TDiwce: A2 G- 383

ARIZONA DEPARTMENT OF TRANSPORTATION

REPORT NUMBER: FHWA-AZ94-383

RHODES PROJECT:
PHASE Il (A)

Final Report

Prepared by:

Larry Head

Pitu Mirchandani

Systems and industrial Engineering Department
University of Anzona

Tucson, Arizona 85721

WUTIT M ae g,

sUsearch Center

July 1994 36 Scuih 17H6 Avenue. sgos
P:-OGNX,AZ 85007 He. #U7SR

Prepared for:
Arizona Department of Transportation
206 South 17th Avenue
Phoenix, Arizona 85007

in cooperation with
U S. Department of Transportation
Federai Highway Administration

The contents of this report reflect the views of the authors who
are responsible for the facts and the accuracy of the data
presented herein. The contents do not necessarily reflect the
official views or policies of the Arizona Department of
Transportation or the Federal Highways Administration. This
report does not constitute a standard, specification, or
regulation. Trade or manufacturer's names which may appear
herein are cited only because they are considered essential to
the objectives of the report. The U.S. Government and the State
of Arizona do not endorse products or manufacturers.

——— m—— e (R ARER T I 1R T

X I

Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
FHWA-AZ-94-383
4. Title and Subtitle 5. Report Date
July 1994
RHODES Project:Phase Il (a) 6. Performing Organization Code
7. Author(s) 8. Performing Organization Report No.
Lanry Head and Pitu Mirchandani ‘ SIE Dept., University of Arizona
9. Performing Organization Name and Address 10. Work Unit No.

Systems and Industrial Engineering Department
University of Arizona
Tucson, AZ 85721

11. Contract or Grant No.
HPR-PL-1(43)383

12. Sponsoring Agency Name and Address 13.Type of Report & Period Covered

ARIZONA DEPARTMENT OF TRANSPORTATION : Final Report 5/92 -1/93
206 S. 17TH AVENUE
PHOENIX, ARIZONA 85007

14. Sponsoring Agency Code

15. Supplementary Notes

Prepared in cooperation with the U.S. Department of Transportation, Federal Highway Administration

16. Abstract

This report documents the work performed on the RHODES Project Phase ll(a). This research effort was the
continuation of the RHODES Project Phase . Phase | explored concepts for models and algorithms for a real-
time traffic-adaptive control systems for street networks, referred to as the RHODES System. Phase ll(a)
focused on further development of some of these algorithms and on performing some preliminary laboratory
experiments with these algorithms using simulation models.

The control architecture of RHODES is based on a hierarchical decomposition of the overall traffic control
problem. In an aggregate sense, there are three levels in the control hierarchy: network load control, network
flow (platoon) control, and intersection (vehicular) control. RHODES architecture allows for a modular
implementation of many of the subsystems within the control structure and the incorporation of IVHS
technologies (e.g. new vehicle sensors) when they become available. In Phase li(a), the decision problems at
each of the hierarchical levels were further analyzed and the decision model/algorithm at the intersection level
was explicitly formulated, solved, and evaluated using simulation models.

717 Key Words 18. Distribution Statement 23. Registrant's Seal
Document is available to the
Traffic Control Systems, intersection Control, U.S. public through the
Real-Time TrafficAdaptive Control, Simulation, National Technical Information
Optimization. Service,
Springfield, Virginia 22161
19. Security Classification 20. Security Classification 21. No. of Pages 22. Price

Unclassified Unclassified 170

Symbol

yd
mi

in?
hl
yd!
mi?
ac

or

fl oz
gal
“l
yd'

APPROXIMATE CONVERSIONS TO Sl UNITS

METRIC (SI*) CONVERSION FACTORS

When You Know Multiply By To Find
LENGTH

Inches 254 centimetres

feeat 0.3048 metres

yards 0914 metres

miles 1.6 kllometres

AREA

square inches 645.2 centimetres squared

square fest 0.0928 metres squared

square yards 0.836 metres squared

squars miles 2.59 kilometres squared

acres 0.395 hectares

MASS (welight)

ounces 28.35 grams

pounds 0.454 kllograms

short tons (2000 Ib) 0.907 megagrams
VOLUME

fluid ounces 29.57 mililiires

galions 3.785 fitres

cubic feet 0.0328 melres cubed

cublc yards 0.0765 metres cubed

NOTE: Yolumes greater than 1000 L shall be shown In m?.

f

TEMPERATURE (exact)

Fahrenhelt

temperature

5/9 (after

Celslus

subtracting 32) temperature

Symbol

cm?
ml
mt

ha

kg
Mg

mL

ml

. .I.l.l.,.l.l.l.

.l.!

<

|,
AL

.|.l.|.|.1.|.|. .i.l,l.l.a.l.h .|.|.'.‘.|.|.|. .l.l.!.‘.l.l.l

,l.l.l.l.l.l.l. .|.|.1.l

LU

i, .|.|.|.J.|.I

-
1
-
-
=
-
-
-
2
-
2_ =
-
= L]
o -
=
b= =
=
=———
—3 -
= _ 2
B
= __
=
=
= -
|- .
=
= -~
=
e
= -
=
1]
=
— -
= -
=
= -
=
E -
=__
==
- a—
==
= !

APPROXIMATE CONVERSIONS TO Sl UNITS

Symbol When You Know Multiply By Yo Find Symbol
LENGTH
mm millimatres 0.039 Inches in
m metres 328 feel 14
m metres 1.09 yards ' yd
km kilometres 0.8621 miles ml
AREA
mm! millimelres squared 0.0016 square Inches In?
m? metres squared 10.764 square feet ft?
km! kilometres squared 0.39 square milas mi?
ha heciores (10000 m%) 2.53 acres ac
MASS (weight)
] grams 0.0353 ounces oz
kg kilograms 2.205 pounds b
Mg megagrams (1 000 kg) 1.103 short tons T
VOLUME
mL millilitres 0.034 fluld ounces ft oz
L litres 0.264 gations gal
m? metres cubed 35318 cubic feet f*
m? maeires cubed 1.308 cublc ysrds yd?
TEMPERATURE (exact)
°C Celsius 9/5 (then Fahrenheit °F
temperature add 32) tempaerature
L 3
°F J2 980 212
- 0 40 80 120 180 200
-4 -2 20 40 e & 1%
C 37 C

These lactors conform to the requirement of FHWA Order 5190.1A.

* St is the aymbol for the Intemational System of Measurements

PREFACE

This report documents the work performed on the RHODES Project Phase I1(a). This research
effort was the continuation of the RHODES Project Phase 1. Both phases were funded by the
Arizona Department of Transportation (ADOT) through the Pima Association of Governments
(PAG). Essemtially, Phase I explored concepts for models and algorithms for real-time traffic-
adaptive control systems for street networks. Phase [I(a) focused on further development of some
of these algorithms and on performing some preliminary lzboratory experiments with these
algorithms using simulation models.

This report was written by the principal investigator, Pitu B. Mirchandani, and co-principal
investigator, Larry Head, both of the Systems and Industrial Engineering (SIE) Department at
the University of Arizona. It is based on the compilation of research efforts and results of various
individuals who have been involved in the RHODES Project. In particular, the efforts of the
following individuals are acknowledged:

Julia Higle Associate Professor, SIE Department

Suvrajeet Sen Associate Professor, SIE Department

Douglas Gettman Undergraduate Assistant, SIE Department

Srikanth Nagarajan Graduate Assistant, SIE Department

Ranjit Rebello Graduate Assistant, SIE Department

Douglas Tarico Graduate Assistant, SIE Department

Gregory Tomooka Graduate Assistant, SIE Department

Michael Whalen Graduate Assistant, SIE Department

Paolo Dell'Oimo Visiting Scientist, SIE Department (from the Instituto di
Analisi dei Sistemi ed Informatica, Rome).

In addition, the principal investigators wish to acknowledge the following individuals whose
techni ah.l?bll input, interactions with key investigators, and general support on the project has been
inv e:

AT L (T .

Harry A. Reed Director, Transportation Planning, ADOT

Larry A. Scofield Manager, Transportation Research, Arizona Transportation
Research Center (ATRC), ADOT

Sarath Joshua Senior Research Engineer, ATRC, ADOT

Louis Schmitt Assistant County Manager, Maricopa County Transportation
and Development Agency, (formerdy with ADOT)

Pima A iation of G
Thomas Buick Chief, Transportation Planning Division, Maricopa County

Department of Transportation, (formerly with PAG)
David Wolfson Senior Transportation Planner, PAG

City of Tucson

Benny Young Director of Transportation, City of Tucson
Richard Nassi Traffic Engineer, City of Tucson.

Dennis Sheppard Assistant Traffic Engineer, City of Tucson.

Comments and support of Harvey Friedson and James Decker of the Traffic Engineering
Department of the City of Teinpe, AZ, are also gratefully acknowledged.

The contents of this report reflect the views of the authors who are responsible for the facts and
the accuracy of the data presented herein. The contents do not necessarily reflect the official
views of the Arizona Department of Transportation or the Federal Highway Administration. This
report does not constitute a standard, specification or regulation.

TABLE OF CONTENTS

SECTION Page
PREFACE. . iiiiiiiiitiissreesteaeseessssssssstosesssessssssnsncsssssosansnsnsses i
TABLE OF CONTENTS i itiitittierieieniisnicnrsssencsssssosssssecscsesses ii
LIST OF FIGURES .. .iiittitetteristssstceranssessassosstssssasessosssssasssnns iv
LIST OF TABLES.............. e eetseesscesitanisntnoserassonttsrtasasenasstnne vi
1. INTRODUCTION . iiiitiiiiiieineresiistsensassrscesancssssssssannsssnses 1
2. NETWORK LOADING ...coiveuieiiiinetastesnccisosssscssnscascsonssnnsnsd 6
2.1 A Statistical Network Loading Model ... 6
2.1.1 Empirical Bayes ESHMAtES.........ccvuivieiniiiiiiiiiiiiiiie e e 6
2.1.2 Dynamic Bayes EStimationc..c.coiviiiiiiiiiiiiiii e 9
2.2 A Network Loading Example ..o 12
3. CAPACITY ALLOCATION. . cciittieetetenciiscrsencasesserscescesnens 18
3.1 The Capacity Allocation Model.........ccooovniiiiniiiiiiiiniieeeen, 18
3.2 A Capacity Allocation Exampleocooiiiiiiiiiiiniiii 22
4. NETWORK FLOW CONTROL.....cc0cv0itrieireciectcescsennscsnsssnes 25
4.1 REALBAND for Real-time Network Coordination........c.ceeeeviiiiiiinnnnnnnnnn. 26
5. INTERSECTION CONTROL....cciiiitiieienienrirarcnsecnsnnonnasaans 38
5.1 Existing Intersection Control Algonthms..............cooooiiiiiiiiiii 38
5.1.1 Fixed-Time Control......ccovuiiiiiiiiiiiiniiiiiaieiiieee e e, 39
5.1.2 Semi- and Fully-Actuated Control.............ccoiiirniviiiiiii e 40
5.1.3 Traffic Responsive CONtIol.........c.oooiiiiiiiiiiiiiiiiii e 40
5.1.4 Real-time Intersection Control - OPAC ..o, 40
5.2 Traffic-adaptive Control Algorithms - DISPATCHand COP........................ 42
5.2.1 DISPATCH 1.0, . it et aee eaeaaes 43
5.2.2 DISPATCH L.OEXample......ccooiiiiiiiiiiiii e 46
5.2.3 COP - Algorithm for Intersection Control ... 50
52.4 COP - EXamMPlIe..coccoririiiiiiiii e 52
5.3 Traffic Flow Prediction ..ot e 54
5.3.1 The PREDICT AIgOMtIIM.oviviiiiiniiiiiiiin i eea 60
6. SIGNAL CONTROLLER INTERFACE.....cciiiieiiiniiiiacecennnn, 66
6.1 Interface REQUITEMENLS. ... oouuuuneiiti ittt e e e r e e 66
6.2 Interface Logic DeSIZNcovviiieiiiiiiiiii e 66
6.3 DEmMONSIAtONttt et iie et ittt et e ettt s e eaa e e 68

1

TABLE OF CONTENTS (Continued)

SECTION Page
7. SIMULATION EXPERIMENTS USING TRAF-NETSIM........... 69
7.1 Overall Approach ... 71
7.2 Implementation DEtailsocovuiiiririnitiniriiiiie e 75
7.2.1 Providing Data for External Signal Control Logic..........cooviiiiiiiin, 75
7.2.2 Implementing Signal Control from Extemal Signal Control Logic ...t 78
7.2.3 Modifications t0 TRAF-NETSIM Source Code........ccocummmmnnninicninenniinnn. 79
7.3 Development Procedure for External Signal Control Logic..............ccocei. 79
7.4 Model Validation........ccoovuiuiiiiiiiie ittt 81
7.4.1 Fixed-Time Control LOZICociiiiiiiiriiiiiiiriiiiiiii s 81
7.4.2 Semi-Actuated Control LogiC.......oovemiiiiiiiiiiiiiiiiiii 82
7.4.3 Validation Experiments and Resultsooc 84
7.5 Integration of COP/PREDICT and TRAF-NETSIMcoooiiiiiiiiiinin, 86
8. IVHS ACTIVITIES AND PROPOSAL DEVELOPMENT............. 88
REFERENCES . . iiiiitiiiiiiiiiiiieniasioresiseseiecsssssasesccossrssannssssnes 92
APPENDICES

APPENDIX A: DISPATCH 1.0 Program ListiBg ...coveeeetostennscncnancennnans A-2
APPENDIX B: DISPATCH 1.0 Sample Program Outpit...eceveeesceesescensanss A-9
APPENDIX C: Listing of COP Prograf «c.eeecaeceessissseconsososonsscssssns A-22
APPENDIX D: Listing of the Output of the COP Program.....ccecenvune. veeeees A-29
APPENDIX E: Subroutine CONTROL..ccicrevriiirerenucncirircacacicanenes A-31
APPENDIX F: Programmer's Notes....... Veetssasecesnsesseestecsesarsotnnas A-33
APPENDIX G: Subroutines SENSOR and OUTDATA.......ccvuvee.n Cereseense A-36
APPENDIX H: Complete Listing of Changes to TRAF-NETSIM A-41
APPENDIX I: Descriptions of New TRAF-NETSIM Output Data.............. A-44
APPENDIX J: External Fixed-Time Signal Control LOgiC..cevesiveraserennnans A-48
APPENDIX K: External Semi-Actuated Signal Control LOgic.vveeeienrisenneans A-52
APPENDIX L: TRAF-NETSIM Input File for Simulated Network......vvvevsss A-63

i

LIST OF FIGURES

Figure Number Page
1 The RHODES Hierarchical Control System Architecture...................... 4
2 Typical day of week loads on link [i,j] over time of day and on *

different calender daysoooeeniniiiiiii 7
3 Topological layout of the traffic network used in the simulation studies. .. 13
4 Observed number of vehicles for eight time periods of 15 minutes each

over thirty days (simulation TunS).......ccccoviiiiiniiii 14
5 Estimated loads over time and day................ooooviiiiiiiiin i 14
6 Observed and estimated load over time on calenderday O................... 15
7 Observed and estimated load over time on calenderday 5................... 16
8 Observed and estimated load over time on calender day 30.................. 16
9 Observed and estimated load over time on calender day at a fixed time 17
10 Standard lables of 8 possible movments and the associated 4 phases...... 19
11 Layout of the Campbell Avenue and Speedway Boulevard Intersection ... 23
12 The MAXBAND CODCEPL ...euvivinininiiiiieeceeiiniiteiineseiceaaaenes 27
13 Actual MAXBAND Performancec.coiiiiiiiiiiii 28
14 The REALBAND Concept of a Single Arterial...........cccevniinvinnnnns 28
15 REALBAND Example Networkcccocoiiiiiiiiiniiiiiii, 29
16 Current Prediction of Platoon Movement ..., 31
17 Decision to split Platoon N at Intersection 3...............coooviviiinn. 31
18 Decision to stop Platoon W3 at Intersection 3..............ooooiiiiiin.. 31
19 Decision to stop Platoon S at Intersection3 ... 31
20 Decision to stop Platoon E3 at Intersection 3. 32
21 Decision to stop Platoon N at Intersection 2...................ool, 32
22 Decision to stop Platoon W2 at Intersection 2..............ccocoiiiiiinnnnnn, 32
23 Decision to stop Platoon N at Intersection 2..........ocovvviiiiiiinnennn, 32
24 Decision to stop Platoon W2 at Intersection 2............cooviviiinivinnannn. 33
25 Decision to stop Platoon S at Intersection 3coceieeiiiiiiiinnnn, 33
26 Decision to stop Platoon E3 at Intersection 3., 33
27 The North-South "Red"” and "Green" Phases for the Decisions............. 33
28 Decision Tree for Illustrative Problem...................cooooiil 34
29 Flow Chart for Network Flow Control Optimization.........cccceeeeneee. 36
30 Region for Network Flow Control ..o 37
31 Region for Simulation...........ccoooiiiin PN 37
32 Dual Ring Controllerooiiiiiiiiiiii e 43
33 Campbell Avenue and Sixth Street Intersection, Tucson, Arizona.......... 44
34 The time from the detection to the intersection stop-line is referred

to as DETECT seconds......cccoveiiiimmiiiiiiiiiiiiiiii e 46
35 Input parameters and detector data for DISPATCHc...ne. 47

iv

LIST OF FIGURES (continued)

