 | 0.000  | 0.801  |
| 75,000   | 0.000         | 0.000 | 0.000 | 0.300  | 0.000 | 0.000  | 0.126 | 0.000 | 0.000  | 0.972  |
| 78,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.074 | 0.000 | 0.000  | 1.026  |
| 81,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.055 | 0.000 | 0.000  | 0.211  |
| 84,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.026 | 0.000 | 0.000  | 0.218  |
| 87,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.021 | 0.000 | 0.000  | 0.016  |
| 90,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.009 | 0.000 | 0.000  | 0.037  |
| 93,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.004 | 0.000 | 0.513  | 0.017  |
| 96,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.002 | 0.000 | 0.000  | 0.011  |
| 99,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.001 | 0.000 | 0.000  | 0.005  |
| 102,000  | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.001 | 0.000 | 0.000  | 0.000  |

Table 60. Summary of Level 2/3 Quad Axle ALD Recommended for Arizona Rural Principal Arterials, Interstate.

| Axle     | Vehicle Class |       |       |        |       |        |        |       |        |       |
|----------|---------------|-------|-------|--------|-------|--------|--------|-------|--------|-------|
| Load, lb | 4             | 5     | 6     | 7      | 8     | 9      | 10     | 11    | 12     | 13    |
| 12,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.541  | 0.000 | 0.000  | 0.335 |
| 15,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 7.000  | 0.312  | 0.000 | 1.753  | 0.329 |
| 18,000   | 0.000         | 0.000 | 0.000 | 0.280  | 0.000 | 2.000  | 2.297  | 0.000 | 0.000  | 1.589 |
| 21,000   | 0.000         | 0.000 | 0.000 | 0.280  | 0.000 | 15.375 | 3.921  | 0.000 | 10.526 | 4.071 |
| 24,000   | 0.000         | 0.000 | 0.000 | 0.820  | 0.000 | 3.440  | 5.838  | 0.000 | 10.526 | 6.419 |
| 27,000   | 0.000         | 0.000 | 0.000 | 10.000 | 0.000 | 8.215  | 1.241  | 0.000 | 1.753  | 6.580 |
| 30,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 10.000 | 0.376  | 0.000 | 1.753  | 3.973 |
| 33,000   | 0.000         | 0.000 | 0.000 | 1.060  | 0.000 | 5.625  | 1.515  | 0.000 | 5.263  | 6.529 |
| 36,000   | 0.000         | 0.000 | 0.000 | 0.280  | 0.000 | 0.000  | 4.541  | 0.000 | 0.000  | 5.374 |
| 39,000   | 0.000         | 0.000 | 0.000 | 0.540  | 0.000 | 0.000  | 6.162  | 0.000 | 12.016 | 9.536 |
| 42,000   | 0.000         | 0.000 | 0.000 | 11.260 | 0.000 | 0.000  | 5.503  | 0.000 | 2.295  | 8.463 |
| 45,000   | 0.000         | 0.000 | 0.000 | 14.200 | 0.000 | 0.000  | 12.556 | 0.000 | 4.874  | 7.089 |
| 48,000   | 0.000         | 0.000 | 0.000 | 4.140  | 0.000 | 0.000  | 10.197 | 0.000 | 5.668  | 6.515 |
| 51,000   | 0.000         | 0.000 | 0.000 | 14.600 | 0.000 | 10.000 | 9.732  | 0.000 | 13.868 | 4.971 |
| 54,000   | 0.000         | 0.000 | 0.000 | 11.700 | 0.000 | 0.000  | 8.729  | 0.000 | 15.579 | 4.699 |
| 57,000   | 0.000         | 0.000 | 0.000 | 21.360 | 0.000 | 0.000  | 8.024  | 0.000 | 7.979  | 5.794 |
| 60,000   | 0.000         | 0.000 | 0.000 | 3.640  | 0.000 | 0.625  | 3.126  | 0.000 | 3.958  | 2.460 |
| 63,000   | 0.000         | 0.000 | 0.000 | 3.520  | 0.000 | 10.000 | 3.159  | 0.000 | 1.363  | 2.749 |
| 66,000   | 0.000         | 0.000 | 0.000 | 1.840  | 0.000 | 0.000  | 2.935  | 0.000 | 0.532  | 1.945 |
| 69,000   | 0.000         | 0.000 | 0.000 | 0.540  | 0.000 | 0.000  | 3.038  | 0.000 | 0.000  | 1.293 |
| 72,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.544  | 0.000 | 0.274  | 1.304 |
| 75,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.450  | 0.000 | 0.000  | 1.224 |
| 78,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 2.382  | 0.000 | 0.000  | 1.979 |
| 81,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 15.000 | 0.000  | 0.000 | 0.000  | 1.696 |
| 84,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.121  | 0.000 | 0.000  | 1.705 |
| 87,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.234 |
| 90,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 7.500  | 0.782  | 0.000 | 0.000  | 0.406 |
| 93,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 1.471  | 0.000 | 0.000  | 0.061 |
| 96,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.036 |
| 99,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 2.500  | 0.000  | 0.000 | 0.000  | 0.001 |
| 102,000  | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.000 |

Table 61. Summary of Level 2/3 Single Axle ALD Recommended for Arizona Urban Freeways and Rural Minor Arterials/Collectors.

| Axle     |        |        |        |        | Vehi   | cle Class |        |       |        |        |
|----------|--------|--------|--------|--------|--------|-----------|--------|-------|--------|--------|
| Load, lb | 4      | 5      | 6      | 7      | 8      | 9         | 10     | 11    | 12     | 13     |
| 3,000    | 0.000  | 0.483  | 0.003  | 0.000  | 1.870  | 0.327     | 0.110  | 1.197 | 0.547  | 2.010  |
| 4,000    | 0.003  | 5.240  | 0.007  | 0.130  | 4.660  | 1.167     | 0.203  | 4.313 | 2.613  | 1.910  |
| 5,000    | 0.000  | 6.467  | 0.013  | 0.377  | 3.513  | 1.820     | 0.347  | 6.103 | 4.260  | 1.053  |
| 6,000    | 0.813  | 24.707 | 1.520  | 0.343  | 9.947  | 2.287     | 1.103  | 6.173 | 5.973  | 1.743  |
| 7,000    | 2.597  | 12.997 | 2.213  | 1.303  | 8.213  | 2.587     | 2.640  | 6.763 | 8.160  | 2.820  |
| 8,000    | 5.853  | 9.477  | 3.910  | 1.437  | 9.240  | 4.280     | 5.057  | 7.827 | 9.503  | 4.083  |
| 9,000    | 9.740  | 7.770  | 7.057  | 2.677  | 10.167 | 8.300     | 9.987  | 8.813 | 11.223 | 7.913  |
| 10,000   | 10.473 | 6.267  | 10.717 | 4.523  | 9.520  | 12.957    | 13.567 | 8.070 | 10.720 | 11.610 |
| 11,000   | 10.533 | 5.100  | 12.917 | 10.240 | 8.227  | 15.793    | 16.677 | 6.693 | 9.950  | 12.047 |
| 12,000   | 10.333 | 4.387  | 13.483 | 5.933  | 7.130  | 16.363    | 17.030 | 5.870 | 9.523  | 11.620 |
| 13,000   | 8.970  | 3.577  | 11.367 | 7.757  | 5.573  | 12.140    | 11.493 | 5.030 | 7.123  | 9.320  |
| 14,000   | 7.987  | 2.790  | 8.947  | 9.630  | 4.357  | 7.240     | 8.203  | 4.840 | 5.310  | 7.103  |
| 15,000   | 6.293  | 2.270  | 7.070  | 8.387  | 3.700  | 4.337     | 4.417  | 4.787 | 4.083  | 4.960  |
| 16,000   | 5.657  | 1.857  | 5.527  | 6.800  | 3.067  | 2.937     | 3.197  | 4.830 | 2.797  | 4.430  |
| 17,000   | 4.760  | 1.473  | 4.087  | 8.147  | 2.543  | 2.107     | 1.650  | 4.370 | 2.287  | 3.303  |
| 18,000   | 3.880  | 1.240  | 3.173  | 6.060  | 2.010  | 1.587     | 0.997  | 3.840 | 1.537  | 2.713  |
| 19,000   | 3.613  | 0.940  | 2.177  | 5.787  | 1.557  | 1.143     | 0.993  | 2.983 | 1.280  | 2.183  |
| 20,000   | 2.513  | 0.757  | 1.810  | 4.810  | 1.213  | 0.860     | 0.850  | 2.310 | 1.030  | 1.830  |
| 21,000   | 1.903  | 0.557  | 1.357  | 3.797  | 0.913  | 0.603     | 0.447  | 1.560 | 0.607  | 2.127  |
| 22,000   | 1.477  | 0.423  | 0.830  | 7.473  | 0.657  | 0.367     | 0.390  | 1.087 | 0.503  | 0.940  |
| 23,000   | 0.833  | 0.303  | 0.583  | 1.657  | 0.473  | 0.243     | 0.217  | 0.747 | 0.297  | 1.150  |
| 24,000   | 0.763  | 0.230  | 0.333  | 0.977  | 0.343  | 0.150     | 0.133  | 0.527 | 0.137  | 0.530  |
| 25,000   | 0.373  | 0.187  | 0.210  | 0.467  | 0.217  | 0.097     | 0.060  | 0.333 | 0.097  | 0.417  |
| 26,000   | 0.277  | 0.113  | 0.163  | 0.213  | 0.157  | 0.073     | 0.090  | 0.263 | 0.097  | 0.410  |
| 27,000   | 0.150  | 0.060  | 0.083  | 0.203  | 0.120  | 0.047     | 0.083  | 0.183 | 0.060  | 0.263  |
| 28,000   | 0.070  | 0.040  | 0.087  | 0.517  | 0.077  | 0.033     | 0.010  | 0.103 | 0.050  | 0.140  |
| 29,000   | 0.027  | 0.027  | 0.090  | 0.160  | 0.067  | 0.017     | 0.013  | 0.080 | 0.040  | 0.093  |
| 30,000   | 0.030  | 0.023  | 0.020  | 0.017  | 0.030  | 0.013     | 0.003  | 0.067 | 0.020  | 0.137  |
| 31,000   | 0.013  | 0.017  | 0.033  | 0.153  | 0.020  | 0.003     | 0.007  | 0.043 | 0.020  | 0.123  |
| 32,000   | 0.010  | 0.010  | 0.040  | 0.007  | 0.020  | 0.003     | 0.000  | 0.033 | 0.017  | 0.033  |
| 33,000   | 0.003  | 0.010  | 0.027  | 0.053  | 0.007  | 0.003     | 0.000  | 0.023 | 0.013  | 0.100  |
| 34,000   | 0.003  | 0.003  | 0.013  | 0.000  | 0.007  | 0.003     | 0.000  | 0.020 | 0.010  | 0.017  |
| 35,000   | 0.023  | 0.003  | 0.003  | 0.000  | 0.013  | 0.003     | 0.017  | 0.010 | 0.017  | 0.013  |
| 36,000   | 0.000  | 0.003  | 0.010  | 0.003  | 0.003  | 0.003     | 0.003  | 0.013 | 0.007  | 0.037  |
| 37,000   | 0.003  | 0.007  | 0.023  | 0.000  | 0.003  | 0.003     | 0.027  | 0.010 | 0.007  | 0.017  |
| 38,000   | 0.000  | 0.003  | 0.020  | 0.000  | 0.003  | 0.003     | 0.000  | 0.007 | 0.010  | 0.010  |
| 39,000   | 0.000  | 0.003  | 0.007  | 0.000  | 0.003  | 0.003     | 0.003  | 0.007 | 0.010  | 0.007  |
| 40,000   | 0.000  | 0.003  | 0.023  | 0.000  | 0.003  | 0.000     | 0.000  | 0.007 | 0.003  | 0.003  |
| 41,000   | 0.003  | 0.003  | 0.007  | 0.000  | 0.003  | 0.003     | 0.000  | 0.003 | 0.003  | 0.000  |

Table 62. Summary of Level 2/3 Tandem Axle ALD Recommended for Arizona Urban Freeways and Rural Minor Arterials/Collectors.

| Axle     |        |       |       |       | Veh    | icle Class |       |       |        |        |
|----------|--------|-------|-------|-------|--------|------------|-------|-------|--------|--------|
| Load, lb | 4      | 5     | 6     | 7     | 8      | 9          | 10    | 11    | 12     | 13     |
| 6,000    | 0.000  | 0.000 | 0.487 | 0.000 | 1.720  | 0.340      | 0.230 | 0.000 | 0.070  | 0.253  |
| 8,000    | 0.017  | 0.000 | 4.410 | 0.000 | 7.433  | 2.333      | 1.273 | 0.000 | 1.070  | 1.060  |
| 10,000   | 0.090  | 0.000 | 6.453 | 0.000 | 6.467  | 5.373      | 2.423 | 0.000 | 3.877  | 3.793  |
| 12,000   | 0.373  | 0.000 | 7.197 | 0.000 | 9.687  | 7.783      | 6.507 | 0.000 | 9.180  | 7.917  |
| 14,000   | 0.807  | 0.000 | 7.500 | 0.000 | 10.947 | 8.717      | 8.117 | 0.000 | 16.933 | 10.177 |
| 16,000   | 1.670  | 0.000 | 7.300 | 0.000 | 10.387 | 8.217      | 9.567 | 0.000 | 17.207 | 8.763  |
| 18,000   | 3.877  | 0.000 | 6.697 | 0.000 | 8.320  | 7.120      | 9.403 | 0.000 | 15.760 | 6.820  |
| 20,000   | 10.083 | 0.000 | 6.373 | 0.000 | 7.063  | 6.110      | 8.683 | 0.000 | 11.910 | 4.950  |
| 22,000   | 11.833 | 0.000 | 6.150 | 0.000 | 5.307  | 5.460      | 7.567 | 0.000 | 6.963  | 3.857  |
| 24,000   | 14.067 | 0.000 | 6.410 | 0.000 | 4.727  | 5.593      | 6.893 | 0.000 | 6.037  | 4.053  |
| 26,000   | 14.563 | 0.000 | 6.407 | 0.000 | 4.270  | 5.863      | 5.847 | 0.000 | 4.307  | 4.277  |
| 28,000   | 11.913 | 0.000 | 6.173 | 0.000 | 3.900  | 6.240      | 5.907 | 0.000 | 2.640  | 4.203  |
| 30,000   | 9.687  | 0.000 | 5.530 | 0.000 | 3.847  | 6.450      | 4.920 | 0.000 | 1.177  | 4.330  |
| 32,000   | 6.043  | 0.000 | 4.713 | 0.000 | 3.463  | 6.103      | 4.453 | 0.000 | 0.970  | 4.870  |
| 34,000   | 4.753  | 0.000 | 3.990 | 0.000 | 2.957  | 5.213      | 4.053 | 0.000 | 0.517  | 4.533  |
| 36,000   | 3.437  | 0.000 | 3.450 | 0.000 | 2.517  | 4.003      | 2.590 | 0.000 | 0.343  | 3.907  |
| 38,000   | 2.640  | 0.000 | 2.653 | 0.000 | 1.957  | 2.857      | 2.283 | 0.000 | 0.337  | 3.527  |
| 40,000   | 1.833  | 0.000 | 2.250 | 0.000 | 1.353  | 1.967      | 2.227 | 0.000 | 0.130  | 3.023  |
| 42,000   | 0.940  | 0.000 | 1.793 | 0.000 | 0.980  | 1.323      | 1.940 | 0.000 | 0.120  | 2.593  |
| 44,000   | 0.527  | 0.000 | 1.103 | 0.000 | 0.787  | 0.907      | 1.417 | 0.000 | 0.067  | 2.447  |
| 46,000   | 0.273  | 0.000 | 0.810 | 0.000 | 0.587  | 0.610      | 1.073 | 0.000 | 0.063  | 1.883  |
| 48,000   | 0.247  | 0.000 | 0.707 | 0.000 | 0.347  | 0.410      | 0.717 | 0.000 | 0.050  | 1.550  |
| 50,000   | 0.133  | 0.000 | 0.413 | 0.000 | 0.253  | 0.290      | 0.447 | 0.000 | 0.043  | 1.553  |
| 52,000   | 0.080  | 0.000 | 0.287 | 0.000 | 0.143  | 0.183      | 0.473 | 0.000 | 0.077  | 1.013  |
| 54,000   | 0.080  | 0.000 | 0.223 | 0.000 | 0.097  | 0.123      | 0.327 | 0.000 | 0.023  | 1.100  |
| 56,000   | 0.037  | 0.000 | 0.133 | 0.000 | 0.057  | 0.077      | 0.227 | 0.000 | 0.023  | 0.713  |
| 58,000   | 0.013  | 0.000 | 0.093 | 0.000 | 0.033  | 0.060      | 0.110 | 0.000 | 0.027  | 0.713  |
| 60,000   | 0.003  | 0.000 | 0.073 | 0.000 | 0.013  | 0.040      | 0.143 | 0.000 | 0.030  | 0.437  |
| 62,000   | 0.003  | 0.000 | 0.040 | 0.000 | 0.017  | 0.023      | 0.077 | 0.000 | 0.017  | 0.493  |
| 64,000   | 0.003  | 0.000 | 0.030 | 0.000 | 0.017  | 0.020      | 0.063 | 0.000 | 0.020  | 0.320  |
| 66,000   | 0.000  | 0.000 | 0.027 | 0.000 | 0.013  | 0.017      | 0.020 | 0.000 | 0.017  | 0.257  |
| 68,000   | 0.000  | 0.000 | 0.003 | 0.000 | 0.003  | 0.013      | 0.010 | 0.000 | 0.013  | 0.163  |
| 70,000   | 0.000  | 0.000 | 0.013 | 0.000 | 0.007  | 0.010      | 0.007 | 0.000 | 0.003  | 0.107  |
| 72,000   | 0.000  | 0.000 | 0.013 | 0.000 | 0.000  | 0.007      | 0.003 | 0.000 | 0.000  | 0.107  |
| 74,000   | 0.000  | 0.000 | 0.017 | 0.000 | 0.000  | 0.007      | 0.000 | 0.000 | 0.000  | 0.083  |
| 76,000   | 0.000  | 0.000 | 0.000 | 0.000 | 0.000  | 0.007      | 0.000 | 0.000 | 0.000  | 0.043  |
| 78,000   | 0.000  | 0.000 | 0.000 | 0.000 | 0.000  | 0.003      | 0.000 | 0.000 | 0.000  | 0.020  |
| 80,000   | 0.000  | 0.000 | 0.003 | 0.000 | 0.000  | 0.000      | 0.000 | 0.000 | 0.000  | 0.023  |
| 82,000   | 0.000  | 0.000 | 0.000 | 0.000 | 0.000  | 0.000      | 0.000 | 0.000 | 0.003  | 0.010  |

Table 63. Summary of Level 2/3 Tridem Axle ALD Recommended for Arizona Urban Freeways and Rural Minor Arterials/Collectors.

| Axle     | Vehicle Class |       |       |        |       |        |        |       |        |       |
|----------|---------------|-------|-------|--------|-------|--------|--------|-------|--------|-------|
| Load, lb | 4             | 5     | 6     | 7      | 8     | 9      | 10     | 11    | 12     | 13    |
| 12,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 1.187  | 0.000 | 0.000  | 0.177 |
| 15,000   | 0.000         | 0.000 | 0.000 | 0.017  | 0.000 | 0.000  | 4.453  | 0.000 | 7.288  | 2.030 |
| 18,000   | 0.000         | 0.000 | 0.000 | 4.223  | 0.000 | 66.667 | 13.067 | 0.000 | 14.169 | 3.180 |
| 21,000   | 0.000         | 0.000 | 0.000 | 0.313  | 0.000 | 0.000  | 9.680  | 0.000 | 14.750 | 4.303 |
| 24,000   | 0.000         | 0.000 | 0.000 | 2.490  | 0.000 | 0.044  | 7.483  | 0.000 | 19.200 | 3.123 |
| 27,000   | 0.000         | 0.000 | 0.000 | 3.347  | 0.000 | 0.133  | 7.557  | 0.000 | 10.631 | 3.933 |
| 30,000   | 0.000         | 0.000 | 0.000 | 1.907  | 0.000 | 1.167  | 5.907  | 0.000 | 0.000  | 1.653 |
| 33,000   | 0.000         | 0.000 | 0.000 | 3.587  | 0.000 | 2.456  | 7.013  | 0.000 | 8.506  | 3.487 |
| 36,000   | 0.000         | 0.000 | 0.000 | 7.653  | 0.000 | 1.533  | 6.147  | 0.000 | 0.675  | 2.563 |
| 39,000   | 0.000         | 0.000 | 0.000 | 7.900  | 0.000 | 1.589  | 5.463  | 0.000 | 3.300  | 3.720 |
| 42,000   | 0.000         | 0.000 | 0.000 | 10.507 | 0.000 | 3.222  | 6.010  | 0.000 | 1.550  | 5.807 |
| 45,000   | 0.000         | 0.000 | 0.000 | 11.580 | 0.000 | 2.678  | 5.750  | 0.000 | 0.694  | 6.150 |
| 48,000   | 0.000         | 0.000 | 0.000 | 18.143 | 0.000 | 1.856  | 4.740  | 0.000 | 2.938  | 9.500 |
| 51,000   | 0.000         | 0.000 | 0.000 | 7.083  | 0.000 | 4.867  | 4.057  | 0.000 | 4.469  | 7.980 |
| 54,000   | 0.000         | 0.000 | 0.000 | 6.513  | 0.000 | 12.056 | 2.977  | 0.000 | 0.694  | 6.273 |
| 57,000   | 0.000         | 0.000 | 0.000 | 4.247  | 0.000 | 1.511  | 2.370  | 0.000 | 10.775 | 4.353 |
| 60,000   | 0.000         | 0.000 | 0.000 | 6.077  | 0.000 | 0.089  | 1.907  | 0.000 | 0.175  | 7.800 |
| 63,000   | 0.000         | 0.000 | 0.000 | 2.560  | 0.000 | 0.044  | 1.407  | 0.000 | 0.175  | 2.747 |
| 66,000   | 0.000         | 0.000 | 0.000 | 0.727  | 0.000 | 0.011  | 0.860  | 0.000 | 0.000  | 6.403 |
| 69,000   | 0.000         | 0.000 | 0.000 | 0.347  | 0.000 | 0.022  | 0.690  | 0.000 | 0.000  | 3.793 |
| 72,000   | 0.000         | 0.000 | 0.000 | 0.487  | 0.000 | 0.022  | 0.360  | 0.000 | 0.000  | 2.597 |
| 75,000   | 0.000         | 0.000 | 0.000 | 0.050  | 0.000 | 0.011  | 0.260  | 0.000 | 0.000  | 1.513 |
| 78,000   | 0.000         | 0.000 | 0.000 | 0.090  | 0.000 | 0.000  | 0.337  | 0.000 | 0.000  | 0.807 |
| 81,000   | 0.000         | 0.000 | 0.000 | 0.007  | 0.000 | 0.000  | 0.113  | 0.000 | 0.000  | 1.097 |
| 84,000   | 0.000         | 0.000 | 0.000 | 0.120  | 0.000 | 0.000  | 0.077  | 0.000 | 0.000  | 0.230 |
| 87,000   | 0.000         | 0.000 | 0.000 | 0.007  | 0.000 | 0.000  | 0.057  | 0.000 | 0.000  | 0.257 |
| 90,000   | 0.000         | 0.000 | 0.000 | 0.013  | 0.000 | 0.000  | 0.013  | 0.000 | 0.000  | 0.140 |
| 93,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.040  | 0.000 | 0.000  | 0.440 |
| 96,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.020  | 0.000 | 0.000  | 0.000 |
| 99,000   | 0.000         | 0.000 | 0.000 | 0.003  | 0.000 | 0.000  | 0.007  | 0.000 | 0.000  | 3.793 |
| 102,000  | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.050 |

Table 64. Summary of Level 2/3 Quad Axle ALD Recommended for Arizona Urban Freeways and Rural Minor Arterials/Collectors.

| Axle     |       |       |       |        | Vehic | le Class |        |       |        |       |
|----------|-------|-------|-------|--------|-------|----------|--------|-------|--------|-------|
| Load, Ib | 4     | 5     | 6     | 7      | 8     | 9        | 10     | 11    | 12     | 13    |
| 12,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000    | 0.000  | 0.000 | 0.000  | 0.015 |
| 15,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000    | 0.000  | 0.000 | 0.000  | 0.815 |
| 18,000   | 0.000 | 0.000 | 0.000 | 0.200  | 0.000 | 0.000    | 0.219  | 0.000 | 0.000  | 7.326 |
| 21,000   | 0.000 | 0.000 | 0.000 | 0.200  | 0.000 | 6.660    | 0.971  | 0.000 | 0.000  | 4.178 |
| 24,000   | 0.000 | 0.000 | 0.000 | 0.200  | 0.000 | 20.000   | 0.300  | 0.000 | 0.000  | 4.859 |
| 27,000   | 0.000 | 0.000 | 0.000 | 0.200  | 0.000 | 0.000    | 1.181  | 0.000 | 2.100  | 7.944 |
| 30,000   | 0.000 | 0.000 | 0.000 | 0.900  | 0.000 | 0.000    | 0.900  | 0.000 | 0.150  | 7.719 |
| 33,000   | 0.000 | 0.000 | 0.000 | 1.800  | 0.000 | 0.000    | 1.290  | 0.000 | 0.975  | 5.319 |
| 36,000   | 0.000 | 0.000 | 0.000 | 6.400  | 0.000 | 0.000    | 4.143  | 0.000 | 0.850  | 5.889 |
| 39,000   | 0.000 | 0.000 | 0.000 | 14.800 | 0.000 | 0.000    | 5.643  | 0.000 | 9.200  | 9.563 |
| 42,000   | 0.000 | 0.000 | 0.000 | 10.100 | 0.000 | 20.000   | 4.186  | 0.000 | 8.450  | 6.207 |
| 45,000   | 0.000 | 0.000 | 0.000 | 10.700 | 0.000 | 0.000    | 4.833  | 0.000 | 21.325 | 6.700 |
| 48,000   | 0.000 | 0.000 | 0.000 | 7.500  | 0.000 | 0.000    | 6.957  | 0.000 | 7.575  | 6.852 |
| 51,000   | 0.000 | 0.000 | 0.000 | 8.500  | 0.000 | 0.000    | 8.538  | 0.000 | 12.950 | 3.856 |
| 54,000   | 0.000 | 0.000 | 0.000 | 8.900  | 0.000 | 0.000    | 10.014 | 0.000 | 5.850  | 2.256 |
| 57,000   | 0.000 | 0.000 | 0.000 | 8.200  | 0.000 | 0.000    | 5.162  | 0.000 | 10.600 | 2.533 |
| 60,000   | 0.000 | 0.000 | 0.000 | 6.900  | 0.000 | 10.000   | 5.519  | 0.000 | 14.250 | 1.496 |
| 63,000   | 0.000 | 0.000 | 0.000 | 4.800  | 0.000 | 0.000    | 7.162  | 0.000 | 4.025  | 1.278 |
| 66,000   | 0.000 | 0.000 | 0.000 | 2.400  | 0.000 | 0.000    | 4.652  | 0.000 | 0.775  | 1.756 |
| 69,000   | 0.000 | 0.000 | 0.000 | 2.800  | 0.000 | 0.000    | 8.062  | 0.000 | 0.125  | 5.426 |
| 72,000   | 0.000 | 0.000 | 0.000 | 0.800  | 0.000 | 6.660    | 1.567  | 0.000 | 0.525  | 0.381 |
| 75,000   | 0.000 | 0.000 | 0.000 | 1.700  | 0.000 | 0.000    | 0.943  | 0.000 | 0.050  | 0.763 |
| 78,000   | 0.000 | 0.000 | 0.000 | 0.500  | 0.000 | 0.000    | 5.576  | 0.000 | 0.025  | 0.859 |
| 81,000   | 0.000 | 0.000 | 0.000 | 0.700  | 0.000 | 30.000   | 1.257  | 0.000 | 0.025  | 1.219 |
| 84,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000    | 9.800  | 0.000 | 0.025  | 0.493 |
| 87,000   | 0.000 | 0.000 | 0.000 | 0.100  | 0.000 | 0.000    | 0.343  | 0.000 | 0.050  | 1.815 |
| 90,000   | 0.000 | 0.000 | 0.000 | 0.200  | 0.000 | 6.660    | 0.057  | 0.000 | 0.025  | 0.078 |
| 93,000   | 0.000 | 0.000 | 0.000 | 0.200  | 0.000 | 0.000    | 0.067  | 0.000 | 0.000  | 1.107 |
| 96,000   | 0.000 | 0.000 | 0.000 | 0.200  | 0.000 | 0.000    | 0.133  | 0.000 | 0.000  | 0.496 |
| 99,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000    | 0.000  | 0.000 | 0.000  | 0.330 |
| 102,000  | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000    | 0.529  | 0.000 | 0.000  | 0.470 |

Table 65. Summary of Level 2/3 Single Axle ALD Recommended for Arizona Rural Principal Arterials, Non-Interstate.

| Axle     |        |        |        |        | Veh    | icle Class | i      |        |        |        |
|----------|--------|--------|--------|--------|--------|------------|--------|--------|--------|--------|
| Load, Ib | 4      | 5      | 6      | 7      | 8      | 9          | 10     | 11     | 12     | 13     |
| 3,000    | 0.003  | 0.883  | 0.000  | 0.268  | 7.963  | 0.403      | 0.215  | 0.458  | 0.173  | 0.348  |
| 4,000    | 0.000  | 6.158  | 0.000  | 3.246  | 12.843 | 0.993      | 0.053  | 0.993  | 0.468  | 0.765  |
| 5,000    | 0.005  | 33.240 | 0.420  | 0.251  | 9.020  | 1.703      | 0.118  | 2.935  | 1.208  | 1.635  |
| 6,000    | 0.078  | 25.343 | 3.210  | 1.284  | 11.650 | 2.588      | 0.370  | 2.500  | 3.103  | 3.095  |
| 7,000    | 0.235  | 8.685  | 5.378  | 3.576  | 8.488  | 1.403      | 0.540  | 5.060  | 9.008  | 12.428 |
| 8,000    | 1.083  | 5.198  | 2.755  | 5.981  | 6.773  | 1.435      | 0.825  | 4.350  | 7.508  | 14.968 |
| 9,000    | 1.465  | 4.983  | 2.673  | 2.530  | 6.020  | 2.550      | 1.690  | 5.795  | 7.558  | 5.345  |
| 10,000   | 2.310  | 4.010  | 4.870  | 5.332  | 5.710  | 5.595      | 5.570  | 8.723  | 7.918  | 5.715  |
| 11,000   | 4.288  | 3.025  | 11.203 | 4.830  | 5.978  | 9.620      | 16.163 | 11.168 | 11.265 | 14.053 |
| 12,000   | 7.043  | 2.248  | 16.895 | 8.141  | 5.313  | 21.498     | 27.958 | 8.678  | 15.065 | 14.655 |
| 13,000   | 12.550 | 1.538  | 16.353 | 14.792 | 4.295  | 24.273     | 25.995 | 5.653  | 11.558 | 8.393  |
| 14,000   | 21.823 | 1.143  | 14.953 | 16.403 | 3.025  | 7.993      | 10.668 | 5.115  | 6.730  | 4.933  |
| 15,000   | 25.410 | 0.890  | 9.360  | 3.327  | 2.118  | 2.548      | 3.368  | 5.235  | 6.960  | 2.445  |
| 16,000   | 14.423 | 0.660  | 4.123  | 2.741  | 1.685  | 2.190      | 2.438  | 6.020  | 4.200  | 3.035  |
| 17,000   | 5.383  | 0.513  | 2.115  | 12.332 | 1.370  | 3.025      | 1.868  | 6.408  | 3.088  | 1.503  |
| 18,000   | 1.698  | 0.453  | 2.020  | 3.022  | 1.228  | 4.368      | 0.598  | 6.413  | 1.653  | 1.535  |
| 19,000   | 0.710  | 0.340  | 1.573  | 1.519  | 1.065  | 3.920      | 0.308  | 5.008  | 1.188  | 1.785  |
| 20,000   | 0.495  | 0.225  | 0.935  | 2.976  | 0.925  | 2.398      | 0.008  | 5.458  | 0.665  | 0.873  |
| 21,000   | 0.338  | 0.170  | 0.430  | 1.751  | 0.658  | 0.960      | 0.000  | 2.548  | 0.528  | 0.638  |
| 22,000   | 0.195  | 0.105  | 0.333  | 3.341  | 0.403  | 0.328      | 0.000  | 0.830  | 0.045  | 0.218  |
| 23,000   | 0.155  | 0.063  | 0.153  | 0.043  | 0.208  | 0.078      | 1.278  | 0.288  | 0.020  | 0.188  |
| 24,000   | 0.145  | 0.028  | 0.023  | 0.132  | 0.128  | 0.005      | 0.000  | 0.183  | 0.000  | 0.153  |
| 25,000   | 0.083  | 0.013  | 0.020  | 0.000  | 0.018  | 0.005      | 0.000  | 0.028  | 0.000  | 0.068  |
| 26,000   | 0.033  | 0.005  | 0.050  | 0.314  | 0.013  | 0.003      | 0.000  | 0.010  | 0.005  | 0.038  |
| 27,000   | 0.020  | 0.000  | 0.033  | 0.014  | 0.003  | 0.000      | 0.000  | 0.030  | 0.005  | 0.088  |
| 28,000   | 0.005  | 0.000  | 0.000  | 0.000  | 0.003  | 0.000      | 0.000  | 0.010  | 0.000  | 0.033  |
| 29,000   | 0.003  | 0.000  | 0.025  | 0.000  | 0.003  | 0.000      | 0.000  | 0.003  | 0.000  | 0.000  |
| 30,000   | 0.000  | 0.000  | 0.020  | 0.000  | 0.003  | 0.000      | 0.000  | 0.010  | 0.000  | 0.000  |
| 31,000   | 0.000  | 0.000  | 0.008  | 0.000  | 0.000  | 0.000      | 0.000  | 0.003  | 0.000  | 0.000  |
| 32,000   | 0.003  | 0.000  | 0.000  | 0.000  | 0.003  | 0.000      | 0.000  | 0.003  | 0.000  | 0.000  |
| 33,000   | 0.008  | 0.000  | 0.008  | 0.000  | 0.000  | 0.000      | 0.000  | 0.003  | 0.000  | 0.005  |
| 34,000   | 0.003  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000      | 0.000  | 0.000  | 0.000  | 0.000  |
| 35,000   | 0.000  | 0.000  | 0.003  | 0.924  | 0.000  | 0.000      | 0.000  | 0.003  | 0.000  | 0.000  |
| 36,000   | 0.008  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000      | 0.000  | 0.000  | 0.000  | 0.000  |
| 37,000   | 0.000  | 0.000  | 0.015  | 0.000  | 0.000  | 0.000      | 0.000  | 0.000  | 0.000  | 0.000  |
| 38,000   | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000      | 0.000  | 0.000  | 0.000  | 0.000  |
| 39,000   | 0.000  | 0.000  | 0.000  | 0.700  | 0.000  | 0.000      | 0.000  | 0.000  | 0.000  | 0.000  |
| 40,000   | 0.000  | 0.000  | 0.008  | 0.000  | 0.000  | 0.000      | 0.000  | 0.000  | 0.000  | 0.020  |
| 41,000   | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000      | 0.000  | 0.000  | 0.000  | 0.000  |

Table 66. Summary of Level 2/3 Tandem Axle ALD Recommended for Arizona Rural Principal Arterials, Non-Interstate.

| Axle     |        |       |        |       | Veh    | icle Class |        |       |        |        |
|----------|--------|-------|--------|-------|--------|------------|--------|-------|--------|--------|
| Load, lb | 4      | 5     | 6      | 7     | 8      | 9          | 10     | 11    | 12     | 13     |
| 6,000    | 0.000  | 0.000 | 0.013  | 0.000 | 14.135 | 0.078      | 0.168  | 0.000 | 0.000  | 0.165  |
| 8,000    | 0.000  | 0.000 | 0.275  | 0.000 | 7.453  | 0.525      | 0.220  | 0.000 | 0.015  | 0.795  |
| 10,000   | 0.023  | 0.000 | 3.400  | 0.000 | 2.855  | 2.173      | 0.415  | 0.000 | 0.108  | 2.188  |
| 12,000   | 0.035  | 0.000 | 12.353 | 0.000 | 4.743  | 3.555      | 0.808  | 0.000 | 0.368  | 15.225 |
| 14,000   | 0.073  | 0.000 | 7.678  | 0.000 | 9.233  | 4.945      | 2.640  | 0.000 | 9.020  | 19.918 |
| 16,000   | 0.173  | 0.000 | 7.775  | 0.000 | 12.365 | 5.000      | 5.895  | 0.000 | 8.268  | 12.485 |
| 18,000   | 0.468  | 0.000 | 6.498  | 0.000 | 10.983 | 4.555      | 8.575  | 0.000 | 12.258 | 5.343  |
| 20,000   | 0.450  | 0.000 | 4.740  | 0.000 | 8.248  | 4.443      | 10.300 | 0.000 | 15.963 | 4.453  |
| 22,000   | 2.275  | 0.000 | 3.103  | 0.000 | 6.398  | 4.583      | 8.048  | 0.000 | 17.083 | 3.888  |
| 24,000   | 4.103  | 0.000 | 2.650  | 0.000 | 4.850  | 4.690      | 5.968  | 0.000 | 14.728 | 2.725  |
| 26,000   | 7.488  | 0.000 | 3.558  | 0.000 | 2.983  | 4.663      | 6.428  | 0.000 | 10.870 | 2.795  |
| 28,000   | 12.265 | 0.000 | 7.030  | 0.000 | 1.800  | 4.943      | 7.815  | 0.000 | 8.008  | 2.058  |
| 30,000   | 16.505 | 0.000 | 9.960  | 0.000 | 1.468  | 5.450      | 7.990  | 0.000 | 1.900  | 3.215  |
| 32,000   | 20.985 | 0.000 | 9.523  | 0.000 | 1.505  | 7.398      | 6.708  | 0.000 | 0.930  | 2.915  |
| 34,000   | 21.285 | 0.000 | 7.458  | 0.000 | 2.043  | 11.720     | 6.898  | 0.000 | 0.058  | 4.153  |
| 36,000   | 11.315 | 0.000 | 5.953  | 0.000 | 2.935  | 15.453     | 6.535  | 0.000 | 0.015  | 3.065  |
| 38,000   | 2.223  | 0.000 | 3.580  | 0.000 | 2.335  | 10.035     | 3.970  | 0.000 | 0.015  | 4.400  |
| 40,000   | 0.203  | 0.000 | 1.850  | 0.000 | 0.945  | 3.743      | 2.598  | 0.000 | 0.000  | 2.315  |
| 42,000   | 0.083  | 0.000 | 0.940  | 0.000 | 0.355  | 1.373      | 1.305  | 0.000 | 0.000  | 1.933  |
| 44,000   | 0.005  | 0.000 | 0.623  | 0.000 | 0.150  | 0.420      | 1.058  | 0.000 | 0.000  | 1.420  |
| 46,000   | 0.003  | 0.000 | 0.438  | 0.000 | 0.148  | 0.138      | 0.820  | 0.000 | 0.000  | 1.088  |
| 48,000   | 0.000  | 0.000 | 0.193  | 0.000 | 0.095  | 0.063      | 1.008  | 0.000 | 0.000  | 1.358  |
| 50,000   | 0.000  | 0.000 | 0.120  | 0.000 | 0.050  | 0.030      | 2.068  | 0.000 | 0.000  | 0.510  |
| 52,000   | 0.000  | 0.000 | 0.068  | 0.000 | 0.015  | 0.020      | 0.688  | 0.000 | 0.000  | 0.345  |
| 54,000   | 0.000  | 0.000 | 0.038  | 0.000 | 0.010  | 0.003      | 0.305  | 0.000 | 0.000  | 0.240  |
| 56,000   | 0.000  | 0.000 | 0.060  | 0.000 | 0.010  | 0.003      | 0.245  | 0.000 | 0.000  | 0.240  |
| 58,000   | 0.000  | 0.000 | 0.030  | 0.000 | 0.000  | 0.000      | 0.068  | 0.000 | 0.000  | 0.058  |
| 60,000   | 0.000  | 0.000 | 0.013  | 0.000 | 0.000  | 0.000      | 0.038  | 0.000 | 0.000  | 0.053  |
| 62,000   | 0.000  | 0.000 | 0.013  | 0.000 | 0.000  | 0.000      | 0.158  | 0.000 | 0.000  | 0.128  |
| 64,000   | 0.000  | 0.000 | 0.003  | 0.000 | 0.000  | 0.000      | 0.058  | 0.000 | 0.000  | 0.150  |
| 66,000   | 0.000  | 0.000 | 0.000  | 0.000 | 0.000  | 0.000      | 0.120  | 0.000 | 0.000  | 0.008  |
| 68,000   | 0.000  | 0.000 | 0.005  | 0.000 | 0.000  | 0.000      | 0.053  | 0.000 | 0.000  | 0.120  |
| 70,000   | 0.000  | 0.000 | 0.008  | 0.000 | 0.000  | 0.000      | 0.013  | 0.000 | 0.000  | 0.010  |
| 72,000   | 0.000  | 0.000 | 0.020  | 0.000 | 0.000  | 0.000      | 0.053  | 0.000 | 0.000  | 0.045  |
| 74,000   | 0.000  | 0.000 | 0.000  | 0.000 | 0.000  | 0.000      | 0.013  | 0.000 | 0.000  | 0.015  |
| 76,000   | 0.000  | 0.000 | 0.000  | 0.000 | 0.000  | 0.000      | 0.000  | 0.000 | 0.000  | 0.015  |
| 78,000   | 0.000  | 0.000 | 0.000  | 0.000 | 0.000  | 0.000      | 0.000  | 0.000 | 0.000  | 0.000  |
| 80,000   | 0.000  | 0.000 | 0.000  | 0.000 | 0.000  | 0.000      | 0.000  | 0.000 | 0.000  | 0.000  |
| 82,000   | 0.000  | 0.000 | 0.000  | 0.000 | 0.000  | 0.000      | 0.000  | 0.000 | 0.000  | 0.000  |

Table 67. Summary of Level 2/3 Tridem Axle ALD Recommended for Arizona Rural Principal Arterials, Non-Interstate.

| Axle     |       |       |       |        | Vehic | le Class |        |       |        |       |
|----------|-------|-------|-------|--------|-------|----------|--------|-------|--------|-------|
| Load, lb | 4     | 5     | 6     | 7      | 8     | 9        | 10     | 11    | 12     | 13    |
| 12,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000    | 0.255  | 0.000 | 0.000  | 0.000 |
| 15,000   | 0.000 | 0.000 | 0.000 | 1.150  | 0.000 | 12.500   | 1.263  | 0.000 | 0.000  | 1.538 |
| 18,000   | 0.000 | 0.000 | 0.000 | 1.469  | 0.000 | 37.500   | 5.300  | 0.000 | 0.000  | 7.590 |
| 21,000   | 0.000 | 0.000 | 0.000 | 9.369  | 0.000 | 25.000   | 10.040 | 0.000 | 100.00 | 3.959 |
| 24,000   | 0.000 | 0.000 | 0.000 | 2.053  | 0.000 | 0.000    | 9.265  | 0.000 | 0.000  | 5.608 |
| 27,000   | 0.000 | 0.000 | 0.000 | 0.900  | 0.000 | 0.000    | 5.265  | 0.000 | 0.000  | 4.515 |
| 30,000   | 0.000 | 0.000 | 0.000 | 4.103  | 0.000 | 0.000    | 4.885  | 0.000 | 0.000  | 3.510 |
| 33,000   | 0.000 | 0.000 | 0.000 | 3.050  | 0.000 | 0.000    | 5.705  | 0.000 | 0.000  | 2.749 |
| 36,000   | 0.000 | 0.000 | 0.000 | 2.456  | 0.000 | 0.000    | 5.735  | 0.000 | 0.000  | 1.744 |
| 39,000   | 0.000 | 0.000 | 0.000 | 3.416  | 0.000 | 0.000    | 8.415  | 0.000 | 0.000  | 5.064 |
| 42,000   | 0.000 | 0.000 | 0.000 | 3.919  | 0.000 | 0.000    | 11.255 | 0.000 | 0.000  | 3.208 |
| 45,000   | 0.000 | 0.000 | 0.000 | 7.731  | 0.000 | 0.000    | 10.195 | 0.000 | 0.000  | 9.064 |
| 48,000   | 0.000 | 0.000 | 0.000 | 17.606 | 0.000 | 25.000   | 6.675  | 0.000 | 0.000  | 1.354 |
| 51,000   | 0.000 | 0.000 | 0.000 | 29.588 | 0.000 | 0.000    | 5.960  | 0.000 | 0.000  | 4.972 |
| 54,000   | 0.000 | 0.000 | 0.000 | 3.447  | 0.000 | 0.000    | 3.125  | 0.000 | 0.000  | 8.874 |
| 57,000   | 0.000 | 0.000 | 0.000 | 2.147  | 0.000 | 0.000    | 2.398  | 0.000 | 0.000  | 4.369 |
| 60,000   | 0.000 | 0.000 | 0.000 | 0.963  | 0.000 | 0.000    | 1.388  | 0.000 | 0.000  | 3.610 |
| 63,000   | 0.000 | 0.000 | 0.000 | 4.616  | 0.000 | 0.000    | 2.158  | 0.000 | 0.000  | 3.728 |
| 66,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000    | 0.153  | 0.000 | 0.000  | 8.741 |
| 69,000   | 0.000 | 0.000 | 0.000 | 0.863  | 0.000 | 0.000    | 0.118  | 0.000 | 0.000  | 4.113 |
| 72,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000    | 0.020  | 0.000 | 0.000  | 8.659 |
| 75,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000    | 0.030  | 0.000 | 0.000  | 1.236 |
| 78,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000    | 0.265  | 0.000 | 0.000  | 0.000 |
| 81,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000    | 0.000  | 0.000 | 0.000  | 0.000 |
| 84,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000    | 0.078  | 0.000 | 0.000  | 0.000 |
| 87,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000    | 0.043  | 0.000 | 0.000  | 0.269 |
| 90,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000    | 0.033  | 0.000 | 0.000  | 0.000 |
| 93,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000    | 0.000  | 0.000 | 0.000  | 0.256 |
| 96,000   | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000    | 0.000  | 0.000 | 0.000  | 0.454 |
| 99,000   | 0.000 | 0.000 | 0.000 | 1.150  | 0.000 | 0.000    | 0.000  | 0.000 | 0.000  | 0.000 |
| 102,000  | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000    | 0.000  | 0.000 | 0.000  | 0.000 |

Table 68. Summary of Level 2/3 Quad Axle ALD Recommended for Arizona Rural Principal Arterials, Non-Interstate.

| Axle     | Vehicle Class |       |       |        |       |        |        |       |        |        |
|----------|---------------|-------|-------|--------|-------|--------|--------|-------|--------|--------|
| Load, Ib | 4             | 5     | 6     | 7      | 8     | 9      | 10     | 11    | 12     | 13     |
| 12,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.000  |
| 15,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.000  |
| 18,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 100.00 | 0.000  | 0.000 | 0.000  | 1.777  |
| 21,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 7.517  |
| 24,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 15.687 |
| 27,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 9.017  |
| 30,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 100.00 | 4.937  |
| 33,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 1.967  |
| 36,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 83.333 | 0.000 | 0.000  | 0.930  |
| 39,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 9.200  |
| 42,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 5.830  |
| 45,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 13.100 |
| 48,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 2.867  |
| 51,000   | 0.000         | 0.000 | 0.000 | 7.700  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 5.993  |
| 54,000   | 0.000         | 0.000 | 0.000 | 11.550 | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 2.927  |
| 57,000   | 0.000         | 0.000 | 0.000 | 36.650 | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 6.670  |
| 60,000   | 0.000         | 0.000 | 0.000 | 32.400 | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.830  |
| 63,000   | 0.000         | 0.000 | 0.000 | 11.750 | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.647  |
| 66,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.450  |
| 69,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.000  |
| 72,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.450  |
| 75,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.000  |
| 78,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.327  |
| 81,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.197  |
| 84,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.000  |
| 87,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.000  |
| 90,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.000  |
| 93,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.000  |
| 96,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.457  |
| 99,000   | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 0.000  | 0.000 | 0.000  | 0.130  |
| 102,000  | 0.000         | 0.000 | 0.000 | 0.000  | 0.000 | 0.000  | 16.667 | 0.000 | 0.000  | 8.104  |

# **Traffic Geometry Inputs**

Geometry inputs include a variety of measurements related to truck and traffic lanes. Table 69 shows the specific traffic inputs required under this topic.