Figure Number Page

36 Tabulation of stops and delay on each movement when switching at the

optimal POINt....iciiiiiiiiiiit i e 48
37 Graphical display of DISPATCH 1.0 example........ccoovniiiinnnnnn. 49
38 Input parameters and detector data for COP..............coooviiniiinn. 53
39 Basic traffic intersection showing approaches, approach volumes,

movements and vehicle detectorsooiviviiiiiiiii i 55
40 Graphical depiction of the effect of future arrivals on scheduling

the intersection phase sequence and duration.............c.ceeveveiinninni, 56
41 Nlustration of the relationship between the prediction horizon

(T=10) and the prediction fleqUENCY.covvveriiiiienririiiiiinnn. 57
42 Prediction scenario based on detectors on the approaches to

the UPSIEAm INETSECHOMN. .. .euvveienriae et e 61
43 Delays associated with the prediction of arrivals at the detector da......... 62
44 Link Flow Profiles: predicted (solid) and actual (dotted) 64
45 Comparison between well-timed semi-actuated control...................... 65
46 Physical Interface for Real-time Traffic-adaptive Signal Control 67
47 Format of Interface Controller Bytecccoovviiviiiiiiiiiiiinn 67
48 Computer-Controller Interface Circuit.......ccooviiiiivienniiiiniiniinnn. 68
49 Topological layout of the traffic network used in the simulation studies. .. 72
50 Software Interface for External Control and Surveillance Logic............ 73
51 External Signal Control Logic Interface...................coviiiin, 75
52 TRAF-NETSIM simulation logic flow.............cooii. 78
53 Graphic display of fixed-time control 10gic.........c...cooiiiiiiiiiiin, 82
54 Graphic display of how Main Street Thru will maintain piatoon

Progression along AN AMEIY......ocuveeriernrrreriitetirreraeiiieeaicians 83
55 Comparison between well-timed semi-actuated control 87

LIST OF TABLES

Table Number Page
1 Approach volumes and percent green allocation from the
capacity allocation example..........ooci 24
2 Optimal switching and display of queues designated by "***".................. 49
3 Optimal amount of time to assign to each phase from COP...coovvvieens 53
4 Computer time to execute COP for the parameters in Figure 38................. 54
5 Comparison of existing traffic demand prediction algorithms 59
6 Phase and associated byte transmitted from PC to the HC-11
T3 Ted goTele] 116) 1 -] UTT P PPSPOPPSPPN 68
7(a) Sumnmaries of performance measures for fixed-time logic 85
7(b) Summaries of performance measures for semi-actuated logic 85

1. INTRODUCTION

1. INTRODUCTION -

Over a period of 15 months, since June 1, 1991, the Arizona Department of
Transportation supported the R&D efforts on the development of the RHODES street
traffic control system within the Department of Systems and Industrial Engineering at the
University of Arizona. PHASE I and PHASE II(a) of this effort have been completed.
During these phases the University of Arizona has worked closely with the City of
Tucson and the Pima Association of Governments (PAG) in the development of the
RHODES concept, some preliminary algorithms, and a simulation model.

PHASE I of the RHODES project consisted of the following tasks:

Task 1(a): Develop RHODES concept

Task 1(b): Develop analysis/simulation tocls
Task 1(c): Select demonstration test grid
Task 1(d); Hold traffic control workshop

Task 2(a): Refine RHODES concepts

Task 2(b): Investigate flow optimization models

Task 2(c): Investigate intersection dispatching schemes
Task 2(d): Coordinate modeling efforts.

Tasks 1(a) and 2(a) concentrated on developing a technically sound concept for real-time
traffic adaptive control and identifying the key research problems that need to be solved.
Task 1(b) consisted of specifying the requirements for a simulation model for
demonstrating, testing and evaluating real-time control. It was decided, at least for the
short term, that modification of the TRAF-NETSIM model would provide a suitable
simulation environment. In the longer term, more advanced simulation models that allow
dynamic vehicle routing and have the ability to assess ATIS and other IVHS technologies
would be more appropriate. To this end, an investigation of object oriented traffic
simulation has been initiated.

Task 1(c) addressed the long-term project goal of implementing RHODES for the
Tucson street network. A potential test grid has been selected. The test grid offers several
interesting traffic characteristics, such as having a variety of traffic volumes, and 2 mix of
residential and commercial zones. Early selection of the test grid provides a source of

1. INTRODUCTION

real-world data for the traffic simulations and a measure against which to validate the
developed simulation model. i

Task 1(d) provided a forum of noted experts on real-time traffic control to discuss
research issues and comment on the RHODES concept. The workshop was very valuable
to the research team. It led to the refinement of the RHODES concept and identified
several new key issues.

Tasks 2(b) and (c) focused on the investigation and development of some preliminary
algorithms for intersection and network flow control. An algorithm was developed, called
COP, based on a dynamic programming formulation of the intersection control problem.
The COP algorithm provides the necessary planning horizon, approximately 5 minutes,
for integration with network flow control methods.

In addition to these tasks, a major goal of PHASE I was the development of a proposal to
FHWA on the design of a real-time traffic-adaptive signal control system. The RHODES
team led a strong consortium, that included JHK, SRI, TASC, RPI, and Hughes, and
submitted a consortium proposal to FHWA in January 1992. The proposal was not
selected for funding; the contract was awarded to Farradyne Systems in June 1992.
However, the RHODES team plans to respond to an anticipated FHWA-RFP that will
call for alternative prototype developments.

Phase II(a) is concentrated on (1) the development of some RHODES component models
and algorithms and (2) a demonstration of these algorithms, using the modified TRAF-
NETSIM simulation model. PHASE II(a) consisted of three task:

Task A: Develop algorithms for network loading and control

Task B: Demonstrate controller interface and network control
concepts

Task C: Reporting and planning

Task A addressed the investigation and development of algorithms at several levels of the
hierarchy as identified in PHASE I. The purpose of Task B is to demonstrate the proof of
concept that the RHODES approach can be implemented using existing controller
technology.

The research progress on the RHODES project has been significant. A simulation model
has been developed for testing and demonstrating real-time traffic control algorithms, and

1. INTRODUCTION

several algorithms have been developed. Concurrently with the further development of
the RHODES system for street network control, it is now appropriate to extend the
RHODES concept for developing a traffic control system for an integrated freeway/street
network. This final report contains the detailed results of the PHASE Il(a) effort.

The RHODES concept is depicted in Figure 1. At the highest level of RHODES is the
"dynamic network loading” model that captures the slow-varying characteristics of
traffic. These characteristics pertain to the network geometry (available routes
including road closures, construction, etc.) and the typical route selection of travelers.
Based on the slow-varying characteristics of the network traffic loads, estimates of
the load on each particular link, in terms of yehicles per hour, can be calculated.
These load estimates then allow RHODES to allocate "green time" for each different
demand pattern and each phase (North-South through movement, North-South left
turn, East-West left turn, and so on). These decisions are made at the middle level of
the hierarchy, referred to as "network flow control”. Traffic flow characteristics at this
level are measured in terms of platoons of vehicles and their speeds. Given the
approximate green times, the "intersection control” at the third level selects the
appropriate phase change epochs based on observed and predicted arrivals, of
individual vehicles, at each intersection. The RHODES architecture is modular; it
allows the accommodation of new modeling methodologies and new technologies as
they arc developed.

A significant difference between RHODES and other "real-time™ wraffic control
systems is that RHODES is being designed to accommodate real-time measurements
of traffic and to become an integral component of IVHS. For example, integration of
Advanced Traveler Information Services within IVHS will result in (1) improved
prediction and estimation of network loads, (2) will allow the ATMS system to
provide drivers with real-time information about traffic conditions, and (3) advise the
travelers of alternate routes. Priority and accommodation of public and private transit,
emergency vehicles, and commercial vehicles, can be easily integrated into the
decision-making structure of RHODES.

At the highest network loading level of the hierarchy we envision the decision time
horizons to be in hours, days and weeks. This model allows for integration of historical

Destinations/Origins

RHODES Concept

Ongxi Dynamic . Current Capacities, Travel Times, i — L é
Destinations | Network Loading (hours/days/weeks) : Estirnator E E
Network ' W [: E
Loads ! : 1
[Travel Times, Queues, ! o
Network Flow ‘ Delays, Traffic Volumes :| Network Flow [_} !
Control (minutes) ; Estimator b
Target Timings, 1 Actual ' 1 b
Variances | Timings ' '
! t
Intersection _ Vehicle Data 1 Local - 1: E
Control (seconds/minutes) ' Estimator o
! 7 3 Vo
Control Rl s LT 1-0
Signal § Rcal;'{‘;mc ;
Traffic Signal Analysis \ ¥
Actuation JCaiienie - == ATIS
AVCS
Travel Behavior Vehicle y(v)
and Traffic Detectors Measurements

Figure 1. The Rhodes Hierarchical Control System Architecture.

NOILONAOYINI T

1. INTRODUCTION

data (a priori information), observed traffic flows (posterior information) and potental’
ATIS information about IVHS suggested routes and traffic conditions (congestion,
accidents and other network events) to allow prediction of near future loads and hence
exercise real-time proactive traffic conrol. The next level of the hierarchy utilizes the
predicted and estimated network loads to control traffic on a network wide basis. At this
level the network flow controller will integrate the network load information with
observations of actual volumes and flow profiles to select appropriate phase sequences
and phase lengths as well as the allowable variances to accommodate for the stochastic
nature of traffic flow on the network level. These timing decisions will be passed to the
intersection controller where decisions to shorten or extend the current phase will be
made (in a decentralized distributed fashion) based on actual observations of the current
traffic arrival pattern at each intersection. The lowest level of the hierarchy, referred to as
traffic signal actuation, is responsible for implementation of the intersection controller
decision on the signal control hardware.

1'The scope of this cffort does not include development of sn ATIS system. It does, however, include the consideration
of potential information available from an ATIS in the design of a proactive traffic control system.

2. NETWORK LOADING

2. NETWORK LOADING
2.1 A Statistical Network Loading Model

In this section, a method that uses historical data to estimate network loads is described.
The method is similar in spirit to the dynamic Bayes procedure described by Higle and
Nagarajan (1992), although it has been adapted to context of network load estimaton.
The method is an empirical procedure where the amount of data used to obtain load
estimates is determined by the quality/accuracy of the estimates being produced. Higle
and Nagarajan show that the procedure is well suited to identifying and reacting 10
changes in the underlying traffic trends, specifically wrning flow probabilities. Thus, it is
believed that this method will also be well suited to estimating network loads.

2.1.1 Empirical Bayes Estimates

The primary objective is to estimate the number of vehicles traveling on a particular link
during a particular interval of time on a particular calendar day. Let N;(¢,d) be the
number of vehicles traveling on link (i, j) during time period ¢ on calendar day d, as
observed using vehicle detectors. Assume that N, (¢,d) has a Poisson distribution with a
mean 4,(z,d). There are several points implicit in this simple assumption.

First, note that the average vehicle load on link (i, j), denoted by A,(¢,d) need not be
presumed constant over time or over calendar day. This rate typically varies by "time of
day" and "day of week". Figure 2 depicts the time varying vehicular flow on a particular
day of the week for various calendar days. It is assumed that 4,(r,d) for eachday d is
for a collection of calendar days that have essentially the same characteristics. Second,
the interval of time, Az, associated with the estimation/prediction task need not be held
constant throughout the day, but may also vary by time of day. Thus, there is sufficient
flexibility in the estimation/prediction method to allow for longer time intervals during
low use periods, and shorter time intervals during high use periods. Third, as discussed
before, the vehicular rate, N, (#,d), is generally assumed constant for a particular time
period on a particular day. Finally, note that 4,(1,d), the average vehicle loads, are the
quantities is to be estimated.

2. NETWORK LOADING

LIRRERRERI

lhllllllg_

Flow (vphpl)
BEEESREE

{

é

[5%
1 J N B | l [l 2 [i L L Il 1 /
L 1T T T 1 r 1 l ¥ LR L] 1
3 4 5 6 7 8 9 10 11 12 1 2 3 4 5

AM Time (Ix) PM

Figure2. Typical day-of-week loads on link (i, j] over time of day and on
different calendar days.

Since the mean, A,(1,d), of the Poisson distribution is unknown, a Bayesian viewpoint is
adopted and it is modeled as a random variable. For the purposes of mathematical
convenience and computational ease, assume that 4,(1,d) has a gamma distribution with
parameters &, and S8, . As data is collected the parameters of the gamma distribution will
be updated to describe A,(7,d). The mean of the resulting distribution will be used as a
point estimator for A,(1,d). Thatis, if 1,(z,d) ~ Gamma(a,,B,) , then its mean

i,dy==2 M

will be used as the point estimate of the vehicle flow rate.

The estimation procedure evolves over time in a manner that follows readily from well
known properties of the gamma and Poisson distributions. Specifically the key property

182

If {N,],., are independent and identically distributed observations of a random
variable whose conditional distribution given ¢ is Poisson(with mean 4), and y
has a gamma distribution with parameters ¢, and §,, then the conditional

2. NETWORK LOADING

distribution of u, given the observations {N, }:=1is a_gamma distribution with
parameters @, and J,, where

'
a,=a0+2N,andﬁ,=ﬁo+5,)

k=i
(see, for example (DeGroot, 1977), chapter 11).

When translated to the context of traffic flow estimation, this result leads to a simple
recursive procedure for estimating traffic flows over time. Here, 4 corresponds to
A,;(t,d). Thus, given initial values of the parameters of the gamma distribution, &, and
B, these vaiues are updated to reflect the observations N;(1,),/=1,...,d as follows:

4
a,=a,+ Y N;wD), 3)
i=l

B.=B,+d.

This may be accomplished recursively as:

a,=a, ,+N;(1,d-1),
4
Bi=B.,+1 @

Given a, and B, the predicted load on the forthcoming day is given by
A, d+D)=a,/B,. (5)

To ensure that the resulting estimator, a,/B,, is capable of responding to changes in the
underlying trends and responds adaptively to the quality of the estimates being produced,
it is necessary to be able to use different amounts of data for obtaining ¢, and B,. That
is, when the estimate is "good", additional data should be included so that estimates with
lower error variances will result. However, when the estimate appears to be persistently
poor, less, but newer, data should be used so that the estimators will be more responsive
to apparent changes in the underlying trends. In the next section an adaptive method for
determining the amount of data used in the estimation process is discussed.

2. NETWORK LOADING

2.1.2 Dynamic Bayes Estimation

The estimators obtained using the updated parameters specified in (3) and (4) will be
most accurate when the underlying flow rate, 4,(1,d), is constant over calendar day, d.
However, even when the data is normalized for time of day and calendar day cycles, there
are still likely to be changes in the flow rate (e.g., seasonal tendencies, construction
obstructions, special events, etc.). In this case, it is necessary to allow the estimators to
respond dynamically to the errors observed. This can be accomplished using the dynamic
Bayes estimates proposed by Higle and Nagarajan (1992), adapted to the context of
network load esamation.

Note first that the estimate of the anticipate flow for calendar day d is based on the
observed flows in the previous calendar days. Thus, if @, and B, denote the parameters
of the gamma distribution used to describe 4,(1,d+1) after having observed
{10}, then the point estimate of A,(t,d +1) is given by

i,ad+D= %f- ©6)

d

The quality of this estimate depends on the extent to which it appears to be approximately
equal to the observed flow in that period, N (t,d +1). If N;(1,d +1) is consistent with

/'i‘, (t,d + 1), then the vehicle flow rate over time appears to be stable enough to allow the
simple update procedure described ir. (4). If N,(1,d +1) is inconsistent with i,,(t,d +1),
then steps must be taken to allow subsequent estimates to adapt to a potential change in
the underlying trend. One approach is to discard the observations used early in the
estimation process, so that the more recent observations influence the estimate more

significandy.

To determine whether or not the observation is inconsistent with the estimate, it is
necessary to obtain probabilistic statements from the Poisson distribution. Let an error
probability £, 0 < £ <1, be given and let quantities N and N be defined so that if
N,(1,d) ~ Poisson(4,(z,d)) then

2. NETWORK LOADING

PV, Gy s N} =, :
) PN, (t.d)2 N} = -g- @

Therefore, under the hypothesis that N;;(¢,d) ~ Poisson(i‘.j (1,d)),
P{N<N,;(td)<N}=1-¢. (8)

In standard statistical tests of hypothesis, N;(z,d) is said to be consistent with i,.j (t,d) if
N <N,(t,d) < N, and inconsistent otherwise. The inconsistency is said to be persistent if
there is at least one inconsistency in the previous ¥ days, where 7 is a specified
estimation threshold. In this dynamic Bayes approach, o, and 8, are determined in one
of three ways, depending on the detection and persistence of an inconsistency.

Exhibit A outlines the dynamic Bayesian network loading algorithm. Note that at the start
of this procedure, «,_, , B,_,, and therefore iq (t,d) are available from the previous
estimate. Parameters € ,0 and Y are chosen (by the designer/user of the algorithm) to
facilitate the responsiveness of the algorithm to real-time data. As discussed above, € and
y are used to identify inconsistancy in the estimates being produced, and & denotes the
time-window of the data used for the estimation. &, and J,,, are the minimum and
maximum allowable sizes for the time window & . The parameter & is updated within
the algorithm, depending on the quality of the estimates being produced. In steps 3 and 4,
estimated o, and f3, are derived using observed data {Nij(t,l)}d

time window.

during the current
l=d-d+1

A brief discussion of Step 2 of this procedure is in order. Entering Step 2, iﬁ(t,d) has
been determined from {N,.j (1,1)}:_‘s and is compared to the observed value N;(t,d) to
determine if & should be adjusted. Note that & is increased in Step 2 (a), decreased in
Step 2 (b), but at all times &, <6 < J,,,,. These limits are intended to prevent the use of
"too many" or "too few" observations in the computation of iq (z,d) and can be specified
at the user's discretion. In step 2 (a), the estimate is consistent with the observation, so 1)
is increased. In step 2 (b), the persistance of the inconsistancy is tested. If it is
determined that the inconsistancy is persistant, § may be decreased. Each time it is
decreased, the oldest observation is discarded and a new estimate of i,! (t,d) is computed
using the most recent observations (excluding, of course, N;(t,d)). The reduction of &

10

2. NETWORK LOADING -

Exhibit A. Dynamic Bayesian Network Loading Algorithm

Procedure: Compute /'i,.j(t,d +1)

Step 0:. Given estimates o,_;, B, iij(t,d), parameters ¥, 0<&€<1, 8, 0, O, and

the observations {N,-j @, l)};—m for time period ¢ and caledar day d,

Step 1: Define N and N according to (7).

Step 2: Determine &, the amount of data to be used in computing @, and B;:
(@) If N<N,(t,d)sN

then
é=Min(6+1,0,,,)

(b) else if N,(t,]) & [_zy_ ,W] for at least one observation [€ [d— v,d - 1],
then while N, (t,d)&[N,N| and 8> &,
0«—0-1
Q. « 04, —N;(t,d—0)
Buy & Ba -1

A,(td) 2t

ﬂd-l
Oy Oy
By < Bu_s
define N, N according to (7) using A;(t,d) and repeat Step 2 (b)
(c) else & remains unchanged.
Step 3: Compute
d
ad é—ao'*' qu(til)’

I=d-8+1

B, < B, + 6.
Step 4:Compute

i,.,.(t,d+1) &« 9—‘1.

d

i1

2. NETWORK LOADING

terminates when either N, (1,d) becomes consistent with the recomputed esimate,
A‘U(t,d) or when_J reaches its lower limit, §_,,. When the algorithm process is in step 2
(c), inconsistency has been detected, but it is too early to tell if it is persistent. In this
case, o is neither increased nor decreased. Once 6 has been set, iy(t,d +1) is computed
using the & most recent observations, including N;(1,d). By monitoring the quality of
the estimates produced and adaptively responding to errors when they are detected, the
estimated load for the forthcoming time period, 4,(f,d +1), should more closely
approximate the load that will be observed , N;(z,d +1).

2.2 A Network Loading Example

To demonstrate both the statistical network loading model and the capacity allocation
model discussed above, a small traffic network was simulated using the modified TRAF-
NETSIM model. Figure 3 shows the layout of the traffic network. This network was
selected because it contzins a long arterial (Campbell Avenue) near the University of
Arizona football stadium!. The primary nodes of interest, those that will be used for
testing control algorithms, are numbers 335, 369, 401 and 483. The remainder of the
nodes are included to provide realistic traffic flows, i.c. platoons and non-uniform
arrivals, into the controlled area. The location of vehicle detectors in the simulation
model is consistent with the existing detector locations in the actual network. For the
purposes of this example, the conditions on the network were simulated between 11 AM
and 1 PM, a period of moderate to heavy usage.

To demonstrate the statistical network loading algorithm, the dynamic Bayes algorithm,
detectors on each major links of the network are included in the estimation. For the
purposes of presentation in this paper, the results from a single detector will be discussed
in detail. This detector is located 130 feet north of the intersection of Speedway Blvd. and
Campbell Ave (intersection 335). It includes all vehicles in all three lanes that approach
the intersection. To represent both time periods and calendar days several runs of the
simulation model were made. Each run utilized a unique random number with all other
parameters (source input rates, turning probabilities, and signal timing parameters) held
constant.

IThis network selection is intended to allow the RHODES team to be prepared for the FHWA Real-time
Traffic Adaptive Signal Control RFP for aliernative algorithms due to be announced in 1993. This type of
network/arterial will be the basis for the testing and performance competition for real-time traffic-
adaptive control algorithms.

12

2. NETWORK LOADING

Figure 4 shows the observed number of vehicles for the eight time periods of fifteen
minutes each over thirty days (simulation runs). From these observations it can be seen
that the number of vehicles crossing the detector is essentially constant over the days and
not constant over time. To test the estimation procedure the initial estimates, &, and Bos
were selected so that the estimate would beinitially be inaccurate and the responsiveness
of the algorithm could be validated. Figure 5 shows the estimated loads over time and
day. From the Figure it appears that the estimator can overcome the large initial estimate

error and closely estimate the loads.

Figure 3. Topolocal layout of the traffic network used in the simulation
studies.

13

2. NETWORK LOADING

SOPNYON POAIOSGO

Observed number of vehicles for eight time periods of 15 minutes

cach over thirty days (simulation runs)

Figure 4.

BONYOA poIRLINES

Estimated loads over time and day.

Figure 5.

14

2. NETWORK LOADING

The performanoe of the method can be more closely studies by considering either a single
time period or a single day. Figures 6, 7 and 8 show the observed and estimated loads
over time on calendar days 0, 5 and 30, respectively. The large initial estimate error,
approximately 100% on day 0, is reduced to less than 10% afer only five days and less
than 1% ofter 30 days. Figure 9 shows the observed and ~stimted loads over calendar day
at a single time period, 1,. This figure demonstrates the ability of the method to correctly
estimate the load.

The statistical network loading model presented here is useful for estimating the expected
link volumes based on existing loop detector data. It is important to note that this model
is not based on known, or approximated, origin-destination data and hence is not an
equilibrium or assignment model. This model does address the need for a statistical
method of estimating link volumes based on loop detector data that will allow for the
statistical classification of anomalies such as non-recurrent congestion due to events such
as accidents. In these cases, alternative historical data sets can be used for the prediction
purpose. Based on this statistical foundation this model can be extended to include
equilibrium or assignment data, as well as other information that will be available
through the deployment of IVHS.

350;_ —A-— Estimated
[

300 [

3 1

=25 F

U

> [

200 |

150L-
PA A re - A A e A
[~ L= [9 [S & 3 b =3 =)

lm 1 1] 1 1 1 1

Figure 6. Obscrved and estimated load over time on calendar day 0.

15

2. NETWORK LOADING

400 —5— Observed
330 3 W——g——ﬂ
300
3
220 |
> [
200 |
150 |
100 1] 1 | 1
1l 12 3 4 () t t7]
Time
Figure7. Observed and estimated load over time on calendar day 5.
400 r -6~ Observed
350 -
[
300 £
T
2250 |
Q
> s
200 |
150 |
lm [1 L J 1 i 1) -
tl 2 13 1] 5 16 7 18
Time
Figure8. Observed and estimated load over time on calendar day 30.

16

2. NETWORK LOADING

—A— Estimared

2

lm L i 1 - b

Figure9. Observed and estimated load over calendar day ata fixed time.

17

3. CAPACITY ALLOCATION -

3. CAPACITY ALLOCATION

3.1 The Capacity Allocation Model

The network loading model provides estimates of the expected link loads on the network.
These estimates are used by the capacity allocation model to determine the fraction of
time that should be allocated to each phase in order to satisfy the network demand. At this
level of the hierarchy, a uniform, fluid flow viewpoint of traffic is assumed. The solution
to the capacity allocation problem does not consider the flow of individual vehicles or
platoons between signalized intersections. It establishes general fractions of time that
must be allocated to different phases to satisfy the average demand over extended periods
of time. These fractions serve as constraints to the network coordination model and the
intersection scheduler.

Let v,denote the demand (arrival rate) for movement { at some intersection. This demand
can be derived from the predicted loads generated by the network loading model and
estimated turning probabilities!. The quantity iﬁ(t,d +1) represents the estimated
vehicular load on link (i, j) during time period ¢ and calendar day d. If p7 denotes the
probability of a vehicle on link (i, j) demanding movement m then

Vo =piA,(0,d+1) ®
is the estimated demand for movement m.

Figure 10 shows the standard labels of 8 possible movements at an intersection. Let

¢ = {i.} denote the signal phase where movements i and j are allowed. For the
purpose of this development, assume that the only possible phases at this intersection are
@0 0,5. 0 and @5, (as shown in Figure 10). Let x,, x,5, X5, and x,, denote the fractions
of the intersection capacity (green time) allocated to each phase. Then, assuming a
uniform arrival rate, the delay (Hurdle, 1984) (uniform delay per vehicle) associated with
phase ¢ is

1Yere it is assumed that the tuming probabilities are known. Estimation of these turning probabilities has
been address by Higle and Nagaragan (1992) for the case of a fully instrumented intersection. Their
approach has still to be adapted to a partially instrumented intersection.

18

3. CAPACITY ALLOCATION

. b5 b37
54 l&) Jr‘ ‘}L
e
6, f1 -
;]Ts - H
b26 bqs
Movement - Phase
Labels Labels
(4 - Phase)

Figure 10. Standard labels of 8 possible movements and the associated 4-
phases.

(1-x,)?
2

Y (10)

me'(l - '.'::'

D(x,)=

where s,, denotes the saturation flow rate associated with movement . Note that the

saturation flow rate must be selected to reflect the appropriate number of lanes and other
traffic considerations (grade, lane width, etc.) associated with each movement.

Given these definitions of delay, arrival rates and saturation flow rates, the capacity
allocation problem can be stated as

Minimize D(x)= Y D(x,)
all ¢

subject to
(11)
2 %=1
all ¢

x,20, allg.

For the 4-phase case depicted in Figure 10 the capacity allocation problem can be stated
as

19

3. CAPACITY ALLOCATION

_ 2" = _ 2" 1
Minimize D(x):(l x5) 1v N 1v L -2 1v N 1v
2 a3 -] 2 (-3 (-9
+(1—-x37)2 1v N]} +(1=-=x48)2 1v N 1v’1
2 [a-2) a-»] 2 (0= =)
(12)

subject to
Xys + Xog +Xgg HXgg =1,
%520, X620,
X520, x,420.

The capacity allocation problem, as stated here, has a quadratic objective function with a
single linear equality constraint and the usual non-negativity (inequality) constraints on

the decision variables. This form of a quadratic mathematical programming problem can
be solved using the quadratic structure of the objective function and an active set method

to manage the inequality constraints.

The capacity allocation problem (12) can be written in the form

Minimize f;—x’Qx +c’x+K
subject to (13)

ex=1,
%20, i=L..N,

where ¢’=(1 - 1) and N is the number of allowable phases. Given this formulation

the only mathematical condition necessary for a quadratic programming active set
method to be applicable is that the matrix Q be positive definite.

The capacity allocation algorithm is outlined in Exhibit B. It is assumed that an initial
starting solution is given (step 0). It is important that the initial solution satisfy the
equality constraint e’x° =1. A good candidate is

W= (14)
2.V
alg

3. CAPACITY ALLOCATION -

Exhibit B. Capacity Allocation Algorithm.

Procedure: Solve Quadratic Program Using Active Set

Step 0:. Assume x° , a starting solution, is given and feasible.

Step 1: Define W* as the set of active inequality constraints, W° = Q.

Step 2: Solve the equality constrained quadratic program:

Minimize -;— vt Oyt +cy*
subject to

=0, neW"

Step 3: Let x**' =x* + o* (" - x*) where

ot =min{o: o €[0,1], x; + (v, — x,) =0, n= L...,N}.

Step 4: Update the working set: Let j & W* denote the index of the constraint(s)

such that
k ko k kN
X +o (yj-x,.)—0

then
Wk+l - Wk U {j}-

Step 5: Release a binding constraint; Let i € W* denote the index of a constraint

such that u; <0, then
W =w* - {i}.

If , >0 for all i e W* STOP, else GO TO Step 2.

Instep 1,

the working set, the set of active inequality constraints, is initially defined to be

the empty set. It is feasible of course that one or more x. = 0. In this case it would be

necessary to define the working set as

WO ={i:x? =0,i=1..N}.

21

3. CAPACITY ALLOCATION -

In step 2, the equality constrained quadratic optimization problem is solved. This problem
can be solved using the first-order optimality conditions (Luenberger, 1984) for equality
constrained problems by solving the following system of linear equations:

Q -e -E'[(y) (-c
e’ , 0 0 1A |=|1 (15)
(E') 0o o0k, \Q

where E* is the matrix whose rows are formed by the vectors e, that are all zeroes except
for a 1 in the n™ position for n € W*. It is not necessary that the solution to (15) yield 2
solution, y* that is optimal or feasible to the inequality constrained problem.

In step 3, a line search is conducted from the current candidate solution, x*, towards y*.
Movement along this direction occurs only until either one of the non-tight inequality
constraints becomes tight or until the point ¥* is reached (in this case " =1). If one or
more of the non-tight constraints becomes tight in step 3, they are added as binding
constraints in step 4.

In step 5 a constraint that was tight is released if the associated Lagrange multiplier is less
than zero. (This condition is based on the first-order optimality conditions for inequality
constrained optimization). If none of the Lagrange multipliers are negative and no new
constraints are added to the working set, the algorithm is stopped at the optimal solution.
If the algorithm is not stopped, steps 2-5 are repeated until an optimal solution is found.

3.2 A Capacity Allocation Example

This example will utilize the results of the statistical network loading model from
Section 2.2 at the intersection of Campbell Avenue and Speedway Boulevard (node 335).
Figure 11 shows the layout of the intersection including the proportion of vehicles that
turn left, right or proceed though the intersection and the associated phase definition.
These values we determined by the City of Tucson's traffic engineering department.
Each approach has one turning lane and three through lanes. A saturation flow rate of
1800 vphpl was assumed.

3. CAPACITY ALLOCATION

Figure 11. l.ayout of the Campbell Avenue and Speedway Boulevard
intersection.

Table 1 shows the approach volumes for each approach for thirty 15 minute time
intervals. These approach volumes are used to derive the movement demands, assuming a
4-phase control, during each time interval. The capacity allocation algorithm is used to
find the percent green allocation for each time interval. The results of the capacity
allocation algorithm are shown in Table 1.

The results of the capacity allocation algorithm must be carefully interpreted. The
numbers in the two tables cannot be directly compared since the approach volumes are
related to the traffic volumes using the turning probabilities (see Equation (9)) and the
delay is computed using Equation (10). It is also important to note into that the capacity
allocation results are to be used for providing estimates and not as the exact signal timing
parameters.

3. CAPACITY ALLOCATION

Table 1. Approach volumes and percent green allocation from the capacity
allocation example. Each approach volume represents the number
of vehicles arriving during a 15 minute interval. The percent green
allocation is computed to minimize total vehicle delay.