Table 69. Traffic Geometric Inputs Required.

| MEPDG Traffic<br>Input | Input<br>Level | Who<br>Collects<br>and<br>Processes<br>Input | How Is Input<br>Obtained?         | How Often Is Input<br>Provided?                                              | User of Input |
|------------------------|----------------|----------------------------------------------|-----------------------------------|------------------------------------------------------------------------------|---------------|
| Axles Per              | 1              | MPD                                          | WIM/AVC                           | As Requested for Project                                                     | PD            |
| Truck                  | 2/3            | National<br>Defaults                         | National Defaults                 | National Defaults                                                            | PD            |
|                        | 1              | MPD                                          | WIM/AVC                           | As Requested for Project                                                     | PD            |
| Axle Spacing           | 2/3            | National<br>Defaults                         | National Defaults                 | National Defaults                                                            | PD            |
|                        | 1              | MPD                                          | WIM/AVC                           | As Requested for Project                                                     | PD            |
| Truck<br>Wheelbase     | 2/3            | SPR-672                                      | AZ WIM                            | Use 11%, 17%, and 72% for Short (12-ft.), Medium (15-ft.), and Long (18-ft.) | PD            |
| Lateral                | 1              | PD                                           | WIM/AVC                           | As Requested for Project                                                     | PD            |
| Wander and<br>Offset   | 2/3            | SPR-672                                      | Measured for AZ<br>SPR-672        | Use 15 in. and 12 in. for<br>Mean Wheel Location and<br>Standard Deviation   | PD            |
| Dual Tire<br>Spacing   | 3              | National<br>Defaults                         | National Defaults,<br>Use 12 in.  | Once                                                                         | PD            |
| Average Axle Width     | 3              | National<br>Defaults                         | National Defaults,<br>Use 8.5 ft. | Once                                                                         | PD            |
| Design Lane<br>Width   | 1              | PD                                           | Design Plans and<br>Standards     | For Specific Project                                                         | PD            |

## Axles per Truck

This input is defined as the mean number of axles per truck for each class of vehicle and axle type. This input is used to compute the total number of each type of axle to pass over the design traffic lane over the analysis period. For some trucks, such as Class 5, the number of axles is set by the classification criteria at 2.00 single axles. For others, this value varies somewhat depending on the definition of the classification. An analysis of Arizona data showed similar results to the national defaults. Recommended values for axles per truck are provided below, with quads provided from Arizona data:

- Level 1: This input can be computed from WIM data for a representative number of trucks in the design lane for a specific site. A minimum of 7 days, 24 hours per day is recommended.
- Level 2/3: Recommended values based on the national defaults and Arizona measurements for each axle type and vehicle class are shown in Table 70.

Table 70. Recommended Values of Axles per Truck for Arizona Design.

| Vahiala Class |        | Axle Type |        |      |  |  |  |  |  |  |  |
|---------------|--------|-----------|--------|------|--|--|--|--|--|--|--|
| Vehicle Class | Single | Tandem    | Tridem | Quad |  |  |  |  |  |  |  |
| Class 4       | 1.34   | 0.75      | 0.00   | 0.00 |  |  |  |  |  |  |  |
| Class 5       | 2.14   | 0.00      | 0.00   | 0.00 |  |  |  |  |  |  |  |
| Class 6       | 0.95   | 0.95      | 0.00   | 0.00 |  |  |  |  |  |  |  |
| Class 7       | 0.33   | 0.02      | 0.26   | 0.07 |  |  |  |  |  |  |  |
| Class 8       | 2.61   | 0.49      | 0.00   | 0.00 |  |  |  |  |  |  |  |
| Class 9       | 1.20   | 1.84      | 0.00   | 0.00 |  |  |  |  |  |  |  |
| Class 10      | 0.98   | 1.01      | 0.86   | 0.06 |  |  |  |  |  |  |  |
| Class 11      | 4.78   | 0.00      | 0.00   | 0.00 |  |  |  |  |  |  |  |
| Class 12      | 3.88   | 0.98      | 0.03   | 0.14 |  |  |  |  |  |  |  |
| Class 13      | 1.29   | 1.90      | 0.19   | 0.14 |  |  |  |  |  |  |  |

## Axle Spacing

The axle spacings for tandems, tridems, and quads vary somewhat around the country. The following national values are recommended for use in Arizona:

Tandem axles: 51.6 inches.
Tridem axles: 49.2 inches.
Quad axles: 49.2 inches.

#### Truck Wheelbase

This input is defined as the distance from the steering axle to the nearest axle on the truck tractor for Classes 8 through 13. This distance varies between trucks depending on the presence of a cab and the size of the driver's compartment. This input has been characterized as short, medium, and long axle spacing. The user also has to specify the percentage of trucks that have short, medium, and long axle spacing. The MEPDG software uses this information to compute JPCP structural responses.

For MEPDG design at Level 1 and Level 2/3, data collection and processing consists of the following:

- Level 1: This input can be computed from WIM data for a representative number of trucks in the design lane for a specific site.
- Level 2/3: WIM data from LTPP were analyzed to derive percentages for trucks whose wheelbase axle spacing, when grouped, equals the MEPDG axle spacing of 12, 15, and 18 feet. The results of the evaluation were very consistent. The percentage of trucks, Classes 8 through 13, whose axle spacing fell within the limits are as follows:
  - o Short 12 ft. (10.5 to 13.5 ft): 11 percent.
  - o Medium 15 ft. (13.5 to 16.5 ft): 17 percent.
  - o Long 18 ft. (16.5 to 20 ft): 72 percent.

# Spacing between Dual Tires

This is the center-to-center of tires on a dual axle and is set at 12 inches, based on truck manufacturers' information. This value was used for the national calibration of the MEPDG. It should not be changed without a study that measures existing trucks on the highway system.

## Axle Width Spacing

This is the distance from the outer wheel edge to the outer wheel edge for typical trucks. It is determined from truck manufacturers' information. A value of 8.5 feet was used in all of the national calibrations. This value should be used in Arizona.

#### Lateral Traffic Wander

Trucks experience lateral wander as they travel down a traffic lane. This wander reduces the number of load applications at a single point on the pavement cross section, and it affects rutting of HMA pavements and transverse cracking of JPCP. It is characterized by a normal distribution, a mean lateral offset on one side of the truck (that is closest to the paint stripe), and the standard deviation:

- **Mean Wheel Location.** This is the distance from the outer edge of the wheel to the pavement marking, measured in inches. This value varies down a pavement project and the mean should be used for design.
- **Traffic Wander Standard Deviation.** The standard deviation of the lateral traffic wander is used to estimate the number of axle load repetitions over a single point in a probabilistic manner for predicting distress and performance. For MEPDG design at Level 1 and Level 2/3, data collection and processing consists of the following:
  - Level 1: Measurement on the highway under design is performed from an overhead structure. Either manual or video records are made after spot-painting dots across the traffic lane at 6-inch intervals.
  - Level 2/3: The measured mean value from Arizona highways is a 15-inch mean wheel location and 12 inches for the standard deviation.

Average Axle Width (Outside to Outside), Edge of Truck Dimensions

The actual width of the truck axles is determined from truck manufacturers or measured on representative trucks. The value recommended for use in Arizona is 8.5 feet.

Design Lane Width (Not Slab Width for Concrete Pavement)

This is the actual width of the lane paint stripes as defined by the distance between the lane markings on either side of the design lane. For some concrete pavements, the lane is widened 1 or 2 feet, but the paint stripes are nearly always spaced at 12 feet (a few agencies may use 13 feet for lane width). Thus, if the slab width is 14 feet, the design lane width is 12 feet, or 144 inches.

For MEPDG design at Level 1 and Level 2/3, data collection and processing consists of the following:

- Level 1: This width is obtained from the plans documents for the project under design.
- Level 2/3: A value of 12 feet is recommended.

# **Other Traffic Inputs**

Other traffic inputs include tire pressure and operational speed. Table 71 shows the specific traffic inputs required under this topic.

Table 71. Other Traffic Inputs Required.

| MEPDG Traffic Input  | Input<br>Level | Who Collects<br>and<br>Processes<br>Input | How Is Input Obtained?                                                        | How Often Is<br>Input Provided? | User of<br>Input |
|----------------------|----------------|-------------------------------------------|-------------------------------------------------------------------------------|---------------------------------|------------------|
| Tire Pressure        | 3              | National<br>Default                       | National Default,<br>Use 120 psi                                              | Once                            | PD               |
| Operational<br>Speed | 1              | PD                                        | Use Speed Limit Unless<br>Steep Grade or Other Cause<br>to Slow Trucks Exists | Once                            | PD               |

#### Tire Pressure

This is the hot inflation pressure of the tire. It is assumed that the hot inflation pressure equals the contact pressure and is 10 percent or more above the cold inflation pressure. The tire pressure needs to be input for both single and dual tires. The national default of 120 should be used for this input.

## Operational Speed

The truck operational speed is the mean truck speed over the highway pavement under design. While this speed could vary somewhat from the speed limit, it is usually recommended to use the speed limit. Variations in speed at highway speeds will not make any significant difference in the MEPDG designs. However, there are a few critical situations where truck speed is greatly reduced to less than 15 mph, such as long and steep grades going up a large mountain, and intersections.

For MEPDG design at Level 1 and Level 2/3, data collection and processing consists of the following:

- Level 1: Measure the mean speed of trucks traveling along the highway at the slowest speed location. Use this value in the design.
- Level 2/3: Use the speed limit as the default value, unless the pavement is located at an unusual speed reduction area such as a long mountain grade (15 mph recommended), or an intersection (5 mph recommended).

## **CHAPTER 8. ACTION PLAN**

The action plan described in this chapter calls for the establishment of a new traffic segment database that includes all highways in Arizona. Alternatively, this objective could be accomplished by expanding the current Arizona traffic database. In either case, this database would include all traffic inputs required for the MEPDG and AASHTO 1993 design procedures. Traffic segments would be identified by beginning and ending MP (along with GPS coordinates) along each highway.

During the conduct of this project the MPD indicated that it was upgrading its own traffic database and that it may be possible to incorporate the MEPDG data requirements into the planned software implementation that is currently underway.

Table 72 summarizes the general action plan for developing a comprehensive traffic data input system for the MEPDG. For each data input level, the table specifies who collects and processes the input, how the input is obtained, how often the input is updated, and the user of the input.

Table 73 provides another set of recommendations for each action plan implementation step—who, what, and when:

Responsibilities: who will do it?Resources: funding, time, people?

• Timeline: by when?

These recommendations require additional resources in terms of staffing, mainly for the analysis of WIM data and other traffic data to prepare them for use in the MEPDG.

Table 72. Action Plan for Development of an ADOT Comprehensive Traffic Data Input System for the MEPDG.

| MEPDG<br>Traffic<br>Input | Input<br>Level | Who Collects<br>and<br>Processes<br>Input | How Is Input<br>Obtained?                 | How Often Is Input<br>Updated?       | User of Input |
|---------------------------|----------------|-------------------------------------------|-------------------------------------------|--------------------------------------|---------------|
| Volume<br>Inputs          | 1 On-site      | MPD                                       | AVC (perm./port.) for<br>Specific Project | As Requested for<br>Specific Project | PD, PM        |
| Inputs                    | 2/3            | MPD                                       | AVC (Database)                            | Annually                             | PD, PM        |
| Weight                    | 1 On-site      | MPD                                       | WIM (perm./port.) for<br>Specific Project | As Requested for<br>Specific Project | PD            |
| Inputs                    | 2/3            | MPD                                       | WIM: Urban, Rural,<br>Desert (Database)   | Annually                             | PD            |
| Geometry                  | 1 On-site      | PD                                        | If Used, Measured for<br>Specific Project | As Requested for<br>Specific Project | PD            |
| Inputs                    | 2/3            | PD                                        | AZ Default (Database)                     | Constant or Annually                 | PD            |
| Other                     | 1 On-site      | MPD                                       | If Used, Measured for<br>Specific Project | As Requested for<br>Specific Project | PD            |
| Inputs                    | 2/3            | MPD                                       | AZ Default (Database)                     | Constant or Annually                 | PD            |

Table 73. Action Plan Summary of What, Who, and When.

| Implementation Steps<br>(What will be done?)                                                  | Responsibilities<br>(Who will do it?)                                              | Resources<br>(Funding/Time/People?)                                                                               | Timeline<br>(By when?) |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------|
| Develop Traffic Unit Database<br>(Contains all MEPDG traffic Inputs)                          | MPD and PD/PM (this may<br>be performed under current<br>upgrades of MPD software) | Funding: \$100K<br>Time: 12 months<br>Staff: 1.5 FTE                                                              | December<br>2011       |
| Volume Inputs: *AVC Equipment *Quality Assurance Procedures *Analysis Procedures              |                                                                                    | Funding: MPD Ongoing<br>Time: MPD Ongoing<br>Staff: One Additional FTE                                            | December<br>2011       |
| Weight Inputs: *WIM Equipment *Calibration *Quality Assurance Procedures *Analysis Procedures | MPD                                                                                | Funding: \$2,500K<br>Annual: \$90K<br>Time: Two years<br>Staff: Two additional FTE<br>(One WIM, One Data Analyst) | December<br>2013       |
| Geometry Inputs: *Equipment                                                                   | PD                                                                                 | Funding: None Extra<br>Time: None<br>Staff: Included in 1.5 FTE<br>Above                                          | December<br>2011       |
| Other Inputs:                                                                                 | PD                                                                                 | Funding: None<br>Time: None<br>Staff: Included in 1.5 FTE<br>above                                                | December<br>2011       |

A system for traffic data collection for the MEPDG in Arizona has been proposed and partly developed conceptually. Inputs for Level 2/3 have been derived based on available Arizona data. These inputs should be sufficient for most design situations.

- Level 1 traffic measurement procedures have been recommended for traffic inputs, when deemed necessary by ADOT pavement design staff. These inputs likely will not be used often. They probably will be used with high-profile and costly projects where traffic inputs are difficult to estimate without additional accurate information. ADOT's traffic data collection section will need to develop the ability to collect Level 1 on-site data in a timely manner for requested important projects from the pavement design section.
- Level 2/3 recommended inputs and defaults were prepared based on the best historical data available. These data will need annual updates from improved traffic volume and classification equipment, as well as from WIM sites over the next few years.

## LOCATIONS OF WIM EQUIPMENT

Currently, there are two WIM sites that have been determined as capable of providing data accurate enough for input for the MEPDG: the LTPP SPS-1 site on U.S. 93 north of Kingman, and the LTPP SPS-2 on I-10 west of Phoenix.

There are four other WIM sites operated by the MPD that may be capable of providing good quality data, but recent calibration results are not available, and a full series of quality assurance checks have not been conducted, so the level of accuracy of the data has not yet been determined. Figure 82 has been prepared along with Tables 74 through 76 to show the recommended WIM sites to better cover the state of Arizona.

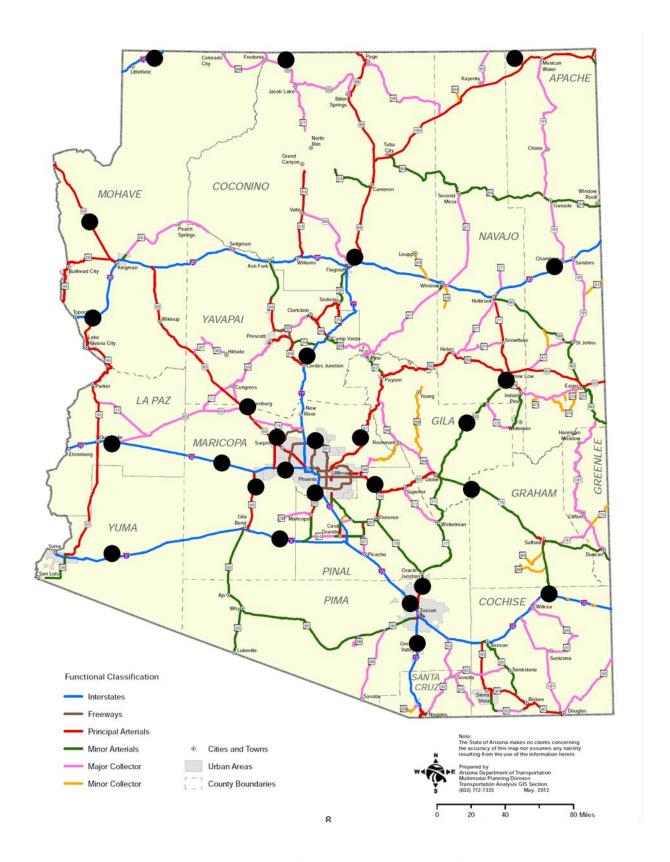



Figure 82. Map of Recommended WIM Sites.

146

Table 74. Recommended WIM Sites: New, Upgrades, and POEs.

| Site | Route  | <b>Functional Class</b> | TTCs         | WIM Coverage Options             |                          |
|------|--------|-------------------------|--------------|----------------------------------|--------------------------|
| 1    | AZ-347 | RMA/C                   | 6, 9, 12, 14 | Upgrade 101622                   | New                      |
| 2    | AZ-79  | RMA/C                   | 6, 9, 12, 14 | Upgrade 100854                   | New                      |
| 3    | US-60  | RMA/C                   | 6, 9, 12, 14 | Current - Peek/Piezo             |                          |
| 4    | I-10   | RPA-I                   | 1, 2, 3      | Ehrenburg POE                    |                          |
| 5    | I-10   | RPA-I                   | 1, 2, 3      | Current - LTPP SPSWIM - ISINC/BP |                          |
| 6    | I-10   | RPA-I                   | 1, 2, 3      | San Simon POE                    |                          |
| 7    | I-17   | RPA-I                   | 1, 2, 3      | New                              |                          |
| 8    | I-19   | RPA-I                   | 1, 2, 3      | Nogales POE                      |                          |
| 9    | I-40   | RPA-I                   | 1, 2, 3      | Sanders POE                      | New                      |
| 10   | I-40   | RPA-I                   | 1, 2, 3      | Topock POE                       |                          |
| 11   | I-8    | RPA-I                   | 1, 2, 3      | Yuma POE                         | Upgrade 100010           |
| 12   | I-8    | RPA-I                   | 1, 2, 3      | New                              |                          |
| 13   | US-15  | RPA-I                   | 1, 2, 3      | St. George POE                   | Upgrade 100327           |
| 14   | AZ-77  | RPA-O                   | 6, 9, 12     | Upgrade 100800                   | New                      |
| 15   | AZ-77  | RPA-O                   | 6, 9, 12     | New                              |                          |
| 16   | AZ-85  | RPA-O                   | 6, 9, 12     | Upgrade 100922                   |                          |
| 17   | AZ-87  | RPA-O                   | 6, 9, 12     | Current - Cardinal/Quartz        | ECM w/Piezo sensors      |
| 18   | US-160 | RPA-O                   | 6, 9, 12     | New                              |                          |
| 19   | US-89  | RPA-O                   | 6, 9, 12     | Fredonia POE                     |                          |
| 20   | US-89  | RPA-O                   | 6, 9, 12     | Upgrade 102068                   | New                      |
| 21   | US-93  | RPA-O                   | 6, 9, 12     | Kingman POE                      | LTPP SPSWIM - ISINC/BP   |
| 22   | I-10   | UPA-I                   | 1, 2, 3      | Current - TDC/Piezo              |                          |
| 23   | I-10   | UPA-I                   | 1, 2, 3      | Upgrade 100139                   |                          |
| 24   | SL-101 | UPA-O                   | 9, 12, 14    | Upgrade 101253                   | New                      |
| 25   | SL-303 | UPA-O                   | 9, 12, 14    | New                              |                          |
| 26   | US-70  | UPA-O                   | 9, 12, 14    | New                              | Upgrade 102024 or 102044 |

Table 75. Functional Class for Recommended WIM sites.

| Highway Functional Class | Number of Project Sites |
|--------------------------|-------------------------|
| RMA/C                    | 3                       |
| RPA-I                    | 10                      |
| RPA-O                    | 8                       |
| UPA-I                    | 2                       |
| UPA-O                    | 3                       |

Table 76. Options for Meeting the Recommended WIM Site Requirements.

| Options | Number of Project Sites |
|---------|-------------------------|
| New     | 6                       |
| Upgrade | 7                       |
| POE     | 9                       |
| Current | 4                       |

# TYPE OF WIM EQUIPMENT

ADOT is performing an internal study to determine standard equipment for collecting WIM data. There are several combinations of WIM controllers and in-road sensors being investigated:

- TDC Systems Limited controller with piezo WIM sensors.
- Cardinal Q-WIM controller with Kistler quartz sensors.
- Peek ADR controller with piezo WIM sensors.
- ECM Hestia controller and Kistler quartz sensors.

The MPD is also monitoring the performance of the LTPP SPSWIM site equipment, which includes International Road Dynamics iSINC controller and bending plate technology.

To date, strong consideration has been given to the TDC and piezo WIM sensor configuration. Since its installation, the equipment has been reliable and consistent in the weight values it has been reporting.

To assist in the evaluation of this equipment, ARA conducted a comparison of the TDC/piezo system with the nearby LTPP SPS-2 site for all Class 9 trucks. Since the LTPP site has been regularly calibrated under the pooled-fund study and data analyses are performed regularly, the data are considered to be of research quality and provided a valuable source for comparison. The gross vehicle weight (GVW) distribution for the TDC site is shown in Figure 83. The GVW distribution for the same data, collected by the LTPP equipment, is shown in Figure 84.

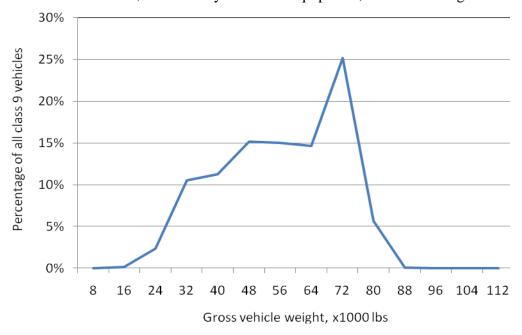



Figure 83. TDC/Piezo GVW Distribution.

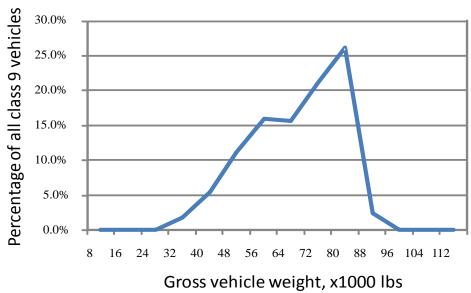



Figure 84. LTPP SPS-2 GVW Distribution.

As illustrated in Figures 83 and 84, the TDC equipment is reporting lower weight values for the same data. A further breakdown of the reported weights by each equipment type is shown in Table 77. Additionally, the axle measurement for the TDC was determined, on average, to be 6.9 percent greater than the iSINC system. Axle spacing measurements are shown in Table 78.

Table 77. TDC/LTPP Weight Measurement Comparison.

| Equipment       | GVW (kips) | Front Axle | Tandem 1 | Tandem 2 | Unloaded<br>Peek | Loaded<br>Peek |
|-----------------|------------|------------|----------|----------|------------------|----------------|
| LTPP (iSINC/BP) | 61.5       | 11.2       | 25.6     | 24.6     | 56.0             | 81.0           |
| MPD (TDC/piezo) | 52.2       | 10.0       | 21.2     | 21.2     | 48.0             | 73.0           |
| Difference      | -15.1%     | -10.7%     | -17.2%   | -13.8%   | -14.3%           | -9.9%          |

**Table 78. Axle Spacing Measurement Comparison.** 

| Equipment       | A-B  | B-C  | C-D  | D-E   |
|-----------------|------|------|------|-------|
| LTPP (iSINC/BP) | 17.6 | 4.4  | 32.6 | 4.6   |
| MPD (TDC/piezo) | 18.3 | 4.7  | 34.5 | 5.1   |
| Difference      | 4.0% | 6.8% | 5.8% | 10.9% |

Industry standards have determined an estimate for the B-C axle spacings of 4.3 feet. As shown in Table 78, the LTPP data are within 0.1 feet of this standard, while the TDC data are 0.4 feet off this standard. This error is easily calibrated, however, and should not be a determining factor in the evaluation for the Arizona standard.

Although it was expected that the TDC system would display weight measurements that were directly related to temperature, these indications were not visible. This could mean that the TDC is superior to other piezo WIM controllers in its ability to correlate the effects of temperature on

a temperature-dependent sensor, or it could mean that the ambient temperatures that were experienced during the time the data were collected did not change significantly. Further analysis would be required to determine if this equipment can compensate for the high effects of temperature on the precision of piezo sensor measurements.

# **COST OF EQUIPMENT**

Piezo

Quartz Bending Plate

Load Cell

When deciding to install a permanent WIM site, cost is a primary consideration. The decision to purchase one type of WIM technology over another is a balance between system performance accuracies and the cost of the system over its expected life cycle. The performance of the WIM system is more a function of the in-road sensors than any other factor.

To supplement the MPD's WIM selection study, ARA performed a cost analysis of the different types of WIM technologies, including installation, maintenance, calibration, monitoring, and data analyses. The information provided in Table 79 is based on one lane of sensors and does not include costs that are associated with installation or maintenance.

 Technology
 Performance
 In-Road Equipment

 +/- 10%
 \$3,500

 +/- 5%
 \$14,500

\$21,000

\$60,000

Table 79. Performance and Cost of WIM Equipment.

+/- 3-5%

+/- 3%

Typically, the cost of the controller is related to its capabilities, so the selection of the WIM controller should be based on the ability of the equipment to consistently deliver the collected data to the user. Evaluations of WIM controllers and their capabilities and reliabilities are outside the scope of this project. The range of costs for WIM controllers is approximately \$12,000 to \$22,000, and there is a minimal cost difference for the controller based on the in-road sensor that is used.

For installation, the differences in costs for one type of sensor versus another are also negligible. However, for traffic control, the number of lane closure days required are 0.5 days per lane for piezos and quartz, one day per lane for bending plate, and two to three days for each lane of load cell sensors.

Regular maintenance costs (semi-annual and annual visits) among the different systems are comparable. All require approximately the same degree of effort to assess, electronically test, and calibrate. Unscheduled maintenance (repair) depends on the reliability of the system, including the sensor and road condition. Based on past performance, piezo sensors have a much shorter lifespan than load cells, but load cells are much more expensive to replace. Overall, it has been shown that the bending plate sensor has the highest reliability and is second to the piezo in expected life cycle repair costs. Kistler sensors are comparable with bending plates for initial cost, but they are not as reliable. With regular maintenance, and without significant pavement deterioration, the bending plate is a much better value.

Based on the experience of ARA WIM experts, the Kistler quartz sensor is recommended for flexible roadway applications because the bending plate will often last longer than the pavement in which it is installed. For rigid pavements, the bending plate provides the best value when reliability, life cycle cost, and performance are prime considerations.

#### RECOMMENDED BUSINESS PROCESS OVERVIEW

Figure 85 illustrates the recommended business process overview for operating the MEPDG and pavement management system needs for traffic data. Additional details of this process are provided in Appendix G.

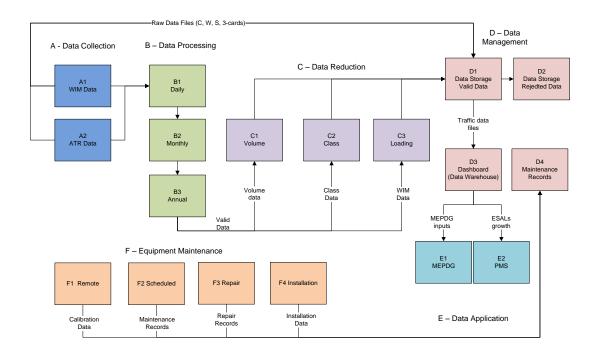



Figure 85. Recommended Business Process Overview.

# REFERENCES

AASHTO. 1993. *Guide for Design of Pavement Structures*. Washington, DC: American Association of State Highway and Transportation Officials.

AASHTO. 2008. Mechanistic-Empirical Pavement Design Guide, Interim Edition: A Manual of Practice. Washington, DC: American Association of State Highway and Transportation Officials.

AASHTO. 2009. *Guidelines for Traffic Data Programs, 2nd Edition*. Washington, DC: American Association of State Highway and Transportation Officials.

Alavi, S. and K.A. Senn, 1999, "Development of New Pavement Design Equivalent Single Axle Load (ESAL)." FHWA-AZ99-455. Phoenix: Arizona Department of Transportation.

Applied Research Associates, Inc. 2004. "Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures." NCHRP Project 1-37A, Appendix AA Traffic. Washington, DC: Transportation Research Board.

Fernandez, G. 2003. *Data Mining Using SAS Applications*. Boca Raton, FL: Chapman & Hall/CRC.

FHWA. 2001. Traffic Monitoring Guide. FHWA-PL-01-021, U.S. Department of Transportation.

FHWA. 2009. LTPP Traffic Data Collection and Processing Guide, Version 1.3. FHWA-HRT-09-051, U.S. Department of Transportation.

Khattree, R., and D.N. Naik. 2000. *Multivariate Data Reduction and Discrimination with SAS*<sup>[R]</sup> *Software*. Cary, NC: SAS Institute, Inc.

Nantung, T.E., 2011, "Research Pays Off: Implementing the Mechanistic–Empirical Pavement Design Guide for Cost Savings in Indiana." *Transportation Research News*, Issue Number 271, pp. 34-36. Washington, DC: Transportation Research Board.

SAS Institute Inc. 1999. SAS/STAT® User's Guide, Version 8. Cary, NC: SAS Institute Inc.

Witczak, M.W. 2008. "Development of Performance Related Specifications for Asphalt Pavements in the State of Arizona." FHWA-SPR-08-402(2). Phoenix: Arizona Department of Transportation.

# APPENDIX A. REVIEW OF HISTORICAL ADOT TRAFFIC DATA COLLECTION PRACTICES

The purpose of this study of ADOT traffic data collection practices is to understand how traffic data were collected and managed and determine how coordination and sharing of traffic data can be enhanced to maximize the usefulness of the data collection effort as related to MEPDG data needs. The review of traffic data collection practices was performed through (1) a series of interviews with individuals in various divisions of ADOT, and (2) assembling and reviewing pertinent documents.

Soon after the commencement of this study, a project meeting was held with ADOT/local agency/department staff and ARA engineers. The meeting goals included seeking information on current statewide traffic data collection practices and identifying traffic data currently available to ADOT. An important outcome of this meeting was to identify key personnel to be interviewed and sources of literature containing information pertinent to this study. A list of personnel interviewed or identified for interview is presented in Table A-1, while pertinent literature identified and reviewed to date is presented in Table A-2. A summary of findings is presented in the following sections.

#### AGENCIES WITH TRAFFIC DATA COLLECTION RESPONSIBILITY IN ARIZONA

#### Skszek, 2003

Several entities are responsible for gathering traffic data statewide, as presented below (Table A-3 presents a listing of traffic data types collected by each entity):

- ADOT Motor Vehicle Division (MVD).
- ADOT Multimodal Planning Division (MPD).
- ADOT Intermodal Transportation Division (ITD).
- ADOT Freeway Management System (FMA).
- Arizona Transportation Research Center (ATRC).
- Local metropolitan planning organizations (MPOs).

Data are collected for multiple purposes, including:

- Research.
- Pavement design and management.
- Air quality monitoring.
- Vehicle size and weight enforcement.
- Meeting information requests from public and private stakeholders and state governments (e.g., meeting FHWA reporting requirements).

**Table A-1. Literature Assembled for Review.** 

|                                                                                                                                                                                                    |                                             | Literatu   | re Review S | ituation |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------|-------------|----------|
| Title                                                                                                                                                                                              | Authors                                     | Identified | Obtained    | Reviewed |
| Preliminary Engineering and Design<br>Manual, 3rd Edition, 1989                                                                                                                                    | ADOT                                        | Х          | х           | Х        |
| Five-page example print-out of pavement management system-generated traffic data used for AC overlay design using SODA                                                                             |                                             | х          | Х           | Х        |
| Two-page ADOT Organization Chart                                                                                                                                                                   | ADOT                                        | X          | X           | X        |
| Three-page abstract of the report Coordination of Commercial Vehicle Data Collected by Automatic Traffic Counter (ATC) and Weigh-In-Motion (WIM), Final Report, 2003                               | Skszek, S.L.                                | Х          | Х           | Х        |
| Implementation of the Simplified Arizona<br>Highway Cost Allocation Study Model,<br>Final Report, 2001                                                                                             | Carey, J.                                   | X          | Х           | Х        |
| Update of the Arizona Highway Cost<br>Allocation Study, Final Report, 1999                                                                                                                         | Carey, J.                                   | X          | Х           | Х        |
| ADOT Traffic Manual                                                                                                                                                                                | ADOT                                        | X          | X           | X        |
| Coordination of Commercial Vehicle<br>Data Collected by Automatic Traffic<br>Counter (ATC) and Weigh-In-Motion<br>(WIM), Report No. FHWA-AZ-03-526,<br>2003                                        | Skszek, S.L.                                | х          | x           | Х        |
| Development of new pavement design<br>ESAL, Report No. FHWA-AZ99-455,<br>1999                                                                                                                      | Alavi, S.H.,<br>and K.A.<br>Senn            | Х          | Х           | Х        |
| Enhancing Arizona Department of<br>Transportation's Traffic Data Resource,<br>Report No. FHWA-AZ01-492, 2001                                                                                       | Sterling, J., S.<br>Hossak, and<br>T. Bills | Х          | Х           | Х        |
| Cluster Analysis of Arizona Automatic<br>Traffic Recorder Data, Transportation<br>Research Record No. 1410, 1993                                                                                   | Flaherty, J.                                | Х          | Х           | Х        |
| Estimating the Cost of Overweight<br>Vehicle Travel on Arizona Highways,<br>Report No. FHWA-AZ-06-528, 2006                                                                                        | Straus, S.H.,<br>and J.<br>Semmens          | Х          | Х           | Х        |
| Development of Design Guide Traffic<br>Files for ADOT (Project 11), Arizona<br>State University, July, 2003                                                                                        | Witczak,<br>M.W., and Y.<br>Ho              | X          | Х           | Х        |
| Normalized Axle Load Spectra and<br>Pavement Design—Are the MEPDG<br>Default Normalized Axle Load Spectra<br>Inadequate? Position Paper, 15<br>December 2009, Applied Research<br>Associates, Inc. | Von Quintus,<br>H.L.                        | Х          | Х           | Х        |

Table A-2. Traffic Data Types Collected by Various Agencies in Arizona (Skszek, 2003).

| Data Collection Group | Co                     | mmercial Vehicle Data Ty | /pe                      |
|-----------------------|------------------------|--------------------------|--------------------------|
|                       | Count                  | Class                    | Weight                   |
| ADOT Transportation   | Permanent ATC          | Manual, ATC (length      | Equipment not            |
| Planning Division –   |                        | only)                    | functional               |
| Data Section          |                        |                          |                          |
| ATRC – LTPP Program   | ATC, WIM               | ATC, WIM                 | WIM                      |
| ADOT Freeway          | ATC                    | WIM                      | None                     |
| Management System     |                        |                          |                          |
| ADOT MVD              | WIM                    |                          | WIM, portable and static |
|                       |                        |                          | scales                   |
| Traffic Research &    | Permanent ADOT sites   | Permanent ADOT sites     | None                     |
| Analysis, Inc. –      | and portable equipment | and portable equipment   |                          |
| Consultant            |                        |                          |                          |

Table A-3. ADOT Engineers and Other Personnel Interviewed.

| ADOT/Local<br>Agency or<br>Department Staff                                                                                                              | Agency/Department                                                                         |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|
| Dimitroplos, Christ                                                                                                                                      | Administrator of Arizona Transportation Research Center research and development projects |  |  |  |
| Bari, Javed Team Leader, ADOT Pavement Design Section                                                                                                    |                                                                                           |  |  |  |
| Burch, Paul                                                                                                                                              | Head, ADOT Pavement Design Section                                                        |  |  |  |
| Delton, Jim  Head, ADOT Materials Section. Note that pavement design and pavement system groups are part of the Materials Group.                         |                                                                                           |  |  |  |
| Hodges, Mark                                                                                                                                             | Director, Data Management and Analysis Group, Multimodal Planning Division.               |  |  |  |
| Eberline, Douglas  Technical Representative of Data Management and Analysis Security Schedule includes downloading WIM data and WIM scale installations. |                                                                                           |  |  |  |
| Fregin, Ron                                                                                                                                              | Technical Representative, ADOT Pavement Management System Section.                        |  |  |  |

# STATEWIDE TRAFFIC MONITORING AND DATA COLLECTION INFRASTRUCTURE

Traffic monitoring and data collection are performed using a variety of methods depending on the entity performing the monitoring and the purpose for which data are being collected. Methods applied statewide in Arizona include:

- Coverage counts (typically 48 hours in duration).
- ATRs (length classification).
- Permanent vehicle classification sites (axle classification).
- WIM (portable and permanent).

The following sections detail the information gathered regarding the statewide traffic monitoring and data collection infrastructure.

# **Interview with Mark Hodges**

- Metropolitan Planning Organizations and other local agencies carry out approximately 4,500 short duration, mostly manual vehicle counts, annually. These counts are performed mostly on city streets and may, in some limited instances, include vehicle classification. ADOT verifies permanent classification sites monthly with a 60-minute manual vehicle classification study, along with quality control checks in processing software. Currently, field technicians verify coverage counts by watching the traffic in the lanes and verifying the counts on the machines.
- The MPD operates the following:
  - One hundred seventeen-ATRs operating 24 hours a day, 7 days a week.
  - One thousand two hundred short-duration counters. The duration ranges from 48 hours to 7 days.
  - o The MPD plans to have approximately 50 ATRs by 2011. Traffic counts and other outputs from the AVCs are monitored monthly and verified by quality assurance checks. Vehicle classification is performed using a vehicle classification algorithm supplied by an AVC equipment manufacturer.
  - Two WIM sites on I-10 and SR 87. The MPD plans to operate five WIM sites by the end of 2011.
- The MVD operates four WIM sites at POEs. The actual data collection and equipment used need to be further verified.
- The ATRC/MPD operates the following:
  - Several WIM and AVC sites co-located with LTPP projects. It is believed that after so many years of service, the LTPP WIM and AVC equipment are in poor shape. In recent years, some data obtained from a few remaining LTPP sites do not pass LTPP quality assurance checks. ADOT is considering reinstalling new, improved WIM scales on approximately eight LTPP sites. The installation will be on all lanes in all directions. The preferred WIM technology is the Kessler loops (they are inductive loops of recent development).

# Sterling et al., 2001

- ADOT divides the state highway system into 1,400 segments for traffic monitoring purposes. Each segment is identified by route and milepost and contains an identified location for a traffic counting station.
- At approximately 140 sites, ADOT collects data to classify vehicles by type. Vehicle weight, determined by WIM equipment, is collected at seven sites, when the WIM equipment is operational.
- The majority of traffic volume counts performed by ADOT consist of either 24-hour or 48-hour counts using pneumatic road tubes or inductive loops.
- On a statewide level, ADOT traffic counts begin in January in the southern part of the state and move north throughout the year. Low-volume sections are counted every three years.
- The ADOT Traffic Studies Section uses several different mechanisms to collect the traffic data as follows:
  - ATR: in 2001, there were approximately 24 active ATRs in the state that continuously monitor traffic 24 hours a day, each day of the year (see Table A-4 for a listing of ATR locations). ATR data are summarized to estimate daily, monthly, and annual traffic counts.
  - o LTPP requires ADOT to collect WIM and AVC data. Currently, ADOT has nine AVC sites and 16 WIM sites as part of the LTPP program (some of these have dropped out). Table A-5 lists these sites. The data collected on these sites include yearly truck traffic volumes reported by truck class and trucks as a percentage of the total traffic.
- The MPD used private contractors to collect traffic data for use in Small Area Transportation Studies.
- ADOT receives traffic data annually from:
  - o Yuma Metropolitan Planning Organization, (Yuma and Yuma County).
  - Maricopa Association of Governments (Maricopa County and cities including Phoenix, Mesa, and Glendale).
  - o Pima Association of Governments (Pima County and cities including Tucson).
- ADOT receives traffic data infrequently from the following agencies:
  - Bureau of Indian Affairs.
  - o Bureau of Land Management.
  - o National Forest Service, National Park Service.
  - o Tribal Governments.
- Note that only traffic count data are supplied to ADOT from outside agencies. Currently there is no procedure in place for storing the collected data other than in report form, and no linkage exists between the outside agencies and the MPD collection efforts.
- Since 1994, the MPD has undertaken a program of annual traffic counts on the entire National Highway System in Arizona and one-third of the state highways.
- In 1999, ADOT initiated the Special Counts for Air Quality and Rural HPMS project to obtain 48-hour traffic counts at approximately 1,200 locations throughout the state, with the assistance of contractors. The extent of traffic counts under this scheme is presented in Table A-6.

**Table A-4. Automatic Traffic Recorder Locations.** 

| #  | Route | Location           | #  | Route  | Location              |
|----|-------|--------------------|----|--------|-----------------------|
| 1  | I-8   | Yuma Spd/Len       | 38 | SR 83  | Sonoita Spd/Len       |
| 2  | I-8   | Wellton Spd/Len    | 39 | SR 85  | Why                   |
| 3  | I-8   | Gila Bend Spd/Len  | 40 | SR 86  | Robles Jct. Spd/Len   |
| 4  | I-10  | Ehrenburg Spd/Lcn  | 41 | SR 87  | Payson Spd/Len        |
| 5  | I-10  | Tonopah Spd/Len    | 42 | SR 87  | Winslow Spd/Len       |
| 6  | I-10  | Tempe Alameda BE   | 43 | SR 89  | Prescott Spd/Len      |
| 7  | I-10  | Tempe Alameda WE   | 44 | SR 89  | Ash Fork Spd/Len      |
| 8  | I-10  | Bapchule Spd/Len   | 45 | SR 90  | Benson WIM 002        |
| 9  | I-10  | Marana WIM Cox     | 46 | SR 95  | Quartzite WIM 003     |
| 10 | I-10  | Marana             | 47 | SR 95  | Parker Spd/Len        |
| 11 | I-10  | Tucson Grant BE Sp | 48 | SR 99  | Leupp Spd/Len         |
| 12 | I-10  | Tucson Grant WE Sp | 49 | SR 260 | Overgaard Spd/Len     |
| 13 | I-10  | Benson WIM 001     | 50 | SR 260 | Eager Spd/Len         |
| 14 | I-10  | Cochise Spd/Len    | 51 | SR 264 | Moenkopi              |
| 15 | I-17  | Pioneer WIM        | 52 | SR 264 | Ganado Spd/Len        |
| 16 | I-17  | New River          | 53 | SR 277 | Snowflake Spd/Len     |
| 17 | I-17  | SR-169/Cherry Rd.  | 54 | SR 286 | Robles Jct. Spd/Len   |
| 18 | I-19  | Amado Spd/Len      | 55 | SR 377 | Holbrook Spd/Len      |
| 19 | I-19  | Tucson Ajo Way Spd | 56 | US 60  | Aquila Spd/Len        |
| 20 | I-40  | Topock Spd/Len     | 57 | ÚS 60  | Glendale EB Spd/Len   |
| 21 | I-40  | Seligman Spd/Len   | 58 | US 60  | Glendale WB Spd/Len   |
| 22 | I-40  | Winona Spd/Len/CLs | 59 | US 60  | Tempe Hardy EB        |
| 23 | I-40  | Winslow Spd/Len    | 60 | US 60  | Tempe Hardy WB        |
| 24 | SA 89 | Sedona Spd/len     | 61 | US 60  | Globe Spd/Len         |
| 25 | SB 8  | Yuma               | 62 | US 60  | Show Low Spd/Len      |
| 26 | SR 51 | Phoenix Crittendon | 63 | US 70  | Cutter WIM 005        |
| 27 | SR 64 | Valle Spd/Len      | 64 | US 70  | Safford Spd/Len       |
| 28 | SR 68 | Bullhead City/Spd  | 65 | US 89  | Flagstaff             |
| 29 | SR 69 | Cordes Jct         | 66 | US 93  | Kingman Spd/Len       |
| 30 | SR 69 | Mayer Spd/Len      | 67 | US 93  | Wikieup               |
| 31 | SR 72 | Utting Spd/Len     | 68 | US 93  | Wickenburg Spd/Len    |
| 32 | SR 77 | Snowflake Spd/Len  | 69 | US 95  | Yuma WIM 004          |
| 33 | SR 79 | Oracle Spd/Len     | 70 | US 160 | Tuba City Spd/Len     |
| 34 | SR 80 | St David Spd/Len   | 71 | US 180 | Flagstaff Spd/Len     |
| 35 | SR 80 | Douglas Spd/Len    | 72 | US 180 | St Johns Spd/Len      |
| 36 | SR 82 | Nogales Spd/Len    | 73 | US 180 | Springerville Spd/Len |
| 37 | SR 82 | Sonoita Spd/Len    | 74 | US 191 | St Johns Spd/Len      |

# Table A-5. ADOT/ATRC LTPP AVC/WIM Sites (Many Have Terminated Collection).

| Arizona/ATRC   |               |      | WIM/AVC           |      |         |
|----------------|---------------|------|-------------------|------|---------|
| Site           | Site Location |      |                   |      |         |
| # and Pavement | Route & MP    | SHRP |                   |      |         |
| Type           | (KIM)         | ID   | Status            | Make | Sensor  |
| 025 RIGID      | US-93 NB 052  | 0100 | PERM WIM          | PAT  | BENDING |
|                |               |      |                   |      | PLATE   |
| 026 RIGID      | 1-10 EB 108   | 0200 | PERM WIM          | IRD  | BENDING |
|                |               |      |                   |      | PLATE   |
| 009 FLEX       | 1-8 EB 159    | 0500 | PERM WIM          | PAT  | PIEZO   |
| 202 RIGID      | 1-40 EB 202   | 0600 | PERM WIM          | PAT  | BENDING |
|                |               |      |                   |      | PLATE   |
| 204 RIGID      | 1-40 WB 202   | 0600 | PERM WIM          | PAT  | BENDING |
|                |               |      |                   |      | PLATE   |
| 020 FLEX       | 1-40 WB 145   | 1002 | PERM WIM          | PAT  | PIEZO   |
| 012 FLEX       | I-I0 WB 110   | 1006 | PERMWIM           | PAT  | PIEZO   |
| 011LFLEX       | I-I0 WB 115   | 1007 | PERMWIM           | PAT  | PIEZO   |
| 005 FLEX       | 1-19 SB (029) | 1015 | PERM WIM          | IRD  | PIEZO   |
| 018 FLEX       | I-40 EB 106   | 1024 | PERM WIM          | PAT  | PIEZO   |
| 010 FLEX       | SR-85 SB 141  | 6055 | PERM WIM          | PAT  | PIEZO   |
| 006 FLEX       | 1-19 NB (023) | 6060 | PERM WIM          | PAT  | PIEZO   |
| 021 RIGID      | SR-I0 INB 011 | 7079 | PERMWIM           | PAT  | PIEZO   |
| 024 RIGID      | US-60 WB 179  | 7613 | PERM WIM          | PAT  | PIEZO   |
| 019 FLEX       | I-40 WB 113   | 1025 | PERM AVC PORT WIM | PAT  | PIEZO   |
| 015 FLEX       | SR-68 EB 001  | 1037 | PERM AVC PORT WIM | PAT  | PIEZO   |
| 023 FLEX       | I-I0 WB 123   | 1001 | PERM AVC NO WIM   | PAT  | PIEZO   |
| 007 FLEX       | 1-19 NB (054) | 1017 | PERM AVC NO WIM   | PAT  | PIEZO   |
| 013 FLEX       | R-95 SB 145   | 1034 | PERM AVC NO WIM   | PAT  | PIEZO   |
| 008 FLEX       | 1-19 SB (084) | 6054 | PERM AVC NO WIM   | PAT  | PIEZO   |
| 022 RIGID      | 1-10 WB 130   | 7614 | PERM AVC NO WIM   | PAT  | PIEZO   |

**Table A-6. Traffic Counts by County.** 

| County     | Number of Counts |  |  |  |  |
|------------|------------------|--|--|--|--|
| Apache     | 44               |  |  |  |  |
| Cochise    | 170              |  |  |  |  |
| Coconino   | 150              |  |  |  |  |
| Gila       | 64               |  |  |  |  |
| Graham     | 68               |  |  |  |  |
| Greenlee   | 10               |  |  |  |  |
| LaPaz      | 40               |  |  |  |  |
| Maricopa   |                  |  |  |  |  |
| Mohave     | 160              |  |  |  |  |
| Navajo     | 95               |  |  |  |  |
| Pima       | -                |  |  |  |  |
| Pinal      | 110              |  |  |  |  |
| Santa Cruz | 30               |  |  |  |  |
| Yavapai    | 70               |  |  |  |  |
| Yuma       | 25 (rural only)  |  |  |  |  |
| Unassigned | 164              |  |  |  |  |
| Total      | 1,200            |  |  |  |  |

- In 1999, ADOT initiated the Urban Traffic Counting Project to expand its traffic data collection efforts in the Phoenix and Tucson metropolitan areas through the collection of 24-hour counts on urban highways, ramps, and frontage roads. Traffic counts were taken on established locations in 15-minute increments. A database was established listing count locations, identifiers, beginning and ending times of counts, and comments. Field data were collected using tube and loop machines, excluding those of the ADOT Freeway Management System. Ramp and crossover counts were taken at approximately 548 sites in the Phoenix metropolitan area and at approximately 23 sites in the Tucson urban area. In addition, approximately 88 mainline counts were taken on state highways in the Phoenix urban area. The counts were taken for continuous periods of 24 hours or more, between midnight Tuesday and midnight Thursday.
- In 2000, ADOT initiated a Long-Term Vehicle Classification Project to improve vehicle classification data at approximately 65 statewide locations through 168-hour (1-week) classification counts on the major sites (see Table A-7). The intent of the study was to determine the magnitude of variation between 6-hour manual classifications and those of week-long durations, especially to identify the implications for axle factors and percent truck estimates. Preliminary results revealed essentially no differences between the 6- and 168-hour counts.
- The Traffic Engineering Group has very specialized data needs on a project-by-project basis such as turning movement counts, peak period volumes, or percentage of trucks required for intersection design or signal phasing. As a result, this group collects additional specific data such as turning movement counts, peak hour factors, stopped delay, or vehicle classification. Currently, these special counts are published in the traffic studies themselves, and there is no systematic mechanism to electronically store the information for later use.
- ADOT's Freeway Management System collects real time data at 237 locations throughout the greater Phoenix metropolitan freeway system. The Transportation Technology Group manages the Freeway Management System. Collected data include speed, volume, and occupancy. The recording devices are either inductive loops or acoustic sensors. According to the Transportation Technology Group's staff, up to 90 percent of the traffic recording devices do not properly report data on a continuous basis. This situation precludes the acquisition and utilization of this data for any useful planning, design, operation, or maintenance purposes.
- In the early 2000s, the MPD maintained approximately 27 WIM stations (now there are many fewer). The data from these WIM stations are formatted to LTPP standards and are tabulated for hourly vehicle weights, counts, and classifications. The main goal of the LTPP is the monitoring and evaluating of traffic data, particularly along test sections for the evaluation of pavement conditions.

Table A-7. ADOT Long-Term Vehicle Classification, 2000.

|          | ADOT William Province |                     |     | No. of | No of    |             |
|----------|-----------------------|---------------------|-----|--------|----------|-------------|
| Group    | C#                    | Highway Description | LEG | Lanes  | machines | Nearby Town |
| <u> </u> | 15                    | I-8 & SB8           | E   | 4      | 4        | GILA BEND   |
| <u> </u> | 16                    | I-8 & SB8           | W   | 4      | 4        | GILA BEND   |
| I        | 17                    | I-8& SB8            | N   | 4      | 4        | GILA BEND   |
| I        | 127                   | SR85 & MC85         | N   | 2      | 2        | BUCKEYE     |
| I        | 128                   | SR85 & MC85         | S   | 2      | 2        | BUCKEYE     |
| I        | 129                   | SR85 & MC85         | В   | 2      | 2        | BUCKEYE     |
| II       | 12                    | US70&SR77           | W   | 2      | 2        | GLOBE       |
| II       | 13                    | US70 & SR77         | E   | 2      | 2        | GLOBE       |
| II       | 14                    | US7O & SR77         | S   | 2      | 2        | GLOBE       |
| III      | 84                    | SR260 & SS260       | W   | 2      | 2        | EAGAR       |
| III      | 85                    | SR260 & SR260       | N   | 2      | 2        | EAGAR       |
| III      | 86                    | US180 & 5R260       | E   | 2      | 2        | EAGAR       |
| III      | 87                    | SR260 & 5R277       | SW  | 4      | 4        | HEBER       |
| III      | 88                    | SR260 & SR277       | Е   | 2      | 2        | HEBER       |
| III      | 89                    | SR260 & SR277       | NE  | 4      | 4        | HEBER       |
| III      | 92                    | I-40 & SR77         | NE  | 4      | 4        | HOLBROOK    |
| III      | 93                    | I-40 & 5R77         | SW  | 4      | 4        | HOLBROOK    |
| III      | 94                    | I-40 & SR77         | N   | 2      | 2        | HOLBROOK    |
| III      | 107                   | I-40 & USI80        | В   | 4      | 4        | HOLBROOK    |
| III      | 108                   | SB40 & US180        | W   | 4      | 4        | HOLBROOK    |
| III      | 109                   | S840 & US180        | N   | 2      | 2        | HOLBROOK    |
| III      | 90                    | SR87 & SR99         | N   | 2      | 2        | WINSLOW     |
| III      | 91                    | SR87 & 5R99         | SE  | 2      | 2        | WINSLOW     |
| IV       | 19                    | I-10 & SR95         | W   | 4      | 4        | OUARTSITE   |
| IV       | 20                    | I-10 & SR96         | E   | 4      | 4        | QUARTSITE   |
| IV       | 21                    | I-10 & SR95         | N   | 2      | 2        | OUARTSITE   |
| IV       | 22                    | I-10 & SR95         | S   | 2      | 2        | OUARTSITE   |
| V        | 23                    | US89 & US93         | NW  | 2      | 2        | WICKENBURG  |
| V        | 24                    | US89 & US93         | SE  | 2      | 2        | WICKENBURG  |
| V        | 25                    | US9 & US93          | N   | 2      | 2        | WICKENBURO  |
| VI       | 26                    | I-10 & US95         | W   | 4      | 4        | HAVASU      |
| VI       | 27                    | 1-40 & US95         | E   | 4      | 4        | HAVASU      |
| VI       | 28                    | 1-40 & US95         | S   | 2      | 2        | HAVASU      |
| VI       | 29                    | SB40 & 1-40         | SW  | 4      | 2        | KING MAN    |
| VI       | 30                    | US66 & 1-40         | NE  | 4      | 2        | KINGMAN     |
| VI       | 31                    | US66 & 1-40         | В   | 4      | 2        | KINGMAN     |
| VI       | 52                    | US93 & 5R68         | SE  |        |          | KINGMAN     |
| VI       | 53                    | US93 & SR88         | NW  | 4      | 4        | KINGMAN     |
| VI       | 54                    | US93 & SR68         | W   | 2      | 2        | KINGMAN     |
| VII      | 38                    | SR89 & SR69         | N   | 4      | 4        | PRESCOTT    |
| VII      | 39                    | SR89 & SR69         | SW  | 4      | 4        | PRESCOTT    |
| VII      | 40                    | SR89 & SR69         | Е   | 4      | 4        | PRESCOTT    |
| VIII     | 42                    | I-8&5B8             | NW  | 4      | 4        | YUMA        |
| VIII     | 43                    | 1-8&5B8             | W   | 4      | 4        | YUMA        |
| VIII     | 58                    | US95&C014           | S   | 2      | 2        | YUMA        |
| IX       | 44                    | SR82 & B19          | NE  | 2      | 2        | NOGALES     |

Table A-7. ADOT Long-Term Vehicle Classification, 2000, continued.

|       | ADOT       |                     |     | No. of | No of    |              |
|-------|------------|---------------------|-----|--------|----------|--------------|
| Group | <b>C</b> # | Highway Description | LEG | Lanes  | machines | Nearby Town  |
| X     | 62         | I-8 & I-10          | W   | 4      | 4        | CASA GRANDE  |
| X     | 63         | I-8 & I-10          | N   | 4      | 4        | CASA GRANDE  |
| X     | 64         | I-8 & -10           | SE  | 4      | 4        | CASA GRANDE  |
| X     | 65         | SR84 & SR387        | W   | 2      | 2        | CASA GRANDE  |
| X     | 66         | SR84 & SR387        | Е   | 2      | 2        | CASA GRANDE  |
| X     | 67         | SR84 & SR387        | N   | 2      | 2        | CASA GRANDE  |
| XI    | 95         | SR264 & SR87        | Е   | 2      | 2        | SECOND MESA  |
| XI    | 96         | SR264 & SR87        | W   | 2      | 2        | SECOND MESA  |
| XI    | 97         | SR264 & SR87        | S   | 2      | 2        | SECOND MESA  |
| XI    | 98         | US16O & US163       | NE  | 2      | 2        | KAYENTA      |
| XI    | 99         | US160 & US163       | SW  | 2      | 2        | KAYENTA      |
| XI    | 100        | US160&US163         | N   | 2      | 2        | KAYENTA      |
| XI    | 101        | US160 & SR264       | W   | 2      | 2        | TUBA CITY    |
| XI    | 102        | US160 & SR264       | NE  | 2      | 2        | TUBA CITY    |
| XI    | 103        | US160 & SR264       | SE  | 2      | 2        | TUBA CITY    |
| XI    | 104        | US89 & SR64         | S   | 2      | 2        | CAMERON      |
| XI    | 105        | US89 & SR64         | N   | 2      | 2        | CAMERON      |
| XI    | 106        | US89 & SR64         | W   | 2      | 2        | CAMERON      |
| XI    | 122        | SR264 & US191       | E   | 2      | 2        | GANADA       |
| XI    | 123        | SR264 & US191       | W   | 2      | 2        | GANADA       |
| XI    | 124        | SR264&US191         | N   | 2      | 2        | GANADA       |
| XII   | 113        | SR64 & US160        | S   | 2      | 2        | GRAND CANYON |
| XII   | 114        | SR64 & US180        | N   | 2      | 2        | GRAND CANYON |
| XII   | 115        | SR64&US180          | SE  | 2      | 2        | GRAND CANYON |
| XII   | 116        | SR67 & US89A        | SE  | 2      | 2        | JACOBS LAKE  |
| XII   | 117        | SR67 & US89A        | NW  | 2      | 2        | JACOBS LAKE  |
| XII   | 118        | SR67 & US89A        | S   | 2      | 2        | JACOBS LAKE  |

# Strauss and Semmens, 2006

- ADOT POE sites collect traffic data as follows:
  - o Large POE facilities tend to be located on Interstates and mostly operate seven days a week, 24 hours a day.
  - Smaller/secondary POEs operate eight to 16 hours a day, five to seven days a
    week. Hours of operation are determined according to traffic and/or staffing
    availability.
  - o International POE hours of operation are determined by U.S. Customs.
  - o For a location of Arizona POEs, see Figure A-1.

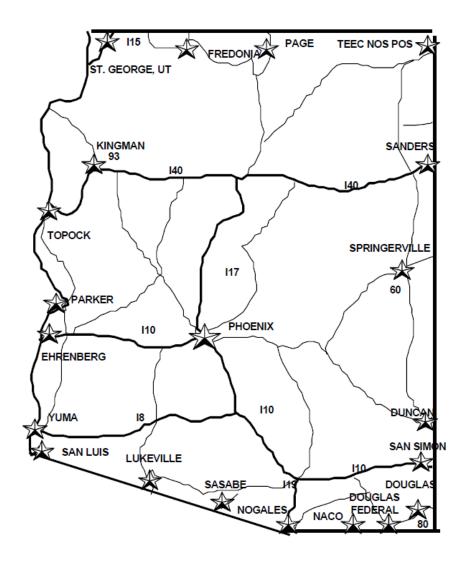



Figure A-1. Arizona Port of Entry Facility Locations.

These POE facility locations are measurement tools for assessing MVD POE performance (Jason Carey, Arizona Department of Transportation, September 2003). Several of these sites are no longer operable.

# **Skszek**, 2003

- As of 2003, the MPD Traffic Studies Section maintained 65 ATRs and 6 WIM sites.
  - o Of the 65 ATR sites, only 26 were functional.
  - The traffic data collected from these sites included count, speed, and length. The length data were not classifiable into the FHWA 13-vehicle format due to the sensor type and configuration issues.

- o Five of the 26 sites that provided counts had one or more of the loops damaged and needing to be replaced.
- o None of the six WIM sites were functional.
- The ATRC maintains 18 traffic data collection sites for LTPP (see Figure A-2). Ten of the 18 sites are WIM sites and the remaining eight are AVCs.
  - o Fifteen of the 18 sites have piezo-electric sensors embedded in the pavement surface (asphalt or concrete).
  - o Three sites had bending plate sensors embedded in concrete.
  - Mostly, for all the sites, traffic data were retrieved monthly. For two of the high truck volume lanes/sites, traffic data were retrieved twice monthly, or if remote access to the site was possible and functional, then the traffic data were retrieved weekly.
- ADOT's Freeway Management System routinely collects count, speed, and some limited classification data from the inductive loop sensors placed roughly 0.33 miles apart along the freeway corridor.
  - o Using this system, trucks could only be classified using two categories, namely:
    - Trucks with lengths between 35 and 55 ft.
    - Trucks greater than 55 ft long.
    - The loops do not categorize trucks accurately for various reasons and should not be used for MEPDG inputs.
- The MVD has responsibility for commercial vehicle size and weight enforcement throughout the state.
  - There are 13 POE facilities that collect commercial vehicle data in support of the MVD
  - O Six of the 13 POE sites are equipped with WIM and gather count, speed, gross and axle weight, and classification data on a continuous basis.
  - The remaining seven POEs gather truck data manually through the use of static and/or portable scales. Information is recorded on a daily basis and then reported to the MVD on a monthly and yearly basis for statistical reviews.
  - The MVD has no permanent data collection sites on highways within the interior of the state.
- MPOs collect traffic counts for certain delegated highways in Maricopa and Pima
  counties using contractors. Traffic counts are performed to meet federal reporting
  requirements with no differentiation made between vehicle types. Any additional traffic
  data collection such as vehicle classification is performed for special studies only.

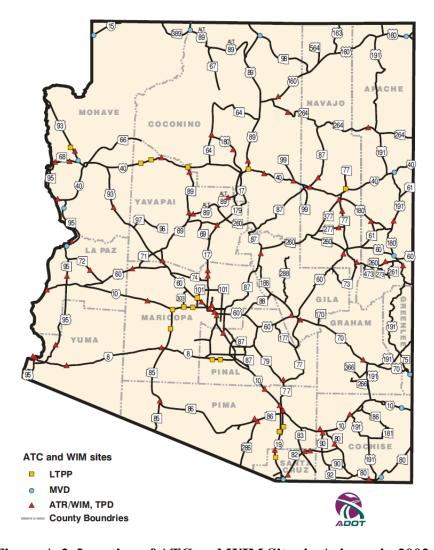



Figure A-2. Location of ATC and WIM Sites in Arizona in 2002.

# TRAFFIC DATA FOR PAVEMENT DESIGN

### **Interview with Javed Bari**

- The current pavement design methodology (AASHTO 1993) is based on ESALs.
- For ADOT pavement design, the Pavement Management System Section computes ESALs using the pavement management system software.
- ESALs are estimated using:
  - o The most recent estimates of AADT.
    - AADT and truck percentage are usually provided by the Traffic Engineering Group. The group typically hires a consultant to generate volume estimates, which may include truck percentage.
    - Growth factor is part of the ADOT traffic database. It is calculated as a 5-year moving average of AADT. Sometimes, a growth rate as high as 6

percent may be reported. The highest estimate of ESALs for a 20-year cumulative rigid ESAL historically used by ADOT is 338 million.

- o 1999 vehicle classification and weight data.
  - The 1999 vehicle classification and weight data are based on the results of a study sponsored by ADOT from 1995 to 1997 (Alavi and Senn, 1999).
- O Truck factors used for estimating ESALs are obtained from the *Preliminary Engineering and Design Manual* (ADOT, 1989). Note that the manual was published in 1989, while truck classification and weight data are obtained from Alavi and Senn, published in 1999. ESALs computed using the ADOT *Preliminary Engineering and Design Manual* may be significantly different than would be calculated with current weight data.
- Truck weights used for estimating ESALs are obtained from four designated POEs. LTPP WIM data are not used for deriving truck factors used for estimating ESALs for ADOT.

#### ADOT Preliminary Engineering and Design Manual, 1989

- Raw traffic data for estimating ESALs for pavement design are provided by ADOT's Transportation Planning Division (TPD) or the Local Government Coordination Group. The latter provides traffic data for all urban areas with the exception of Pima (Tucson) and Maricopa (Phoenix and suburbs) counties. Traffic data for these counties are provided by the Pima Association of Governments and the Maricopa Association of Governments, respectively. Traffic data for all other regions of the state are provided by the TPD. An actual estimation of 18-kip ESALs is performed by the ADOT Materials Group for all state highways.
- The ADOT Materials Group maintains the last 10 years of traffic volume data from which traffic volume and growth factors are calculated using regression analysis.
- In 1989, the TPD had 983 ATRs located throughout the state. Traffic counts from these ATR sites are published annually.
- The TPD categorizes traffic into seven classes as follows (see Figure A-3):
  - o Commercial vehicles:
    - Light trucks.
    - Medium trucks.
    - Tractor semi-trailer.
    - Tractor trailer.
    - Tractor semi-trailer trailer.
  - Non-commercial vehicles:
    - Buses.
    - Automobiles.

A 5-year moving average of classification data is used to estimate the percentage distribution among the vehicle categories.

- Truck factors:
  - The TPD conducts a truck weight study biennially during which a sample of the axle weights for the 13 FHWA vehicle classes is obtained and used to generate truck factor information needed to compute 18-kip ESALs. Actual values of truck

- factors are determined using regression models developed using data from the last six truck weight studies.
- Multiplying the truck factors for each vehicle type by the number of vehicles of each type over the design period and summing it will provide the cumulative number of 18-kip ESALs used in the design.
- These values have not been updated since the 1990s.

#### • WIM:

- The TPD has two WIM devices that automatically sense the dynamic weight of moving axles, estimate vehicle velocity, and classify vehicles by type.
- There are 14 POE locations where commercial vehicles are regularly weighed.
   The weight data are collected and recorded manually by the MVD. The present procedures do not offer a convenient means of using the POE truck weight data for traffic loading estimates.

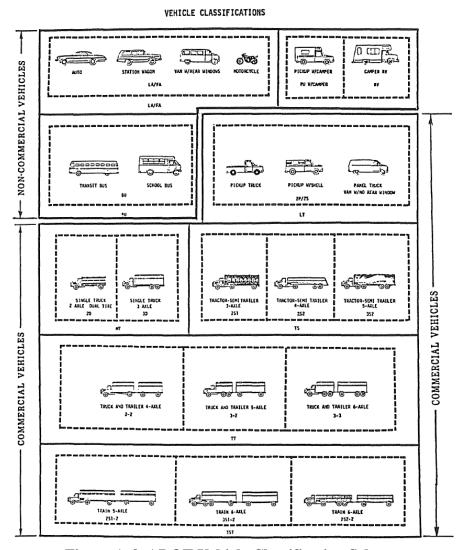



Figure A-3. ADOT Vehicle Classification Scheme.

# APPENDIX B. SUMMARY OF VCD DATA USED FOR ANALYSIS

This appendix presents plots of the VCD data for projects in Arizona identified with the required VCD data. Note that not all of the data presented in this appendix were included in the analysis, as some data wereas deemed atypical, anomalous, or erroneous.

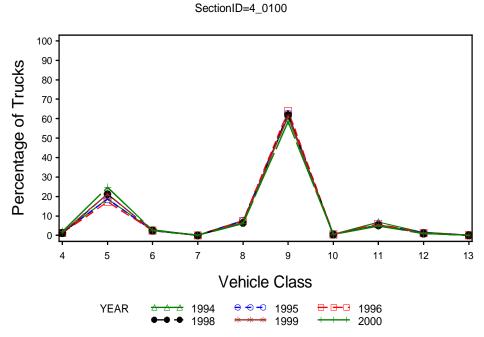



Figure B-1. Plot of Vehicle Class Distribution for Site 4\_0100.

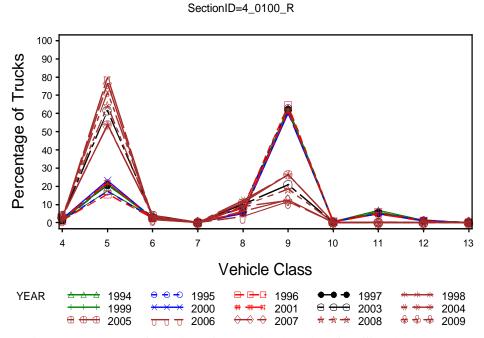



Figure B-2. Plot of Vehicle Class Distribution for Site 4\_0100\_R.

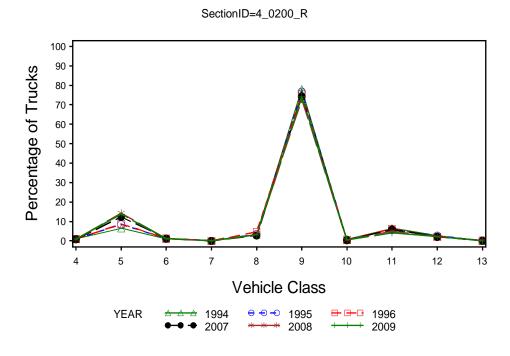



Figure B-3. Plot of Vehicle Class Distribution for Site 4\_0200\_R.

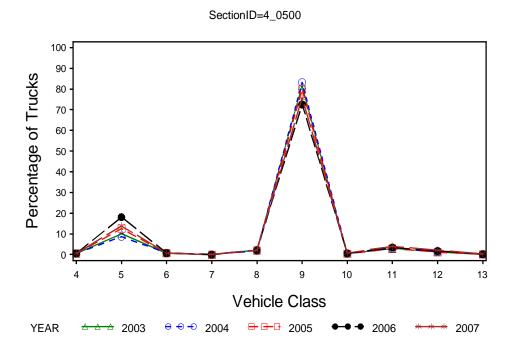



Figure B-4. Plot of Vehicle Class Distribution for Site 4\_0500.

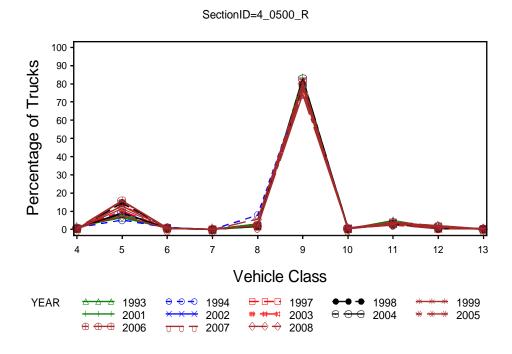



Figure B-5. Plot of Vehicle Class Distribution for Site 4\_0500\_R.

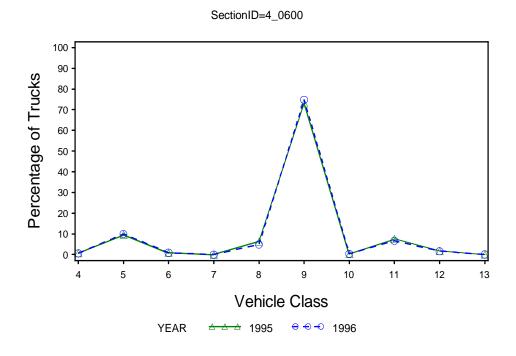



Figure B-6. Plot of Vehicle Class Distribution for Site 4\_0600.

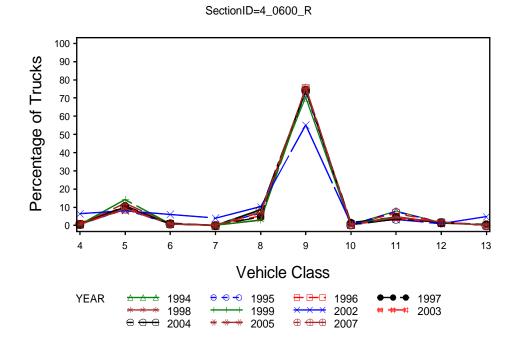



Figure B-7. Plot of Vehicle Class Distribution for Site 4\_0600\_R.

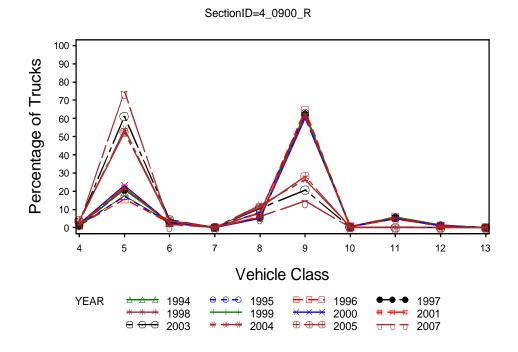



Figure B-8. Plot of Vehicle Class Distribution for Site 4\_0900\_R.

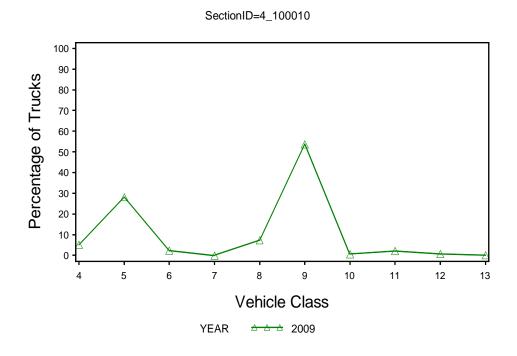



Figure B-9. Plot of Vehicle Class Distribution for Site 4\_100010.

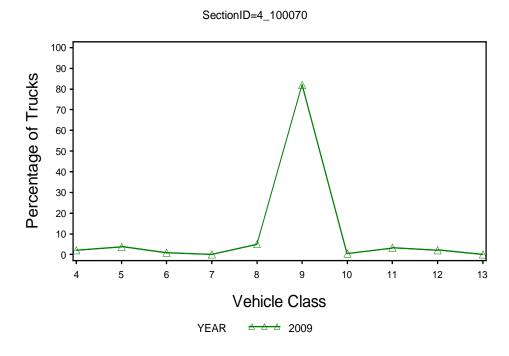



Figure B-10. Plot of Vehicle Class Distribution for Site 4\_100070.

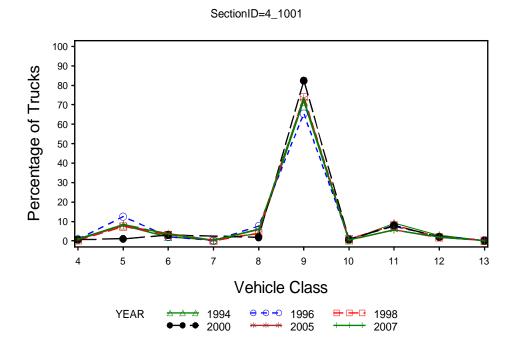



Figure B-11. Plot of Vehicle Class Distribution for Site 4\_1001.

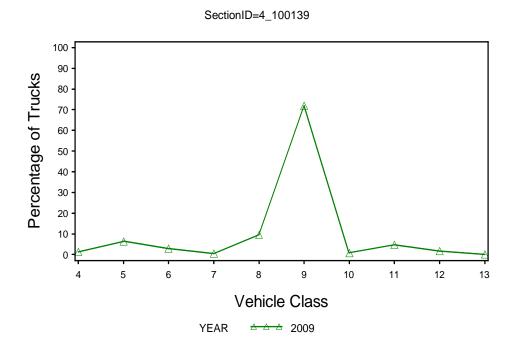



Figure B-12. Plot of Vehicle Class Distribution for Site 4\_100139.

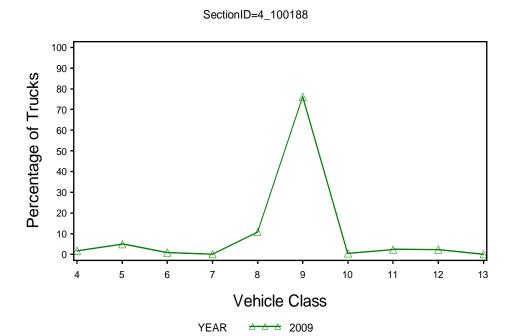



Figure B-13. Plot of Vehicle Class Distribution for Site 4\_100188.

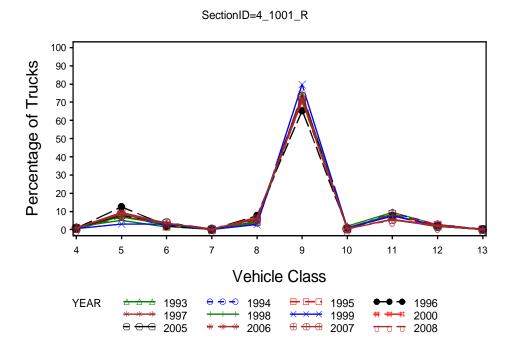
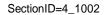




Figure B-14. Plot of Vehicle Class Distribution for Site 4\_1001\_R.



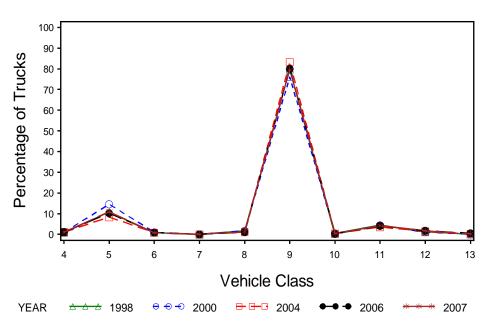



Figure B-15. Plot of Vehicle Class Distribution for Site 4\_1002.

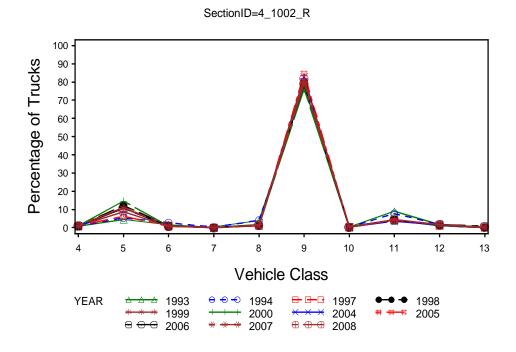



Figure B-16. Plot of Vehicle Class Distribution for Site 4\_1002\_R.

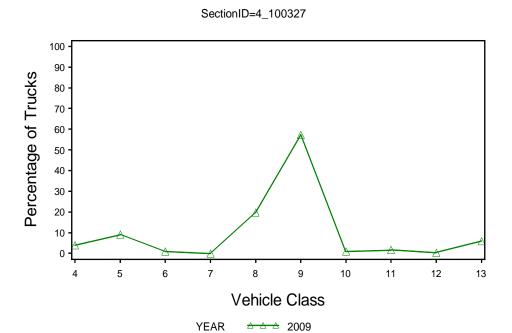



Figure B-17. Plot of Vehicle Class Distribution for Site 4\_100327.

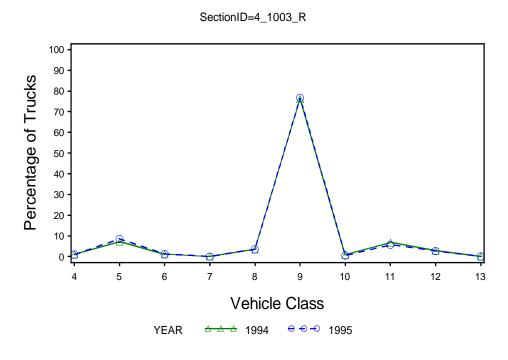



Figure B-18. Plot of Vehicle Class Distribution for Site 4\_1003\_R.

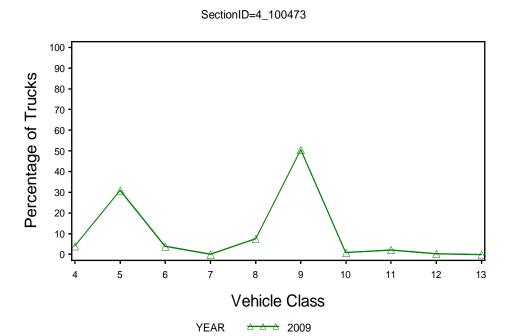



Figure B-19. Plot of Vehicle Class Distribution for Site 4\_100473.

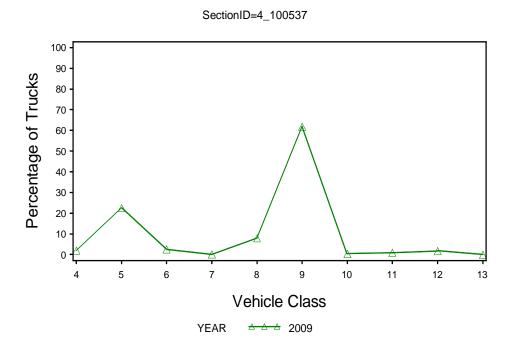



Figure B-20. Plot of Vehicle Class Distribution for Site 4\_100537.