Approach Volume Percent Allocation of Green
(per 15 minute period) — (per Phase)

Time d, d, ds dy Thne | Phase 15 Phase 26 Phase 37 Phase 48
1 270 416 382 224 1 | 02546 02990 02104 02360
2 270 417 384 239 2 02533 02981 0.2106 0.23719
3 266 390 37 231 3 | 02517 02945 02138 0.2400
4 270 433 383 226 4 | 02559 03010 02086 02345
s 270 416 382 234 5 | 02536 02982 02108 02375
6 266 391 373 212 6 | 02535 02963 02130 02372
7 266 391 n 235 7 | 02513 02941 02140 02406
8 270 340 384 236 8 | 02473 02895 02183 02449
9 270 393 382 239 9 02512 02950 0.2133 0.2405
10 266 382 371 217 10 | 02523 02948 02141 0.2388
11 266 329 37 251 11 | 02447 02854 02209 0.24%0
12 270 416 382 241 12 | 02530 02975 02110 0.2385
13 266 447 N 224 13 | o251 03018 02077 0.2334
14 270 341 3m 21 14 | 02485 02902 02181 02432
15 270 415 382 25 15 | 02534 02979 02109 02377
16 266 392 EXZ] 231 16 | 02518 02947 02136 02398
17 270 415 383 28 17 | 02542 02987 02105 0.2366
18 270 409 382 236 18 | 02528 02971 02116 02385
19 266 392 kY] 2 19 02527 02955 02133 0.2385
20 266 391 n 219 20 0.2529 02957 0.2132 0.2382
21 270 416 380 247 21 | 02583 02967 02115 0239
2 270 414 384 232 22 | 02538 02984 02107 0.2372
pa 270 414 384 233 3 02537 02983 0.2107 0.2373
24 270 462 38 212 24 02597 03058 02050 0.2295
25 | 20 418 38 29 25 | 02543 02990 02103 02364
26 Zio 416 383 207 26 0.2562 03007 0.2096 02335
27 210 383 K}.7] 217 27 02525 02958 02135 0.2383
28 270 468 Ky, 229 28 0.2584 0.3045 02054 0.2317
29 270 395 384 31 29 02523 02962 0.2126 0.2389
30 266 455 N 21 30 | 02581 03030 02068 0.232!

4.NETWORK FLOW CONTROL -
4. NETWORK FLOW CONTROL

At the second level of control in the control hierarchy are decisions/actions ihat allow for
coordination of flow of traffic on the network. Prototypical off-line approaches to network
coordination are TRANSYT, MAXBAND, and PASSER 11, the latter two being
predominately for arterial coordination. (Although the original MAXBAND model [Liule et
al., 1981] allowed the optimization of signal timings in a network, the model has been
predominately used for coordinating arterials. However, the recent enhancements of
MAXBAND, as embodied in MAXBAND-86 [Chang et al., 1988] and PASSER IV
[Chaudhary and Messer, 1993], have made possible its implementation to grid networks,
but applications to actual networks are still lacking.)

The basic ingredients within these methods are (1) a traffic flow model 2nd (2) an algorithm
for optimizing a specified performance criterion (this criterion could be a weighted sum of
several performance indices). For example, in TRANSYT, vehicles are "loaded" on to the
network at given origins and are propagated through the network in accordance with a
traffic flow model. Traffic controls affect the movement of these vehicles, and numerical
optimization (gradient search) is performed to find controls that optimize the specified
performance criterion. In MAXBAND and PASSER 11, vehicles are loaded on an arterial
and traffic signals on that arterial are coordinated to optimize a performance criterion, which
often relates to the number of stops. Since these are off-line methods, assumptions on the
traffic loads are based on historical average volumes and these are uniformly loaded on to
the arterials. This results in an assumption of platoons of uniform size and identical
speeds.

One may use TRANSYT in an of)-line fashion and compute signal settings every few
minutes and download those settings to the field. In a way, this is exactly what SCOOT
does. However, the current versions of SCOOT have the disadvantage that arterials within
the network may not have sufficient platoon progression. Band-aid approaches have been
suggested to enhance SCOOT to consider this; however, to our knowledge, it has not been
implemented. On the other hand, TRANSYT has been modified to include progression
opportunities [Hadi and Wallace, 1992] but has not been implemented for real-time
applications. It is not obvious that this approach is amenable for real time applications due
to its excessive computational requirements. Furthermore, TRANSYT, and for that matter
SCOOT, do not explicitly consider the current traffic flows (i.¢., platoons and their speeds)
but rather takes the current data and assumes a uniform flow of the current volumes.

4. NETWORK FLOW CONTROL

In RHODES Phases I and Il(a), A concept for network flow control was investigated.
Although a preliminary network simulation model for evaluating network control was
developed, no algorithms for network control were designed. The concept studied
explicitly considers available real-time information on computing signa! timings. It first
identifies platoons in the network -- the sizes and their speeds. These are identified by the
fusing and filtering the traffic data obtained, from various sources, in the last few minutes.
Then, using an approximate traffic model, these platoons are propagated through the
network, for a given time horizon, say, T. The signals are set so that the identified
platoons are provided appropriate green times to optimize the performance criterion. It is
obvious that twe platoons demanding conflicting movements may arrive at an intersection
at the same time. In that case, then either one or the other will be given priority on the
green time, or it may be necessary to split one of the platoons, to maximize the given
measure of performance. Resolving such conflicts in the heart of the optimization process
within the algorithm of the proposed system.

4.1 REALBAND for Real-time Network Coordination

Consider the time-distance diagram on a single arterial as shown in Figure 12. The goal of
arterial progression algorithms, such as MAXBAND and PASSER 11, is to sct the signal
timings such that number of vehicles that can traverse the arterial in either direction without
stopping (other similar criteria may be incorporated) is maximized. The figure shows these
bands of green times. Note that following drawbacks: it is assumed (1) that platoons are of
equal size, (2) that platoons travel at the same constant speed, and (3) that streets
intersecting with this arterial have small traffic volumes and therefore movements in those
directions have low priorities (that is the reason why MAXBAND and PASSER 1I are
predominately used to coordinate signals on an arterial rather than on a network).

Now consider the time-distance diagram as shown in Figure 13. Here we have platoons of
different sizes and different speeds. The green times required for these platoons is different
than those required for the uniform case shown in Figure 12, and therefare the smooth
anticipated progression is disrupted. By slightly adjusting the red times, we now reinstate
the green bands for the given platoons with their own sizes and speeds, as shown in Figure
14. In this manner we can also include platoon dispersion and compression but for

4.NETWORK FLOW CONTROL -

Distance

Intersection 1

Intersection 2

Intersection 3

Time

Figure 12. The MAXBAND Concept

convenience we haven't shown this in the figure. In fact, in the illustrations to follow, we
have not shown furning vehicles which could grow or decrease platoon sizes and have
purposefully exaggerated the speed differences in the figures. This is so that proposed
concept for network flow control is visualized easier. The platoon flow prediction
algorithm (to be developed in the future) should take into account these underlined
characteristics.

The platoons, if any, on intersecting arterials have still not been considered above. If the
intersecting platoons fitted exactly within the red times shown here, then we do not need to
resolve green-time demand of conflicting movements. On the other hand, if flows at an
intersection produced a concurrent green-time demand for conflicting movements, then the
conflict has to be resolved in determining to which movement the green time must be
allocated.

27

4. NETWORK FLOW CONTROL

Distance

............ Intersection 1
Intersection 2
Time

Figure 13. Actual MAXBAND Performance

Distance

Figure 14. The REALBAND Concept for a Single Arterial

4. NETWORK FLOW CONTROL

Figure 15. REALBAND Example Network

Figure 15 now shows platoons on two other perpendicular arterials , at intersections 2 and
3. Our approach - for brevity we refer to it as REALBAND — makes a forward pass in
time. When a conflict arises, a decision node in a tree is formed; the types of decisions at
this node are (1) give green time to platoon A, (2) give green time to platoon B, (3) split
platoon A (or platcon B, since only one or the other platoon needs to be split). Each
branch of the tree is propagated over time, keeping track of the total performance up to the
decision node plus the performance on the link associated with the potential decision. Note
that we use an implicit approximation on the additive nature of the performance measure as
we propagate from node to node in the decision tree.

Figure 16 is the current prediction of the movement of the platoons shown in Figure 15.
The first demand conflict arises between platoon N and W3 at Intersection 3. At this point
we either split platoon N (Figure 17) or stop platoon W3 (Figure 18). Considering the

4. NETWORK FLOW CONTROL

resulting predictions shown in Figure 17, the next conflict arises between platoon S and
E3. Here the degjsion is to either stop platoon S (Figure 19) or stop E3 (Figure 20). In
this way, a decision tree is formed which keeps track of various candidate decisions as
demand conflicts arise. For this illustration, the predictions that arise for various decisions
are given in Figures 17-27 and the decision tree that is formed is given in Figure 28.

When the time horizon is reached, associated with each end node will be the total cost of
the cumulative decisions made up to the node, un the path from the root of the decision tree
to the end node (leaf) of the decision tree. Choosing the one with minimum cost provides
the least cost trajectory of conflict resolution decisions. A final backward pass provides a
phase plan, within the time horizon considered, for the identified piatoons. This is passed
to the third level of the hierarchical traffic control system (intersection control logic) as an
initial solution for further optimization as more detailed data is gathered at the intersection
level. Choosing the root to end-node path with optimum performance (in this case
minimum total delay), the optimal decisions from the decision tree for this illustrative
problem, for the platoons shown in Figure 15, are given in Figure 25. Figure 27 shows
the red and green times for the N-S arterial for the decisions implied by Figure 25. It
indicates that at Intersection 3 platoon N should not be stopped but platoon W3 should be
stopped and, later, platoon E3 should not be stopped but platoon S should be stopped,
when the corresponding demand conflicts arise.

Two advantages of the REALLBAND approach should be noted:
(1) Using real-time data, it explicitly identifies the platoons in the network and
their sizes and speed, and responds to these real platoons.
(2) It does not necessarily require a pre-determined sequence of phases. The
output provides an initial cut at a sequence of phases for further
optimization at the lower intersection/interchange level.

A final issue that needs to be resolved in this method is the computation of performance
measures, for example, the total number of stops, total delay, etc. This is where concepts
from TRAF NETSIM and TRANSYT are utilized to come up with a quick-and-dirty
simulation to evaluate the performance of a set of signal settings. Again, for real time

4.NETWORK FLOW CONTROL

Decislon to split Platoon N at Intersection 3

PSS
RSN
QP

Time

g o Figure 18. Decislon to stop Platoon W3 at Intersection 3 Figure 19. Decision to stop Platoon S at Intersection 3

31

4. NETWORK FLOW CONTR

&

58

R e

RIS
RENTEI
RS0

R H A

ehabetetitates

RN HEXE TS

sttty

OB
SOCHAESEE

o oy

O

ety
LRARRRARNKAA
SIS
SR ELRAX
! 25

Figure 22. Decision to stop Platoon W2 at Intersection 2

32

3 Interesction 2

3 Figure 21. Decislon to stop Platoon N at Intersection 2

4. NETWORK FLOW CONTROL

Figure 24. Decision to stop Platoon W2 at Intersection 2

Figure 26. Decislon to stop Platoon E3 at Intersection 3

33

E Figure 25. Decision to stop Plateon S at Intersection 3

1
e
AN S
ettt
SN

elaleelelaeaie

RN
Sty
4R

Tims

E Figure 27. ‘The North-South "Red" and "Green” Phases
for the Optimum Decislons (see Figure 28)

4. NETWORK FLOW CONTROL

w|qoId JANENSN{[] JOf 321 UOISIT 8T 2ndiyg

(iswpdo) ,05§

056

056

(Ree@)

90UBULIOLId]

97 2indyy O

£ UONIRINUT ¥
¢q uoowid doig

81 2m3ty

€ UonIINUY 1¥
g uoorejd doig

AL |

y7 ndyy € uonaesINU] 18
£ uoosid doig
7 UONIIRINU] IW

ZMm uoored doig

7 UOTIXSINU] 18
N uooisid doig

£z amiyy 91 amiyy

Tz amiyy

€ UoNoVRIIN] 8

T uonouAuL I N uoorsd 11ids

M uoors|d doig
£ uonoIRITU 18
§ uomsid doig

4. NETWORK FLOW CONTROL

applications, these performance measures are needed quickly so that the performance
criterion may be optimized in real time. A detailed simulation becomes computationally
unwieldy when one uses the simulation model as a function evaluator (i.c., for evaluating
the performance functon for each candidate signal setting) in an optimization routine. We
remark that at this second level of hierarchy only approximate values for optimal signal
tirnings are necessary so that we start in the right "ball park” for the optimizations being
performed at the intersection level. We refer to this simulator as Platoon Flow Fast
Prediction model, (the current version developed jointly with Mr. Paolo Dell'Olmo of
Instituto di Analisi dei Sistemi ed Informatica, Rome, ltaly, is called OPTINET).

The flow chart for the algorithmic process for network flow control optimization is given in
Figure 29. Note that to begin the recursion it is suggested that an initial signal plan be
given. This is so that the network flow control optimization itself begins in the right "ball
park". The initial plan may be obtained from an off-line method such as TRANSYT [Hadi
and Wallace, 1992] with data from the dynamic network loading function, if available, or
from historical data.

In relation to the use of the fast simulation model for function evaluation, the spatial region
for the simulation model needs to be bigger than the area of control for network
coordination, so that one can predict the movements of all real-time platoons within the
region of control for several minutes in the future. As an illustration, Figure 30 shows the
region of control for the network flow control logic and Figure 31 shows the area simulated
using the Platoon Flow Fast Prediction simulator.

35

4. NETWORK FLOW CONTROL

T=T0

. . De
SN Flow Estimator/Predictor e tcctcd data
until time Ty

. Historical Data

v Initial signal
— plan over Decision
Horizon

Platoons Filter

'

REALBAND

L]

New Phases

Y

Signal setting from Tto T,

Y
SEE=
Yes

New Signal Plan

Choose New Not Good
Initial Signal Evaluation)

Plan
l Good

Figure 29. Flow Chart for Network Flow Control Optimization

36

4. NETWORK FLOW CONTROL

[/

37

Region for Simulation

Figure 31.

Figure 30. Region for Network riow Contro!

S.INTERSECTION CONTROL

S. INTERSECTION CONTROL

5.1 Existing Intersection Control Algorithms

In this section we discuss intersection control algorithms. First, we review existing
control logic, including fixed-time, semi- and fully-actuated, and traffic responsive. We
then present two new intersection control algorithms, DISPATCH 1.0 and COP.

Existing control algorithms provide a framework for discussing issues related to
network/intersection control adaptivity. For example, fixed-time signal timing plans
(cycle length, phase sequence, phase splits, and offset) can be developed and coordinated
to provide a simple form of network flow control, but do not provide any distributed
intersection adaptivity. On the other hand, fully-actuated control provides distributed
intersection adaptivity, but does not provide any adaptive network flow coordination.
Semi-actuated control incorporates both network flow coordination and intersection
control with limited adaptvity.

Each of these control algorithms, or strategies, are based on 2 signal iming plan that
provides the fundamental operating parameters for signal control. These parameters are
generally developed based on traffic studies and standard procedures, such as the
Highway Capacity Manual, or signal timing softv-are such as TRANSYT, PASSER,
SOAP, etc. The traffic studies result in estimate ;s of traffic conditions, link volumes and
turning percentages, for specified time periods. Signal timing plans are developed for
each of these time periods and, typically, implem ented on a time-of-day basis with no
real consideration of current traffic conditions. Such approaches have been somewhat
successful when sufficient resources are av:ilable to update the traffic studies to reflect
changes in long term traffic patterns, or whzn the operating personnel heuristically adjust
the si7nal timing plans to Ly move perforaance. In many cases the use of standard
procedures for 2. Gevelopment of signal timing plans is abandoned and traffic engineers
operate in an ad-hoc fashion with moderate levels of success.

Traffic responsive systems attempt to address the problem of responding to current traffic
conditions by switching signal timing plans based on current wide-area traffic conditions
rather than time of day. This requires that signal timing plans be developed for a variety
of possible traffic conditions.

5. INTERSECTION CONTROL -

Methodological and technological advances are now available that allow traffic signal
control systems to utilize real-time traffic information and to provide traffic-adaptive
control to improve the performance of the signal control system. In this section several
existing signal control strategies are reviewed and some new strategies within the
RHODES framework are discussed.

5.1.1 Fixed-Time Control

Fixed-time control utilizes a very simple logic based on predetermined fixed cycle length,
phase sequences, and durations. Fixed-time control requires no information about
existing traffic conditions on the network.

Fixed-time control logic relies on historical data to prepare timing plans for a signalized
area. These timing plans may be developed off-line using, for example, the TRANSYT
optimization program, which optimizes coordinated traffic signal systems to reduce
delay, stops, and fuel consumption. Three to four plans, representing the a.m. peak, p.m.
peak, and off-peak conditions, are commonly used. A particular plan is generally
switched into operation according to time-of-day.

Vehicle detectors are not required with this method. Coordination of intersections is
achieved by linking local controllers to a master controlier by a communication network.
A fixed-time system can be implemented in the form of a cableless-linked system with
the use of crystal clocks in local controllers. After synchronization with a master clock,
local crystal clocks are left to run on their own timings. Timing plans are stored in
programmable ROMs (Read-Only Memory) which are installed in each controller.
(Modern controllers use microprocessors for supervisory functions and semi-conductor
memories for the storage of timing plans.) Without laying cables, a resulting drawback is
the lack of feedback from the field signals.