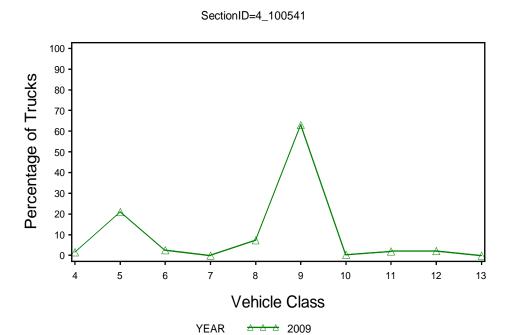



Figure B-21. Plot of Vehicle Class Distribution for Site 4\_100541.

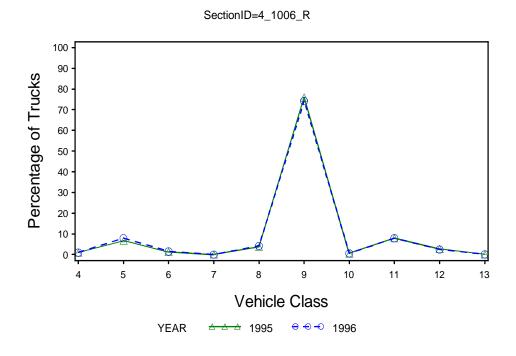



Figure B-22. Plot of Vehicle Class Distribution for Site 4\_1006\_R.

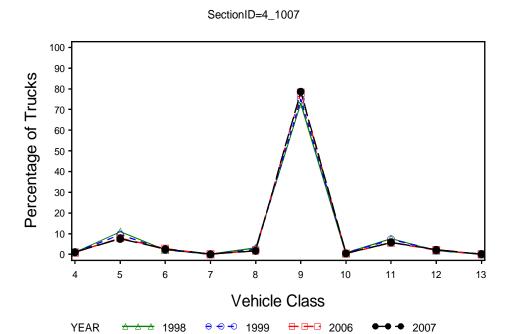



Figure B-23. Plot of Vehicle Class Distribution for Site 4\_1007.

**2007** 

YEAR

<del>△ △ △</del> 1998

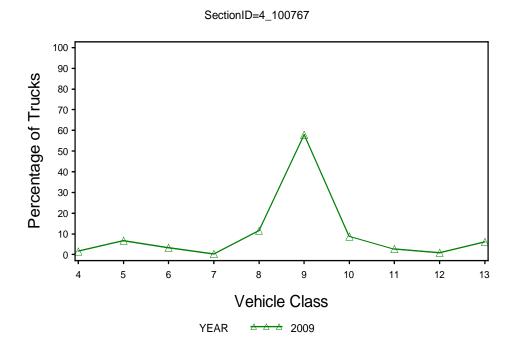



Figure B-24. Plot of Vehicle Class Distribution for Site 4\_100767.

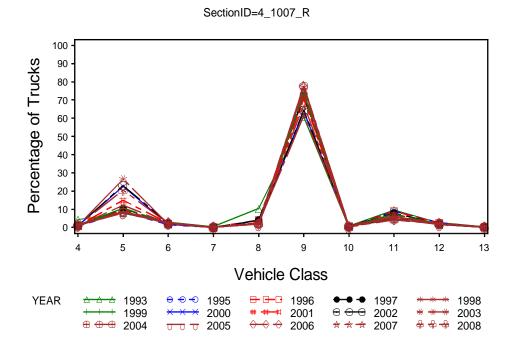



Figure B-25. Plot of Vehicle Class Distribution for Site 4\_1007\_R.

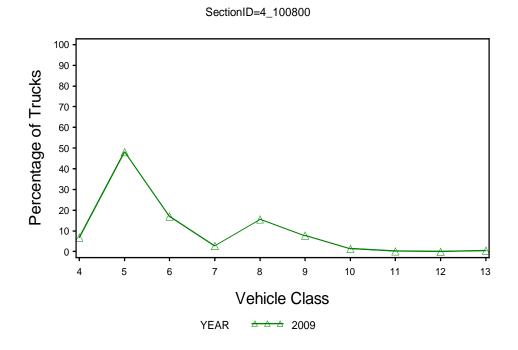



Figure B-26. Plot of Vehicle Class Distribution for Site 4\_100800.

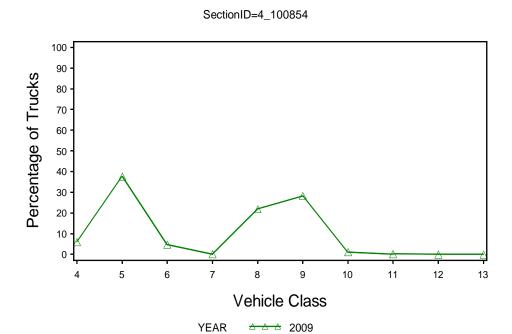



Figure B-27. Plot of Vehicle Class Distribution for Site 4\_100854.

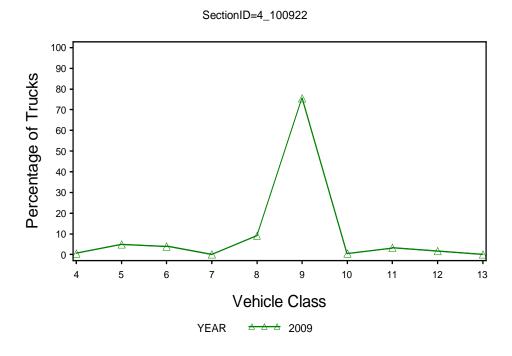



Figure B-28. Plot of Vehicle Class Distribution for Site 4\_100922.

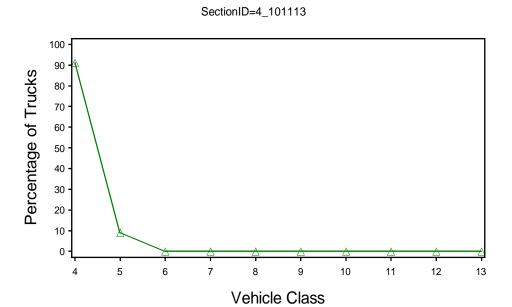



Figure B-29. Plot of Vehicle Class Distribution for Site 4\_101113.

<del>△ △ △</del> 2009

YEAR

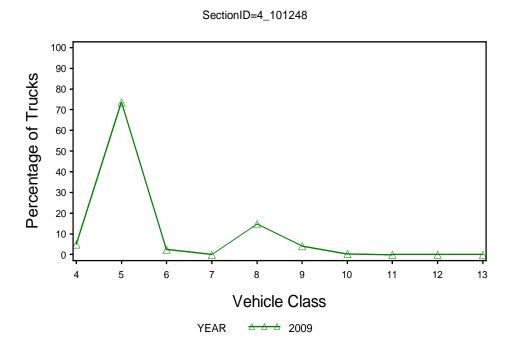



Figure B-30. Plot of Vehicle Class Distribution for Site 4\_101248.

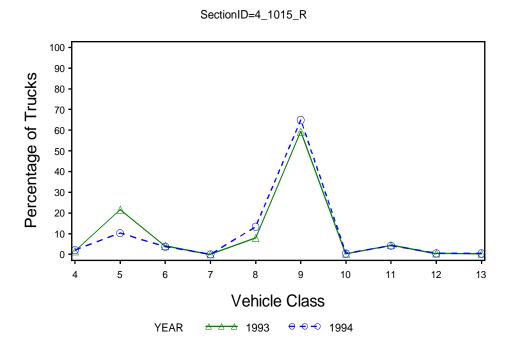



Figure B-31. Plot of Vehicle Class Distribution for Site 4\_1015\_R.

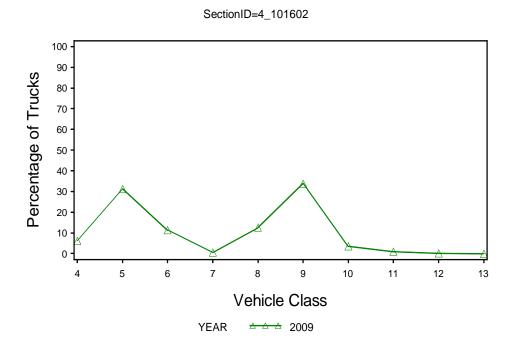



Figure B-32. Plot of Vehicle Class Distribution for Site 4\_101602.

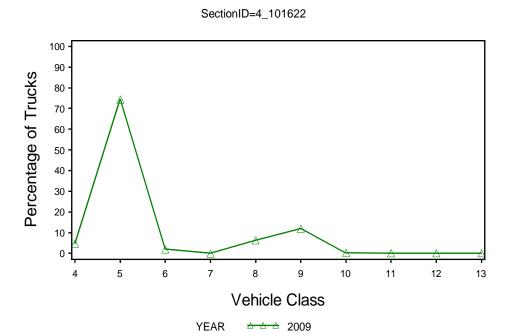



Figure B-33. Plot of Vehicle Class Distribution for Site 4\_101622.

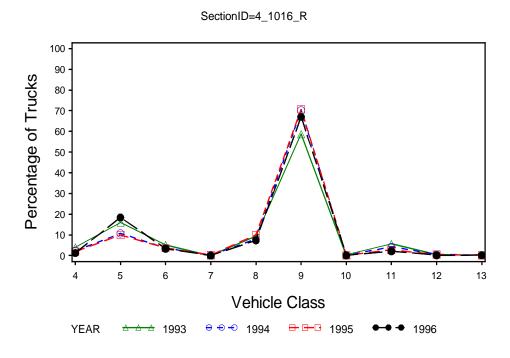



Figure B-34. Plot of Vehicle Class Distribution for Site 4\_1016\_R.

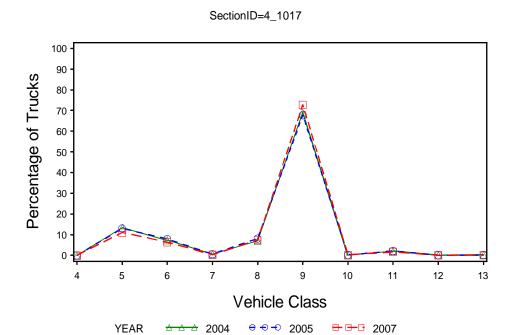



Figure B-35. Plot of Vehicle Class Distribution for Site 4\_1017.

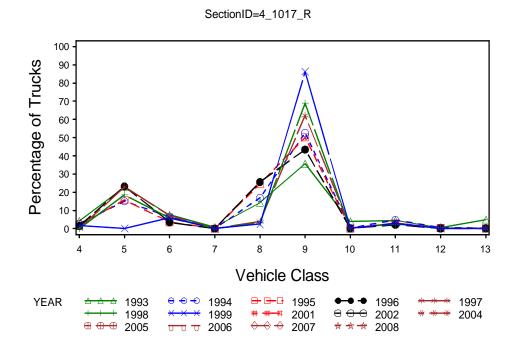



Figure B-36. Plot of Vehicle Class Distribution for Site 4\_1017\_R.

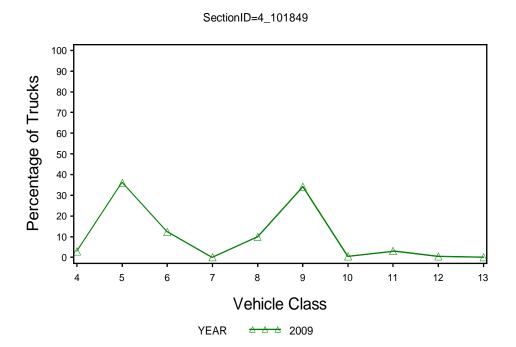



Figure B-37. Plot of Vehicle Class Distribution for Site 4\_101849.

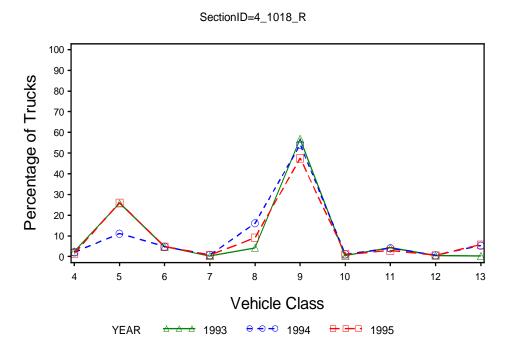



Figure B-38. Plot of Vehicle Class Distribution for Site 4\_1018\_R.

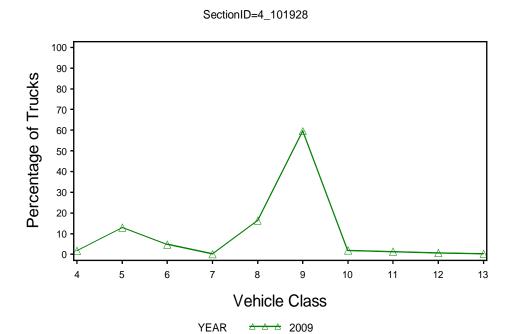



Figure B-39. Plot of Vehicle Class Distribution for Site 4\_101928.

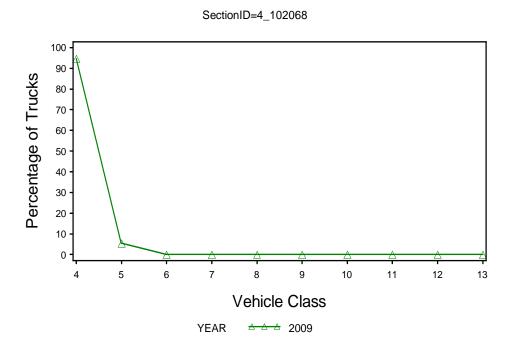



Figure B-40. Plot of Vehicle Class Distribution for Site 4\_102068.

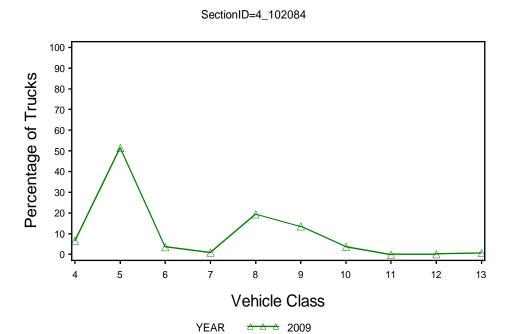



Figure B-41. Plot of Vehicle Class Distribution for Site 4\_102084.

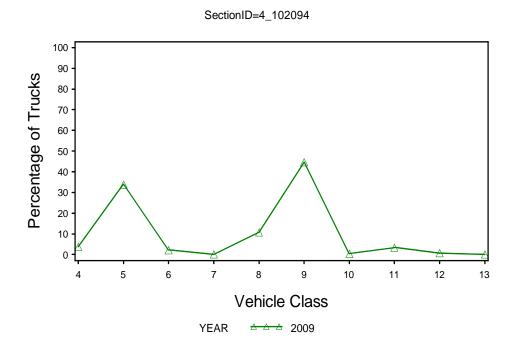



Figure B-42. Plot of Vehicle Class Distribution for Site 4\_102094.

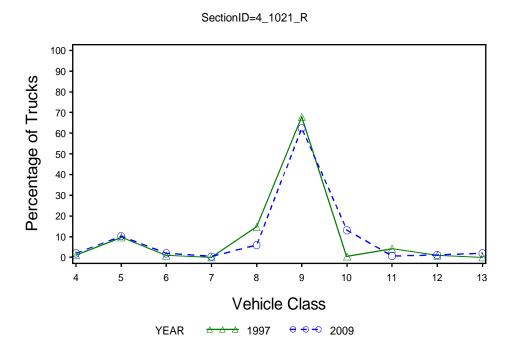



Figure B-43. Plot of Vehicle Class Distribution for Site 4\_1021\_R.

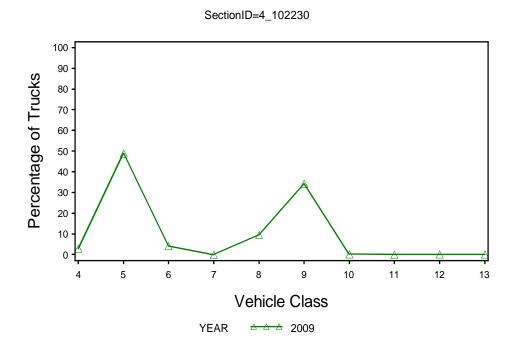



Figure B-44. Plot of Vehicle Class Distribution for Site 4\_102230.

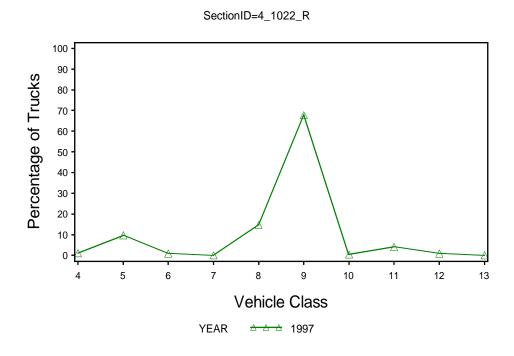



Figure B-45. Plot of Vehicle Class Distribution for Site 4\_1022\_R.

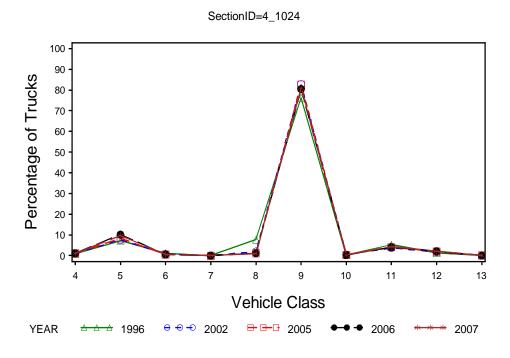



Figure B-46. Plot of Vehicle Class Distribution for Site 4\_1024.

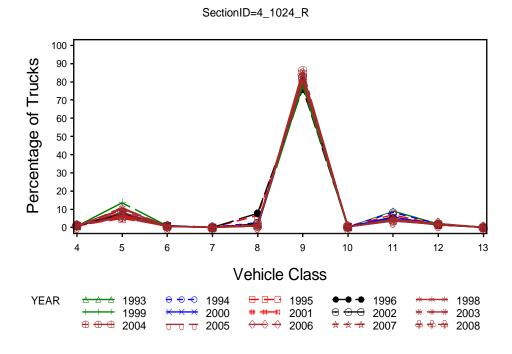



Figure B-47. Plot of Vehicle Class Distribution for Site 4\_1024\_R.

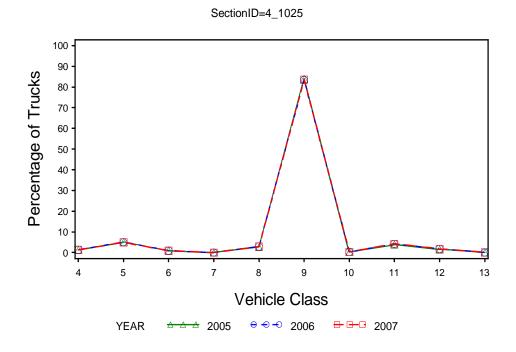



Figure B-48. Plot of Vehicle Class Distribution for Site 4\_1025.

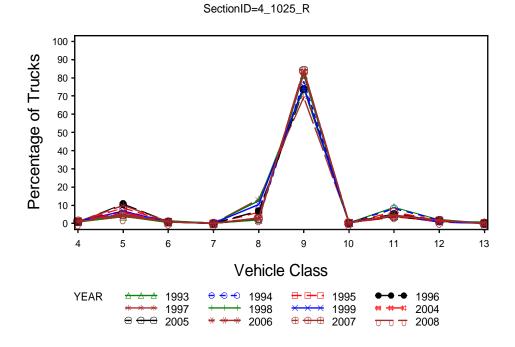



Figure B-49. Plot of Vehicle Class Distribution for Site 4\_1025\_R.

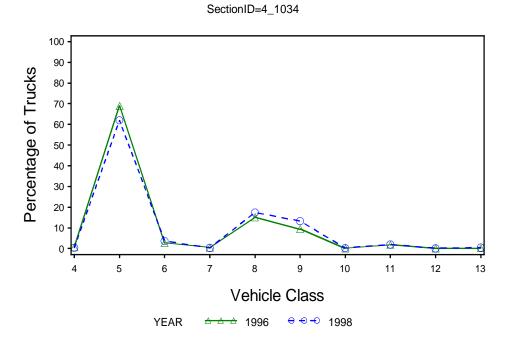



Figure B-50. Plot of Vehicle Class Distribution for Site 4\_1034.

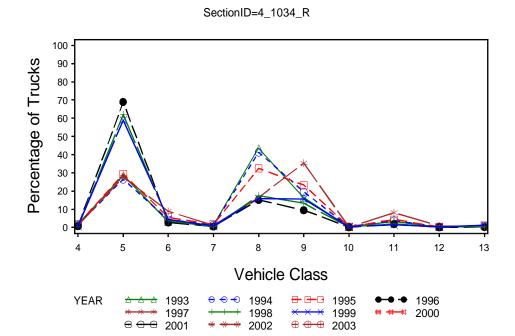



Figure B-51. Plot of Vehicle Class Distribution for Site 4\_1034\_R.



Figure B-52. Plot of Vehicle Class Distribution for Site 4\_1036\_R.

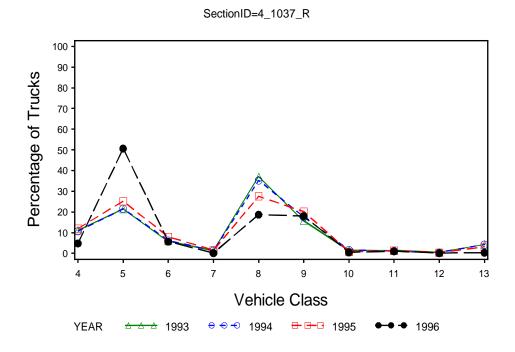



Figure B-53. Plot of Vehicle Class Distribution for Site 4\_1037\_R.

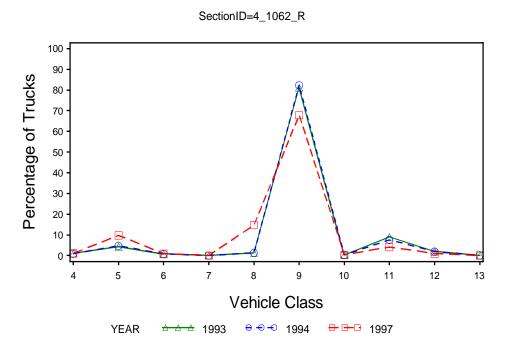



Figure B-54. Plot of Vehicle Class Distribution for Site 4\_1062\_R.

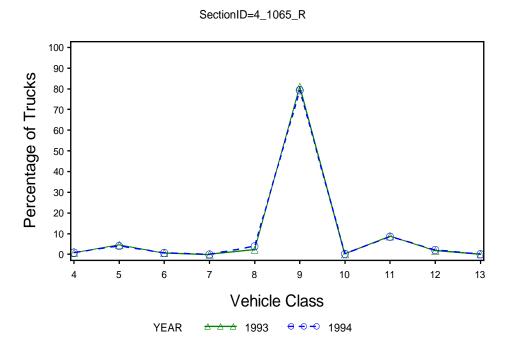



Figure B-55. Plot of Vehicle Class Distribution for Site 4\_1065\_R.

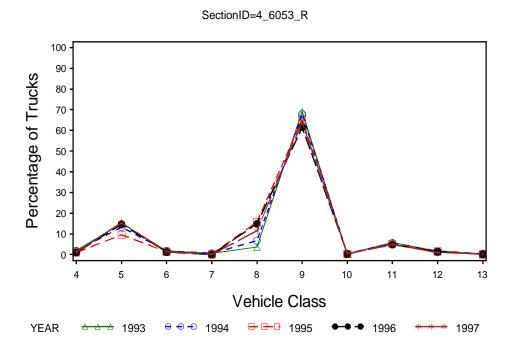



Figure B-56. Plot of Vehicle Class Distribution for Site 4\_6053\_R.

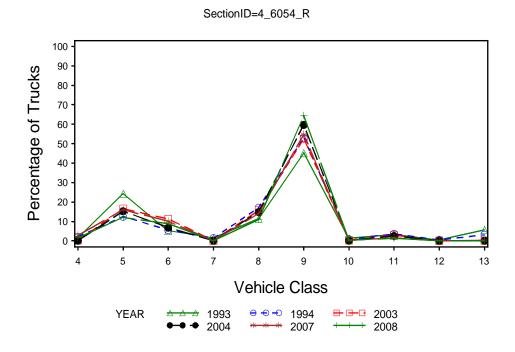



Figure B-57. Plot of Vehicle Class Distribution for Site 4\_6054\_R.

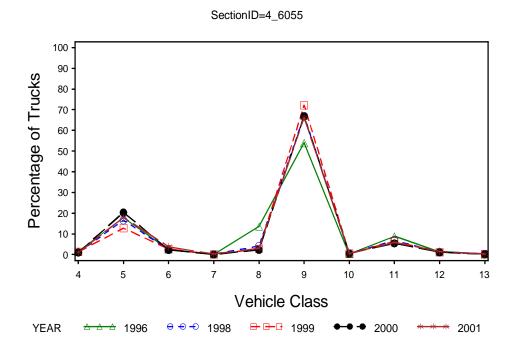



Figure B-58. Plot of Vehicle Class Distribution for Site 4\_6055.

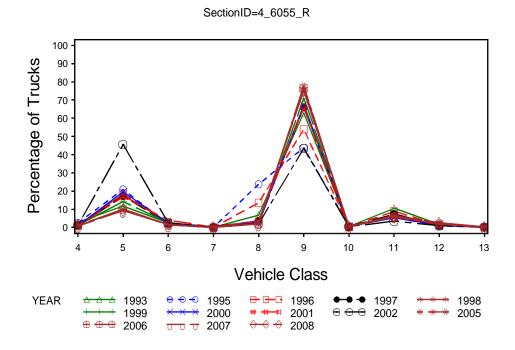



Figure B-59. Plot of Vehicle Class Distribution for Site 4\_6055\_R.

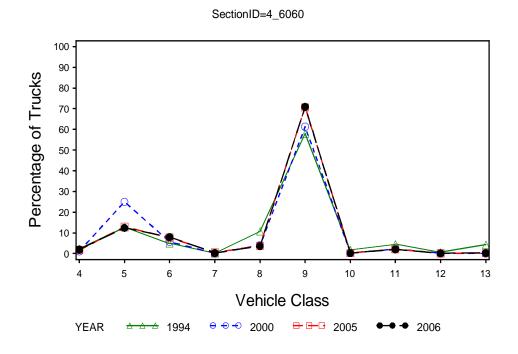



Figure B-60. Plot of Vehicle Class Distribution for Site 4\_6060.

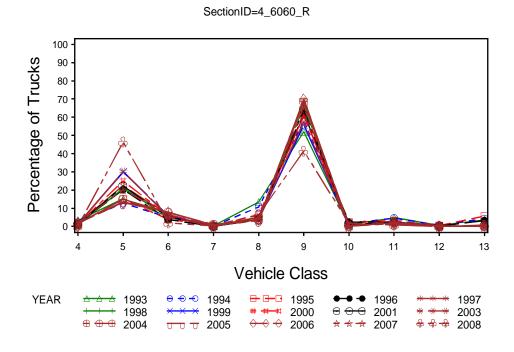



Figure B-61. Plot of Vehicle Class Distribution for Site 4\_6060\_R.

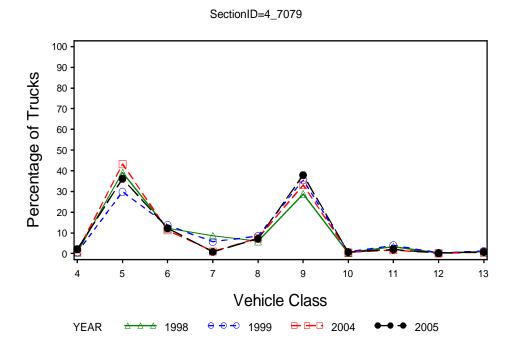



Figure B-62. Plot of Vehicle Class Distribution for Site 4\_7079.

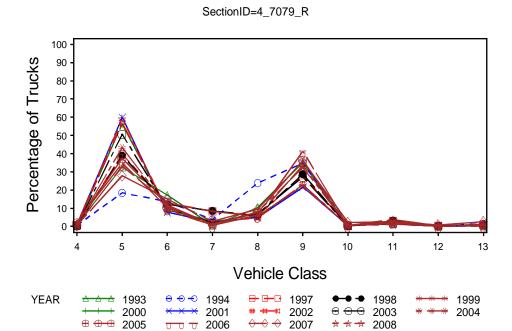



Figure B-63. Plot of Vehicle Class Distribution for Site 4\_7079\_R.

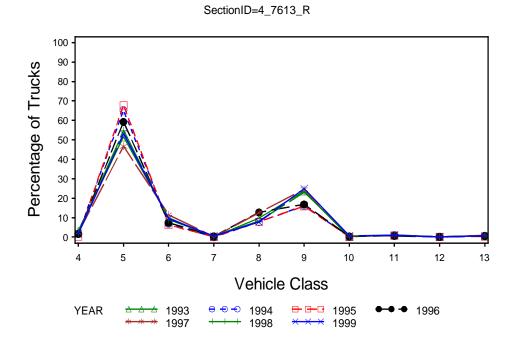



Figure B-64. Plot of Vehicle Class Distribution for Site 4\_7613\_R.



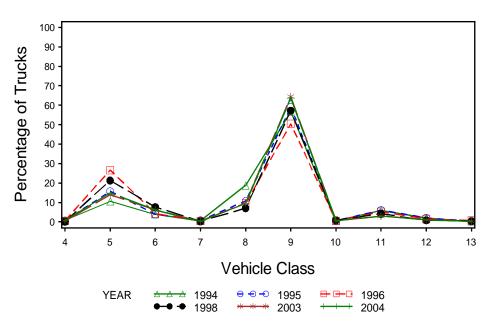



Figure B-65. Plot of Vehicle Class Distribution for Site 4\_7614.

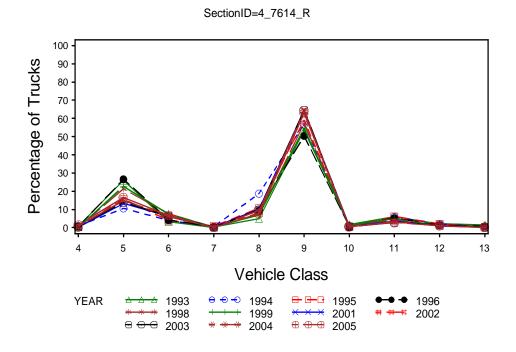
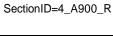




Figure B-66. Plot of Vehicle Class Distribution for Site 4\_7614\_R.



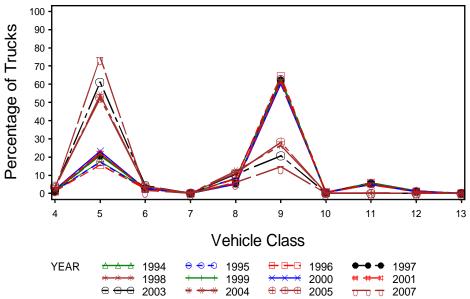



Figure B-67. Plot of Vehicle Class Distribution for Site 4\_A900\_R.

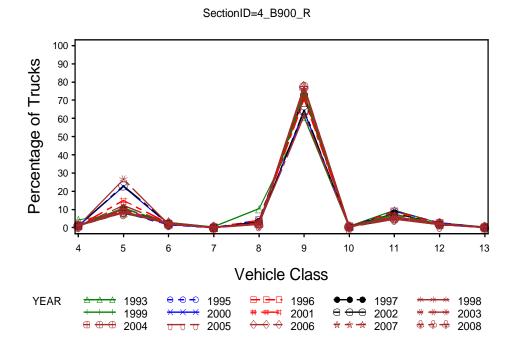



Figure B-68. Plot of Vehicle Class Distribution for Site 4\_B900\_R.

## APPENDIX C. SUMMARY OF HOURLY TRUCK DISTRIBUTION DATA USED FOR ANALYSIS

This appendix presents plots of hourly truck distribution for Arizona projects for which these data were available. Note that not all of the data presented in this appendix were included in the analysis, as some data were deemed atypical, anomalous, or erroneous.

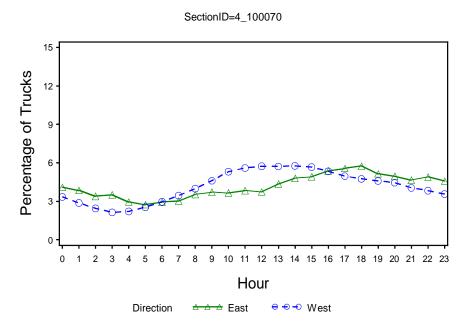



Figure C-1. Plot of Hourly Distribution for Site 4\_100070.

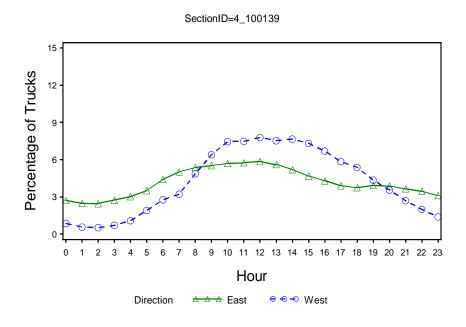



Figure C-2. Plot of Hourly Distribution for Site 4\_100139.

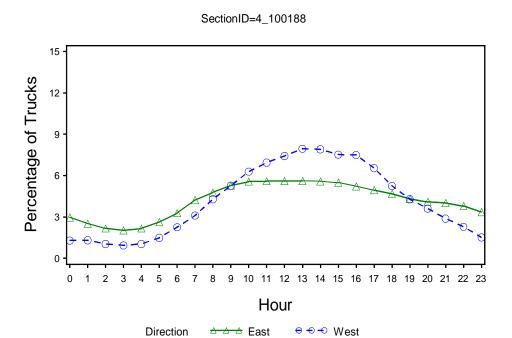



Figure C-3. Plot of Hourly Distribution for Site 4\_100188.

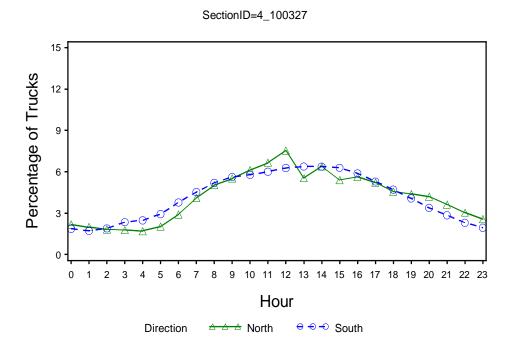



Figure C-4. Plot of Hourly Distribution for Site 4\_100327.

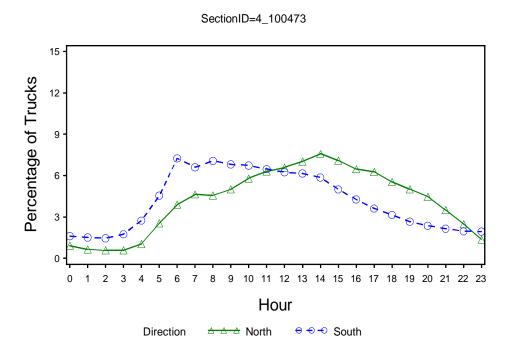



Figure C-5. Plot of Hourly Distribution for Site 4\_100473.

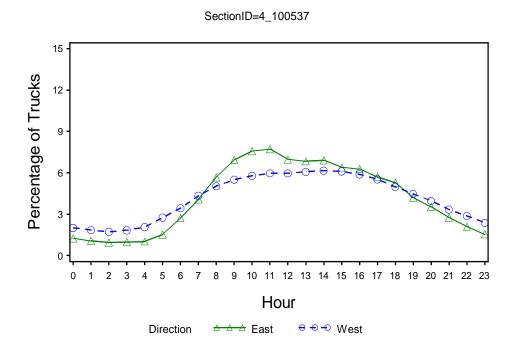



Figure C-6. Plot of Hourly Distribution for Site 4\_100537.

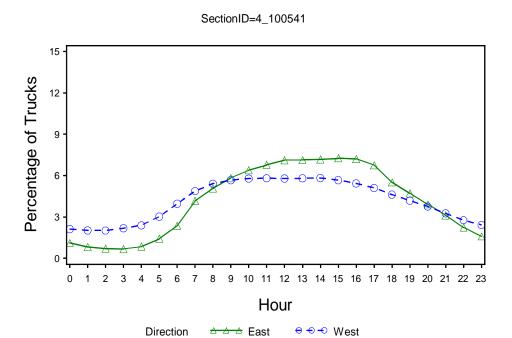



Figure C-7. Plot of Hourly Distribution for Site 4\_100541.

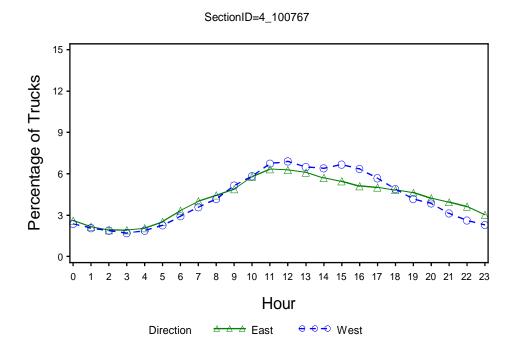



Figure C-8. Plot of Hourly Distribution for Site 4\_100767.

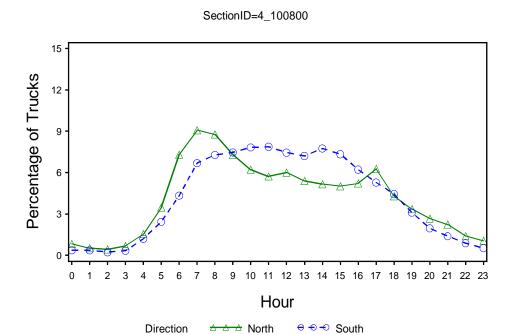



Figure C-9. Plot of Hourly Distribution for Site 4\_100800.

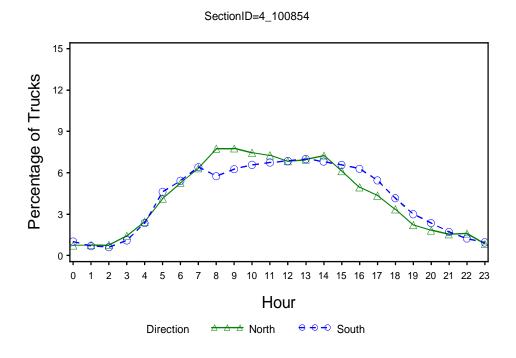



Figure C-10. Plot of Hourly Distribution for Site 4\_100854.

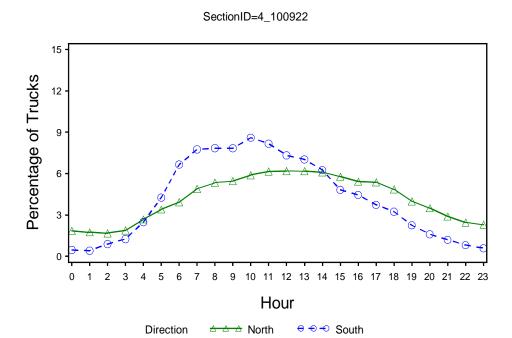



Figure C-11. Plot of Hourly Distribution for Site 4\_100922.

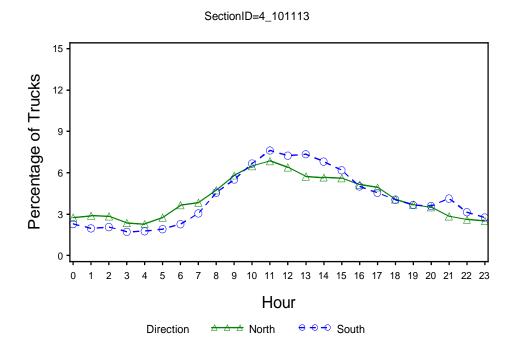



Figure C-12. Plot of Hourly Distribution for Site 4\_101113.

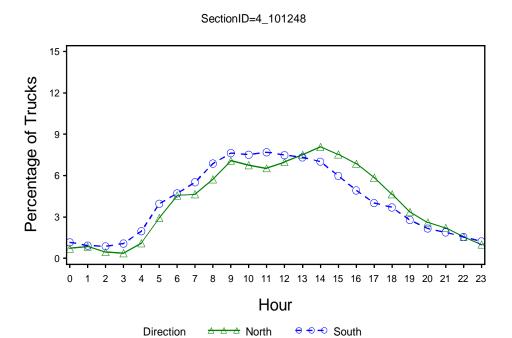



Figure C-13. Plot of Hourly Distribution for Site 4\_101248.

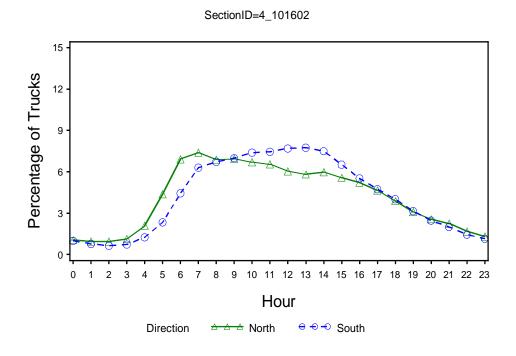



Figure C-14. Plot of Hourly Distribution for Site 4\_101602.

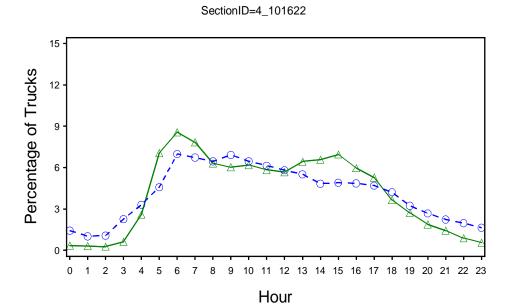



Figure C-15. Plot of Hourly Distribution for Site 4\_101622.

⊖ → → South

<del>△ △ △</del> North

Direction

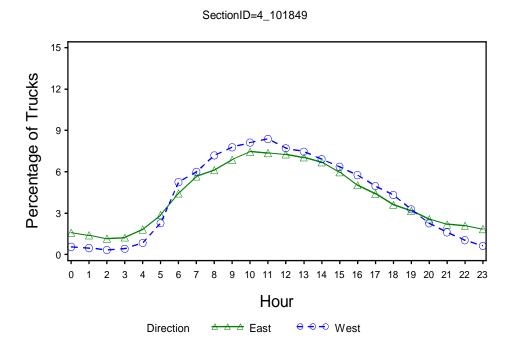



Figure C-16. Plot of Hourly Distribution for Site 4\_101849.

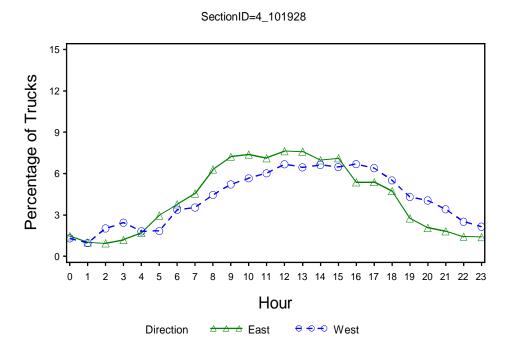



Figure C-17. Plot of Hourly Distribution for Site 4\_101928.

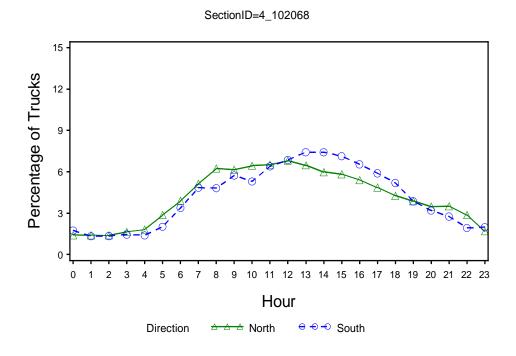



Figure C-18. Plot of Hourly Distribution for Site 4\_102068.

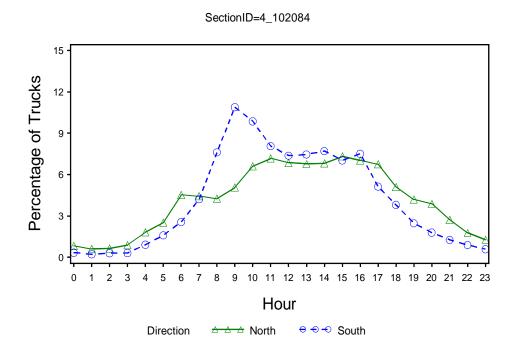



Figure C-19. Plot of Hourly Distribution for Site 4\_102084.

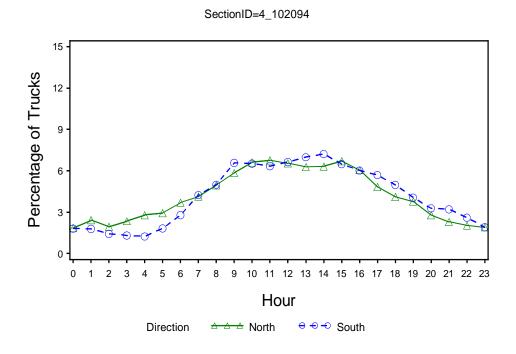



Figure C-20. Plot of Hourly Distribution for Site 4\_102094.

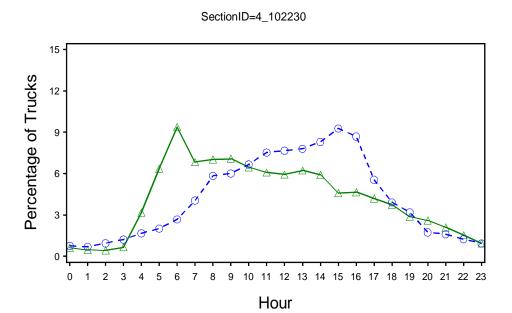



Figure C-21. Plot of Hourly Distribution for Site 4\_102230.

⊖ <del>•</del> • South

<del>△ △ △</del> North

Direction

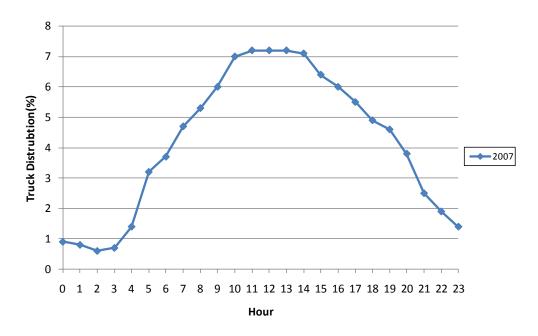



Figure C-22. Hourly Truck Distribution for Site 4\_0100.

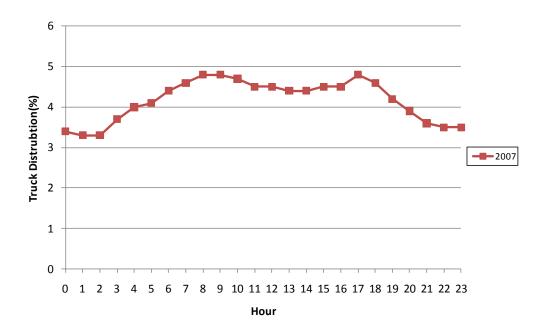



Figure C-23. Hourly Truck Distribution for Site 4\_0200.

## APPENDIX D. SUMMARY OF MAF DATA USED FOR ANALYSIS

This appendix presents plots of MAF for Arizona projects that had the required data. Note that not all of the data presented in this appendix were included in the analysis, as some data were deemed atypical, anomalous, or erroneous.

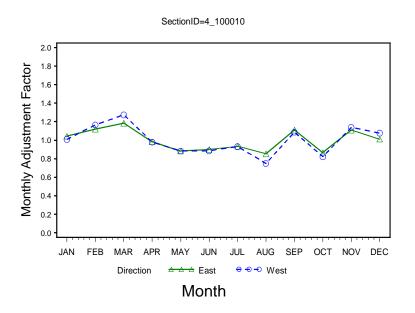



Figure D-1. Plot of Monthly Adjustment Factor for Site 4\_100010 (Vehicle Class 5).

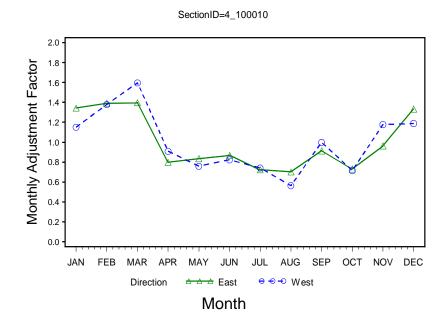



Figure D-2. Plot of Monthly Adjustment Factor for Site 4\_100010 (Vehicle Class 9).

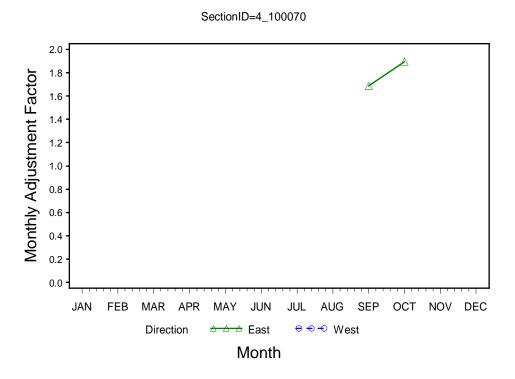



Figure D-3. Plot of Monthly Adjustment Factor for Site 4\_100070 (Vehicle Class 5).

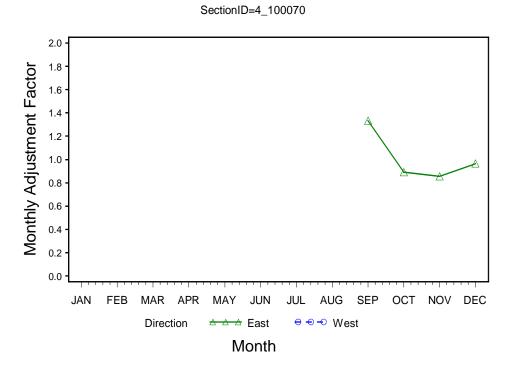



Figure D-4. Plot of Monthly Adjustment Factor for Site 4\_100070 (Vehicle Class 9).

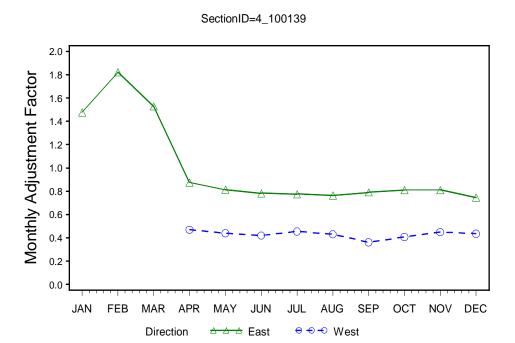



Figure D-5. Plot of Monthly Adjustment Factor for Site 4\_100139 (Vehicle Class 5).

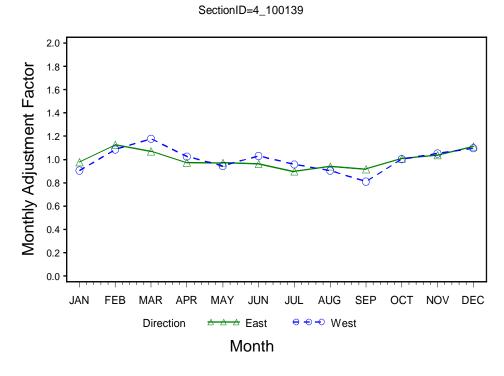



Figure D-6. Plot of Monthly Adjustment Factor for Site 4\_100139 (Vehicle Class 9).

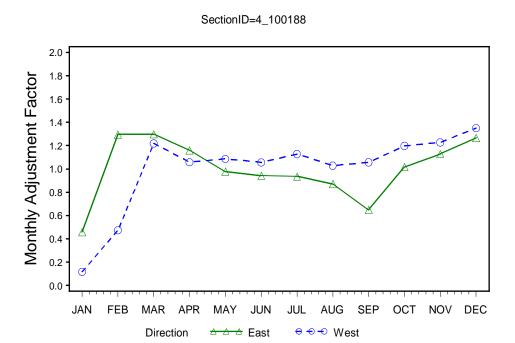



Figure D-7. Plot of Monthly Adjustment Factor for Site 4\_100188 (Vehicle Class 5).

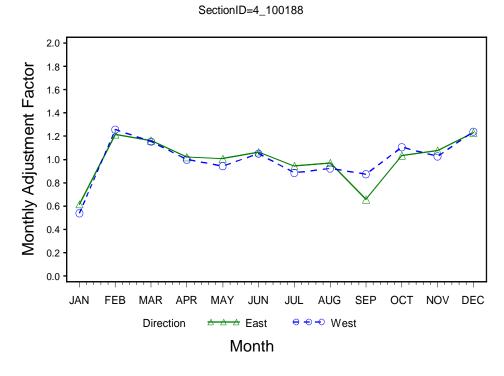



Figure D-8. Plot of Monthly Adjustment Factor for Site 4\_100188 (Vehicle Class 9).

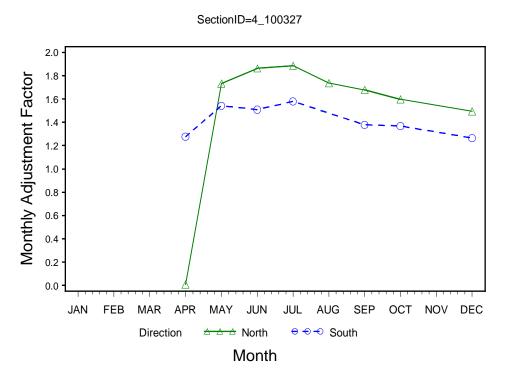



Figure D-9. Plot of Monthly Adjustment Factor for Site 4\_100327 (Vehicle Class 5).

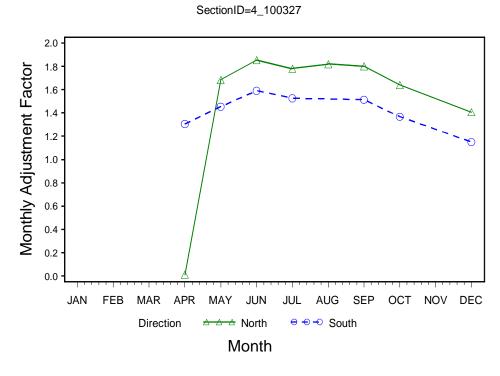



Figure D-10. Plot of Monthly Adjustment Factor for Site 4\_100327 (Vehicle Class 9).

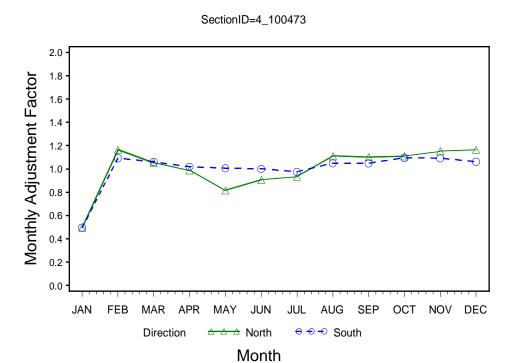



Figure D-11. Plot of Monthly Adjustment Factor for Site 4\_100473 (Vehicle Class 5).

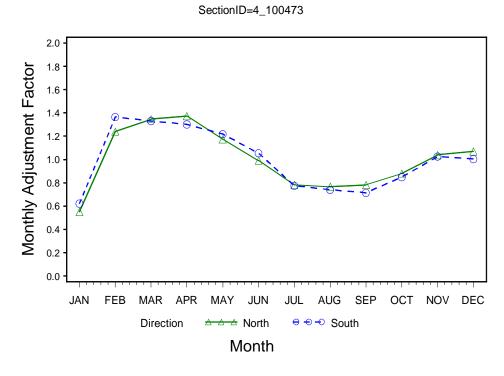



Figure D-12. Plot of Monthly Adjustment Factor for Site 4\_100473 (Vehicle Class 9).

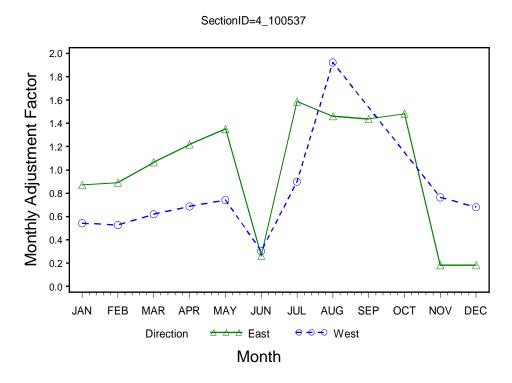



Figure D-13. Plot of Monthly Adjustment Factor for Site 4\_100537 (Vehicle Class 5).

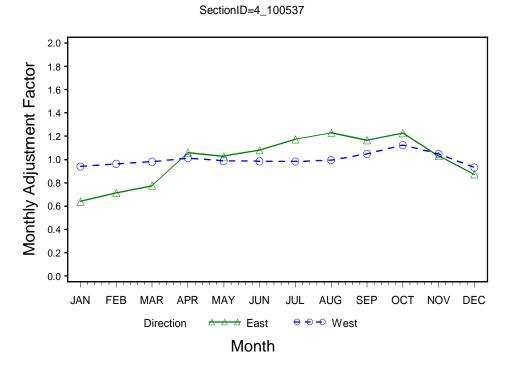



Figure D-14. Plot of Monthly Adjustment Factor for Site 4\_100537 (Vehicle Class 9).

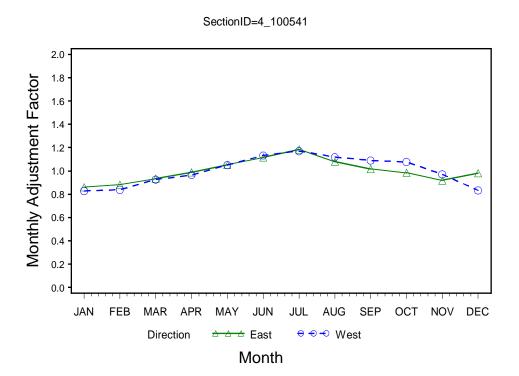



Figure D-15. Plot of Monthly Adjustment Factor for Site 4\_100541 (Vehicle Class 5).

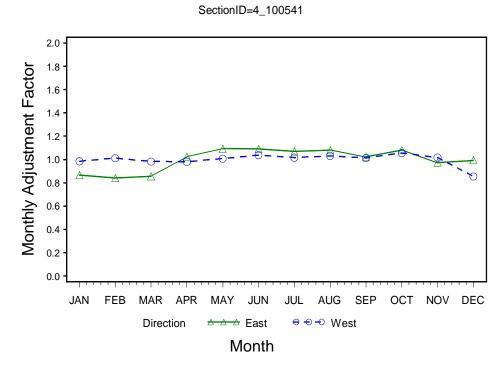



Figure D-16. Plot of Monthly Adjustment Factor for Site 4\_100541 (Vehicle Class 9).

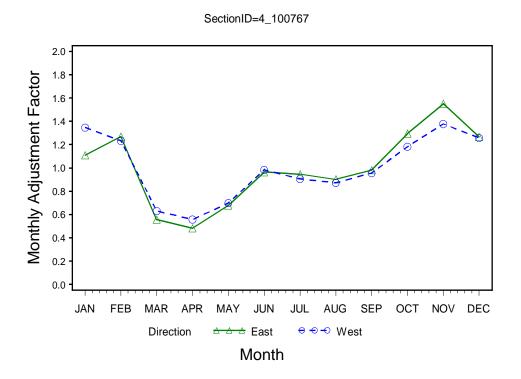



Figure D-17. Plot of Monthly Adjustment Factor for Site 4\_100767 (Vehicle Class 5).

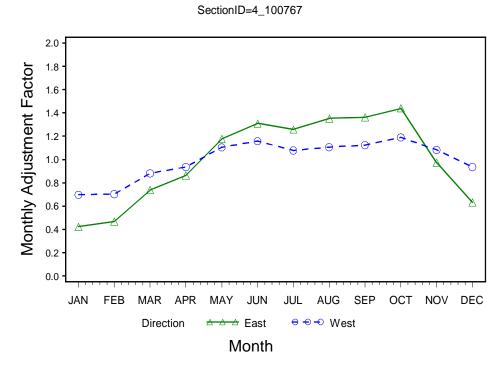



Figure D-18. Plot of Monthly Adjustment Factor for Site 4\_100767 (Vehicle Class 9).

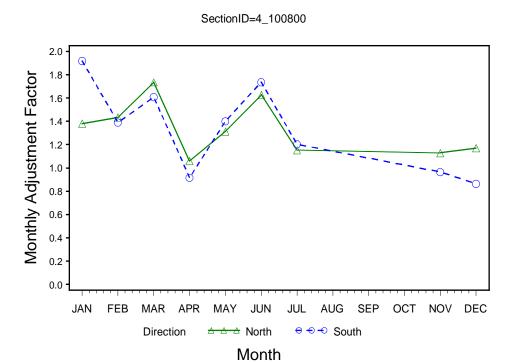



Figure D-19. Plot of Monthly Adjustment Factor for Site 4\_100800 (Vehicle Class 5).

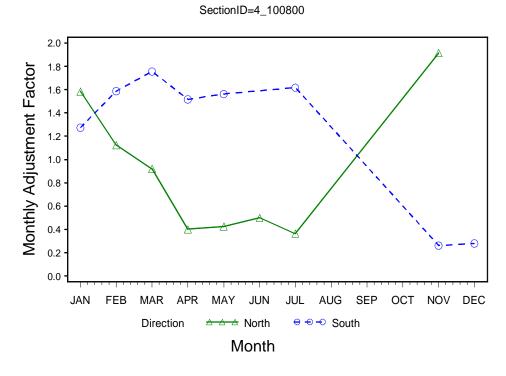



Figure D-20. Plot of Monthly Adjustment Factor for Site 4\_100800 (Vehicle Class 9).

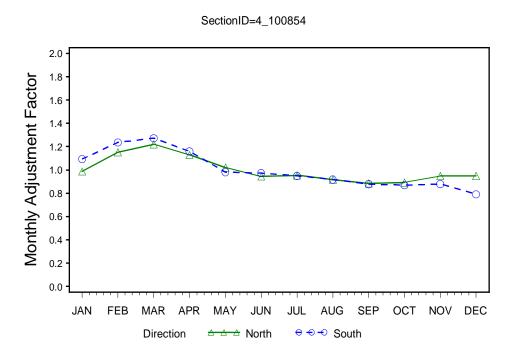



Figure D-21. Plot of Monthly Adjustment Factor for Site 4\_100854 (Vehicle Class 5).



Figure D-22. Plot of Monthly Adjustment Factor for Site 4\_100854 (Vehicle Class 9).

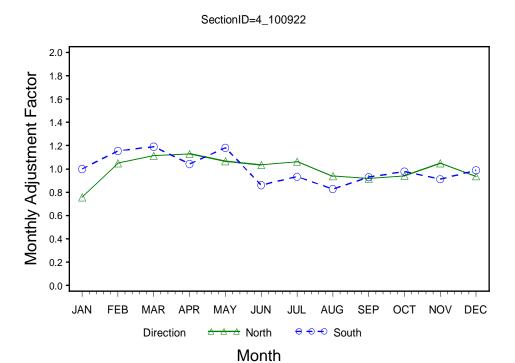



Figure D-23. Plot of Monthly Adjustment Factor for Site 4\_100922 (Vehicle Class 5).

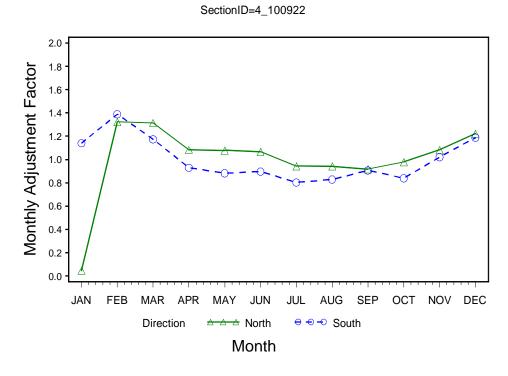



Figure D-24. Plot of Monthly Adjustment Factor for Site 4\_100922 (Vehicle Class 9).

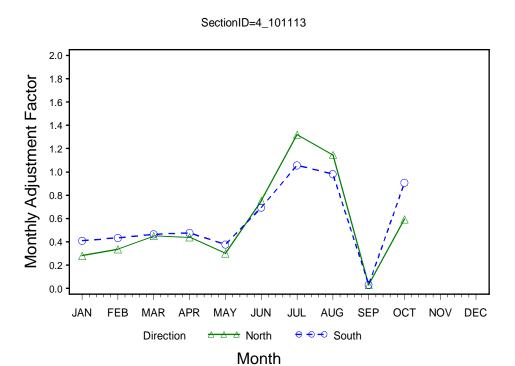



Figure D-25. Plot of Monthly Adjustment Factor for Site 4\_101113 (Vehicle Class 5).

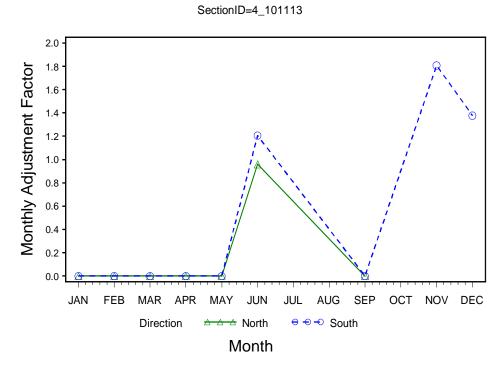



Figure D-26. Plot of Monthly Adjustment Factor for Site 4\_101113 (Vehicle Class 9).

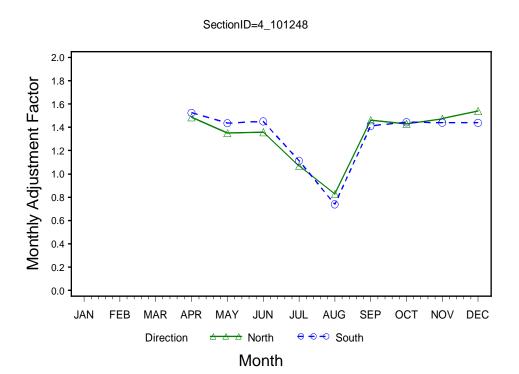



Figure D-27. Plot of Monthly Adjustment Factor for Site 4\_101248 (Vehicle Class 5).

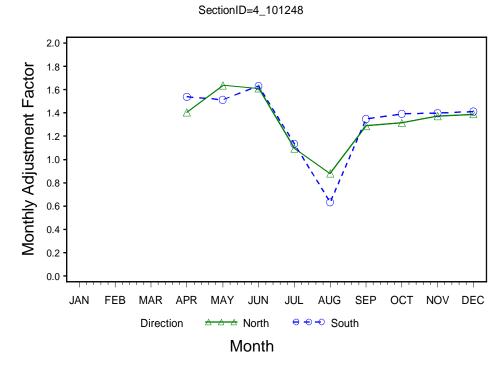



Figure D-28. Plot of Monthly Adjustment Factor for Site 4\_101248 (Vehicle Class 9).

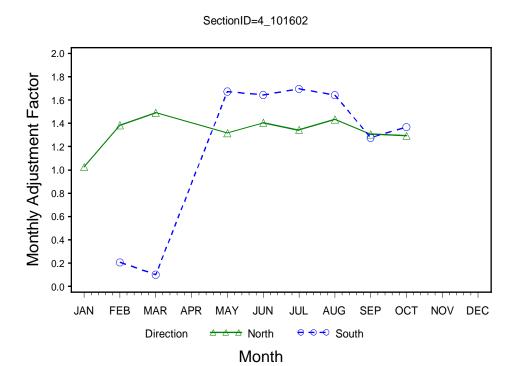



Figure D-29. Plot of Monthly Adjustment Factor for Site 4\_101602 (Vehicle Class 5).

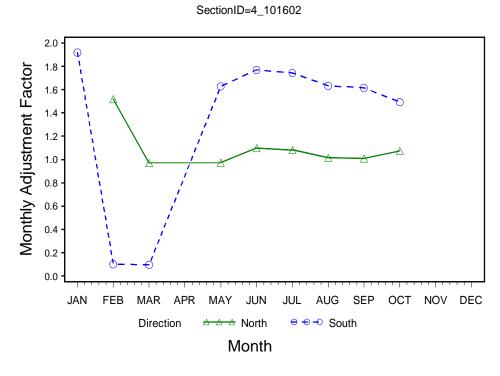



Figure D-30. Plot of Monthly Adjustment Factor for Site 4\_101602 (Vehicle Class 9).

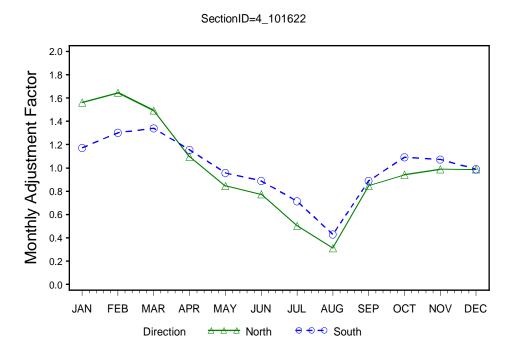



Figure D-31. Plot of Monthly Adjustment Factor for Site 4\_101622 (Vehicle Class 5).

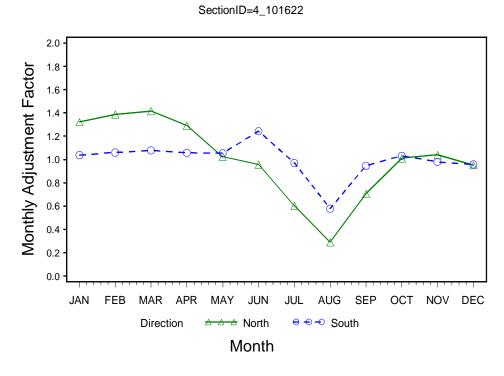



Figure D-32. Plot of Monthly Adjustment Factor for Site 4\_101622 (Vehicle Class 9).

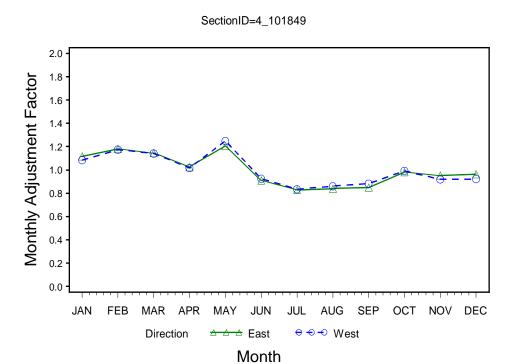



Figure D-33. Plot of Monthly Adjustment Factor for Site 4\_101849 (Vehicle Class 5).

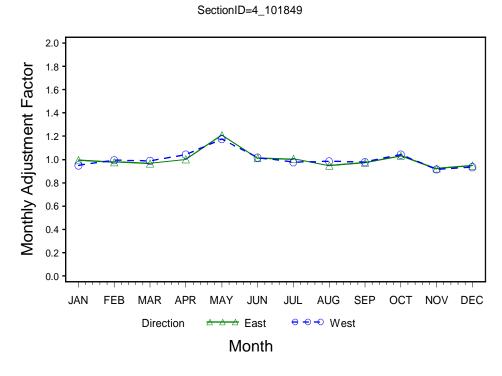



Figure D-34. Plot of Monthly Adjustment Factor for Site 4\_101849 (Vehicle Class 9).

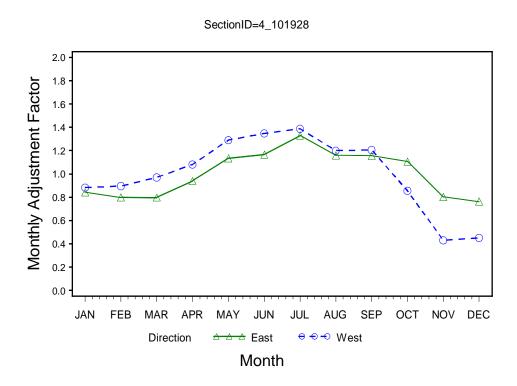



Figure D-35. Plot of Monthly Adjustment Factor for Site 4\_101928 (Vehicle Class 5).

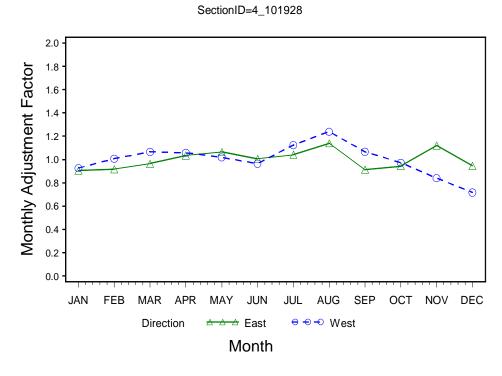



Figure D-36. Plot of Monthly Adjustment Factor for Site 4\_101928 (Vehicle Class 9).

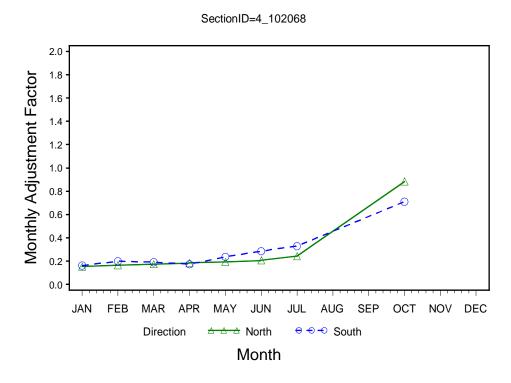



Figure D-37. Plot of Monthly Adjustment Factor for Site 4\_102068 (Vehicle Class 5).

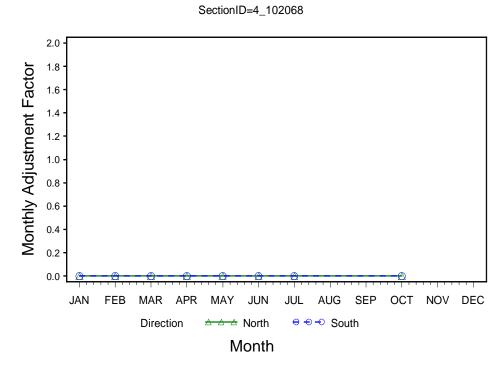



Figure D-38. Plot of Monthly Adjustment Factor for Site 4\_102068 (Vehicle Class 9).

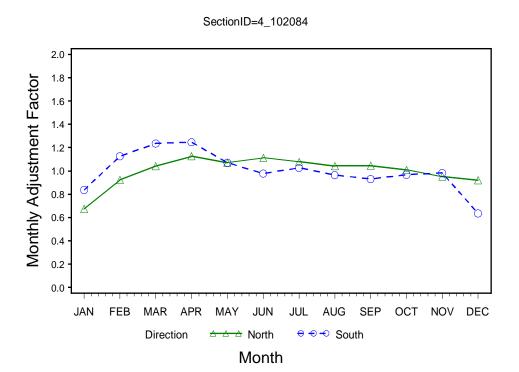



Figure D-39. Plot of Monthly Adjustment Factor for Site 4\_102084 (Vehicle Class 5).

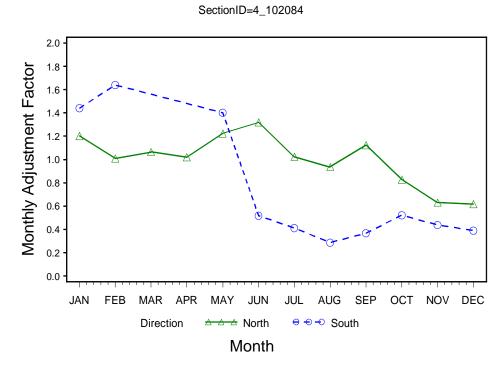



Figure D-40. Plot of Monthly Adjustment Factor for Site 4\_102084 (Vehicle Class 9).

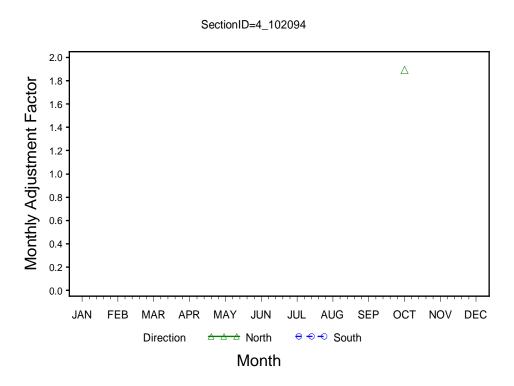



Figure D-41. Plot of Monthly Adjustment Factor for Site 4\_102094 (Vehicle Class 5).

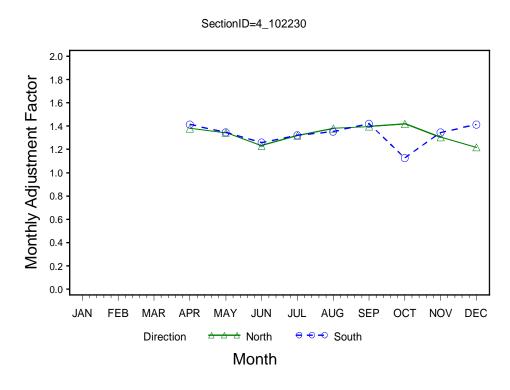



Figure D-42. Plot of Monthly Adjustment Factor for Site 4\_102230 (Vehicle Class 5).

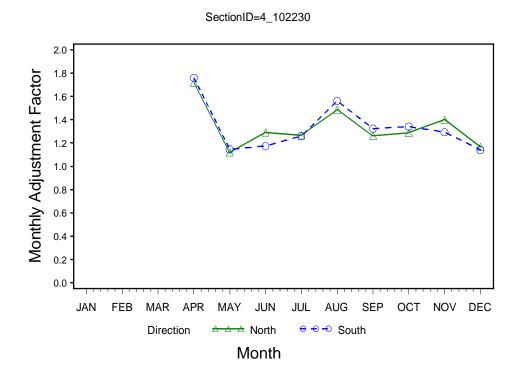



Figure D-43. Plot of Monthly Adjustment Factor for Site 4\_102230 (Vehicle Class 9).

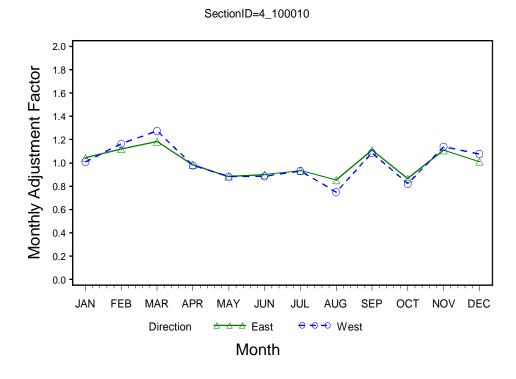



Figure D-44. Plot of Monthly Adjustment Factor for Site 4\_100010 (Vehicle Class 5).

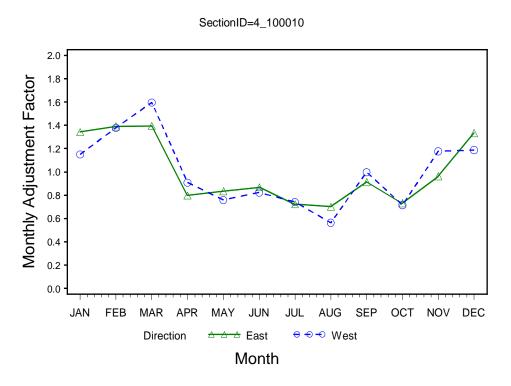



Figure D-45. Plot of Monthly Adjustment Factor for Site 4\_100010 (Vehicle Class 9).

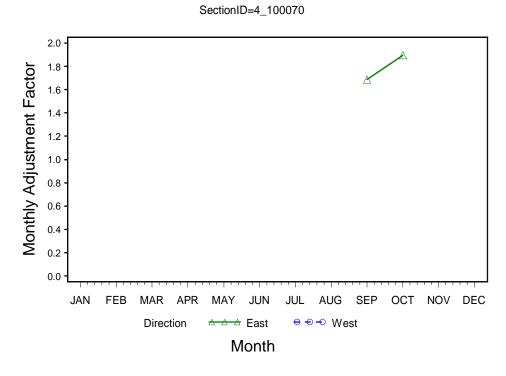



Figure D-46. Plot of Monthly Adjustment Factor for Site 4\_100070 (Vehicle Class 5).

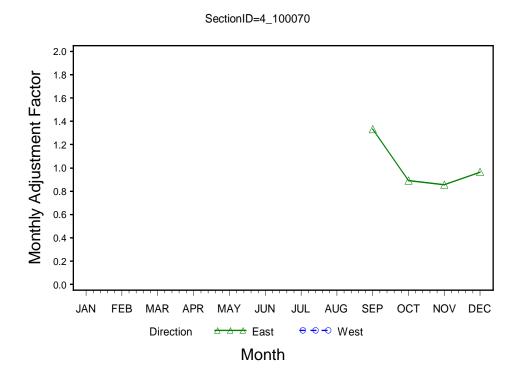



Figure D-47. Plot of Monthly Adjustment Factor for Site 4\_100070 (Vehicle Class 9).



Figure D-48. Plot of Monthly Adjustment Factor for Site 4\_100139 (Vehicle Class 5).

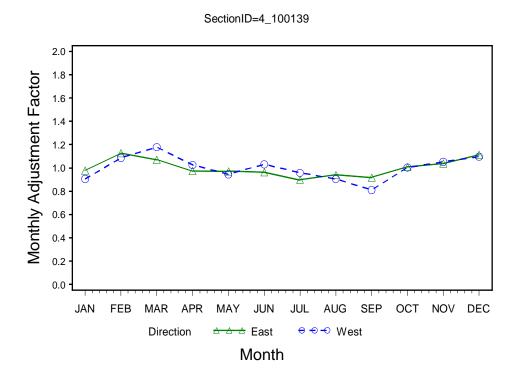



Figure D-49. Plot of Monthly Adjustment Factor for Site 4\_100139 (Vehicle Class 9).

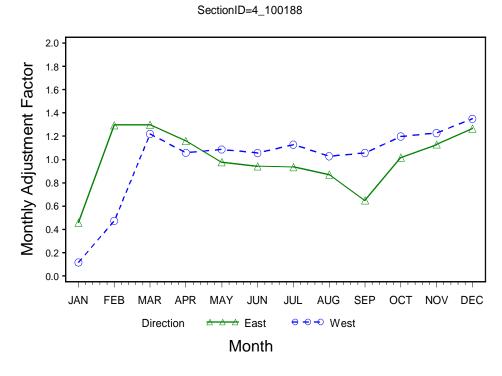



Figure D-50. Plot of Monthly Adjustment Factor for Site 4\_100188 (Vehicle Class 5).

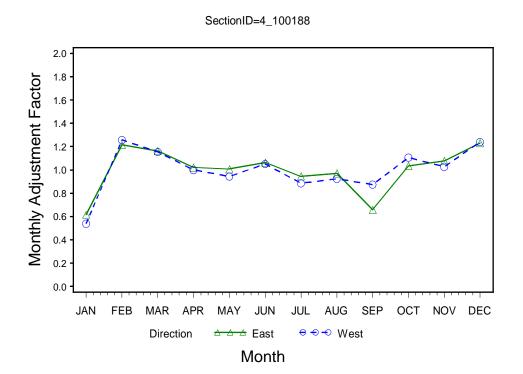



Figure D-51. Plot of Monthly Adjustment Factor for Site 4\_100188 (Vehicle Class 9).

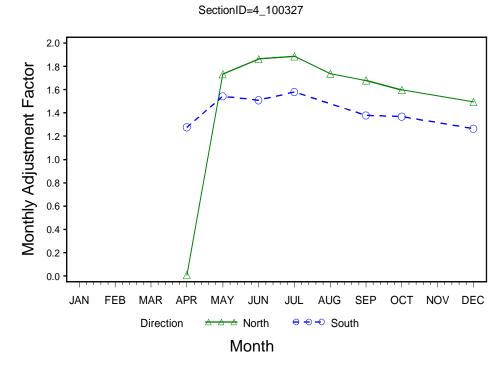



Figure D-52. Plot of Monthly Adjustment Factor for Site 4\_100327 (Vehicle Class 5).

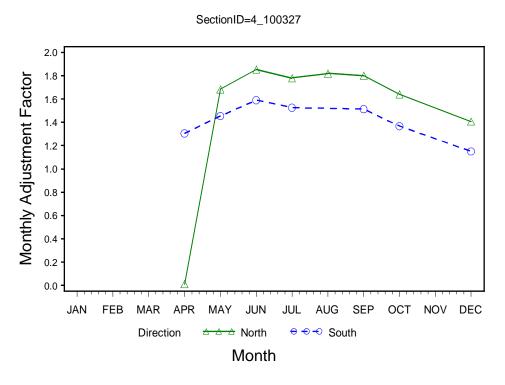



Figure D-53. Plot of Monthly Adjustment Factor for Site 4\_100327 (Vehicle Class 9).

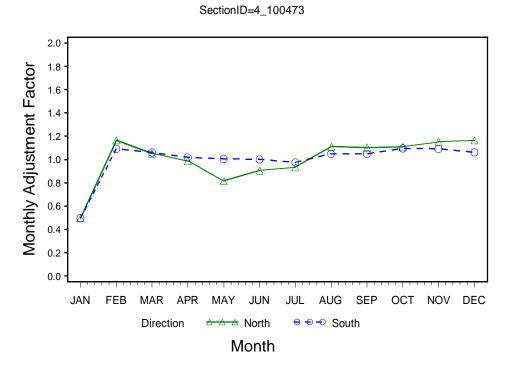



Figure D-54. Plot of Monthly Adjustment Factor for Site 4\_100473 (Vehicle Class 5).