A fixed-time control system is simple in structure and does not require vehicle detection,
which is usually the most unreliable component in an area or urban traffic control (ATC
or UTC) system. An ATC system consists of a number of traffic signals which are linked
in such a way that any signal timing change is in some way dependent upon conditions
(i.e., vehicle detections) at any of the other intersections. The system of signals may
consist of a single linked pair, a linear group, or a complete network. The control system

39

5. INTERSECTION CONTROL

is concerned with the selection and implementation of three control elements for every
signalized intersection in the network: cycle time, phase splits, and offset (an offset is the
time difference in the starting times of the green phases at adjacent intersections). As a
set, they constitute the timing plan for the intersection (Luk, 1984).

Fixed-time control systems are, however, inflexible in their operations. Unforeseen
incidents such as bad weather conditions, illegal parking, or accidents would create traffic
patterns that could not be matched by any of those predetermined timing plans.
Therefore, a fixed-time method with optimized signal setting is commonly used as a
standard for the evaluation of other traffic control methods.

5.12 Semi- and Fully-Actuated Controt

In semi- and fully-actuated control, timing plans are selected by time-of-day as in fixed-
time control, but vehicle-actuated tactics are allowed at cach intersection. These tactics
depend on the structure of the controller, but usually include gapping due to expiry of gap
or waste-time timers, phase skipping in the absence of demand, and green time transfer.
Semi-actuated control allows for traffic actuation on one or more, but not all, approaches
to an intersection. Whereas, in fully-actuated control wraffic actuation occurs on all
approaches. Also, the goal of semi-actuated control is to maintain some level of system-
wide coordination.

§5.13 Traffic Responsive Control

In traffic responsive control, the timing plans are selected to match current flow patterns
by using vehicle detectors to monitor traffic volumes and occupancies at strategic
locations. There are many torms of traffic responsive control implementation which have
various levels of traffic adaptability.

5.1.4 Real-time Intersection Control - OPAC

The Optimization Policies for Adaptive Control (OPAC) is the most notable example of a
real-time isolated intersection control strategy. OPAC is based on a dynamic optimization
algorithm that provides the computation of signal timing without requiring fixed cycle
time in response to the quantity of traffic with the objective on minimizing vehicle delays
constrained by minimum and maximum green times. OPAC has been developed and field
tested (Gartner, 1989).

5. INTERSECTION CONTROL

OPAC has matured through four major versions: (1) OPAC-1; (2) OPAC-2; (3) OPAC-
RT Version 1.0; and (4) OPAC-RT Version 2.0. The original formulation of OPAC,
OPAC-1, was based on dynamic programming. The formulation assumed that ime is
divided into time intervals, or stages, of 5 seconds and that there are only two possible
phases for the 4 approaches, each phase is either North-South through or East-West
through. The initial queues and initial sigr:al phase are specified. The decision at each
stage is to either leave the signal in its current phase (indicated by "0") or to change the
phase (indicated by "1”). The number of vehicle arrivals at cach stage is assumed to be
kmown. The performance measure is delay, which is calculated as the delay associated
with the current-stage decision (change or no change) plus the previous stages delay and
queues.

OPAC-1 is useful only for evaluation purposes, since the algorithm assumes the arrival
pattern is known exactly and every possible decision for every possible initial queue
length is evaluated. To simplify the computational burden of OPAC-1, OPAC-2 was
developed using a fixed decision horizon (approximately one cycle) and the decision
intervals were held at 5 seconds. During each decision horizon at least one phase change
is required but as many as three are allowed. The performance measure for the decision
horizon is calculated as the sum (over all intervals) of performances for each interval. The
performance for each interval computed as the initial queue plus the arrivals minus the
departures. Instead of evaluating every possible decision at each interval, an optimal
sequential constrained search (OSCO) is used to solve the optimization problem of
minimizing delay. OSCO limits the search to only valid phase switching times
constrained by minimum and maximum phase times and the limit of no more than three,
and at least one, phase change during the decision horizon.

OPAC-2 is better suited to real-time implementation, but still requires knowledge of the
number of arrivals in each interval. To address this problem, a "rolling horizon” approach
is employed that only assumes knowledge of arrivals over three or four intervals and an
average number of arrivals in the future intervals. The knowledge of arrivals over the first
three or four intervals is obtained by a detector placed upstream from the intersection, and
therefore, the actual arrival pattern is used during the initial three or four intervals. The
optimization is performed every three or four intervals using this rolling horizon
approach. (The above description of OPAC-2 is summarized from "Evaluation of the
Optimized Policies for Adaptive Control Strategy,” Farradyne Systems, Inc.. May 1989.)

41

5. INTERSECTION CONTROL

OPAC-RT Version 1.0 was developed based on the rolling horizon approach of OPAC-2
with the proper interfaces to signal controller and detector devices. In addition, OPAC-
RT Version 1.0 allowed only one or two phase changes, and hence, eliminated the
possibility of three phase changes for the decsion horizon. The minimum green-time
constraints were modified for pedestrian calls, according to user-specified pedestrian
clearances.

OPAC-RT Version 2.0 extended Version 1.0 to include all eight phases of a dual ring
cortroller. Actually, only the two main phases (typically the through phases) of the
intersection are considered in the optimization; the other phases are treated using the gap
out/max out st-ategy of actuated control.

OPAC has been field tested in two iocations: Arlington, VA and Tucson, AZ. In both
cities the two-phase version of CPAC was implemented and found to reduce delay by
3.9% (VA) and 15.9% (AZ) over actuated control. Based on the two field tests, it has
been concluded that OPAC performs better in higher volume conditions. An eight-phase
version of OPAC was tested in Tucson, AZ, and found to reduce delay by 7.7%. These
initial field tests indicate that traffic-adaptive signal control can improve intersection
performance and suggest that further algorithmic improvements, such as integration of
multiple phases in the optimization and coordination with adjacent intersections, should
be investigated in the future.

5.2 Traffic-adaptive Control Algorithms - DISPATCH and COP

In this section two traffic-adaptive algorithms are presented that were investigated for
RHODES intersection control. The DISPATCH 1.0 algorithm uses a heuristic search
routine to adjust split imings of an intersections that is operating in a coordinated system.
It artempts to optimize either stops, delay, or a combination of stops and delay, by
searching in the neighborhood of each phase switching time using observations of
arriving traffic from a detector located several seconds upstream from the controlied
intersection.

COP is a traffic adaptive algorithm based on a dynamic programming approach to
intersection control that optimizes stops (and can be extended to include delay, queues,

4?2

5.INTERSECTION CONTROL

etc.) using predictions of vehicle arrivals at the controlled ingersection which are based on
data from detectors located at the upstream intersections and the signal timings of the
upstream intersections. Currently, COP operates as an isolated intersection control
algorithm. However, it has been formulated to allow integration within a coordinated
system. Both of these algorithms have been tested using the TRAF-NETSIM simulation
model.

5.2.1 DISPATCH 1.0

This section presents the results of implementing a heuristic which adjusts the exact
phase switch epoch to adapt to the actual traffic arrival patterns. The contents of the data
input file can be found at the beginning of the DISPATCH 1.0 program (Appendix A).
DISPATCH 1.0 uses a dual ring controller as depicted in Figure 32. Two possible
movements can occur simultaneously as a phase as follows: 1-5, 1-6, 2-5, 2-6, 3-7, 3-8, 4-
7,4-8.

The DISPATCH 1.0 program can be applied to intersections similar to the one depicted
in Figure 33.(Note that the north direction is to the right. This convention was used in
order to conform with TRAF-NETSIM phase scheme.)

1 SN| 2 NS| {3 WE|4 EW

J ||\ !

5 NS| 6 SN{|7 EW|8 WE

]

Figure 32. Dual ring controller.

43

5.INTERSECTION CONTROL

- 3 N i
&
<=
i’f} gdsglsls Campbell Avenue
2
A
2
5
1
0
6
6

Figure 33. Campbell Avenue and Sixth Street Intersection, Tucson, Arizona.

Description of Heuristic

The initial objective of developing DISPATCH 1.0 was to model, simulate, and observe
the behavior of the queues at each movement (1, 2, ..., 8). The initial model simply
changed the phase at a deterministic point in time and computed the performance.
However, the next step was to implement a method of evaluating the performance for
range about that deterministic point in time, in order to search for the optimal time to
change the phase.

For example, if the preliminary change of phase was at time t = 20 and the range was 7
(which must be less than or equal to the time required to travel from the detector to the
stop-line), then the evaluation range could be from time t = 18 to time t = 24. The
optimal time to change the phase could then be the time at which the best score,
according to a linear combination of the total number of stops and the total delay, is
obtained.

5. INTERSECTION CONTROL

The model for dissipating the queue of each phase is as follows:

gt +1) =g+ fu=T)= foult) (16)

where
g is the number of stopped vehicles in the queue,
£ (2) is the flow entering the upstream link at time ¢,
f,. () is the flow leaving queue at time ¢,
¢t is the current time,
T is the upstream link travel time,

s, if ¢#0 and the signal is green
Fou@® =3 f®,if g=0 and the signal is green
0, the signal is red

where s is the saturation flow rate (default = 1 vehicle/time unit/phase).
The DISPATCH Program

DISPATCH 1.0 has the following characteristics:

(1) uses discrete time units;

(2) has a defined time horizon (total time considered);

(3) incorporates a minimum green time for a phase to operate;

(4) incorporates a clearance time for vehicles (all phases red);

(5) is designed for eight phases;

(6) allows for up to 500 stages (the sequence of phases which can be

modified);

(7) may use an intersection identification number;

(8) accepts arrival data for eight movements (this data corresponds to vehicle
requests for a specific phases)as shown in Figure 32;and

(9) may easily be modified.

Furthermore, DISPATCH 1.0 requires some additional input. This information may be

included in the data input file, but in the current implementation, it is requested as
keyboard input. The following information is requested:

45

5. INTERSECTION CONTROL

/—— Detector Stop-line —\
| |

B . :—

Figure 34. The time from the detector to the intersection stop-line is referred
to as DETECT seconds. In current model, the time horizon, T, is
equal to DETECT.

(1) total amount of time to be considered (i.c., decision horizon);

{2) saturation flow rate;

(3) travel time from detector to stop-line (Figure 34);

(4) inidal point in time to change phase; and

(5) weight for total stops (used in calculating a linear combination of stops and
delay, weight for delay is automatically calculated).

The initial four inputs have default settings which can be set by entering 0 (zero). The
program also accounts for any possible input errors such as utilizing weights which sum
up to greater than one. Unless otherwise noted, all inputs must be integer values.

522 DISPATCH 1.0 Example

Partia} output of a run of the DISPATCH 1.0 program is shown in Figures 35, 36, and
Table 2 (a complete listing of the output is in Appendix B). The initial information
verifies the following input data: intersection identification number, number of phases,
minimum green time, clearance time, total number of stages, sequence of stages, time
horizon, arrival data, saturation flow rate, and time delay from detector to stop-line. The
solution then lists the linear combination of total stops and total delay, the optimal score
and time when the phase should be changed, the optimal queue matrix for the time
horizon, and a complete analysis of all of the possible phase change points in the
evaluation range, which in this case is from time t = 154 to time t = 163. This analysis
includes the stops and delay for each phase, the total stops, total delay, and the score for
changing the active phase at respective times.

46

5. INTERSECTION CONTROL

i —— D~ —— . —) o Ui T o " - - —

e . A " = b . — " [" - " = =

Number of “hases = 8 Minimum Green Time = 2
Clearance Time = 1 Total Number of Phases = 2
Sequerce of Phases: 37 48
Tim~ Horizon = 314

Arrival Data

0 0 0 0 0 0 0 1 ¢
1 ¢ ¢ 0 1 0 0 0 O
2 O 0 0 ¢ 0 0 0 1
3 o 0 0 0 0 0 0 O
4 o 0 60 0 0 0 0 1
5 o ¢ 0 1 0 0 0 O
152 0 0 0 0 0 0 0 O
153 O 0 01 0 0 0 O
154 o ¢ 0 ¢ 0 0 1 O
155 o 0 21 0 0 0 O
156 0O 01 0 0 0 0 O
157 1 0 0 0 O 0 0 O
158 ¢ 01 0 0 ¢ 0 1
159 o 0 0 0 0 0 0 1
160 o 0 0 0 0 0 0 O
161 o 0 0 0 0 0 0 O
162 ¢ 0 0 1 0 1 0 O
163 O 0 0 ¢ 0 0 0 O
164 O 0 6 0 0o 0 0 O
309 ¢ 0 0 0 0 0 0 O
310 0O 0 0 0 0 0 0 O
311 O 6 0 0 0 O 0 O
312 o 0 0 0 0 0 0 O
313 0O 0 0 0 0 O 0 O
Current saturation flow rate = 1

Delay from detector to stop-line = 10

Figure 35. Input parameters and detector data for DISPATCH 1.0.

47

5. INTERSECTION CONTROL

- — — t = ok e A S o~ o 4t 2

e e e T s . B —— - . " T — — o L -

Results for Changing Phase at Time: 154

Mvmt : 1 2 3 4 5 6 7 8 Total

Stops: 22 28 26 17 2 29 6 54 184

Delay: 3685 3164 2163 1417 218 3827 355 5851 20780
Performance Index = 15631.0000

Figure 36. Tabulation of stops and delay on each movement when switching
at the optimal point.

Figure 35 is the initial output and contains an echo of the input parameters and the
vehicle detections for each movement and each time unit during the entire time horizon.
For example, the “2” at time 155 under movement 3 represents an aggregated total of
two vehicle detections on that movement. Table 2 shows the optimal point to switch
phases, and the cumulative queues for each movement resulting from the decision
obtained in DISPATCH 1.0.

Figure 36 is a tabulation of the total stops and total delay on each movement as a result of
switching the phases at the optimal point in time. The units for total delay are minutes.
These values may appear large, but they are calculated over the entire time horizon rather
than only the range considered for determining the phase switching point.

Thus, the optimal point in time to switch phases is at time 154 (i.c., the next phase begins
at time 155). The switching point was initially set for time 159. DISPATCH 1.0 then
evaluated the possible switching points about time 158 (i.e., from time 154 to time 163).
For a more detailed listing of this output, refer to Appendix B.

To observe this adjustment in the switching point graphically, refer to Figure 37. If the
times in the first column of Table 2 are divided by the cycle time (90), these remainder
values become the synchronization clock times which are depicted in Figure 37. The
initial point to switch from phase 37 to phase 48 was set at time t = 159 (sync time 69 in
figure). Then, once DISPATCH 1.0 was executed on the data, the new switch time was

5. INTERSECT!ON CONTROL -

Table 2. Optimal switching point and display of queues designated by ****”.

Optimal Queue Matrix

—————— . ——————— —————— — i . - T il G T i R e -

T 1 2 3 4 5 6 7 8 Phase
0 0 0 0 0 1] 0 0 4 37
1 0 0 0 0 0 o] 0 0 37
2 0 0 0 c 0 c 0 0 37
[] [] L
152 14 7 0 17 0 12 0 49 37
153 14 7 0 17 0 12 0 49 37
154 14 7 0 17 0 12 0 50 37
155 14 7 0 17 0 12 0 50 48 *xx
156 14 7] 16 0 12 0 49 48
157 14 7 0 15 0 12 0 48 48
158 14 7 0 14 0 12 0 47 48
159 14 7 0 13 0 1 0 47 48
160 14 7 2 12 0 12 0 48 48
161 14 7 3 11 0 12 0 48 48
162 14 7 3 10 0 12 0 49 48
163 14 7 3 9 0 1 0 48 48
164 14 7 3 9 0 12 0 47 48
165 14 3 8 0 12 1 46 48
o] L

311 22 28 26 0 2 28 6 ¢ 48
312 22 28 26 0 2 28 6 0 48
313 22 28 26 0 2 28 6 0 48

Initial Phase 48
Starting Point(69)

Figure 37. Graphical display of DISPATCH 1.0 example.

90

49

5. INTERSECTION CONTROL -~

determined to be time t = 154 (sync time 64). Hence, DISPATCH 1.0 evaluated the
possible switch points from time t = 154 to t = 163 (from sync times 64 10 73) and, based
upon a combination of total stops and delay, selected the optimal switching point as t =
154.

The DISPATCH 1.0 program met the initial objectives. That is, it models, simulates, and
determines the optimal point in time (in a range) to change the active phase combination
for an intersection. In the near future, DISPATCH 1.0 will be implemented with fixed-
time and semi-actuated control logic to determine the best time to change the phase
combination based upon TRAF-NETSIM detector data and return this decision back to
TRAF-NETSIM for implementation.

5.2.3 COP - Algorithm for Intersection Control

In this section the COP (Coordinated Optimization of Phases) algorithm is presented
[Sen, 1991]. Let s; represent the amount of time remaining to be allocated given that
Jj—1 phase changes have occurred. The decision at stage j denoted u; is the amount of
"green"” time to allocate to the phase corresponding to phase j. Then,

Sjin =5, U; an

For the purposes of this illustration, assume that the objective is to minimize the number
of stops. Let z;(s;,u;) denote the number of stops in the time interval

(T =s5;,T —5; +u;)where T is the decision time horizon. Then the objective function
may be written as

L. J
ZJ(SJ)= Minimum ZZl_(sj'ui)

w} ™ (as)

where J is the maximum number of phase changes possible in time T'. Since the
objective function is additive, we get the following dynamic programming recursion
Z,(s;) =Minimum {z,(s;,u;) + Z,,,(5;,)}-
“ (19)

5. INTERSECTION CONTROL

The phase duration's, 4; , are determined by the solution to the dynamic program (19).
The exact phase change epochs are determined from the u;'s.

COP with Eight Phases

A C program was written which utilized the backward recursion method of dynamic
programming. The initial program only considered two possible phases, O or 1. In
RHODE-II(a) effort, the program was enhanced to accommodate eight possible phases
(Appendix C), which correspond to the phases in TRAF-NETSIM (Figure 32).

The COP algorithm is designed to minimize the number of stops as well as the total
delay. The algorithm does not consider the usual decision variables such as cycle time,
splits, and offset. Instead, the decision problem is to efficiently assign “green times” to
the phases of a signal.

The COP formulation was motivated by the OPAC strategy (Gartner, 1983).
Essentially, the dynamic program allows the allocation of zero, minimum, maximum, or
any green time within the minimum and maximum green times to a phase.

In the eight-phases version of COP two movements are possible simultaneously for each
phase. Thus, the possible phases are designated as follows: 1-5, 1-6, 2-5, 2-6, 3-7, 3-8,
4-7, 4-8. In the current version, no other phases are allowed. However, the mathematical
formulation allows for the consideration of any arbitrary number of phases.

Objeciives

There were two objectives considered in the current COP program (Appendix C). First,
time was allotted for phases while minimizing the total number of yehicle stops at the
intersection. Secondly, it was preferable to “skip” a phase if the algorithm determined
that it was optimal to do so. The phase to be skipped would be allotted zero time units by
the algorithm.

51

5.INTERSECTION CONTROL
The COP Program

COP has the following characteristics:

(1) uses discrete time units;

(2) has a defined time horizon (total time considered);

(3) incorporates a minimum green time for a phase to operate,

(4) incorporates a clearance time for vehicles (all phases red);

(5) is designed for eight phases;

(6) allows for up to 500 stages (the sequence of phases which can be
modified);

(7) may use an intersection identification number;

(8) accepts arrival data for eight movements (this data corresponds to the
vehicle requests for specific phases); and

(9) may easily be modified.

5.2.4 COP - Example

The intersection considered was Campbell Avenue and Sixth Street in Tucson, Arizona
(Figure 33)

A partial output of the COP program is given below (a complete listing can be found in
Appendix D), with a description following each section of output. The initial output
information verifies the following input data: intersection identification number, number
of phases, minimum green time, clearance time, total number of stages, sequence of
stages, time horizon, and the arrival data. The solution, which follows the input data,
requires the following definitions:

J current stage number,

state amount of time remaining,

decision optimal amount of time to allot for the corresponding phase, and
phase current stage.

Figure 38 displays an echo of the input parameters required for COP as well as the
vehicle detections for each movement (1-8). Note that the sequence of phases is
predetermined. Therefore, to create an arbitrary sequence of phases, some phases could
be assigned zero time.

Table 3 shows the optimal solution obtained using COP. The “state” represents the
amount of time remaining to be assigned. The “decision” is the amount of time to be
assigned to the respective phase and “stops” is the total number of stops encountered as a
result of the decision.

52

5. INTERSECTION CONTROL

Intersection Information:

Intersection Identification Number: 9375782
Number of Phases = 8

Minimum Green Time = 2

Clearance Time = 1

Total Number of Phases = 8

Sequence of Phases:37 48 26 35 15 38 37 16
Time Horizon = 40

Arrival Data

- ——— — o ——— - = ————

- — - —— — -

¢ 01 0 1 0 0 O
¢ 02 0 0 0 1 O
6 0 0 0 0 ¢ 1 1
¢ 01 0 0 ¢ O O
0O 01 0 0 0 1 ¢
o 0 0 1 0 0 0 1
o 0 01 0 0 0 0
0O 0 0 2 0 0 1 O
0o 0 01 0 0 O O
o 0 0 1 0 0 0 O
0 0 0 2 0 0 0 1
o 0 6 0 0 0 1

3 00 0 0 3 0

0 0 0 ¢ 0 0 0 O

Figure 38. Input parameters and detector data for COP.

Table 3. Optimal amount of time to assign to cach phase from COP.

Coordinated Optimization of Phases (COP) Solution

——— i ———— v v — - - . — - - - - - ——

j=1 State=4(Decision=4 Phase=37 Stops=2
j=2 State=35 Decision=9 Phase=48 Stops=3
j=3 State=25 Decision=0 Phase=26 Stops=0
j=4 State=25 Decision=13 Phase=38 Stops=9
=5 State=11 Decision=5 Phase=15 Stopas=2
i=6 State=5 Decision=0 Phase=38 Stopa=0
3= State=5 Decision=3 Phase=37 Stops=1
j=8 State=1l Decision=0 Phase=16 Stops=0

Total Stops=17

53

5. INTERSECTION CONTROL

Table 4. Computer time to executz COP for the parameters in Figure 38.
Time Minimum R/W user time B/F user time
Horizon Green Time (sec) (sec)
40 2 0.030 3.380

Table 4 shows the amount of computer time required to read input files and write to
output files (“R/W user time”) and the computer time required to perform the backward
and forward recursions in COP (“B/F user time”).

As can be seen in this example, the COP algorithm is able to skip phases. Here, phases
26 and 38 (the second occurrence of this phase) are assigned zero green time. In the last
stage (j=8), the state (amount of time remaining to assign) is equal to one time unit.

Since the minimum green time is two units and the clearance time is one unit, a minimum
of three time units are required in order to assign a phase a time duration.

5.3 Traffic Flow Prediction

The importance of traffic flow prediction can be understood by considering the signal
timing problem for a single intersection. Consider the intersection shown in Figure 39.
This intersection has four approaches. Associated with each approach are several possible
traffic movements: left turn, right turn and a through movement. For the purpose of signal
timing, the right turn and through movements are generally considered as a single
movement. Any non-conflicting combination of movements that can share the
intersection at any one time can be assigned a signal phase that allows those movements
protected use of the intersection. The traffic demand for a phase is determined by the
approach volume and the turning probabilities associated with vehicle routes. The waffic
demand is typically measured using loop detectors on the approach to cach intersection
and in the lefi-turn pockets. The intersection signal timing problem is to decide what
phases, in what sequence, for what durations should be used as the signal control.
Typically, these decisions are made to minimize vehicle delay or stops. Current traffic
signal timing methods assign phase durations to a predetermined phase sequence based
on the hourly average traffic volume and estimated turning probabilities.

5. INTERSECTION CONTROL -

Approach 3
1 yoeoaddy

Detector C e Vehicle
| Detector
v

Approach 4
Figure 39. Basic traffic intersection showing approaches, approach volumes,
movements and vehicle detectors.

The goal of real-time traffic-adaptive signal control is to choose the phase durations and
phase sequences to provide optimal control for the actual traffic demand. For real-time
traffic-adaptive signal control to be effective it must have an accurate view of the siate of
traffic conditions on the network and be able to predict, at least over short periods of
time, how the current network conditions will evolve. The importance of prediction can
be understood by considering the signal timing problem given two possible perfect
predictions of arrivals during the planning horizon as depicted in Figure 40. Each arrival
pattern represents the number of vehicles to arrive at an intersection in fixed time
intervals!. Both arrival patterns are identical until time £, when the signal control has to
decide whether to serve this approach or to serve another approach. In the top case, the
demand occurs immediately following t,, where as in the bottom case there is littie
demand immediately following 7, and greater demand in the future. In each case the total
number of vehicle arrivals are equal. However, the optimal control could be significantly
different. It is of fundamental importance to know the temporal arrival distribution to
build a truly real-time traffic-adaptive signal control logic.

1The use of "the number of vehicles” during fixed-time intervals is primarily to display the data. The arrival
of vehicles can best be thought of as a poni-process characterized by an instantancous arrival rate with
the additional characteristics of position, velocity and acceleration that represent the vehicle as a dynamic
entity.

55

5. INTERSECTION CONTROL -

4

IR Pl

o

Vehicles

-

E : Time
4 ! : -
Vehicles 5_2}_1?_39.3_;.;
' l
1 r_rf_L] ; rTr_l_—LL_m;

to ? Time

Figure 40. Graphical depiction of the effect of future arrivals on scheduling
the intersection phase sequence and duration.

Three issues are important to predicting traffic flow: (1) the length of the time horizon,
(2) the number of prediction points per time horizon, called the prediction frequency, and
(3) the number and location of information sources. The prediction time horizon provides
the real-time traffic-adaptive signal timing control logic with the ability to plan future
signal timing decisions. If the prediction horizon is short, perhaps several seconds, then
the signal timing decisions are restricted. For example, if the predictions are made over a
10-second horizon, the signal timing logic can only make timing decision which extend
or shorten the current phase. On the other hand, if the predictions are made over a longer
horizon, the signal timing decisions can include decisions on phase termination times and
phase sequencing. For example, if the prediction horizon is 30-40 seconds, then the signal
timing logic might schedule the next two phases and their durations based on the
predicted demand instead of following a fixed phase sequence.

The prediction frequency provides information about the distribution of vehicle arrivals
over time. If the predictions are made at a frequency of only one prediction for the
decision time horizon, then the signal timing logic must assume that the vehicles are
distributed uniformly over that time. If the predictions are made more frequently, say 10
to 30 times over the prediction horizon, then the signal timing logic will have a more
accurate representation of the distribution of vehicle arrivals over time. Figure 41 depicts
the information content of predictions at a frequency of once per time horizon and 10

times per horizon.

56

5. INTERSECTION CONTROL

3 1+

2 —4-

Vehicles

b erahocccnancven p--.(c-- ------------ b o= -

1 —+

- I 1 L n-
1 1 v h

1 2 3 4 5 6 7 8 9 10 Time

Figure 41. Illustration of the relationship between the prediction horizon
(T=10) and the prediction frequency. The dashed line shows an
average of 1.2 vehicles/time unit. The solid line shows the number
of vehicles predicted per each time unit.

Traffic flow is, in general, a time-space phenomenon. The number and location of
information sources determine the ability of any prediction algorithm to predict future
conditions based on current conditions at other spatial points. For example, if a detector is
located, say, 10 seconds upstream of the desired prediction point, then prediction will be
easier but only for a 10-second horizon. The further away the locatior. of other
information sources, the longer the potential prediction horizon. But, the temporal
information may become more distorted (e.g. platoon dispersion) and thus less valuable
for prediction. In addition, the further away the information sources are located, the
greater are the effects of exogenous factors, such as traffic signals and traffic
sources/sinks, on prediction. Clearly, a system with many well placed detectors will
provide the best information for prediction. However, the cost of such a detection system
may be prohibitive.

In addition to the traditional inductance-based loop detector information discussed above,
the application of advanced electronics to transportation through the national /nzelligent
Vehicle Highway System (IVHS) program has the potential to provide valuable
information for traffic flow prediction and traffic control. Video image processing is
already being used for vehicle detection. Vehicle identification technologies, hence
information on origins-destinations, routes, speed, etc., are available and may be
deployed in the near future. This application of advanced technologies is exciting, but
from a real-time traffic control point of view, one must ask: "If we could apply these
emerging technologies in any way possible, what is the best set of information that we
should measure in order to provide the desired real-time control performance?” This

57

5. INTEKSECTION CONTROL

question can only be answered through basic research on data fusion methods and study
of information needed for effective real-time traffic-adaptive signal control.

The need for prediction was recognized in the development of the Urban Traffic Control
System (UTCS) in the early 1970's. The development of second generation (UTCS-2) and
third generation (UTCS-3) control logic included prediction as a primary system
component. UTCS-2 based its signal timing decisions on predictions of demand for the
next 5-15 minutes. UTCS-3 based its signal timing on predictions of demand over much
shorter time periods of approximately a cycle length?. It is generally felt that these
failures of UTCS-2 and UTCS-3 were due to errors in surveillance and detection
[Tarnoff, 1975]. Very little research has been conducted on the development of prediction
methods since the 1970's.

Stephanedes, Michalopoulos and Plum [1981] conducted a critical review of the UTCS
predictors and three additional predictors. They compared the prediction accuracy of
UTCS-2, UTCS-3, historical averages, current measurement, and a simpler proposed
algorithm. Each predictor was compared based on mean squared error and mean absolute
error for both five-minute predictions and cycle-by-cycle (90 second) predictions. They
concluded that for five-minute predictions, the historical average performed better than
UTCS-2, but both of these methods were superior to the others. For cycle-by-cycle
comparisons, the UTCS-2 and the historical average predictors were not applicable since
synchronization of cycles over historical periods was impossible. A moving average
version of their proposed algorithm was supenior to the UTCS-3 and current
measurements. Some versions of their proposed algorithm performed better than the
moving average version but the performance was sensitive to the selection of model
parameters.

Each algorithm that Stephanedes, Michalopoulos and Plum studied addresses the
prediction problem based on a fixed time horizon, either five-minutes or one cycle, and
updates the prediction at a frequency of only once per horizon. Table 5 summarizes each
of these algorithms in terms of its characteristics: prediction horizon, prediction
frequency and performance. Each of these algorithms uses only a single information
source (a single detector) located at the point of prediction.

2Gencrally, each signal within a coordinated system is operated on a common cycle time. The cycle time is
defined 0 be the amount of time from the beginning of main strect green until main street green begins
again, where main street is arbitrary, but generally chosen to be the major traffic movement street

58

5. INTERSECTION CONTROL

Table 5. Comparison of existing traffic demand prediction algorithms.

Algorithm Horizon requency | Performance
UTCS-2 5-15 min 1 Good for § min
UTCS-3 5-15 mun, cycle 1 Poor Overall

Historical Average 5-15 mn 1 Best for S min
Current Measurement | 5-15 mun, cycle 1 Poor due to
time delay
Proposed 5-15 min, cycle 1 Sensitive to
Parameters

Okatani and Stephanedes (1984) utilized a Kalman filter model structure to consider
information from multiple sources, i.e. detectors on a number of links. They made
predictions at a frequency of once per 15-minute time horizon. Their results indicate a
small improvement over the UTCS-2 prediction algorithm, but fail to address the need for
higher frequency predictions required for real-time traffic-adaptive signal contro! logic.

In a discussion of the prediction problem, Gartmer [1981] concluded that the deficiency to
provide good temporally distributed predictions could only be addressed by relying on
actual flows rather than average volumes. One possible method to obtain actual flows
approaching an intersection would be to place detectors on the links upstream from the
intersection and use the flows at these points to provide predictions. An important
limitation of this approach is that the distance between the intersection and the upsiream
detector constrains the prediction time horizon. Another limitation is that if the detector
fails, there is no other source of real-time traffic flow information.

Baras, Levine and Lin [1979] utilized point-process filter and prediction methods
developed by Segal [1976] to estimate queue size at an approach to an intersection. In
their research they modeled the formulation and dispersion of queues as discrete-time
time-varying Markov chains that are related to the observable point processes at the
detectors on the approaches to an intersection. This approach showed good performance
for estimating/predicting queue size. However, it provided predictions with a time
horizon of only a few seconds using a detector that was located only 20 vehicle lengths
upstream of the intersection stop bar and did not directly estimate the traffic flow arrival
process. The benefit of their approach is that they have incorporated a probabilistic

59

5. INTERSECTION CONTROL

structure into the estimation and prediction problem. Through this probabilistic structure
additional information, such as the type that will be available through deployment of
IVHS, can be fused into the development of mraffic flow predictions.

5.3.1 The PREDICT Algorithm

We have been investigating a new prediction method, PREDICT, that is based on the use
of detectors on the approach of each upstream intersection, together with the traffic state
and control plan for the upstream signals to predict the future arrival. This approach
allows a longer prediction time horizon since the travel distance to the intersection is
longer and the delays at the upstream signal are considered. A benefit of this approach is
that it couples the effects of the upstream traffic signals with the intersection control
optimization problem.

This prediction approach is data driven. That is, the prediction of each arrival at an
intersection depends on the event of a vehicle crossing some detector on the approach to
an upstream detector and not (directly) on the traditional time averaged detection
parameters of count and occupancy.

To understand how this approach works consider the scenario shown in Figure 42. It is
desired to predict the flow approaching intersection A at detector d,. Making the
prediction for the point d, is important because it is a point on link AB where the actual
flow can be measured, hence the quality of the prediction can be assessed in real-time.

Traffic contributing to the flow at d, originates from the approaches to intersection B
and can be measured at detectors d,, d, and d, representing the flows that will turn left,
pass through and turn right, respectively, onto link AB. Other traffic that originates at
sources between intersections A and B are possible, but will be considered as
unmeasurable "noise". Also, it is possible that vehicles passing over di, d;, and d, will
terminate their trip before arriving at d,. This will also be considered as "noise” in the

prediction.