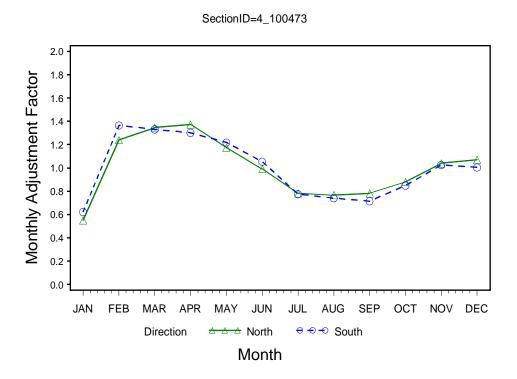



Figure D-55. Plot of Monthly Adjustment Factor for Site 4\_100473 (Vehicle Class 9).

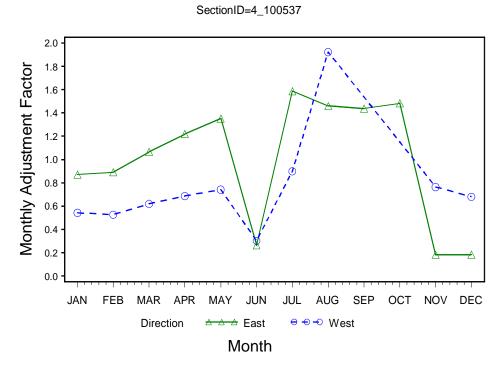



Figure D-56. Plot of Monthly Adjustment Factor for Site  $4\_100537$  (Vehicle Class 5).

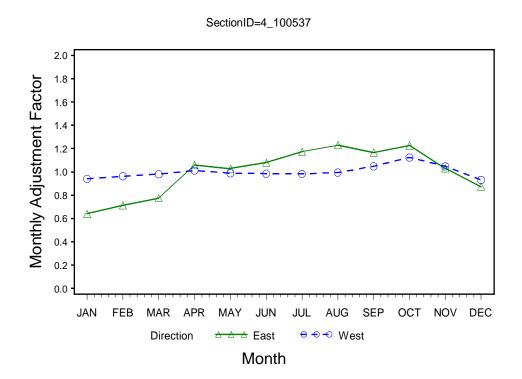



Figure D-57. Plot of Monthly Adjustment Factor for Site 4\_100537 (Vehicle Class 9).

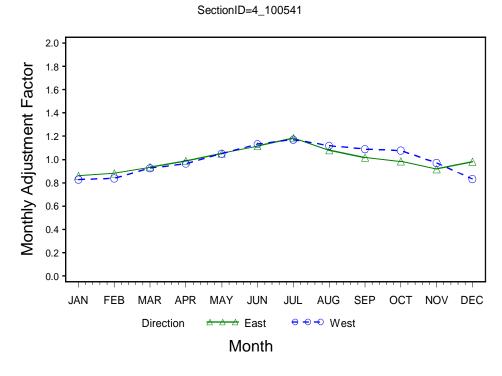



Figure D-58. Plot of Monthly Adjustment Factor for Site 4\_100541 (Vehicle Class 5).



Figure D-59. Plot of Monthly Adjustment Factor for Site 4\_100541 (Vehicle Class 9).

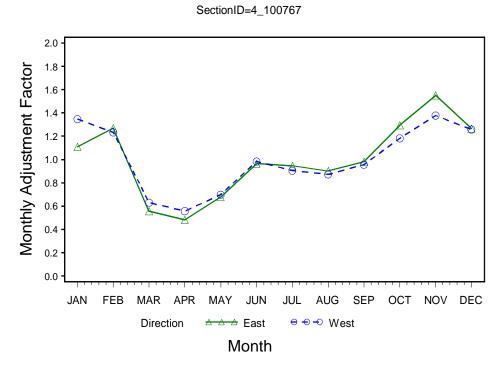



Figure D-60. Plot of Monthly Adjustment Factor for Site 4\_100767 (Vehicle Class 5).

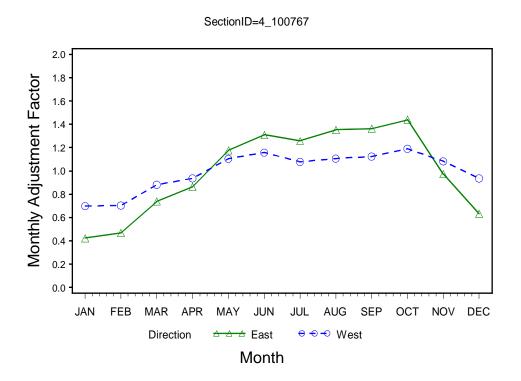



Figure D-61. Plot of Monthly Adjustment Factor for Site 4\_100767 (Vehicle Class 9).

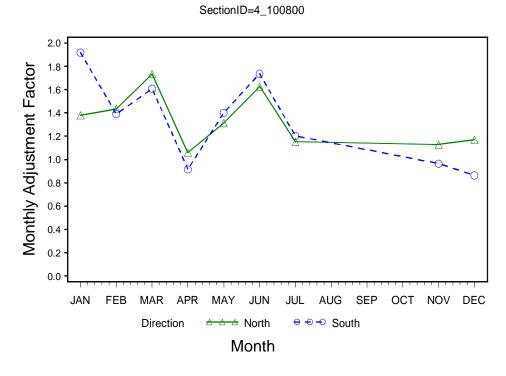



Figure D-62. Plot of Monthly Adjustment Factor for Site 4\_100800 (Vehicle Class 5).

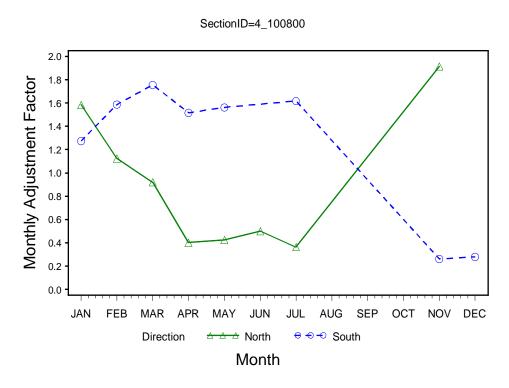



Figure D-63. Plot of Monthly Adjustment Factor for Site 4\_100800 (Vehicle Class 9).

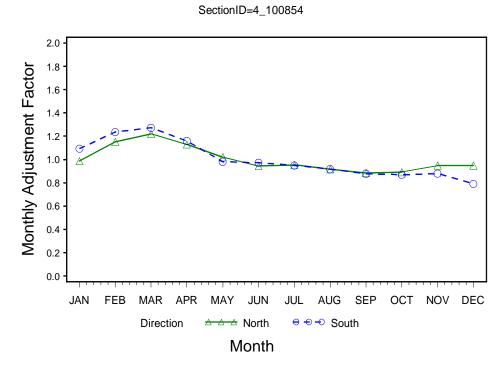



Figure D-64. Plot of Monthly Adjustment Factor for Site 4\_100854 (Vehicle Class 5).

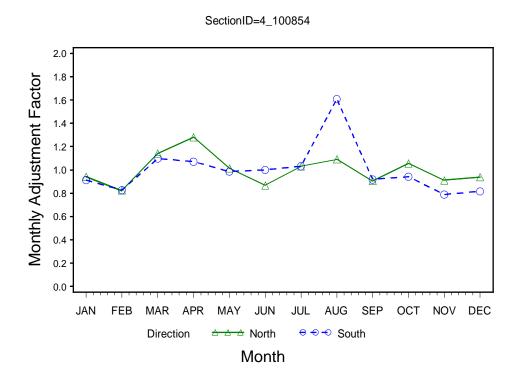



Figure D-65. Plot of Monthly Adjustment Factor for Site 4\_100854 (Vehicle Class 9).

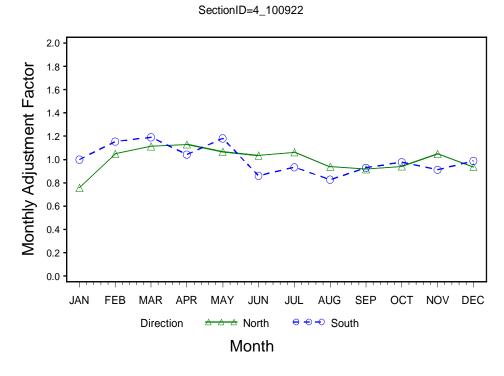



Figure D-66. Plot of Monthly Adjustment Factor for Site 4\_100922 (Vehicle Class 5).

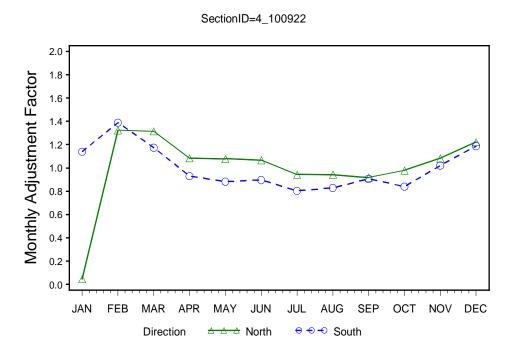



Figure D-67. Plot of Monthly Adjustment Factor for Site 4\_100922 (Vehicle Class 9).

Month

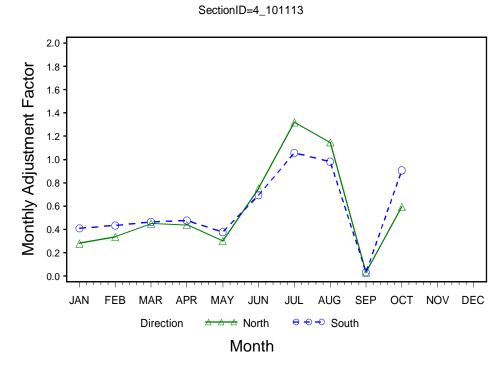



Figure D-68. Plot of Monthly Adjustment Factor for Site  $4\_101113$  (Vehicle Class 5).

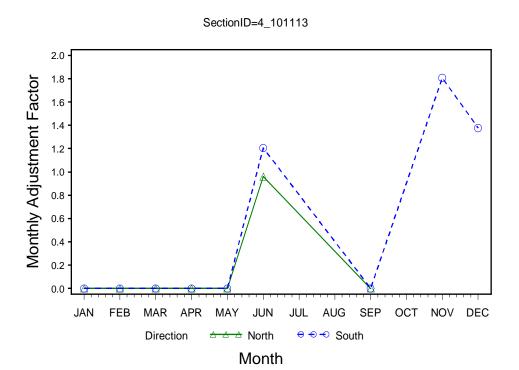



Figure D-69. Plot of Monthly Adjustment Factor for Site 4\_101113 (Vehicle Class 9).

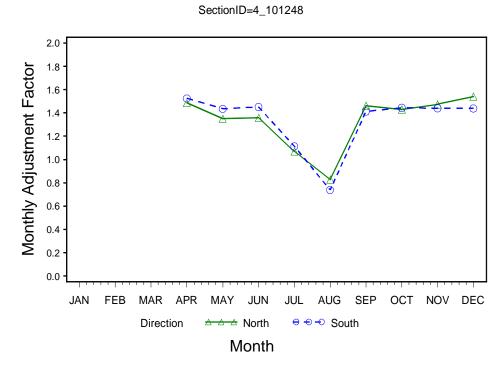



Figure D-70. Plot of Monthly Adjustment Factor for Site 4\_101248 (Vehicle Class 5).

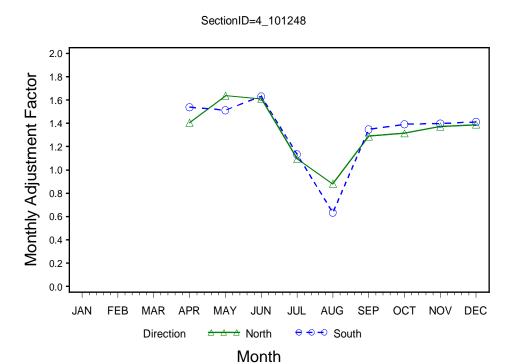



Figure D-71. Plot of Monthly Adjustment Factor for Site 4\_101248 (Vehicle Class 9).

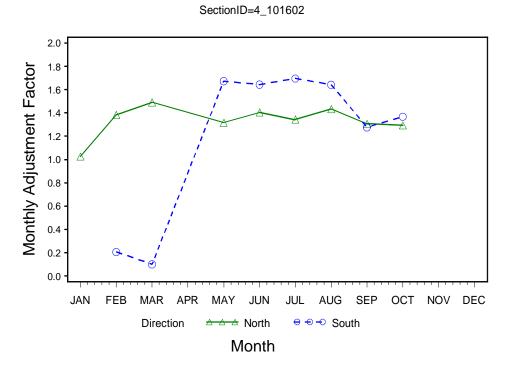



Figure D-72. Plot of Monthly Adjustment Factor for Site 4\_101602 (Vehicle Class 5).

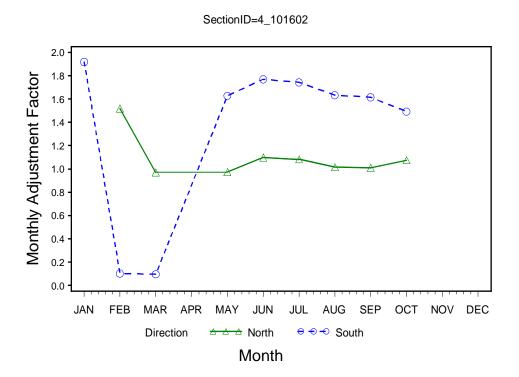



Figure D-73. Plot of Monthly Adjustment Factor for Site 4\_101602 (Vehicle Class 9).

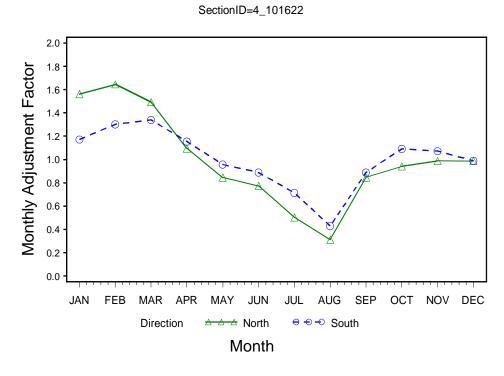



Figure D-74. Plot of Monthly Adjustment Factor for Site 4\_101622 (Vehicle Class 5).

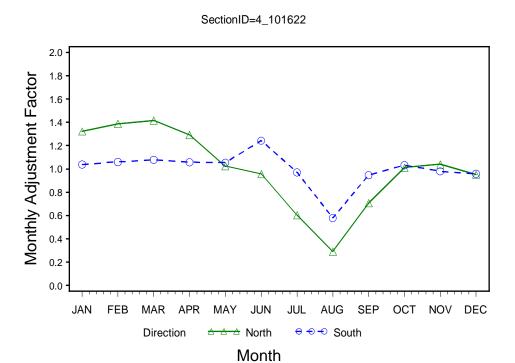



Figure D-75. Plot of Monthly Adjustment Factor for Site 4\_101622 (Vehicle Class 9).

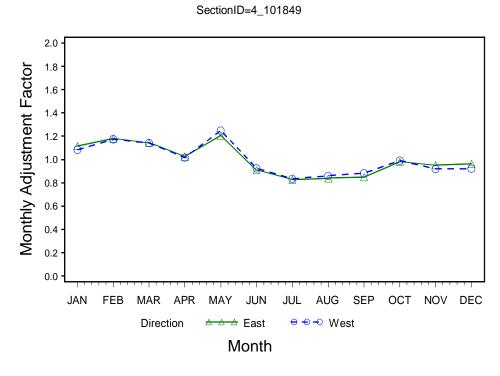



Figure D-76. Plot of Monthly Adjustment Factor for Site 4\_101849 (Vehicle Class 5).

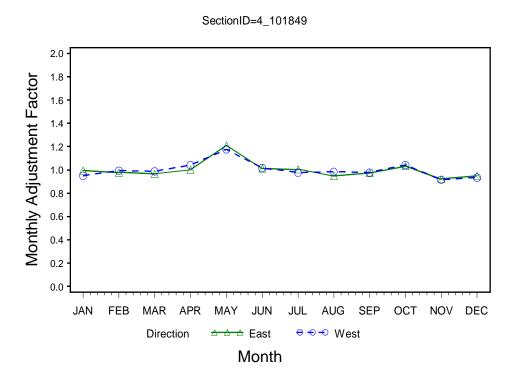



Figure D-77. Plot of Monthly Adjustment Factor for Site 4\_101849 (Vehicle Class 9).

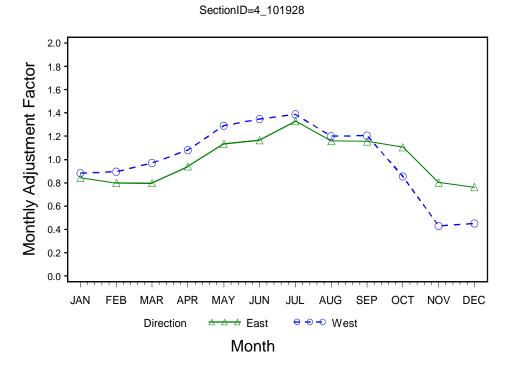



Figure D-78. Plot of Monthly Adjustment Factor for Site  $4\_101928$  (Vehicle Class 5).

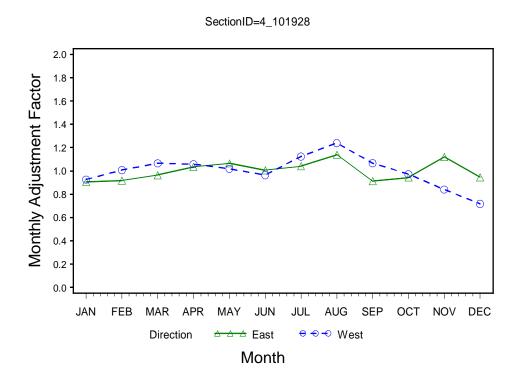



Figure D-79. Plot of Monthly Adjustment Factor for Site 4\_101928 (Vehicle Class 9).

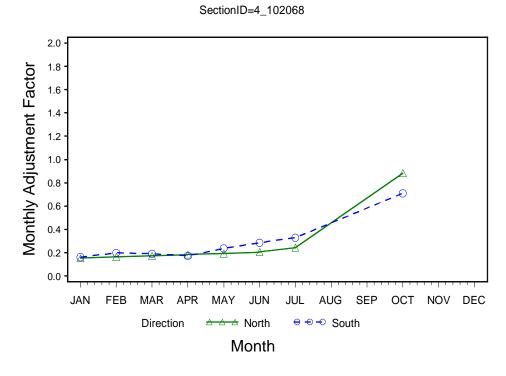



Figure D-80. Plot of Monthly Adjustment Factor for Site 4\_102068 (Vehicle Class 5).

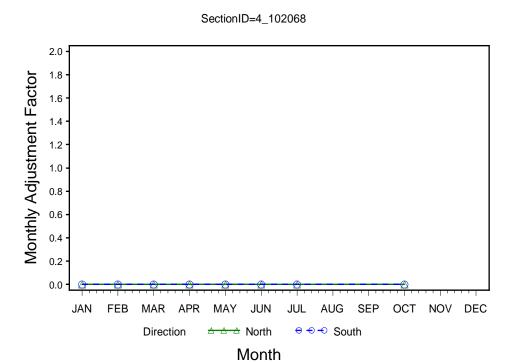



Figure D-81. Plot of Monthly Adjustment Factor for Site 4\_102068 (Vehicle Class 9).

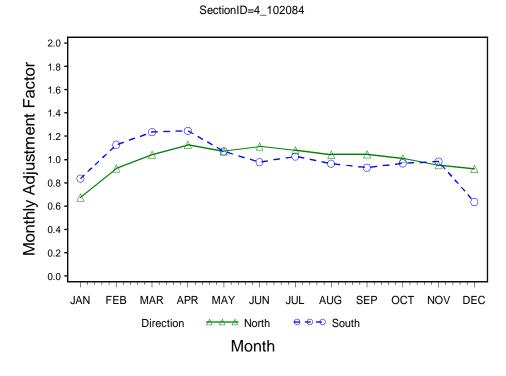



Figure D-82. Plot of Monthly Adjustment Factor for Site 4\_102084 (Vehicle Class 5).

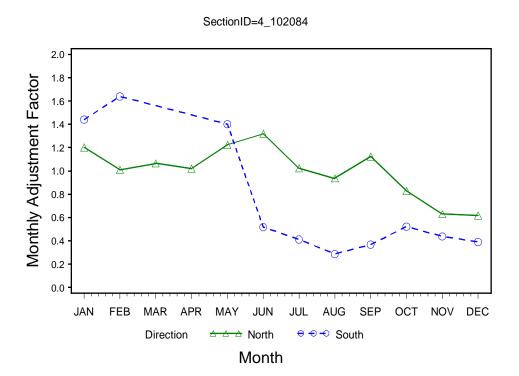



Figure D-83. Plot of Monthly Adjustment Factor for Site 4\_102084 (Vehicle Class 9).

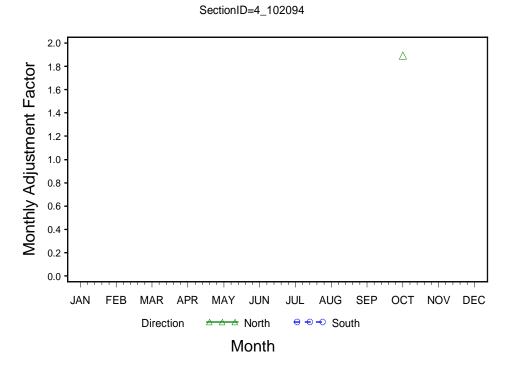



Figure D-84. Plot of Monthly Adjustment Factor for Site 4\_102094 (Vehicle Class 5).

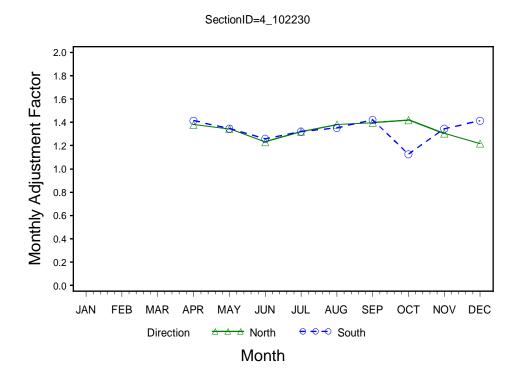



Figure D-85. Plot of Monthly Adjustment Factor for Site 4\_102230 (Vehicle Class 5).

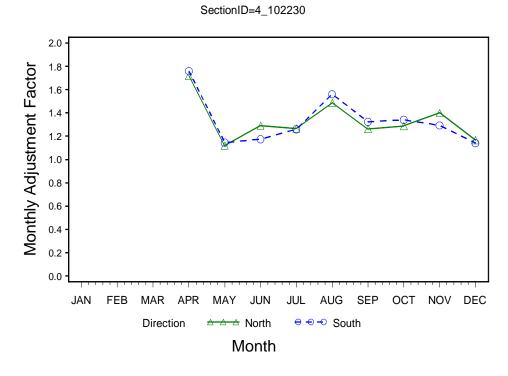



Figure D-86. Plot of Monthly Adjustment Factor for Site 4\_102230 (Vehicle Class 9).

## APPENDIX E. SUMMARY OF ALD DATA USED FOR ANALYSIS

This appendix presents ALD plots for Arizona projects for which the required data were available. Note that not all of the data presented in this appendix were included in the analysis, as some data were deemed atypical, anomalous, or erroneous.

## AXLE LOAD DISTRIBUTION PLOTS FOR CLASS 5 TRUCKS

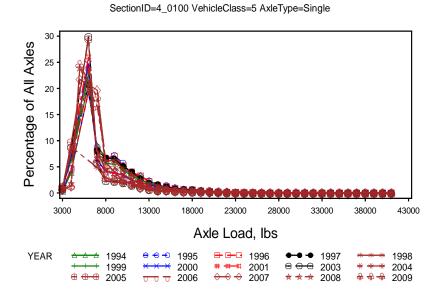



Figure E-1. Plot of Single-Axle Load for Site 4\_0100 (Vehicle Class 5).

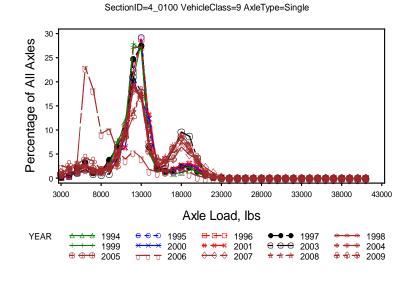



Figure E-2. Plot of Single-Axle Load for Site 4\_0100 (Vehicle Class 9).

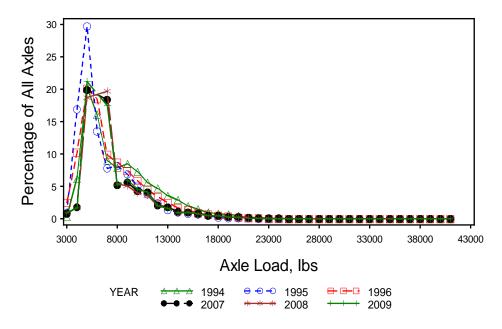



Figure E-3. Plot of Single-Axle Load for Site 4\_0200 (Vehicle Class 5).

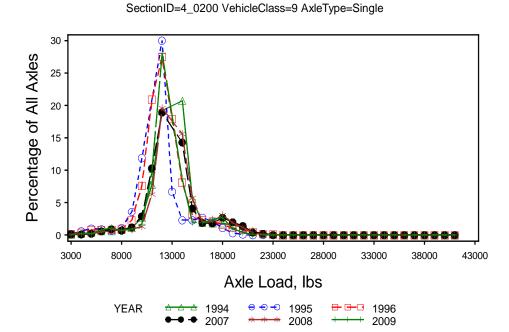



Figure E-4. Plot of Single-Axle Load for Site 4\_0200 (Vehicle Class 9).

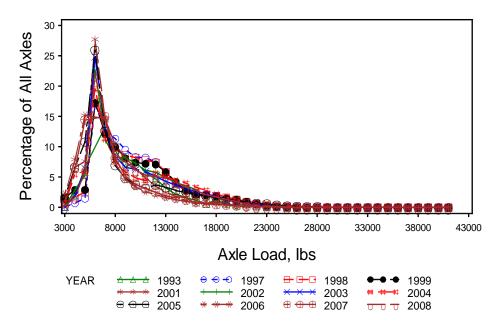



Figure E-5. Plot of Single-Axle Load for Site 4\_0500 (Vehicle Class 5).



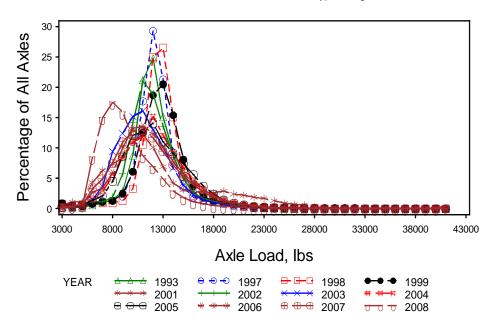



Figure E-6. Plot of Single-Axle Load for Site 4\_0500 (Vehicle Class 9).

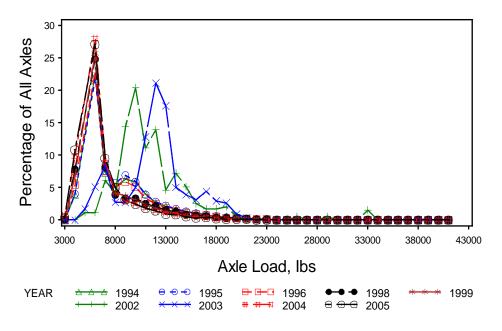



Figure E-7. Plot of Single-Axle Load for Site 4\_0600 (Vehicle Class 5).

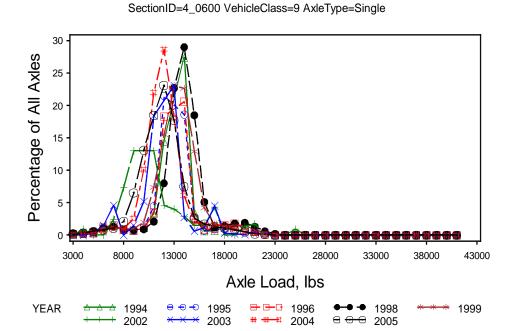



Figure E-8. Plot of Single-Axle Load for Site 4\_0600 (Vehicle Class 9).

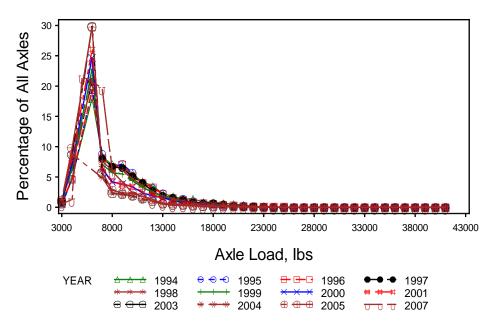



Figure E-9. Plot of Single-Axle Load for Site 4\_0900 (Vehicle Class 5).

SectionID=4\_0900 VehicleClass=9 AxleType=Single

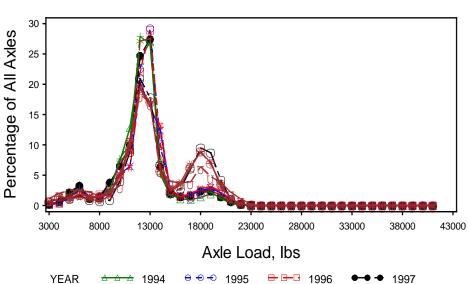



Figure E-10. Plot of Single-Axle Load for Site 4\_0900 (Vehicle Class 9).

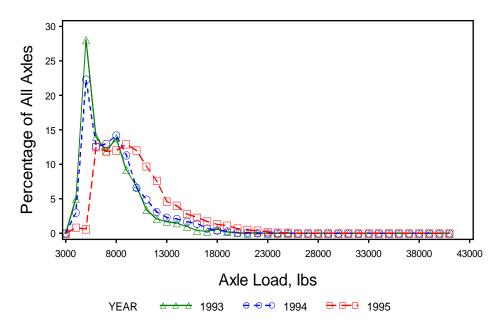



Figure E-11. Plot of Single-Axle Load for Site 4\_1001 (Vehicle Class 5).

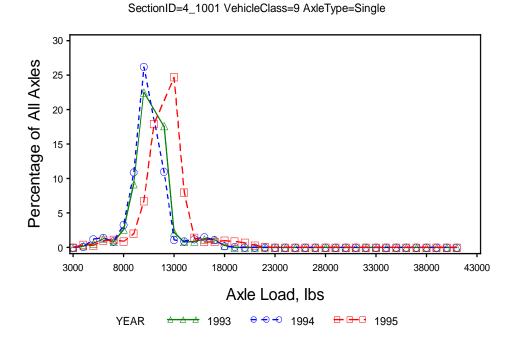



Figure E-12. Plot of Single-Axle Load for Site 4\_1001 (Vehicle Class 9).

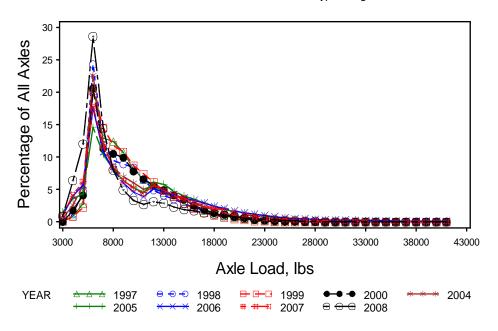
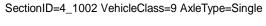




Figure E-13. Plot of Single-Axle Load for Site 4\_1002 (Vehicle Class 5).



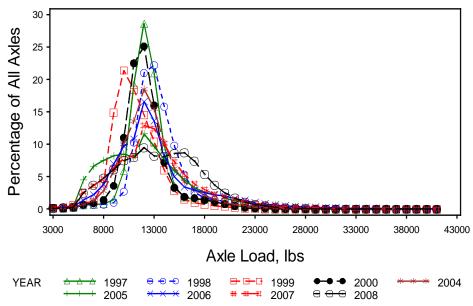



Figure E-14. Plot of Single-Axle Load for Site 4\_1002 (Vehicle Class 9).

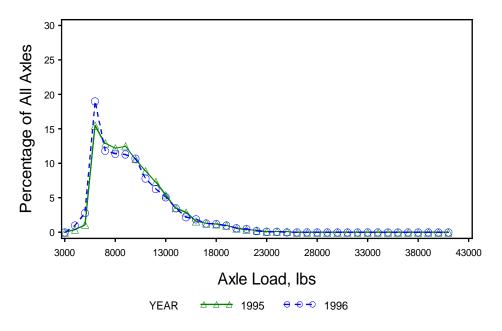
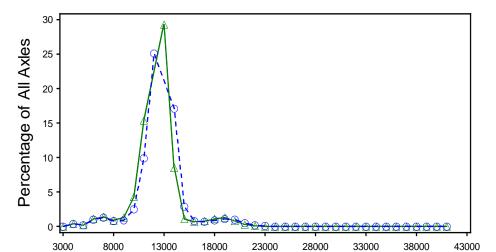




Figure E-15. Plot of Single-Axle Load for Site 4\_1006 (Vehicle Class 5).



 $SectionID{=}4\_1006\ VehicleClass{=}9\ AxleType{=}Single$ 

Figure E-16. Plot of Single-Axle Load for Site 4\_1006 (Vehicle Class 9).

<del>4</del> 1995

YEAR

Axle Load, Ibs

<del>• • •</del> 1996

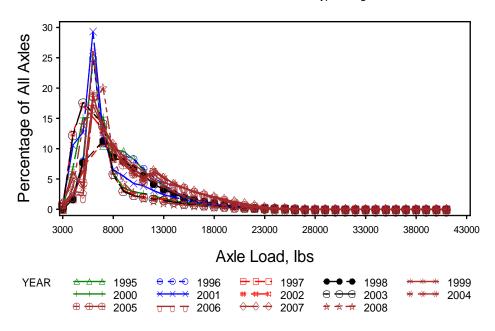
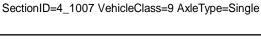




Figure E-17. Plot of Single-Axle Load for Site 4\_1007 (Vehicle Class 5).



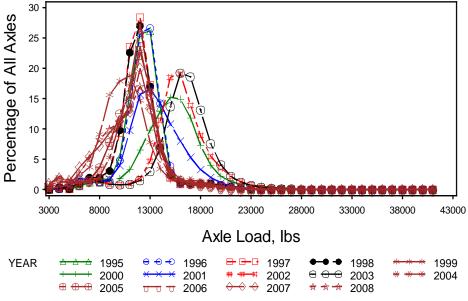



Figure E-18. Plot of Single-Axle Load for Site 4\_1007 (Vehicle Class 9).

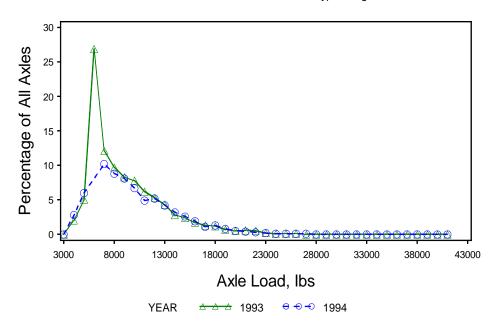



Figure E-19. Plot of Single-Axle Load for Site 4\_1016 (Vehicle Class 5).



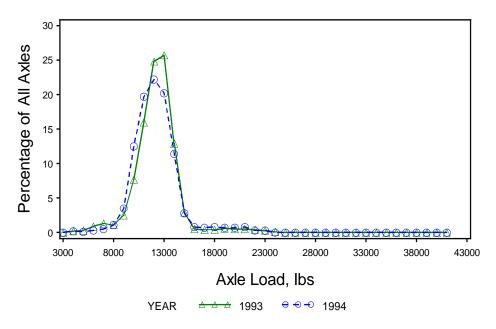



Figure E-20. Plot of Single-Axle Load for Site 4\_1016 (Vehicle Class 9).

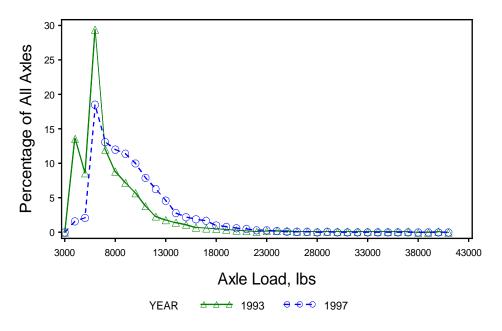
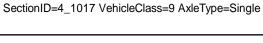




Figure E-21. Plot of Single-Axle Load for Site 4\_1017 (Vehicle Class 5).



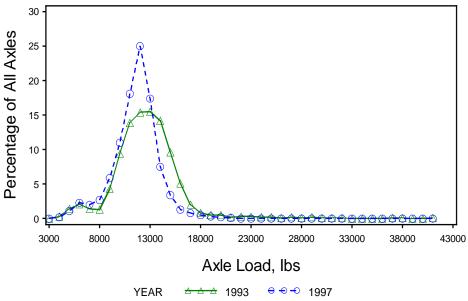



Figure E-22. Plot of Single-Axle Load for Site 4\_1017 (Vehicle Class 9).

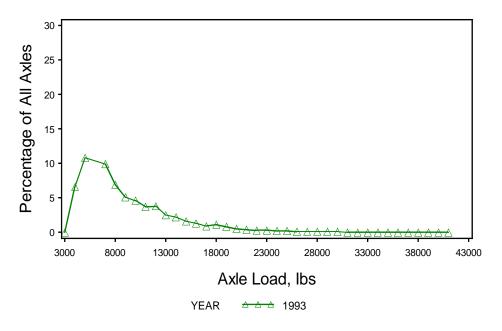



Figure E-23. Plot of Single-Axle Load for Site 4\_1018 (Vehicle Class 5).

SectionID=4\_1018 VehicleClass=9 AxleType=Single

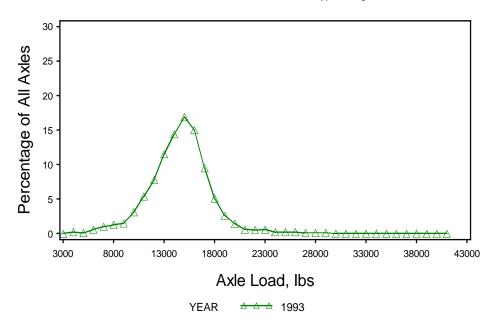



Figure E-24. Plot of Single-Axle Load for Site 4\_1018 (Vehicle Class 9).

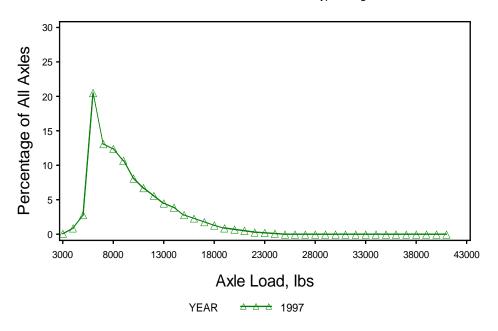



Figure E-25. Plot of Single-Axle Load for Site 4\_1021 (Vehicle Class 5).

SectionID=4\_1021 VehicleClass=9 AxleType=Single

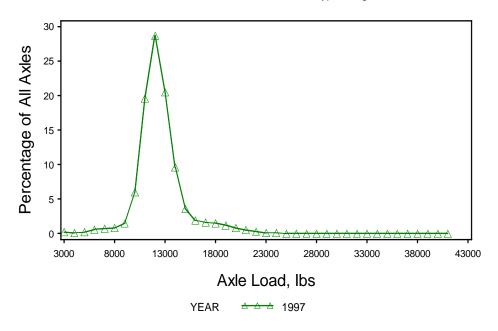



Figure E-26. Plot of Single-Axle Load for Site 4\_1021 (Vehicle Class 9).

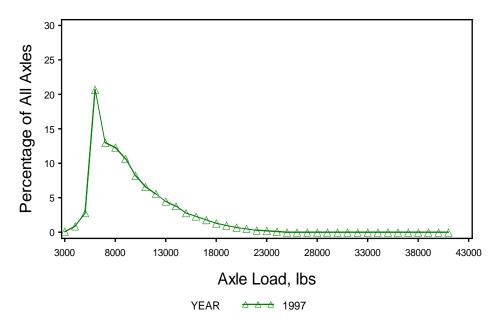



Figure E-27. Plot of Single-Axle Load for Site 4\_1022 (Vehicle Class 5).



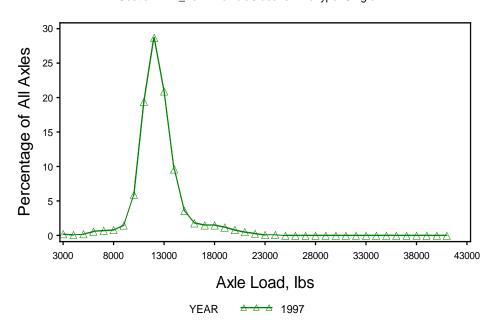



Figure E-28. Plot of Single-Axle Load for Site 4\_1022 (Vehicle Class 9).

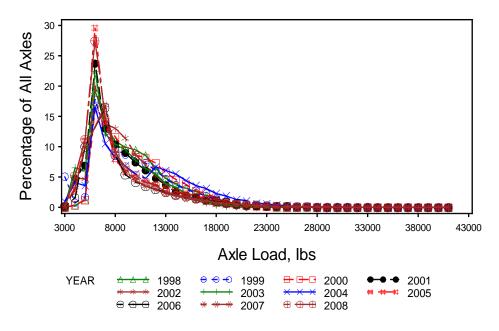



Figure E-29. Plot of Single-Axle Load for Site 4\_1024 (Vehicle Class 5).

SectionID=4\_1024 VehicleClass=9 AxleType=Single




Figure E-30. Plot of Single-Axle Load for Site 4\_1024 (Vehicle Class 9).

 YEAR

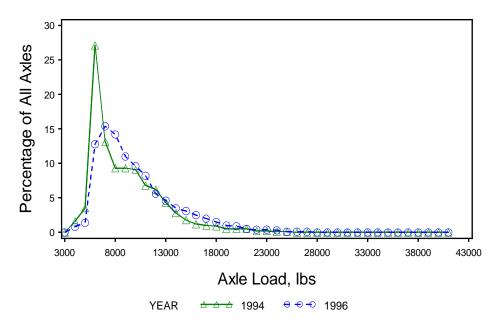



Figure E-31. Plot of Single-Axle Load for Site 4\_1025 (Vehicle Class 5).



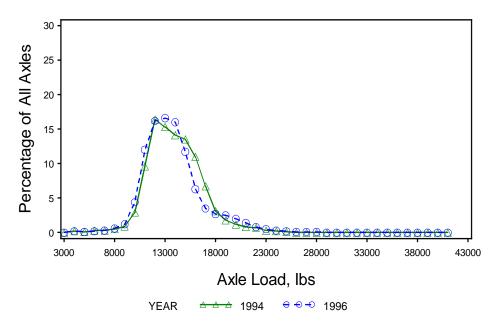



Figure E-32. Plot of Single-Axle Load for Site 4\_1025 (Vehicle Class 9).

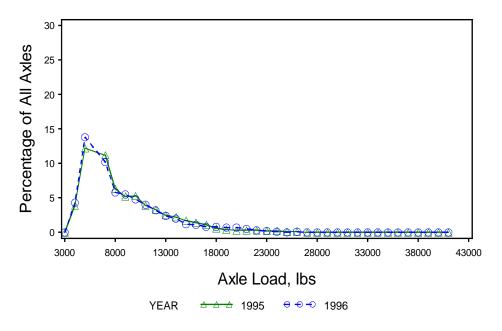



Figure E-33. Plot of Single-Axle Load for Site 4\_1034 (Vehicle Class 5).