When a vehicle passes a detection point, say d; where i € {1,1,7), several factors effect
when it will arrive at d, including (1) the travel time from d; to the stop bar at
intersection B, (2) the delay due to an existing queue at B, (3) the delay due to the traffic
signal at B, and (4) the travel time between B and d,.

5. INTERSECTION CONTROL

| d.| =

| dy I d,
I I

| | =%

Figure 42. Prediction scenario based on detectors on the approaches to the
upstream intersection (B).

Figure 43 (a)-(d) depict the delay associated with each of these factors. In Figure 43-(a)
the vehicle arrives at detector d; and passes freely to detector d4. The arrival time,
denoted t, at d, can be estimated as

ta=1g + T4, + Ty,

where T,,, is the travel time from d; to the stop bar at intersection B and T, 4, is the
travel time from the stop bar at intersection B to the detector at dy. Each of these travel
times can be estimated based on the approach speed and the link flow speed, respectively.

In Figure 43-(b) the vehicle arrives at detector d; and is delayed by the signal at
intersection B . Hence the travel time from d; to d, must account for the travel time from
d; to the stop bar, the delay due to the signal and the travel time from the stop bar to dj.
The arrival time at d, can then be estimated as

1,50+ T+ T, +T,4,

where T,, is the delay until the signal timing plan advances to a phase that will serve the
desired movement.

In Figure 43-(c) the arrival at d; encounters delay for the signal as well as a standing
queue, and has to travel from d; to the stop bar at B, and from the stop bar to d,. The
signal delay can be computed based on the signal timing plan as described above. The
delay due to the standing queue can be estimated using a relationship of the form

61

5. INTERSECTION CONTROL -

4

\
da T T

B s R B e/ T
d 4 d; +

B
i -

(a) (b)
Detected vehicle passes freely through intersection. Detected vehicle arrives during red signal - signal delay.

Beo
Lo

&
d A E S
B [
d T
(c) @
Detected vehicle arrives during red signal and a queue Detected vehicle arrives during the green signal and a queue
exists - signal and queue delay. exists - queue delay.

Figure 43. Delays associated with the prediction of arrivals at the detector d,,.
Tu. =a,+ alN @

where a, and @, are parameters that can be selected based on the particular intersection
and N, is the number of vehicles in the queue. (The above equation has the form of
Greensheild's equation and has been used to estimate the amount of time required to clear
a queue.) Note that the T, relationship is not motivated by Little's theorem, but is based
on the dynamics of traffic queue dispersion and has been determined empirically.

Figure 43-(d) depicts the case when the arrival at d; occurs after the signal has begun
serving the desired phase, but a standing queue is present. This case is similar to the
above, except that the delay due to the standing queue must be adjusted based on the
amount of time that has elapsed between the onset of the signal and the arrival of the
vehicle at d; and the travel time to the back of the queue.

62

5.INTERSECTION CONTROL

Once the arrival time at d, is predicted, this mode! adds the prob-bility of the arrival to
the current estimate of the expected nunber of arrivals at that time. For example, if 15%
of the vehicles that pass over d; continue on to d,, then 0.15 will be added to the current
estimate of the expected number of arrivals at the predicted arrival time ¢,.

It is important to note that this predictiun model is based on processing arrival data as it
evolves. Hence, at any point in time the predicted arrival flow pattern at d4 accounts for
vehicles that have already passed the detectors d4,, d; and d;. The benefit of this
evolutionary behavior of the predictor is that it constantly provides, for a given prediction
horizon, partial information that can be used by the intersection control logic. Also, this
model is distributed in that it can be applied for every approach of every intersection in a
large urban traffic signal control network. In fact, this distributed architecture will reduce
the communications required to transmit the detector information to a central computer
and hence should improve the prediction speed.

We have conducted several preliminary experiments using this traffic prediction method.
Figure 44 shows the actual (dotted line) and the predicted (solid line) arrival patterns at
d, for a sample network that was simulated using the FHWA's microscopic traffic
simulation model TRAF-NETSIM. Although the predictions are not exact, there is clearly
a strong correlation between the actual and the predicted arrival patterns.

To test the quality of the predictions the performance of a dynamic programming based
real-time signal control logic [Sen, 1991] using these predictions was compared to the
performance of a well-timed semi-actuated signal control logic. The performance
criterion used in the real-time signal control logic was the minimization of the total
number of stops. Fifty-five runs of the simulation model were made for each control
strategy using paired random number sequences, varying the load on the intersection. The
results of these simulations are shown in Figure 45. The results show a significant
decrease in the percentage of vehicles that were stopped using the real-time control logic
and the predictions generated as described above.

This preliminary results should be interpreted with both optimism and caution.
Optimistically, it appears that the predicted flows and the actual flows are very similar
and that this prediction method will provide the temporal distribution of arrivals at a
prediction frequency that is greater than any of the currently available methods.

63

Vehicles

5. INTERSECTION CONTROL

Cautiously, one must be aware that the simulation environment where these preliminary
results were obtained is nearly ideal. That is, this smdy did not consider the effects of
extraneous factors such as sources and sinks on the approach links as well as other traffic
characteristics that may not be accurately modeled in the simulation environment.

Predicted(-) and Actual(:)
9] T 1 1 T L] T

- |
T W]

300 400 500 600 700 800
Time (seconds)

Figure 44. Link Flow Profiles: predicted (solid) and actual (dotted).

5. INTERSECTION CONTROL

100 T T T T

% Stopped

550 600 650 700

%% 280 300 350 400 450 500
Volume (vphpl)

Comparison between well-timed semi-actuated control
(represented by the ‘o’ and the dotred line, and a version of the

proposed intersection control logic and predictions as described
above.

Figure 45,

6. SIGNAL CONTROLLER INTERFACE

6. SIGNAL CONTROLLER INTERFACE

In this section the traffic signal actuation level of the RHODES hierarchy is
demonstrated. The purpose of this task was to demonstrate that existing signal control
hardware could be used within the real-time traffic-adaptive signal controi environment.
This requirement is important from an economic point of view since cost to replace all
existing controllers may be prohibitive. In this project we built an interface between a PC
and an Eagle Signal Controller (DP9000 Series) such as those currently used by the City
of Tucson.

6.1 Interface Requirements

The physical interface requires the ability to select any phase, from a prespecified set of
phases, at any point in time, with the constraints that the normal yellow and all red
intervals be obeyed. Although, this interface provides a very flexible control mechanism,
it should be noted that safety considerations are all ready incorporated into the signal
controller and parameters such as clearance intervals and minimum green interval times
can also be used to maintain a safe mode of operation.

An Eagle DP9000 Series NEMA controller was reprogrammed to a fully actuated eight-
phase configuration with the minimum green intervals set as small as possible. Phases
were then selected by placing a CALL on the detector associated with the desired phase.
For example, if the controller was resting in main street through (phase 26) and a lagging
left phase was desired (Phase 15), then a CALL was placed on the detector inputs
associated with phase 15. Similarly, if the controller was in phase 26 and a leading left
turn for the side street was desired, a CALL was placed on phase 37 (side street left turn).

6.2 Interface Logic Design

The interface was prototyped and demonstrated in the laboratory using an Eagle
controller, a PC, a Motorola HC-11 microcontroller and a simple digital logic interface
circuit. Figure 46 depicts the physical implementation. A simple communication
software package (PROCOMM) is run on the PC that allows communication with the
microcontroller. For the purpose of the demonswation there is no need for a special
application on the PC; however, when the RHODES algorithms are implemented on the

6. SIGNAL CONTROLLER INTERFACE

Signal Controller

Microcomputer

Interface Digital Logic

Figure 46. Physical Interface for Real-time Traffic-adaptive Signal Control.

PC the communication should be handled using software routines that address the serial
communication port.

The Motorola HC-11 microcontroller (a $65 unit) allows the PC to transmit a single byte
of data that represents the desired phase CALLS. This byte of data is stored in a memory
location on the microcontroller that corresponds to the desired output ports where the
microcontroller is interfaced to the Eagle controller. The format of the byte is shown in
Figure 47. Each bit of the byte represents a CALL for one signal phase. Table 6 shows
the bytes for the eight-phase dual ring controller (see Figure 32 in Section 4.2). The byte
is transmitted by typing the hexadecimal equivalent on the PC.

Bit 7 Bit0

8 7 6 5 4 3 2 1

i
Call for Vehicle Detector Associated with Phase i
Figure 47. Format of Interface Controller Byte.

67

6.SIGNAL CONTROLLER INTERFACE

Table 6. Phase and associated byte transmitted from PC to the HC-11
microcontroller. The Hex equivalent is also shown.

PHASE BYTE (Hex)
12 0000 0011 (03)
15 0001 0001 (11)
26 0010 0010 (22)
34 0000 1100 (0C)
37 0100 0100 (44)
48 1000 1000 (88)
56 0011 0000 (30)
78 1100 0000 (Q0)

Figure 48 shows the circuit for the interface between the HC-11 microcontroller and the
detector port on the Eagle controller. Eight of the microcontroller output ports are
connected to an interface circuit that switches the +24 Volt to ground when a CALL is
desired on a particular phase using an open collector NAND gate (SN7406). The +24
Volt power is supplied by the Eagle controller. All unconnected output ports of the
microcontroller are tied to ground to ensure stability of the circuit.

+24V
1MQ
PC Motorola p——) POItS To Detector Port
HC-11 : on Eagle Contraller

using
PROCOMM puController 1
470k =

Figure 48, Computer-Controller Interface Circuit.

6.3 Demonstration

The signal controller interface was demonstrated by selecting any desired phase, from the
set of allowable phases, entering the associated byte on the PC and waiting until the
controller transitioned through the appropriate clearance intervals and then into the
desired phase. It should be noted that the Eagle controller required a start-up "cycle”
where it transitioned through all phases in order to clear all CALLS that appeared when
the controller was initialized. After this start-up "cycle” the controller functioned as
required - - the desired phase being activated externally of the controller.

68

7. Simulation Experiments using TRAF-NETSIM

7. SIMULATION EXPERIMENTS USING TRAF-NETSIM

In this section we discuss simulation models used for studying and evaluating the
effectiveness of traffic control algorithms. After a brief discussion of the issues related to
simulation modeling and evaluation, we present our approach to develop a simulation
model for testing real-time traffic-adaptive traffic control, which is based on the
modification of the TRAF-NETSIM model. The modified model was validated by
implementing external fixed-time and external semi-actuated signal control logic and
comparing the performance of external control logic with the corresponding logic that is
internal to TRAF-NETSIM. Having validated the simulation model, the real-time traffic-
adaptive intersection control algorithm, COP, as described in Section 5.2, was interfaced
to the simulation model and evaluated.

The functional requirements for simulation models for development, testing and
evaluation of real-time traffic-adaptive signal control logic include:

« the ability to obtain surveillance/deiector output at required frequencies;

* the ability to control traffic signals in real-time;

« the ability to generate dynamic wraffic conditions, including recurrent and non-
recurrent congestion such as incidents and special events;

» the ability to obtain different different types of surveillance and detector data
including traditional loop detetor data, vehicle probe data (travel times, routes,
etc.), and other traffic control information that will be available from the
emerging IVHS technologies;

» the ability to compute various measures of effectiveness; and

« the ability to generate traffic characteristics that are not necessarily observable,
such as queue lengths.

The frequency of surveillance and detector system output and the frequency of the signal
control input will dictate the minimal resolution, and hence the responsiveness, of the
signal control logic. The simulation model must be able to represent rates that will be
achievable when the control logic is implemented for field testing.

The ability to represent dynamic recurrent and non-recurrrent congestion, as well as other
non-congested traffic conditions, is needed for measuring the control logic's capability to
respond to real-time traffic conditions.

7. Simulation Experimerus using TRAF-NETSIM

Simulation mode]s used for testing must provide the same surveillance and detection
information as that available in the field. When the real-time traffic-adaptive signal
control logic is deployed in the future, vehicle probe data and other information may be
available from emerging IVHS technologies. A valid simulation model must provide this
information in order to test real-time control iogic that can use such information.

It may be desirable for the signal control algorithms to optimize different measures of
effectivenzss (MOE), based on traffic conditions or dictated by the operating
jurisdictions. Therefore, it ic essential that the simulation model provide a wide variety
of MOEs to evaluate the real-time traffic adaptive signal control algorithms.

The simulation model requirements from a development and testing perspective differ
from the requirements for performance evaluation. Clearly, the most importari
requirement of a simulation model is that it accurately represent the dynamics of traffic
flow and its response to dynamic signal control. This requirement dictates that the
simulation model chosen for development and testing not be based on a macroscopic flow
model that assumes constant cycle length and deterministic traffic flow characteristics.
Rather, the model should include microscopic flow characteristics such as car-following
vehicle response to actual traffic signals.

During the developmen: and testing phase it is essential to have access to both traffic and
signal control variables so that detailed behavior can be studied. One may distinguish
between traffic simulation information that is needed for validation and testing and that
which is available as traffic surveillance/detection data for the signal control algorithms.
For example, for the purpose of testing a traffic model used in an optimization routine, it
may be desirable to compare the traffic model's state-of-the-traffic parameters, such as
queue length, to the corresponding parameters in the simulation model. This form of
testing requires that the traffic simulation model provide accurate measurements of queue
1=ngths despite the fact the existing traffic surveillance technology may not provide this
information.

Axother important consideration is the frequency at which required testiny, data is
availabic. For example, the average queue length for a simulation period is insufficient
“gr testing a routine that estimates real-time queue lengths. This information must be
avai able as frequent!y as posssie.

70

7. Simulation Experiments using TRAF-NETSIM

For the past two-years we have been using the TRAF-NETSIM traffic simulation model
for developemnt and testing of traffic-adaptive signal control algorithms. This effort has
required us to modify the TRAF-NETSIM model to (1) interface the simulated traffic
surveillance equipment with the signal control logic's database, and (2) interface the
simulation model's traffic controliers with the signal control logic that we have
developed. In addition, we have made information accessible that is internal to the
simulation model's database; this allows us to test and validate our algorithms and
software.

For example, in testing the intersection control algorithms described in Section 5.2, we
modified the simulation model to record the simulated signal states and we compared
them with the signal states downloaded by our algorithms. We were thus able to ensure
that the desired signal state was the signal state activated by the simulation model. We
also modified the TRAF-NETSIM surveillance logic to allow us 1o record simulated
traffic flow profiles on each link and comapre them with the predicted traffic flow
profiles that were generated by the traffic flow prediction models described in Section
5.3.

The network that we simulated in our experiments consisted of 41 intersections within a
four square-mile area in the City of Tucson (see Figure 49). The traffic characteristics,
volumes and signal configurations were obtained with the assistance of the City's traffic
engineers. Thus our experiments were based on realistic data.

7.1 Overall Approach

The objectives in the development of the interface was to minimize the modifications to
the existing TRAF-NETSIM code and to simulate the interface between the real-time
traffic-adaptive signal control logic and the NEMA controllers that are currently used in
Tucson, Arizona. The same philosophy as in the design of the physical signal controller
interface was used in the modification of TRAF-NETSIM. The actuated signal controller
logic (software Q5 logic) was programmed, through the input data base, to have the
desired set of phases with the desired minimum green intervals. Then detector
information, contained in the TRAF-NETSIM internal data base, is first read, for the
purposes of surveillance, and then either cleared or set to represent 8 CALL on the
desired phase. When the signal state is updated, the CALL will be processed thereby

n

7. Simulation Experiments using TRAF-NETSIM

® ®

Figure 49. Topological layout of the traffic network used in the simulation
studies.

forcing the signal into the desired state. Figure 50 depicts the software implementation of
this approach.

This approach for interfacing of external signal control logic has been extended to
support network-wide control. To accomplish this, an event-based control logic interface
was developed. In the interface logic, the external event manager can implement a wide
variety of network-wide control strategies by scheduling control logic processing events
and signal update events as required. The external event manager is called each time a
signal state requires updating. It checks the internal simulation clock to determine which
events require processing. If it is the first call, for a particular time, to the external logic
and an area-wide surveillance system update is required, then the external logic that
performs the update is called. If the signal that initiated the call to the external event
manager requires updating, the appropriate signal control logic is called. If it is desired to
allow the internal simulation signal control logic to control the signal, then control is
passed back to the

72

7. Simulation Experiments using TRAF-NETSIM

TRAF-NETSIM

—— - Interface
Simulation Execution Event

Logic List
s
Run Sz\zxrvxgﬁmcc External Control
Detector Signal | [EmConl, | and Survelliance
A . ol te C
Logic aSchedulcl%I_ext gl
Control Update
11:01:32

Traffic Movement
Model

Figure 50. Software Interface for External Control and Surveillance Logic

simulation with no update taking place. This approach requires any signal that is to be
controlled externally to be programmed according to the guideline discussed above as a
fully actuated signal.