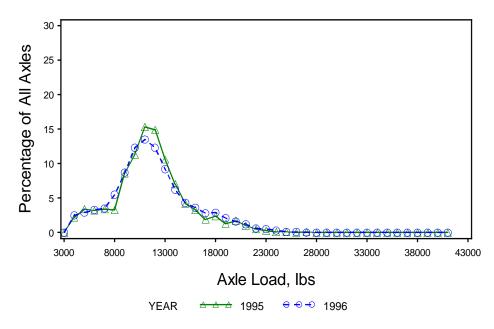



Figure E-34. Plot of Single-Axle Load for Site 4\_1034 (Vehicle Class 9).

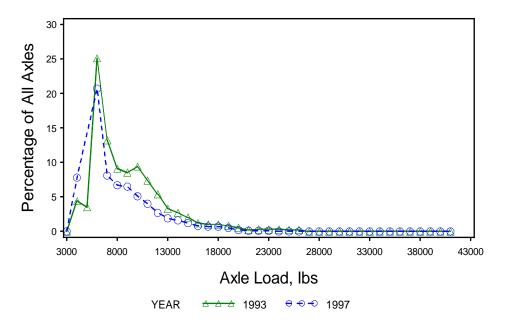
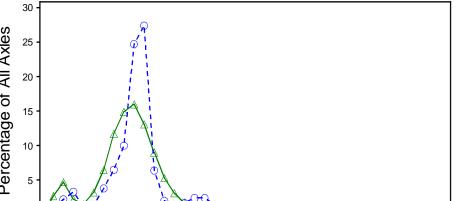




Figure E-35. Plot of Single-Axle Load for Site 4\_1036 (Vehicle Class 5).

SectionID=4\_1036 VehicleClass=9 AxleType=Single



Percentage of All Axles 18000 23000 28000 3000 8000 13000 33000 38000 43000 Axle Load, lbs

Figure E-36. Plot of Single-Axle Load for Site 4\_1036 (Vehicle Class 9).

YEAR

<del>• • •</del> 1997

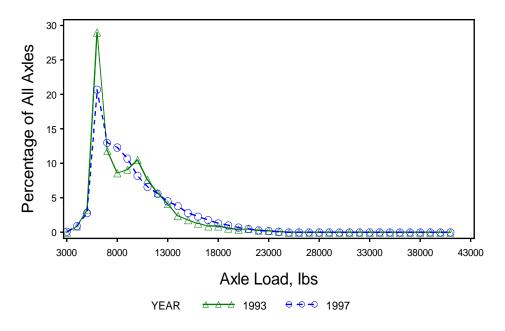



Figure E-37. Plot of Single-Axle Load for Site 4\_1062 (Vehicle Class 5).



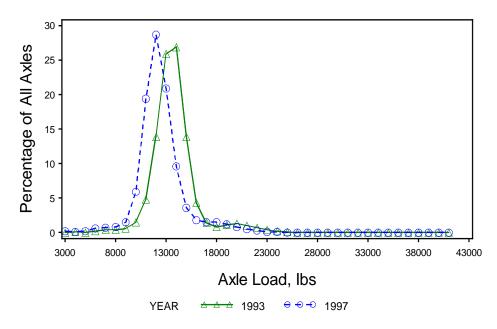



Figure E-38. Plot of Single-Axle Load for Site 4\_1062 (Vehicle Class 9).

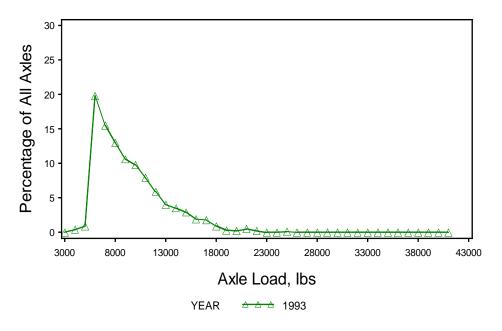



Figure E-39. Plot of Single-Axle Load for Site 4\_1065 (Vehicle Class 5).

SectionID=4\_1065 VehicleClass=9 AxleType=Single

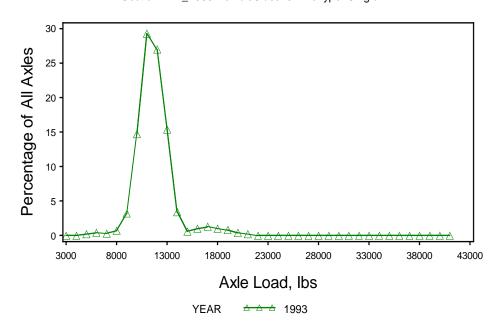



Figure E-40. Plot of Single-Axle Load for Site 4\_1065 (Vehicle Class 9).

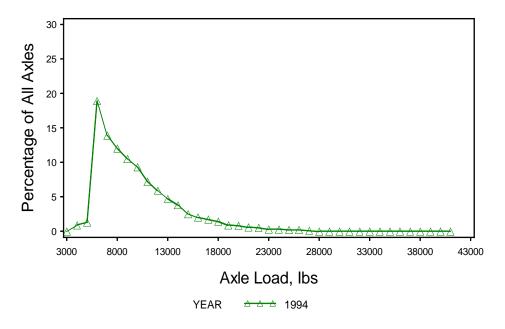



Figure E-41. Plot of Single-Axle Load for Site 4\_6053 (Vehicle Class 5).





Figure E-42. Plot of Single-Axle Load for Site 4\_6053 (Vehicle Class 9).

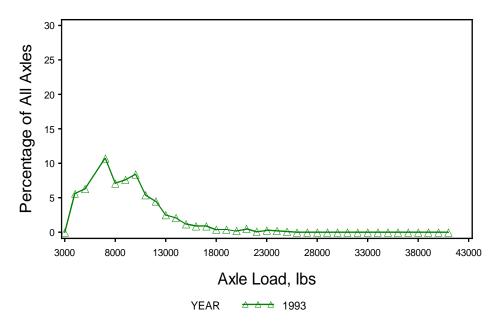



Figure E-43. Plot of Single-Axle Load for Site 4\_6054 (Vehicle Class 5).

SectionID=4\_6054 VehicleClass=9 AxleType=Single

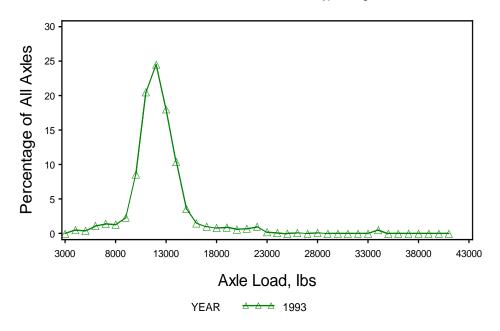



Figure E-44. Plot of Single-Axle Load for Site 4\_6054 (Vehicle Class 9).

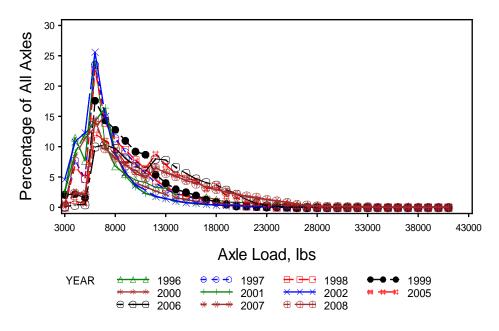



Figure E-45. Plot of Single-Axle Load for Site 4\_6055 (Vehicle Class 5).



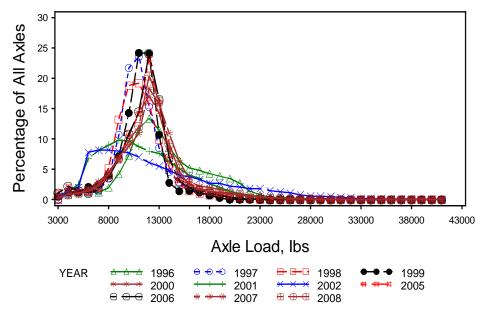



Figure E-46. Plot of Single-Axle Load for Site 4\_6055 (Vehicle Class 9).

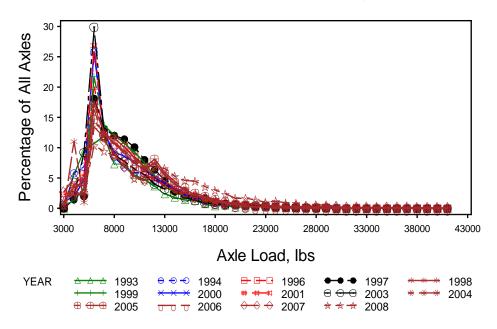
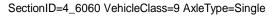




Figure E-47. Plot of Single-Axle Load for Site 4\_6060 (Vehicle Class 5).



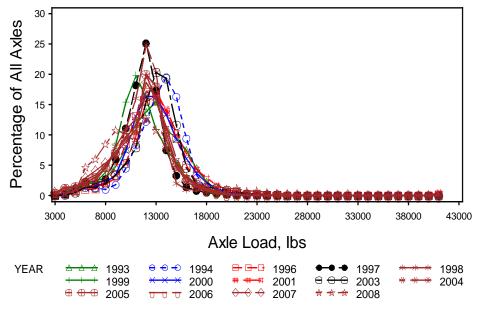



Figure E-48. Plot of Single-Axle Load for Site 4\_6060 (Vehicle Class 9).

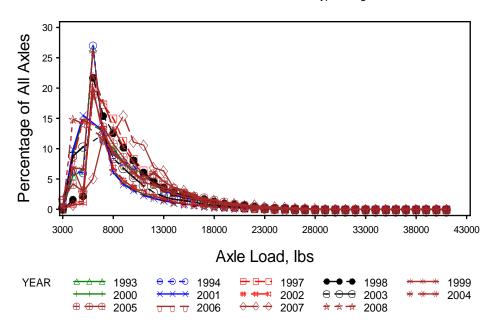



Figure E-49. Plot of Single-Axle Load for Site 4\_7079 (Vehicle Class 5).



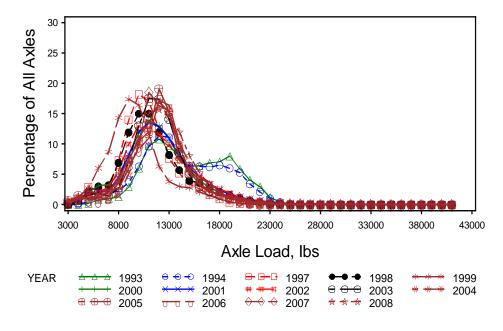



Figure E-50. Plot of Single-Axle Load for Site 4\_7079 (Vehicle Class 9).

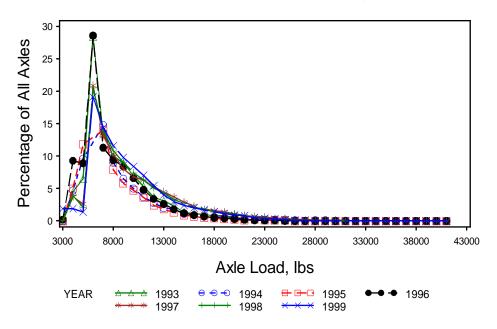
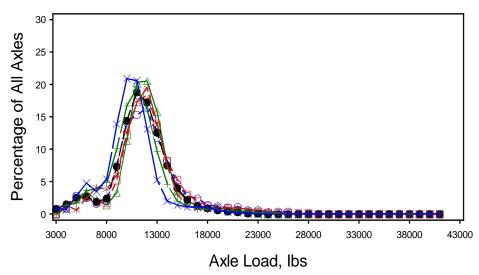




Figure E-51. Plot of Single-Axle Load for Site 4\_7613 (Vehicle Class 5).



SectionID=4\_7613 VehicleClass=9 AxleType=Single

Figure E-52. Plot of Single-Axle Load for Site 4\_7613 (Vehicle Class 9).

1994

1998

1995

1993

1996

YEAR

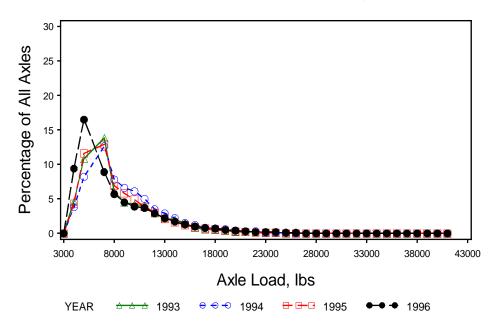



Figure E-53. Plot of Single-Axle Load for Site 4\_7614 (Vehicle Class 5).



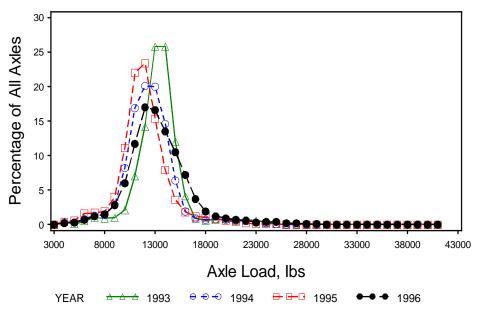



Figure E-54. Plot of Single-Axle Load for Site 4\_7614 (Vehicle Class 9).

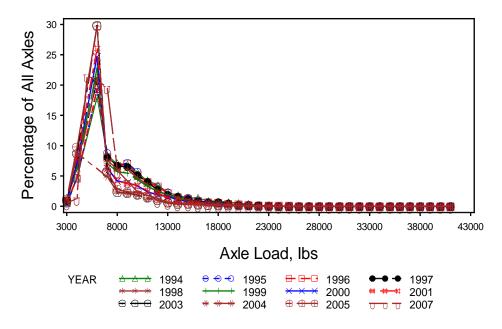



Figure E-55. Plot of Single-Axle Load for Site 4\_A900 (Vehicle Class 5).

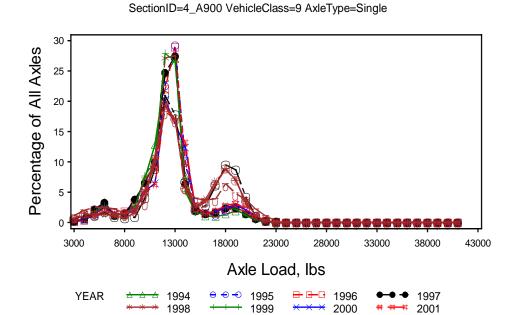



Figure E-56. Plot of Single-Axle Load for Site 4\_A900 (Vehicle Class 9).

2004

2003

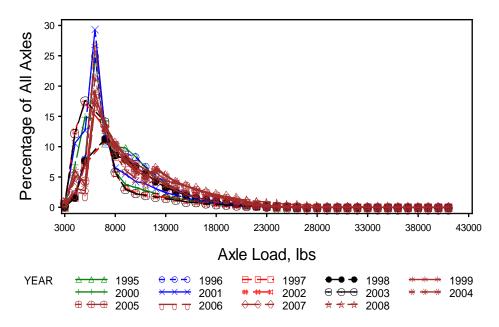



Figure E-57. Plot of Single-Axle Load for Site 4\_B900 (Vehicle Class 5).



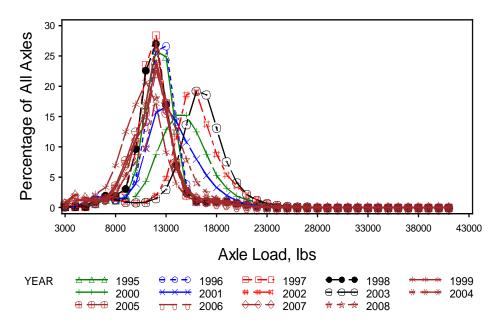



Figure E-58. Plot of Single-Axle Load for Site 4\_B900 (Vehicle Class 9).

## **AXLE LOAD DISTRIBUTION PLOTS FOR CLASS 9 TRUCKS**

SectionID=4\_0100 VehicleClass=9 AxleType=Tandem

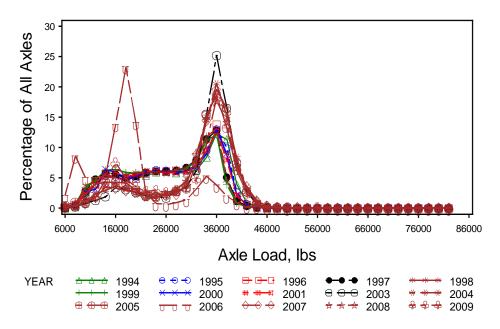



Figure E-59. Plot of Tandem-Axle Load for Site 4\_0100 (Vehicle Class 9).

SectionID=4\_0200 VehicleClass=9 AxleType=Tandem

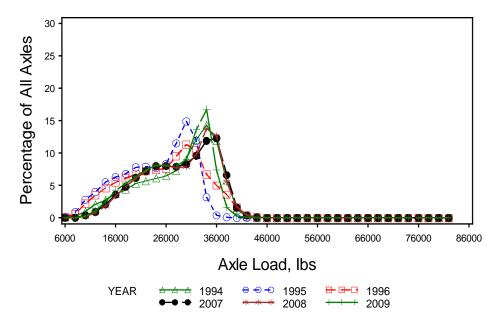



Figure E-60. Plot of Tandem-Axle Load for Site 4\_0200 (Vehicle Class 9).

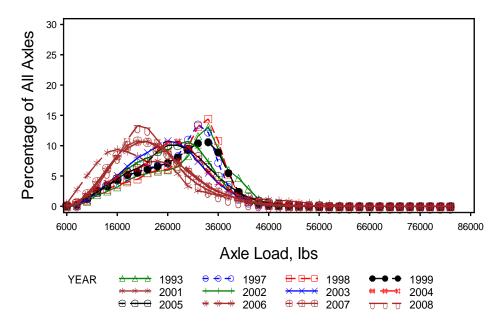
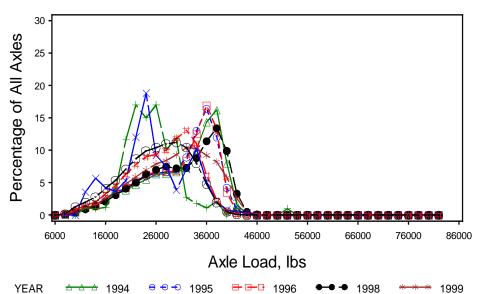




Figure E-61. Plot of Tandem-Axle Load for Site 4\_0500 (Vehicle Class 9).



SectionID=4\_0600 VehicleClass=9 AxleType=Tandem

Figure E-62. Plot of Tandem-Axle Load for Site 4\_0600 (Vehicle Class 9).

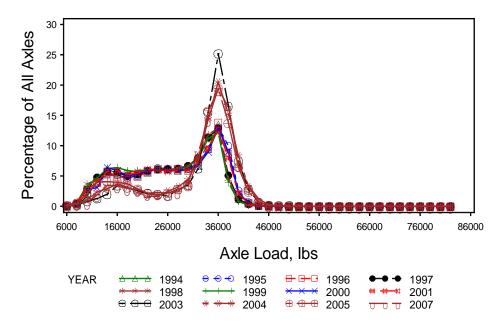
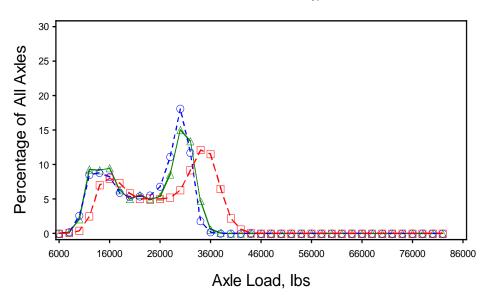




Figure E-63. Plot of Tandem-Axle Load for Site 4\_0900 (Vehicle Class 9).



SectionID=4\_1001 VehicleClass=9 AxleType=Tandem

Figure E-64. Plot of Tandem-Axle Load for Site 4\_1001 (Vehicle Class 9).

<del>0 • • •</del> 1994

<del>-</del> <del>-</del> 1995

1993

YEAR

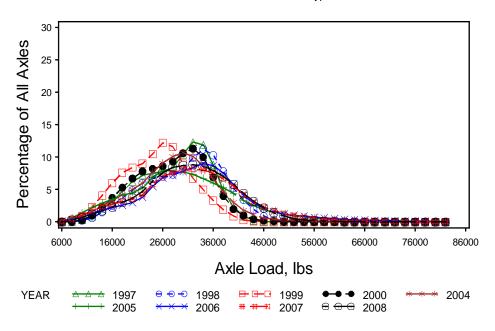
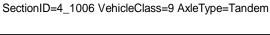




Figure E-65. Plot of Tandem-Axle Load for Site 4\_1002 (Vehicle Class 9).



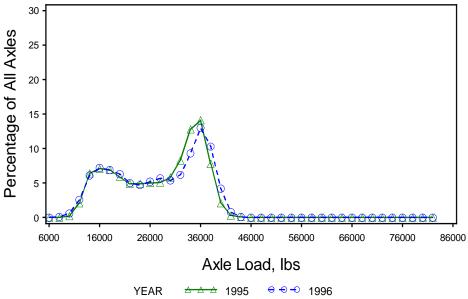




Figure E-66. Plot of Tandem-Axle Load for Site 4\_1006 (Vehicle Class 9).



Figure E-67. Plot of Tandem-Axle Load for Site 4\_1007 (Vehicle Class 9).



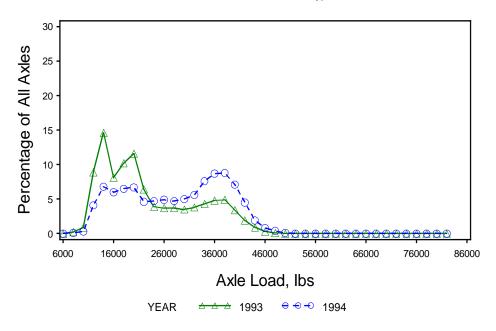



Figure E-68. Plot of Tandem-Axle Load for Site 4\_1016 (Vehicle Class 9).

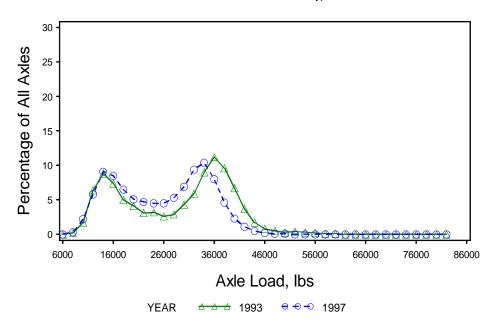



Figure E-69. Plot of Tandem-Axle Load for Site 4\_1017 (Vehicle Class 9).



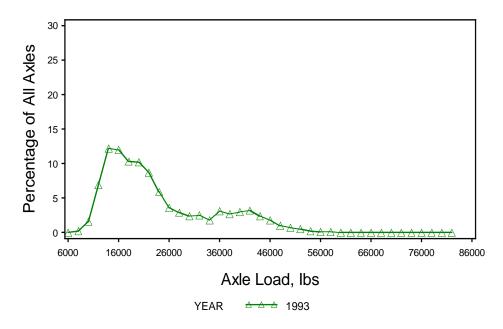



Figure E-70. Plot of Tandem-Axle Load for Site 4\_1018 (Vehicle Class 9).

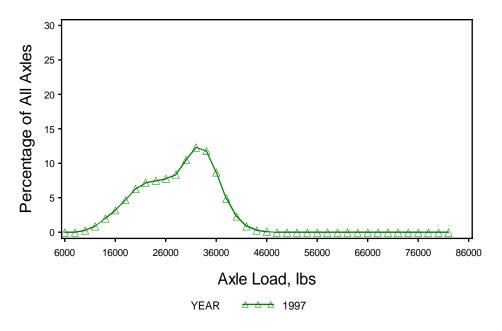



Figure E-71. Plot of Tandem-Axle Load for Site 4\_1021 (Vehicle Class 9).



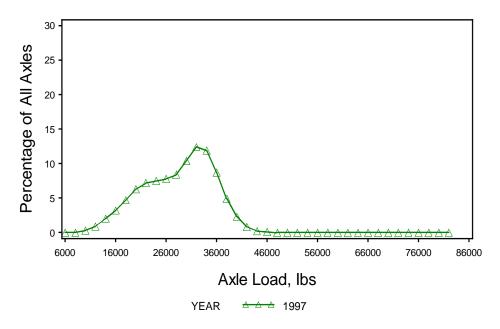



Figure E-72. Plot of Tandem-Axle Load for Site 4\_1022 (Vehicle Class 9).

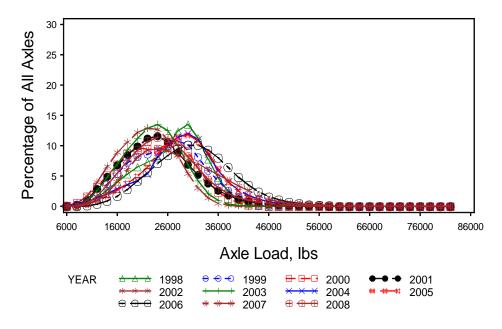



Figure E-73. Plot of Tandem-Axle Load for Site 4\_1024 (Vehicle Class 9).



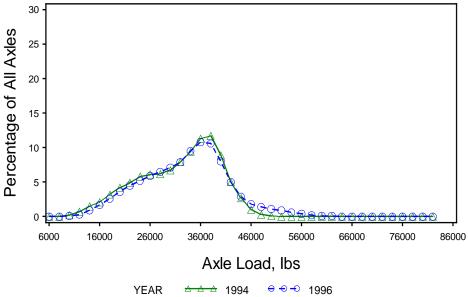



Figure E-74. Plot of Tandem-Axle Load for Site 4\_1025 (Vehicle Class 9).

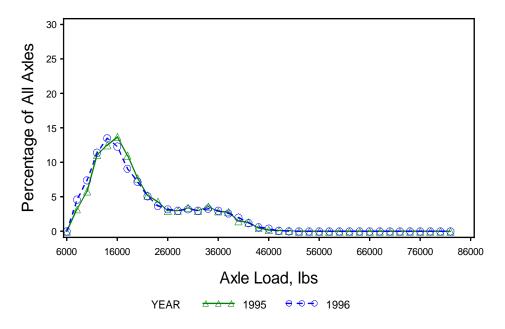
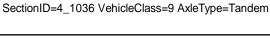




Figure E-75. Plot of Tandem-Axle Load for Site 4\_1034 (Vehicle Class 9).



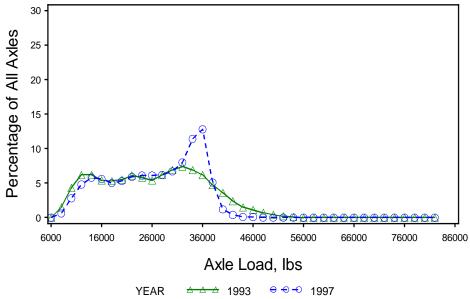



Figure E-76. Plot of Tandem-Axle Load for Site 4\_1036 (Vehicle Class 9).

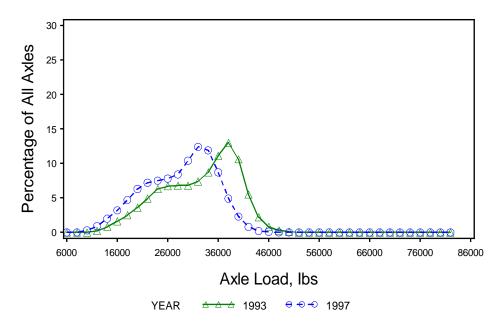
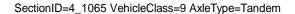




Figure E-77. Plot of Tandem-Axle Load for Site 4\_1062 (Vehicle Class 9).



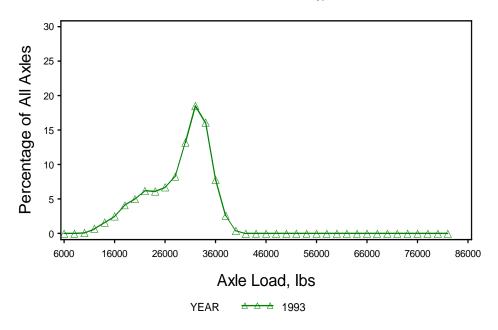



Figure E-78. Plot of Tandem-Axle Load for Site 4\_1065 (Vehicle Class 9).

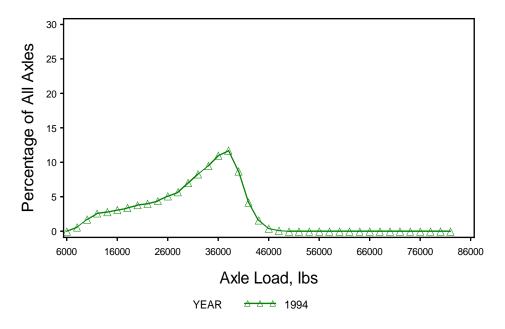
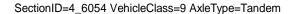




Figure E-79. Plot of Tandem-Axle Load for Site 4\_6053 (Vehicle Class 9).



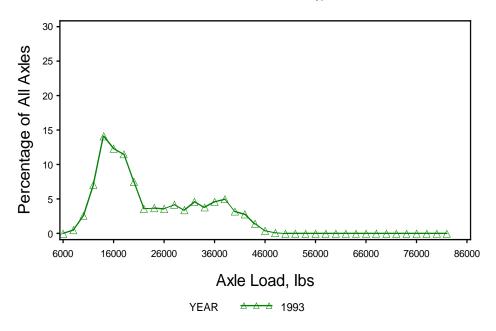



Figure E-80. Plot of Tandem-Axle Load for Site 4\_6054 (Vehicle Class 9).

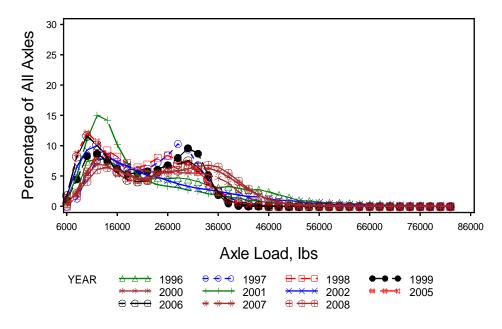



Figure E-81. Plot of Tandem-Axle Load for Site 4\_6055 (Vehicle Class 9).

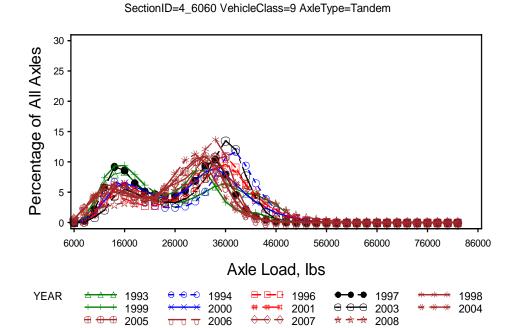



Figure E-82. Plot of Tandem-Axle Load for Site 4\_6060 (Vehicle Class 9).

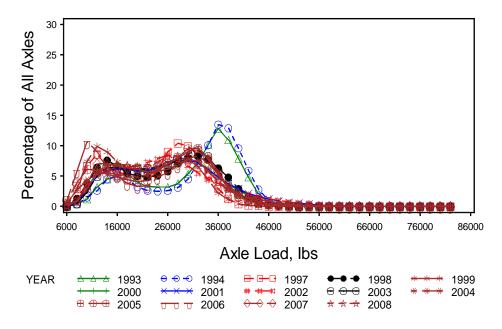
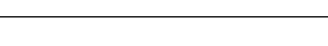




Figure E-83. Plot of Tandem-Axle Load for Site 4\_7079 (Vehicle Class 9).

SectionID=4\_7613 VehicleClass=9 AxleType=Tandem



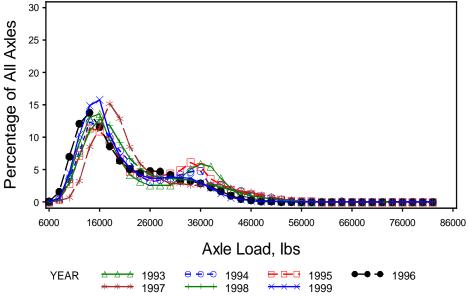



Figure E-84. Plot of Tandem-Axle Load for Site 4\_7613 (Vehicle Class 9).

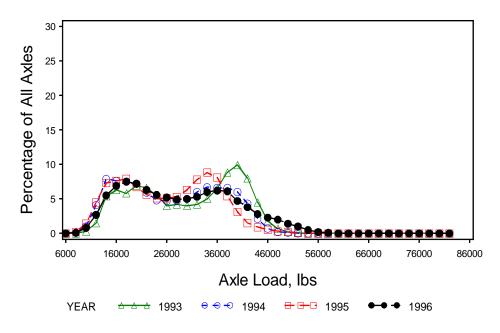



Figure E-85. Plot of Tandem-Axle Load for Site 4\_7614 (Vehicle Class 9).

SectionID=4\_A900 VehicleClass=9 AxleType=Tandem

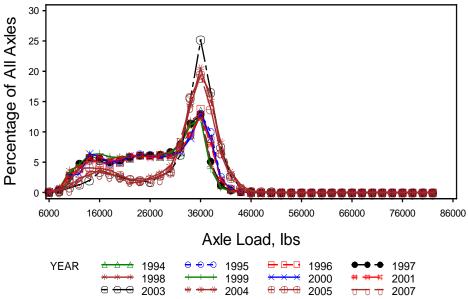



Figure E-86. Plot of Tandem-Axle Load for Site 4\_A900 (Vehicle Class 9).

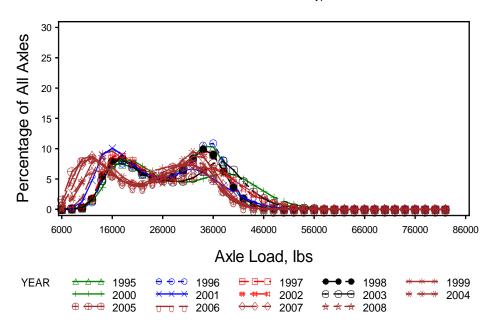



Figure E-87. Plot of Tandem-Axle Load for Site 4\_B900 (Vehicle Class 9).

## APPENDIX F. SUMMARY OF AXLES-PER-TRUCK DATA USED FOR ANALYSIS

This appendix presents plots of axles-per-truck data for Arizona projects that had the required data. Note that not all of the data presented in this appendix were included in this analysis, as some data were deemed atypical, anomalous, or erroneous.

## AXLE-PER-TRUCK PLOTS FOR CLASS 5 TRUCKS

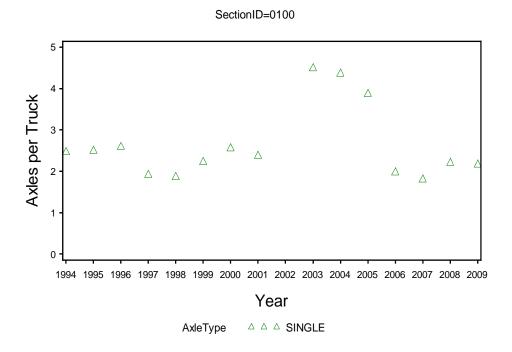



Figure F-1. Plot of Axles per Truck for Site 4\_0100 (Vehicle Class 5).

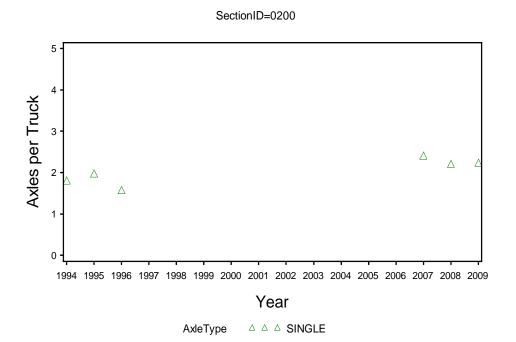



Figure F-2. Plot of Axles per Truck for Site 4\_0100 (Vehicle Class 5).

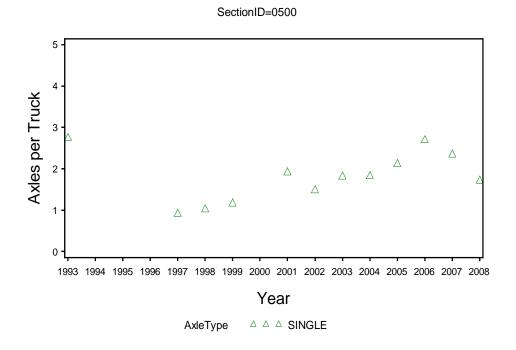



Figure F-3. Plot of Axles per Truck for Site 4\_0500 (Vehicle Class 5).

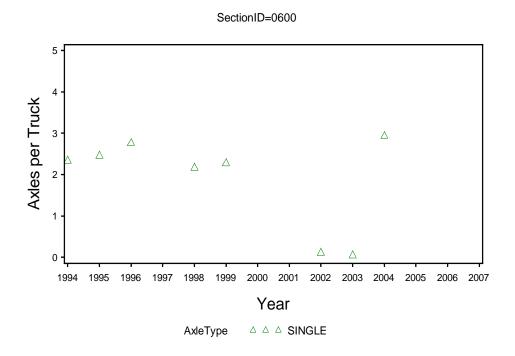



Figure F-4. Plot of Axles per Truck for Site 4\_0500 (Vehicle Class 5).




Figure F-5. Plot of Axles per Truck for Site 4\_0900 (Vehicle Class 5).

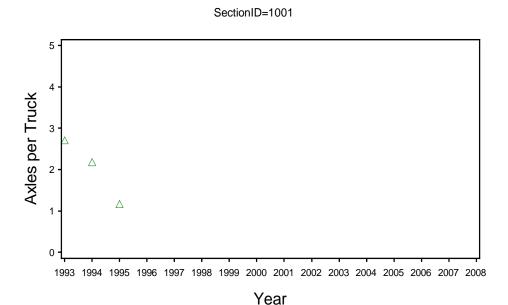



Figure F-6. Plot of Axles per Truck for Site 4\_1001 (Vehicle Class 5).

AxleType

 $\vartriangle \ \vartriangle \ \triangle \ \triangle \ \mathsf{SINGLE}$ 

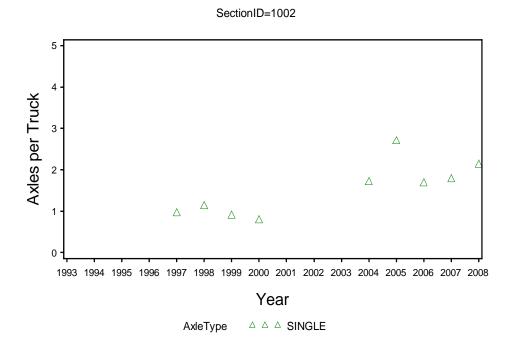



Figure F-7. Plot of Axles per Truck for Site 4\_1002 (Vehicle Class 5).

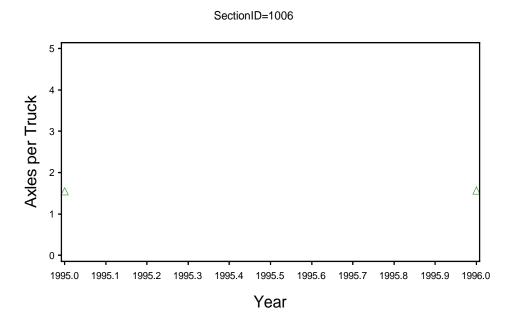



Figure F-8. Plot of Axles per Truck for Site 4\_1006 (Vehicle Class 5).

AxleType

 $\vartriangle \ \vartriangle \ \triangle \ \triangle \ \mathsf{SINGLE}$ 

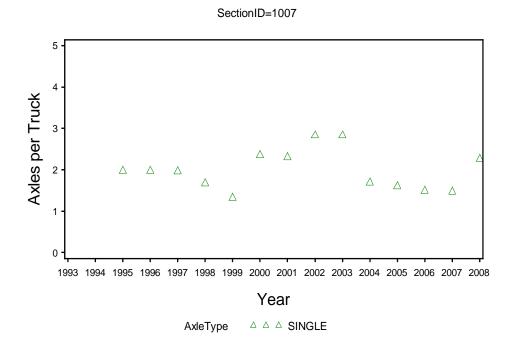



Figure F-9. Plot of Axles per Truck for Site 4\_1007 (Vehicle Class 5).



Figure F-10. Plot of Axles per Truck for Site 4\_1016 (Vehicle Class 5).

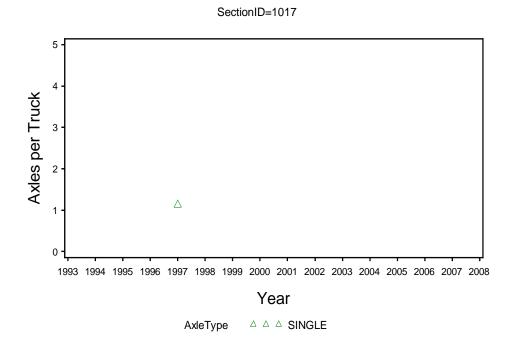



Figure F-11. Plot of Axles per Truck for Site 4\_1017 (Vehicle Class 5).

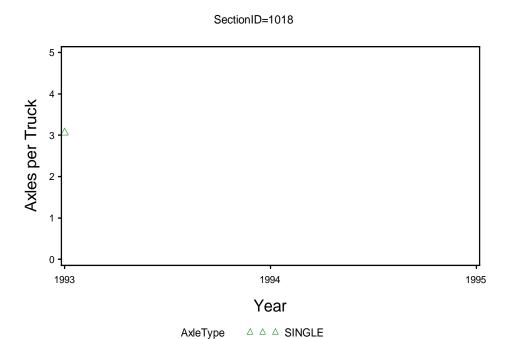



Figure F-12. Plot of Axles per Truck for Site 4\_1018 (Vehicle Class 5).

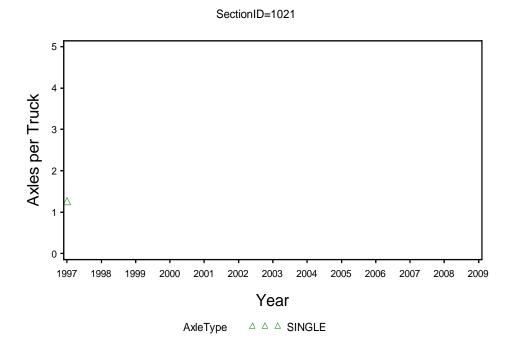



Figure F-13. Plot of Axles per Truck for Site 4\_1021 (Vehicle Class 5).

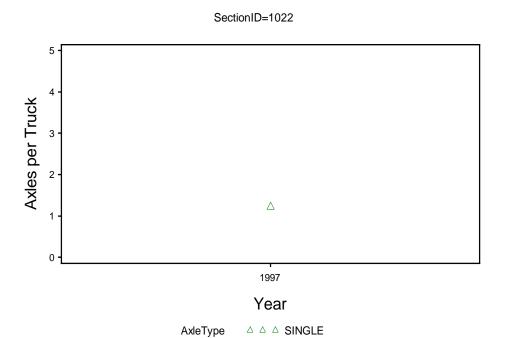



Figure F-14. Plot of Axles per Truck for Site 4\_1022 (Vehicle Class 5).

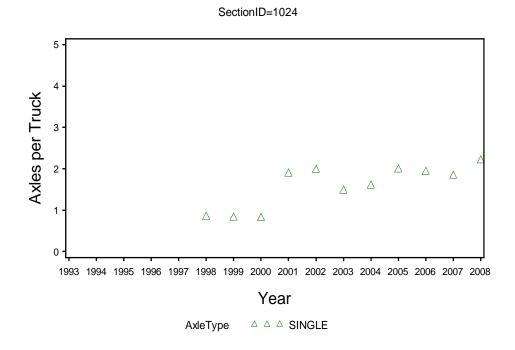
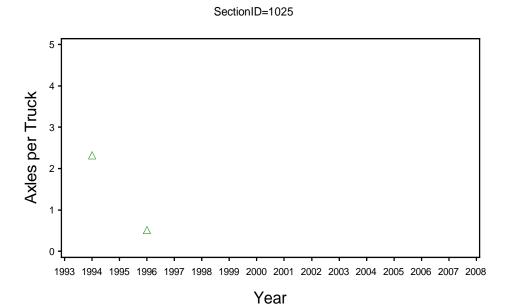




Figure F-15. Plot of Axles per Truck for Site 4\_1024 (Vehicle Class 5).



AxleType  $\triangle \triangle \triangle$  SINGLE

Figure F-16. Plot of Axles per Truck for Site  $4\_1025$  (Vehicle Class 5).

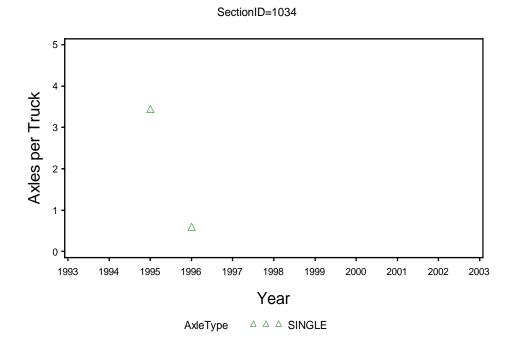



Figure F-17. Plot of Axles per Truck for Site 4\_1034 (Vehicle Class 5).

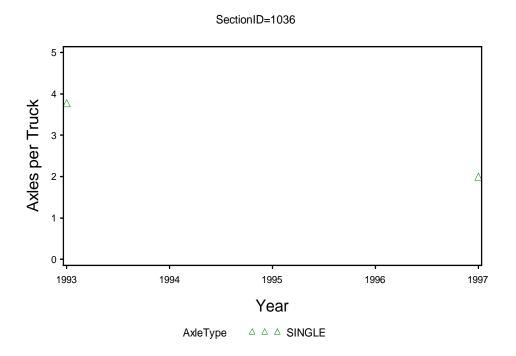



Figure F-18. Plot of Axles per Truck for Site 4\_1036 (Vehicle Class 5).

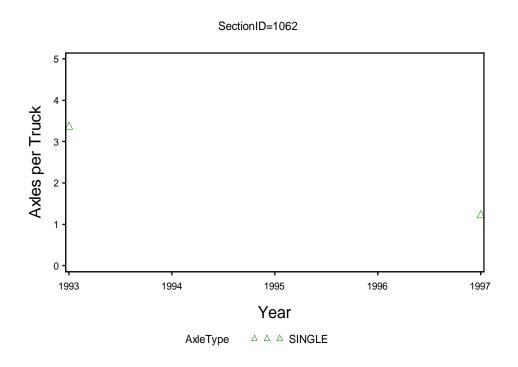



Figure F-19. Plot of Axles per Truck for Site 4\_1062 (Vehicle Class 5).

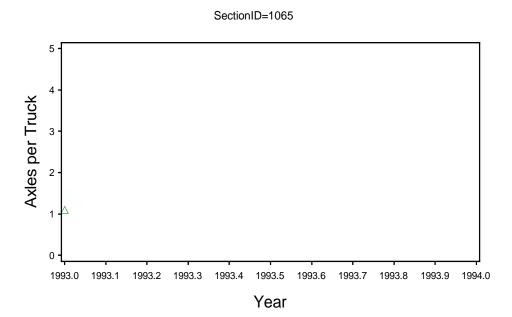



Figure F-20. Plot of Axles per Truck for Site 4\_1065 (Vehicle Class 5).

AxleType

 $\vartriangle \ \vartriangle \ \triangle \ \triangle \ \mathsf{SINGLE}$ 

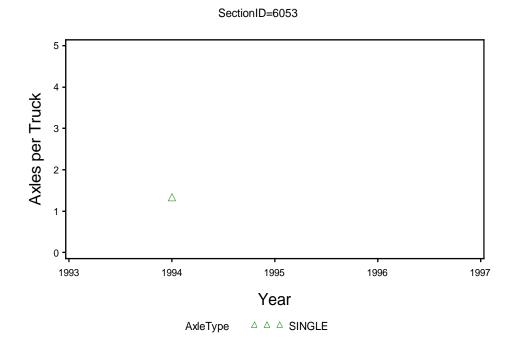



Figure F-21. Plot of Axles per Truck for Site 4\_6053 (Vehicle Class 5).

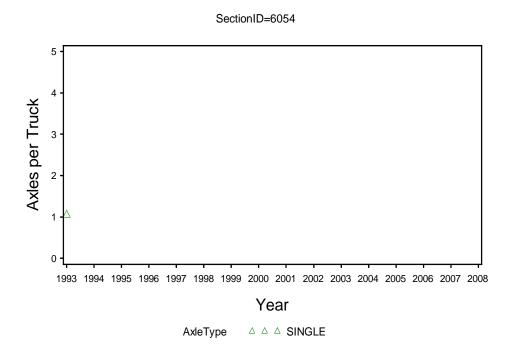



Figure F-22. Plot of Axles per Truck for Site 4\_6054 (Vehicle Class 5).

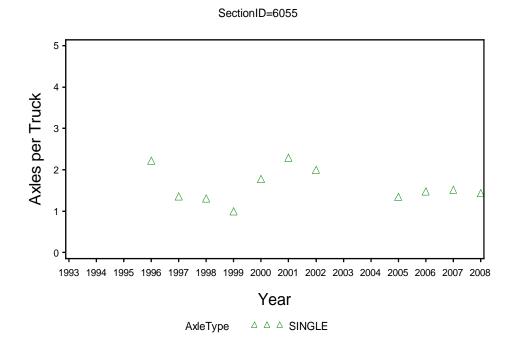



Figure F-23. Plot of Axles per Truck for Site 4\_6055 (Vehicle Class 5).

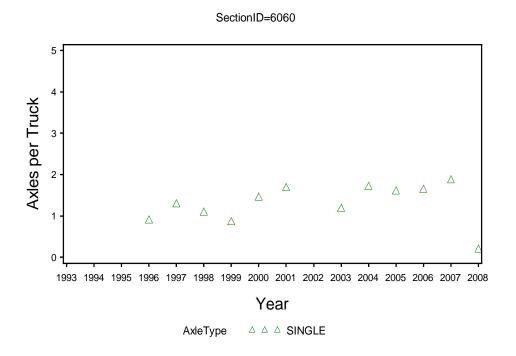



Figure F-24. Plot of Axles per Truck for Site 4\_6060 (Vehicle Class 5).

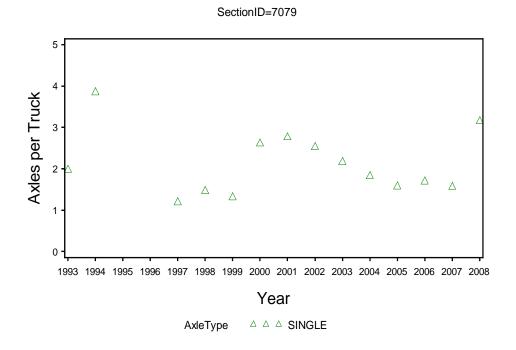



Figure F-25. Plot of Axles per Truck for Site 4\_7079 (Vehicle Class 5).

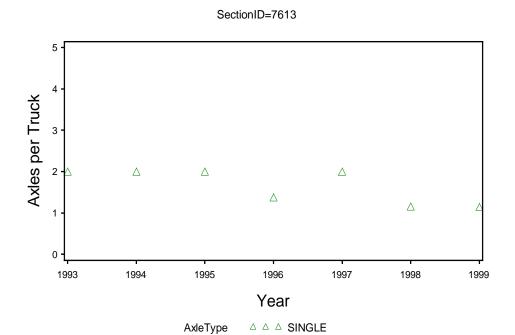



Figure F-26. Plot of Axles per Truck for Site 4\_7613 (Vehicle Class 5).

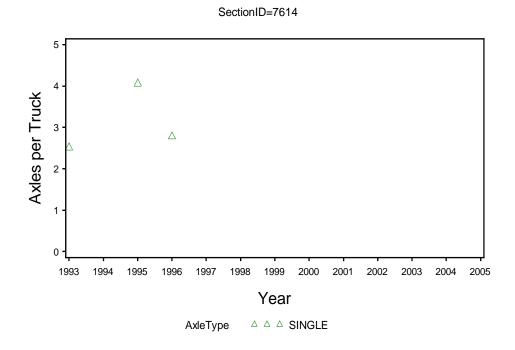



Figure F-27. Plot of Axles per Truck for Site 4\_7614 (Vehicle Class 5).

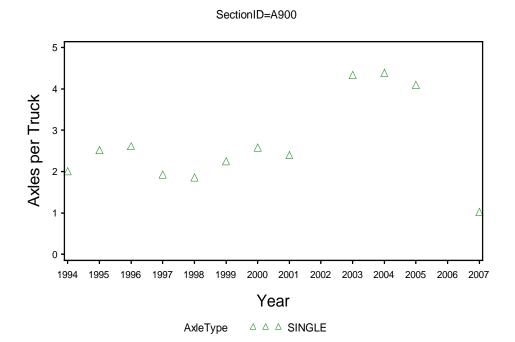



Figure F-28. Plot of Axles per Truck for Site 4\_A900 (Vehicle Class 5).

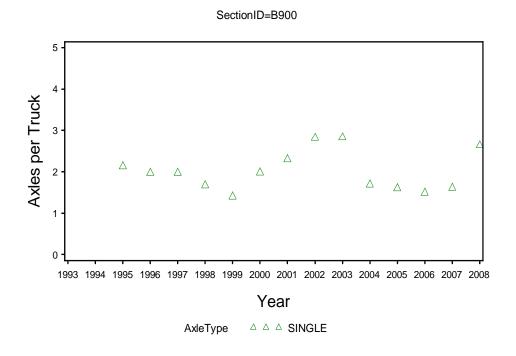



Figure F-29. Plot of Axles per Truck for Site 4\_B900 (Vehicle Class 5).

#### **AXLE-PER-TRUCK PLOTS FOR CLASS 9 TRUCKS**

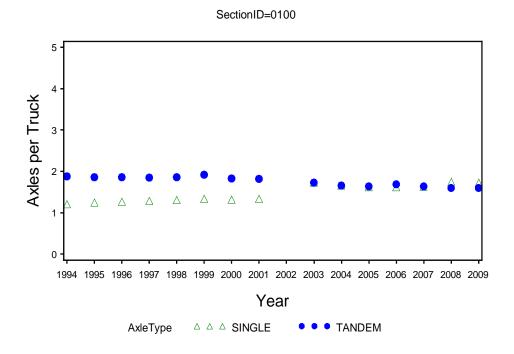



Figure F-30. Plot of Axles per Truck for Site 4\_0100 (Vehicle Class 9).

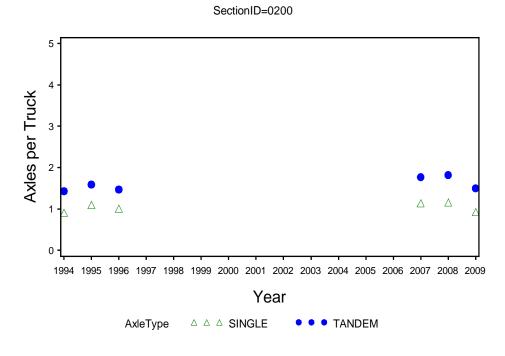



Figure F-31. Plot of Axles per Truck for Site 4\_0200 (Vehicle Class 9).

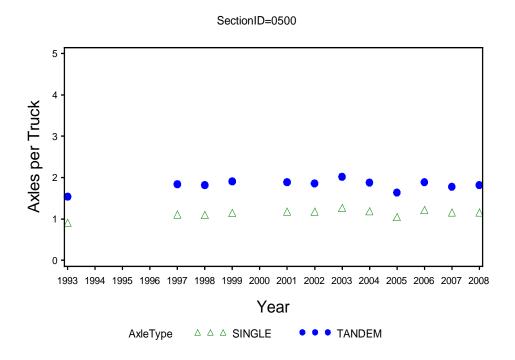



Figure F-32. Plot of Axles per Truck for Site 4\_0500 (Vehicle Class 9).

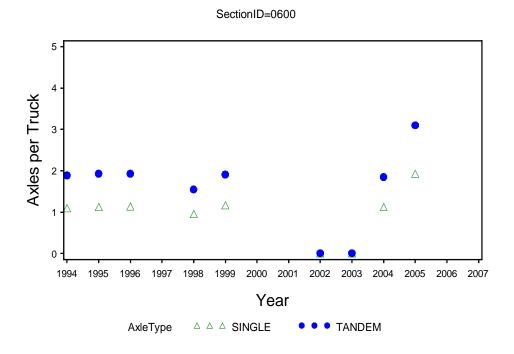



Figure F-33. Plot of Axles per Truck for Site 4\_0600 (Vehicle Class 9).

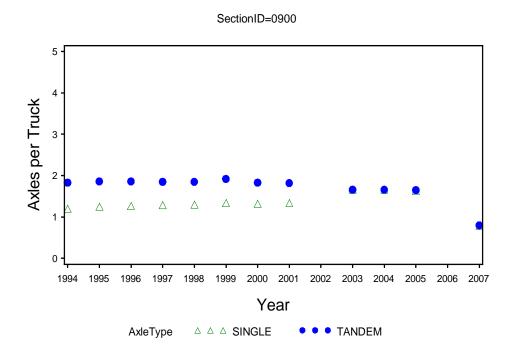



Figure F-34. Plot of Axles per Truck for Site 4\_0900 (Vehicle Class 9).

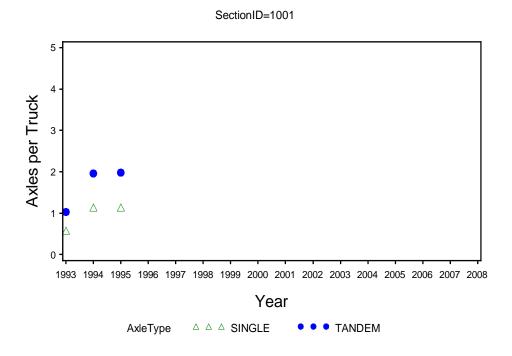



Figure F-35. Plot of Axles per Truck for Site 4\_1001 (Vehicle Class 9).

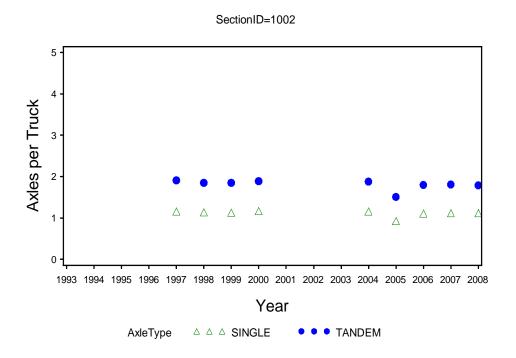



Figure F-36. Plot of Axles per Truck for Site 4\_1002 (Vehicle Class 9).

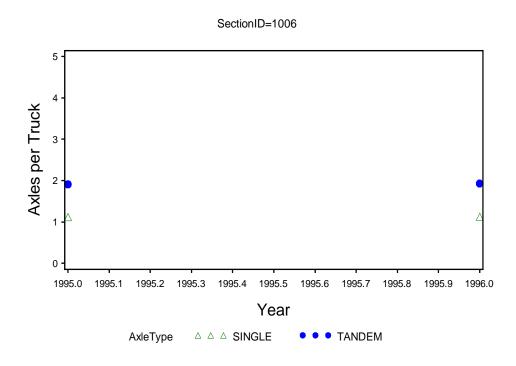



Figure F-37. Plot of Axles per Truck for Site 4\_1006 (Vehicle Class 9).

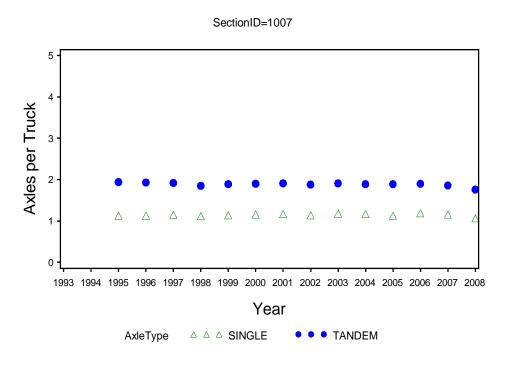



Figure F-38. Plot of Axles per Truck for Site 4\_1007 (Vehicle Class 9).

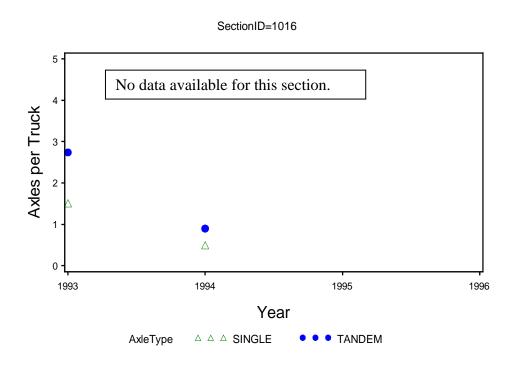



Figure F-39. Plot of Axles per Truck for Site 4\_1016 (Vehicle Class 9).

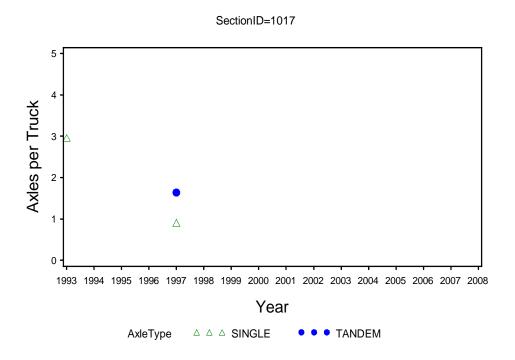



Figure F-40. Plot of Axles per Truck for Site 4\_1017 (Vehicle Class 9).

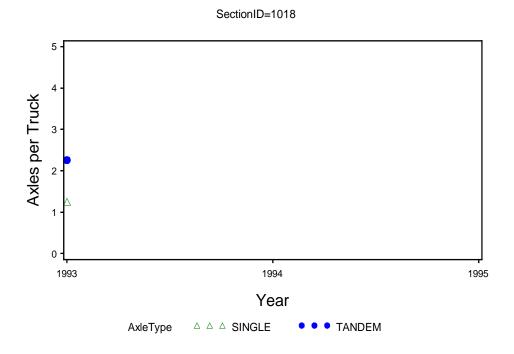



Figure F-41. Plot of Axles per Truck for Site 4\_1018 (Vehicle Class 9).

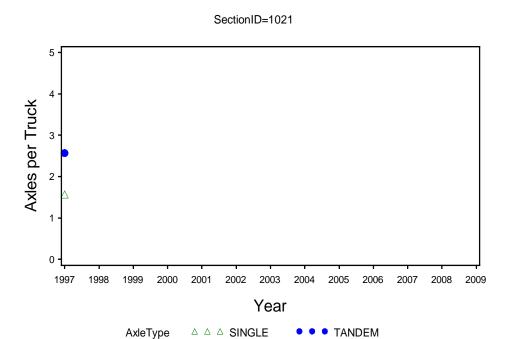



Figure F-42. Plot of Axles per Truck for Site 4\_1021 (Vehicle Class 9).

TANDEM

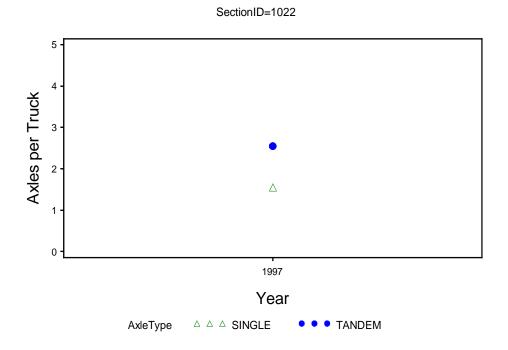



Figure F-43. Plot of Axles per Truck for Site 4\_1022 (Vehicle Class 9).

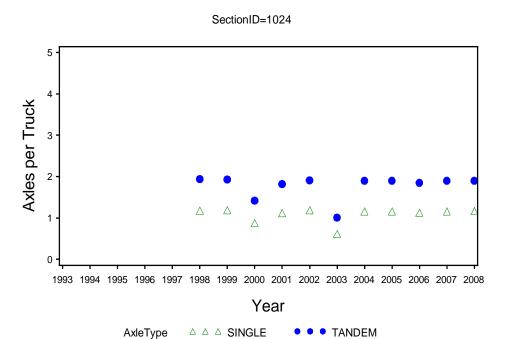



Figure F-44. Plot of Axles per Truck for Site 4\_1024 (Vehicle Class 9).

TANDEM

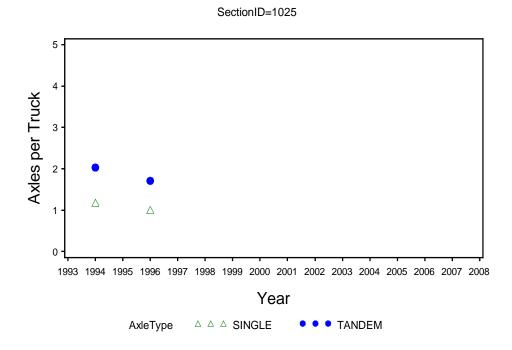



Figure F-45. Plot of Axles per Truck for Site 4\_1025 (Vehicle Class 9).

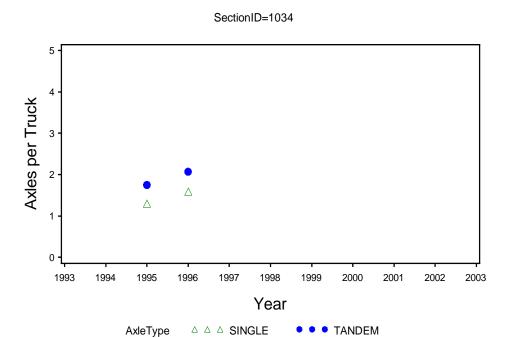



Figure F-46. Plot of Axles per Truck for Site 4\_1034 (Vehicle Class 9).

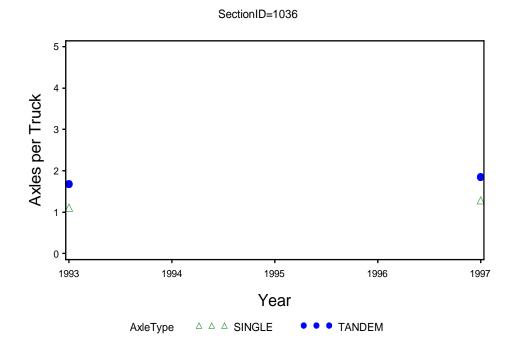



Figure F-47. Plot of Axles per Truck for Site 4\_1036 (Vehicle Class 9).

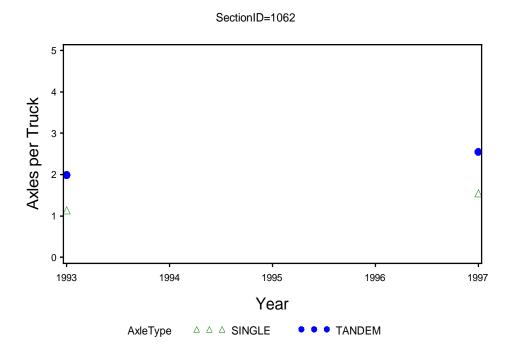



Figure F-48. Plot of Axles per Truck for Site 4\_1062 (Vehicle Class 9).

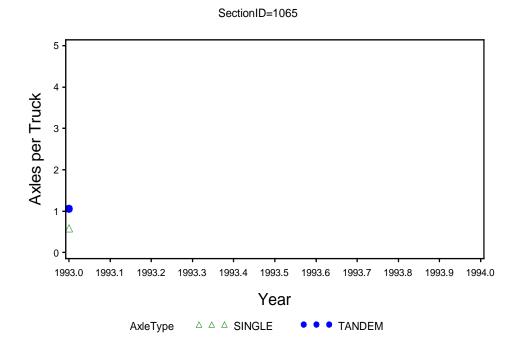



Figure F-49. Plot of Axles per Truck for Site 4\_1065 (Vehicle Class 9).

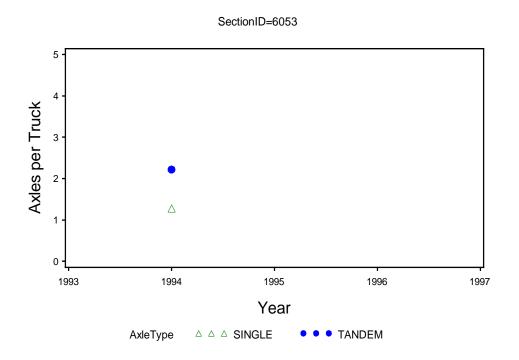



Figure F-50. Plot of Axles per Truck for Site 4\_6053 (Vehicle Class 9).

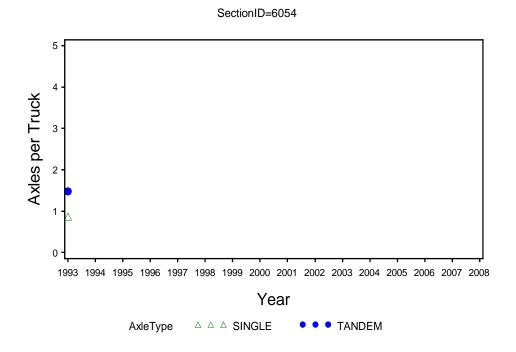



Figure F-51. Plot of Axles per Truck for Site 4\_6054 (Vehicle Class 9).

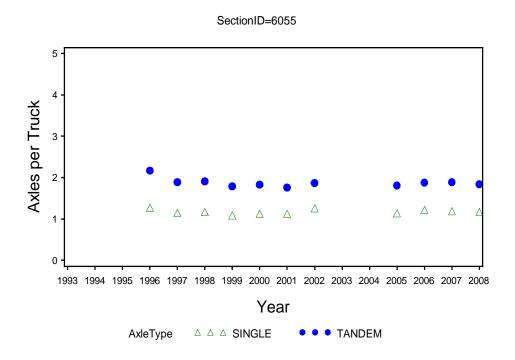



Figure F-52. Plot of Axles per Truck for Site 4\_6055 (Vehicle Class 9).

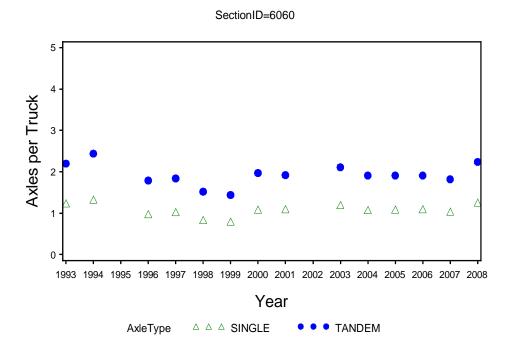



Figure F-53. Plot of Axles per Truck for Site 4\_6060 (Vehicle Class 9).

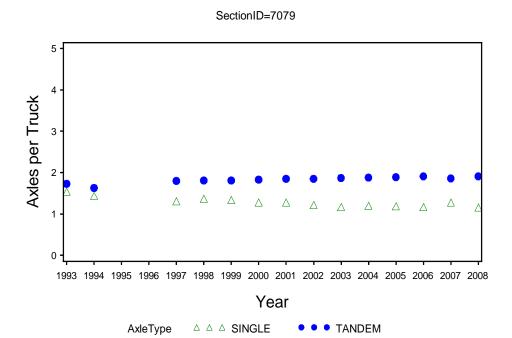



Figure F-54. Plot of Axles per Truck for Site 4\_7079 (Vehicle Class 9).



Figure F-55. Plot of Axles per Truck for Site 4\_7613 (Vehicle Class 9).

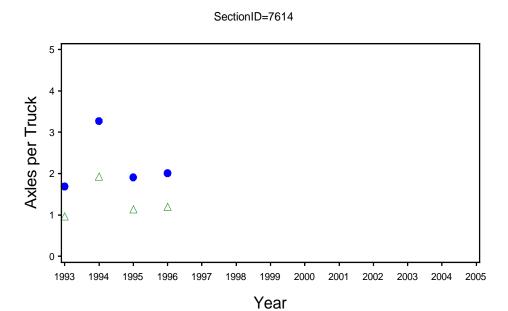



Figure F-56. Plot of Axles per Truck for Site 4\_7614 (Vehicle Class 9).

TANDEM

 $\vartriangle \ \vartriangle \ \triangle \ \triangle \ \mathsf{SINGLE}$ 

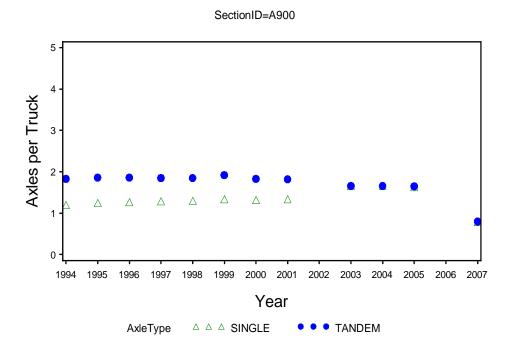



Figure F-57. Plot of Axles per Truck for Site 4\_A900 (Vehicle Class 9).

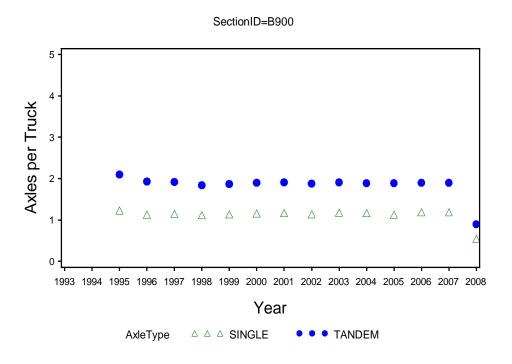



Figure F-58. Plot of Axles per Truck for Site 4\_B900 (Vehicle Class 9).

#### APPENDIX G. RECOMMENDED ADOT BUSINESS PROCESS OVERVIEW FOR MEPDG AND PAVEMENT MANAGEMENT SYSTEM

#### Recommended Business Process Overview for MEPDG and PMS

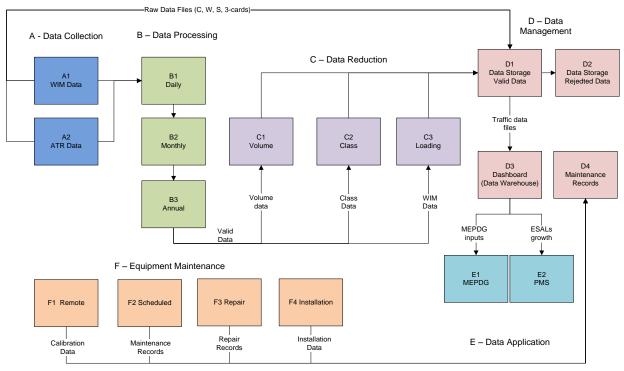
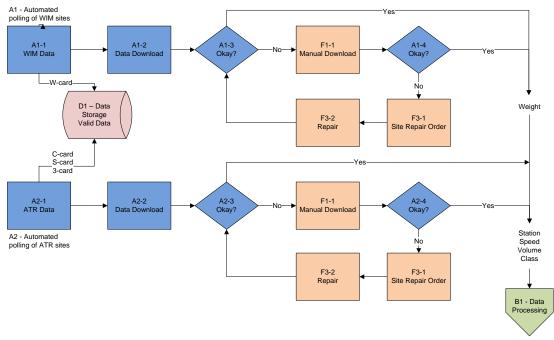




Figure G-1. Flowchart 1 for Recommended Business Process for MEPDG and Pavement Management System.



A - Data Collection

Figure G-2. Flowchart 2 for Recommended Business Process for MEPDG and Pavement Management System.

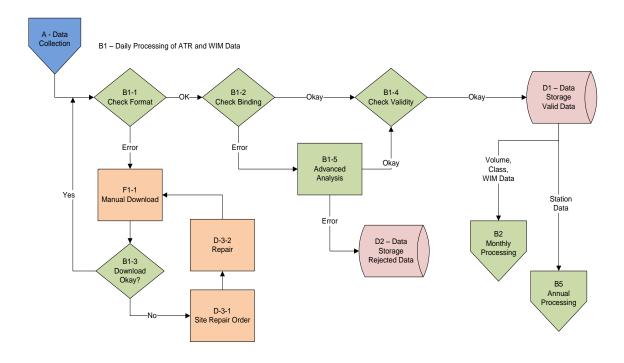



Figure G-3. Flowchart 3 for Recommended Business Process for MEPDG and Pavement Management System.

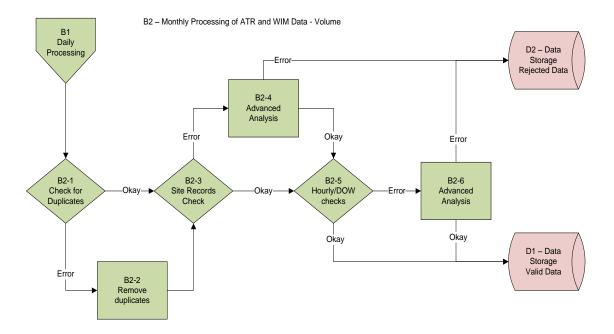



Figure G-4. Flowchart 4 for Recommended Business Process for MEPDG and Pavement Management System.

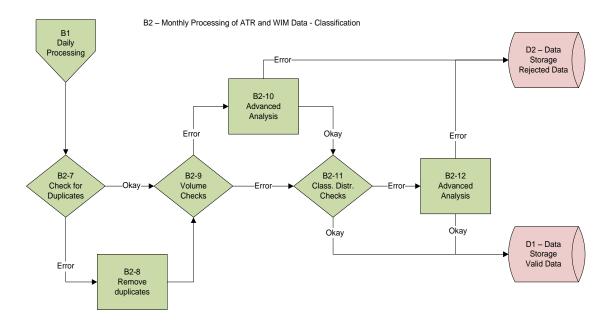



Figure G-5. Flowchart 5 for Recommended Business Process for MEPDG and Pavement Management System.

B2 - Monthly Processing of ATR and WIM Data - Weigh-in-Motion

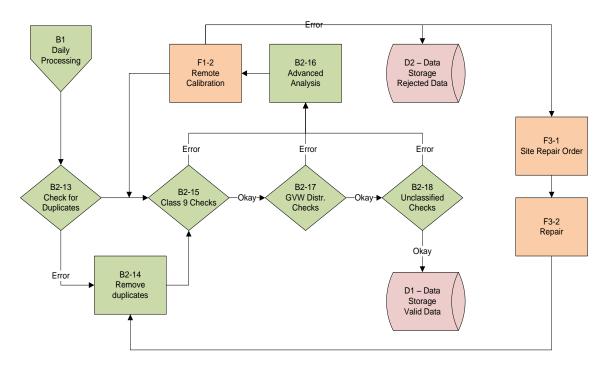



Figure G-6. Flowchart 6 for Recommended Business Process for MEPDG and Pavement Management System.

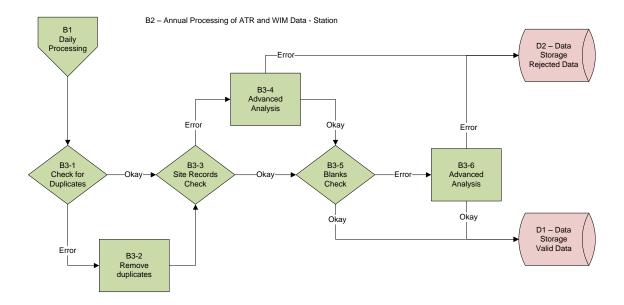
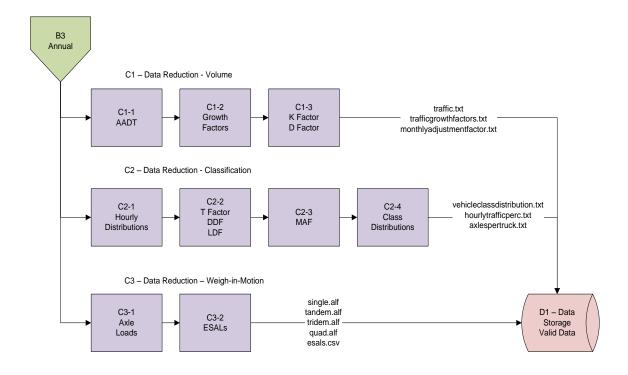
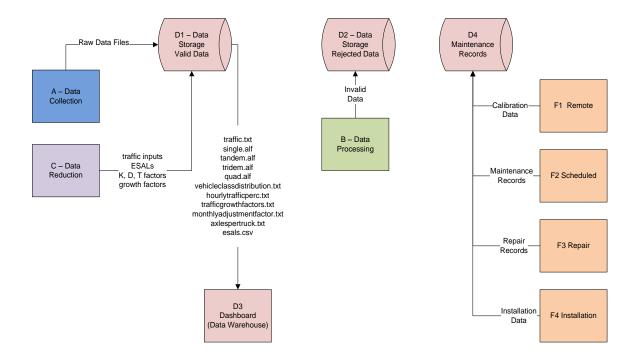





Figure G-7. Flowchart 7 for Recommended Business Process for MEPDG and Pavement Management System.



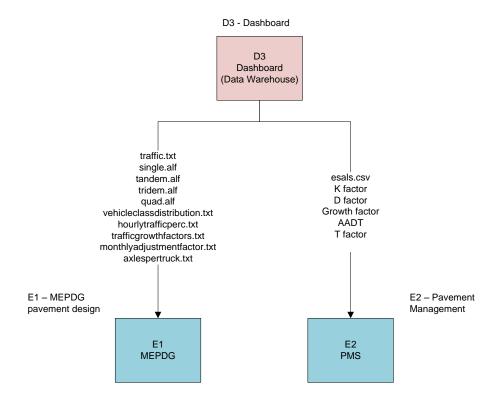

C - Data Reduction

Figure G-8. Flowchart 8 for Recommended Business Process for MEPDG and Pavement Management System.



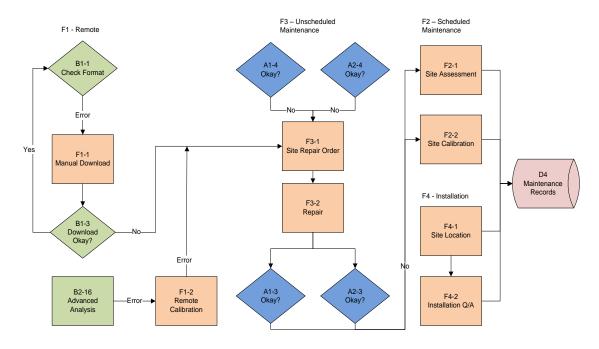

D - Data Management

Figure G-9. Flowchart 9 for Recommended Business Process for MEPDG and Pavement Management System.



#### E - Data Application

Figure G-10. Flowchart 10 for Recommended Business Process for MEPDG and Pavement Management System.



F - Equipment Maintenance

Figure G-11. Flowchart 11 for Recommended Business Process for MEPDG and Pavement Management System.

Table G-1. List of Business Processes.

| Box No. | Description                           | Box No. | Description                                           |  |
|---------|---------------------------------------|---------|-------------------------------------------------------|--|
| Α       | Data Collection                       | B3-2    | Remove Duplicates                                     |  |
| A1      | WIM Data                              | B3-3    | Site Records Check                                    |  |
| A1-1    | WIM Data Polling                      | B3-4    | Advanced Analysis                                     |  |
| A1-2    | WIM Data Download                     | B3-5    | Blanks Check                                          |  |
| A1-3    | Download Okay?                        | B3-6    | Advanced Analysis                                     |  |
| A1-4    | Manual Download Okay?                 | С       | Data Reduction                                        |  |
| A2      | ATR Data                              | C1      | Volume                                                |  |
| A2-1    | ATR Data Polling                      | C1-1    | AADT                                                  |  |
| A2-2    | ATR Data Download                     | C1-2    | Growth Factors                                        |  |
| A2-3    | Download Okay?                        | C1-3    | K, D Factors                                          |  |
| A2-4    | Manual Download Okay?                 | C2      | Classification                                        |  |
| В       | Data Processing and Quality Assurance | C2-1    | Hourly Distributions                                  |  |
| B1      | Daily                                 | C2-2    | T Factor, Design Direction Factor, Design Lane Factor |  |
| B1-1    | Format Check                          | C2-3    | Monthly Adjustment Factors                            |  |
| B1-2    | Binding Check                         | C2-4    | Class Distributions                                   |  |
| B1-3    | Download Okay?                        | C3      | Weigh-in-Motion                                       |  |
| B1-4    | Validity Check                        | C3-1    | Axle Loads                                            |  |
| B1-5    | Advanced Analysis                     | C3-2    | ESALs                                                 |  |
| B2      | Monthly                               | D       | Data Management                                       |  |
| B2-1    | Duplicate Check                       | D1      | Data Storage – Valid Data                             |  |
| B2-2    | Remove Duplicates                     | D2      | Data Storage – Rejected Data                          |  |
| B2-3    | Site Records Check                    | D3      | Dashboard (Data Warehouse)                            |  |
| B2-4    | Advanced Analysis                     | D4      | Maintenance Records                                   |  |
| B2-5    | Hourly/DOW Checks                     | E       | Data Application                                      |  |
| B2-6    | Advanced Analysis                     | E1      | MEPDG Pavement Design                                 |  |
| B2-7    | Duplicate Check                       | E2      | Pavement Management                                   |  |
| B2-8    | Remove Duplicates                     | F       | Equipment Maintenance                                 |  |
| B2-9    | Volume Check                          | F1      | Remote Maintenance                                    |  |
| B2-10   | Advanced Analysis                     | F1-1    | Manual Download                                       |  |
| B2-11   | Classification Distribution Checks    | F1-2    | Remote Calibration                                    |  |
| B2-12   | Advanced Analysis                     | F2      | Scheduled Maintenance                                 |  |
| B2-13   | Duplicate Check                       | F2-1    | Site Assessment                                       |  |
| B2-14   | Remove Duplicates                     | F2-2    | Site Calibration                                      |  |
| B2-15   | Class 9 Checks                        | F3      | Unscheduled Maintenance (Repair)                      |  |
| B2-16   | Advanced Analysis                     | F3-1    | Site Repair Order                                     |  |
| B2-17   | GVW Distribution Checks               | F3-2    | Site Repair                                           |  |
| B2-18   | Unclassified/Class 15 Checks          | F4      | Installation                                          |  |
| B3      | Annual                                | F4-1    | Site Location                                         |  |
| B3-1    | Duplicate Check                       | F4-2    | Site Installation Q/A                                 |  |