The interface implementation included the development of a library of interface functions
that the external logic, either surveillance or control, can use to access database
information, alter database information, place events on the event managers list, or
remove events from the event manager list. This library facilitates the interface between
the FORTRAN simulation model and the external logic that has been developed in the C

programming language.

Validation testing has been conducted to ensure that this approach is both reliable and
accurate. To test the interface, the actual signal states and the desired signal states are
compared. These comparisons have been made on both single intersection control and on
network-wide control. The interface has been found to be reliable and accurate. The only
consideration that must be made is that it requires one full simulation second for the Q5
signal controller emulation logic to respond to a CALL, where as the hardware controller
is capable of responding in much less time due to the underlying microprocessor clock

speed.

73

7. Simulation Experiments using TRAF-NETSIM

An essential element in the development of external signal control logic, especially real-
time control, is the traffic surveillance system. In our effort, we have utilized the internal
surveillance detector logic of TRAF-NETSIM for the placement and processing of
detector events, but we utilize an external detector signal processing logic. This approach
has allowed us to estimate any traffic parameters that are desired in addition to the
standard count and occupancy values. The surveillance detector logic (SUBROUTINE
DETECT) is used to generate signals form each detector on a tenth-of-a-second basis. In
particular, the surveillance detector logic determines the beginning and ending of
detection events on tenth-of-a-second basis. These events are the externally translated
into continuous binary signals. Each continuous signal represents either an occupied
detector or an unoccupied detector. These signals are then processed into the proper
parameter estimates for the associated signal control algorithms. The internal surveillance
logic also provides other surveillance information, such as queue lengths, when
appropriately placed detector have been defined.

In addition to the traditional detector surveillance data, advanced surveillance
information, such as that that will be available with IVHS, can easily be obtained from
the simulation model database. For example, when a vehicle triggers a detection, we can
determine the vehicle identification number (VIN), its speed, and its direction of trave] at
the next intersection. All of this information is currently accessible using the exwernal
interface logic that has been coded and implemented in the C programming language.

It is important to note that the model enhancements made by us were intended to support
our on-going research activities in real-time traffic-adaptive signal control. The primary
mission in these activities was not to develop a general platform for testing IVHS
components. The objective was to develop a platform for testing real-time traffic-adaptive
signal control logic. We feel that we have succeeded in satisfying this objective, at least
for the control features that are currently under development. Our approach is only one
possible approach to the development of a general IVHS simulation model interface. It is
clearly possible to optimize the computational effort required through direct
modifications of the simulation model itself, or through development of a new model.

74

7. Simulation Experiments using TRAF-NETSIM

7.2 Implementation Details

This section describes, in detail, the interface which was developed and methods for
linking external signal logic to TRAF-NETSIM. TRAF-NETSIM checks the states of the
signals at each time step and modifies them as needed. This is implemented in a loop
which updates the signal at each intersection, one intersection at a time. The routine
UPSIG handles the updating of the traffic signals. If an intersection contzins an actuated
controller, logic is called which emulates a hybrid between a Type 170/179 and a NEMA
signal controller. Within this TRAF-NETSIM controller logic, there is a routine DETQS
which translates detector data to the format which is used by the signal controller. It is
immediately before that translation that a call was inserted to a new routine, CONTROL
(see Appendix E for a listing of this routine). This allows manipulation of the detector
data which is sent to the internal TRAF-NETSIM signal control logic. The subroutine
CONTROL serves as the primary interface between TRAF-NETSIM and any external
signal logic, as shown in Figure 51.

TRAF-NET CONTROL E)g%w
-NETSIM LOGIC

Figure 51. Extemnal Signal Control Logic Interface

The subroutine CONTROL calls the external signal logic with any necessary parameters
such as detector data and a node identification number. The external signal logic returns
a code to indicate the desired active phase or phases at that intersection. Based on this
response from the external signal logic, CONTROL sets the TRAF-NETSIM detector
data to indicate demand only on the indicated phases at the current intersection. At that
point the TRAF-NETSIM simulation continues as originally designed until another
intersection with an actuated signal controller is updated. The external signal logic is
easily bypassed for intersections that should be controlled by the TRAF-NETSIM internal
signal logic.

7. Simulation Experimenis using TRAF-NETSIM -
7.2.1 Providing Data for External Signal Control Logic

The data that TRAF-NETSIM needs to provide to the external signal logic will vary,
depending on the purpose and implementation of the external signal control logic. For
example, a simple fixed-time controller only rieeds two parameters: the network-wide
synchronization time and the current node number. Other typé€s of signal control logic
will need detector data and possibly additional data. Most of the data which might be
needed is generated internally by TRAF-NETSIM for use by the simulaton model, and is
stored in FORTRAN common blocks. That information then becomes available to any
external signal logic routines through access to those common blocks. The external
signal logic does not need to be coded in FORTRAN to be able to access these common
blocks. In this research, all external signal logic was coded in C, witick can also directly
access the common blocks within the TRAF-NETSIM model (see Appendix F for further
information about using FORTRAN and C together). The common blocks can be
accessed by the routine CONTROL, passing the necessary information to the signal logic
as parameters, or the signal logic can access the common blocks directly. It is not always
the case, however, that all needed data will be stored in common blocks. One important
case is the node number. Because the signals are updated one at a time (i.e. the signal
logic will be called once for every actuated signal in the network) TRAF-NETSIM needs
to communicate the current node number to the external logic. This is accomplished by
passing the node number as a parameter from TRAF-NETSIM to the external signal
control logic. The node number passed to CONTROL from DETQS is the node number
assigned to the current intersection in the TRAF-NETSIM input file.

Detector data has been made available in common block SIN368 in the array
ICOUNTS(). This data is collected from surveillance detectors (defined by card type 42)
which are placed on the network. It is collected through extensions which were made to
subroutine SENSOR in the TRAF-NETSIM code. This is the routine which registers all
detector actuations. The data that is collected and stored in ICOUNTS is a list of counts
of the number of actuations registered at each surveillance detector during the current
time step. Actuations are counted as they are registered at each surveillance detector, and
only if the detector was assigned a non-zero station number in the input data. Each
vehicle is counted only once by any detector, at the time when the vehicle first reaches
the detector. The total number of actuations registered at each detector are accumulated
over the duration of the time step (one second of simulated time). After the signals have
been updated, the counts are then cleared and the process is repeated during the next time

76

7. Simulation Experimeris using TRAF-NETSIM -

step. The clearing is done in subroutine OUTDATA, a new subroutine which was created
to output data and clear the detector counts (The modified version of SENSOR, as well
as a listing of OUTDATA can be found in Appendix G). Through the use of surveillance
detectors and the count information, it is therefore possible to determine how many

vehicles arrived at any particular location on the network during the current time step.

The common block SIN368 was created to contain the detector counts in the array
ICOUNTS. Each position in the array holds the count from the corresponding
surveillance detector. For example, ICOUNTS[3] would contain the number of
actuations that were registered at the detector with station number 3 during the current
time step. The count information is collected during the “Move vehicles” phase shown in
Figure 52 as the vehicle positions on the network are updated. This information is
therefore available for use at the time that the signal control logic is executed during the
“Update signals” phase. The counts are cleared at the end of each time step and are
collected again during the next. One limitation of the current implementation is that
presence information is not available from presence detectors. Either type of detector can
be placed on the network, but currently both provide the same type of count, or passage,
informaton.

For signal synchronization, the network-wide sync clock can be accessed directly from
the TRAF-NETSIM simulated controller hardware. It is stored in common block SIN355
in the array LOWRAMY() at location LOWRAM(38). This value may need 1o be
incremented before being passed to the external control logic, depending upon how the
sync clock is being interpreted within the external signal logic. This is because the signal
states are updated before the system clock is incremented (see Figure 52). The decision
whether to pass an incremented copy of the sync clock or the sync clock itself
determines whether signal transitions, which are based on the sync clock, will take effect
at the beginning or the end of the time step in which they occur. For example, if a phase
is supposed to terminate when the sync clock reaches time 60, the transition could occur
at the end of time step 59, in which case it would take effect during time step 60, or the
transition could occur at the end of time step 60, in which case it would not take effect
until time step 61.

During the implementation of these modifications to TRAF-NETSIM, a general goal was
set to minimize changes made to the original TRAF-NETSIM code. This approach
should also be heeded during the development of external signal control logic. The

'

7. Simulation Experiments using TRAF-NETSIM -

—~>d Emit new vehicles onto network

Y

Move vehicles within network

Update traffic signals
for next time step

K]

increment system clock

Figure 52. TRAF-NETSIM simulation logic flow.

benefits from this will be increased modularity and testability of the new signal control
logic as well as maintaining the integrity of the TRAF-NETSIM simulator. Hence, the
simulator should only be expected to provide basic data describing the current state of the
system. Any new data which needs to be calculated or maintained should be handled in
separate modules. For example, if historical data is needed, it should be maintained by
the external logic and not by modifications to the TRAF-NETSIM structure. Due to the
detailed implementation of the TRAF-NETSIM traffic model, most parameters that might
be needed are probably available somewhere within the model. In those cases, the task is
reduced to locating and properly interpreting the internal variables which contain the
desired data.

7.2.2 Implementing Signal Control from External Signal Control Logic

Once the external signal control logic has been called with the proper data, it should make
a decision about the desired phase, or phases, at the given intersection at the current time.
It should then return that decicion to CONTROL. This is encoded as a single byte return
value from the signal logic. If a value of zero is returned, CONTROL will not modify the
detector data for that intersection. This effectively bypasses the external signal logic and
allows that intersection to be controlled by the internal TRAF-NETSIM signal logic. If a
non-zero value is returned, the bits which are set to 1 will be interpreted as the desired
phases. For example, if a value of 4 is returned, this is 00000100 in binary. Since the

78

7. Simulation Experimenits using TRAF-NETSIM -

third bit is set to 1, phase 3 is indicated as the desired active phase. Multiple bits set to 1
would indicate multiple active phases. For example a return value of 34 is represented in
binary as 00100010, indicating that phases 2 and 6 should be active. After receiving and
interpreting the return code, CONTROL will then clear ail actuated controller detector
data for the current intersection (the real data) and will instead place actuations on any
detectors associated with the phase or phases indicated by the external signal control
logic. Note that detector actuations can only be registered by TRAF-NETSIM on
detectors which have been defined to exist. It is therefore necessary to make sure that at
least one detector is defined on card type 46 for each phase which may be indicated by
the external signal control logic. This does not imply that real physical detectors must be
placed in the road, but only that the existence of those detectors must be indicated to the
internal signal control logic. By placing actuations on detectors associated with a new
non-active phase, the internal signal control logic will begin the transition from the
currently active phase to the new phase.

7.2.3 Modifications to TRAF-NETSIM Source Code

External signal control logic interface has been made possible by modifications and
additions to the TRAF-NETSIM program. Although most of these changes were
discussed in the preceding sections, it may also be useful to study Appendix H, which
contains a complete listing of all of the changes and additions that were made to the
original TRAF-NETSIM source code during this development. In addition to the external
signal control capability, some additional data collection capabilities were added. The
new data includes records of detector actuations caused by vehicles during the simulation,
counts of actuations at surveillance detectors, phase decisions made by external signal
control logic (if in use), and signal states throughout the duration of the simulation. This
data is useful for verification of external signal control logic as well as allowing TRAF-
NETSIM to produce data that can be useful for conducting other experiments. The data
is collected and stored in external files. At the completion of the simulation, the data in
these files can be accessed and used for any purpose desired. Appendix I contains
detailed descriptions of all new data which has been made available.

7.3 Development Procedure for External Signal Control Logic

The previous sections have described the how data can be passed between TRAF-
NETSIM and external signal control logic. Using this procedure and allowing subroutine

7. Simulation Experiments using TRAF-NETSIM

CONTROL to serve as an interface, RHODES or any other type of signal control logic
can be evaluated through simulation using TRAF-NETSIM. The following steps outline
the procedure for implementing external signal control and interfacing it to TRAF-
NETSIM. (Appendix F is a collection of “Programmer’s Notes” and provides additional
information which may be helpful.)

(1) Develop and test the external control logic independently from TRAF-
NETSIM. It may consist of a single or multiple subroutines, and need
not be written in FORTRAN. See Appendix F for a description of how
to link C routines to the FORTRAN simulation. Test the routine
thoroughly to verify that is produces the desired phase decisions.
Remember that it must output phase decisions at every time step, even
if no change is desired.

(2) Any intersection which is to be controlled externally must be specified
to have a fully-actuated signal contoller. To achieve this, make sure
that no card type 44 is defined for that intersection. Appendix L
contains a TRAF-NETSIM input file that was used for testing the
simulation model with external signal control logic. To achieve rapid
switching times, it is important to specify the signal parameters to allow
rapid phase termination. Specifically, the extension and gap related
parameters should be set carefully. This can be accomplished by
setting the parameters on card type 47 similar to those in the data file in

Appendix L, although other settings can be used would also perform
well.

(3) Define actuated controller detectors (card type 46) for each phase that
may be specified by the external signal control logic.

(4) If detector data is to be used, define surveillance detectors with station
numbers at all desired locations. Surveillance detectors are specified on
card type 42 in the modified version of TRAF-NETSIM which was
used for this research. Card type 42, and therefore surveillance detector
capabilities, are not included in the versions of TRAF-NETSIM
released for general distribution. Appendix F gives further information
about the version of TRAF-NETSIM used here.

(5) Modify the subroutine CONTROL so that it will call the external
signal logic and pass any needed parameters.

(6) Verify that the signal control logic returns the proper single byte return
codes to CONTROL, and that it returns a value of 0 (zero) for any
intersection which contains an actuated controller but is not being
controlled by the external logic. Remember, the external signal logic
will be called for every intersection which is defined in the TRAF-
NETSIM input data to have an actuated signal controller. The external
signal control logic must determine if the current node is 1o be
controlled externally or internally.

80

7. Simulation Experiments using TRAF-NETSIM

(7) Assure that any variables which need to be maintained (stored) by the
signal logic between invocations are saved. In a C program, for
example, all such variables can be defined as static data types.

(8) Compile all signal logic and TRAF-NETSIM modules to object form
and link them using the FORTRAN compiler. For example, use f77 *.0
to link the object files on a UNIX system. Appendix F gives further
details about how to build the executable file.

7.4 Model Validation

To verify the interfacing techniques between TRAF-NETSIM and external signal control
logic, and to provide examples of how to construct the external signal control logic, two
sample signal control logic programs were developed. These were the fixed-time control
(Section 5.1.1), and the semi-actuated control logic (Section 5.1.2). Using the external
signal control logic interface, each of the controllers was linked to the TRAF-NETSIM
simulator and used during a simulation. The results from the simulation were then
compared to the results using the internal TRAF-NETSIM implementation for each of
these controllers.

7.4.1 Fixed-Time Control Logic

The function of the external fixed-time signal control logic developed in this section is to
determine whether or not the signal at an intersection should be switched to the next
phase according to a synchronized clock and a set of timing plans.

Figure 53 represents an example of a typical fixed-time control plan. Essentially, the
fixed-time control logic follows a sync clock which, in this example, has a range from 0
to 89 (cycle time minus one time unit). In the figure, the Main Street Thru phase would
activate at sync time 27 and complete the amber and all red durations by sync time 63.
The next active phase, Main Street Left, would then begin at sync time 63. The Side
Street Thru phase would be active from sync time 78 through sync time 20; this phase
would pass the zero sync point.

Some assumptions made while developing the fixed-time control logic program are (1)
all phases allow permissive right turns, (2) right tum calls are not specifically addressed,
(3) all times and phase durations have units of seconds and are integers, and (4) phase
duration is zero for all non-existent phases. The C program, fixed-time plans data file,
and a sample run of the program can be found in Appendix J.

81

7. Simulation Experiments using TRAF-NETSIM

Start of Side Street Thru Phase —-—-\ 90

Start of Side Street Left Phase
20,,

— Start of Main Street Thru
Phase (also known as the
"offset™)

Start of Main Street Left Phase __/6

Figure 53. Graphic display of fixed-time control logic.

The following inputs are required for the fixed-time control logic program:

1) A data file named “fixed.plans” containing the following information:
« total number of timing plans (i.e., total number of intersections),
« the cycle length (same for all intersections), and
« intersection identification number, offset time, phase durations (in proper
sequence of phases—MST, MSL, SST, SSL, where MST is Main Street Thru,
M%L is Main Street Lefts, SST is Side Street Thru, and SSL is Side Street
Lefts),

2) Additional information required from TRAF-NETSIM or a data file:
« intersection identification number requested (to check status of that
intersection), and
« current synchronization time (integer value in interval [0, cycle time]).

7.4.2 Semi-Actuated Control Logic

Figure 54 shows how typical semi-actuated control logic maintains platoon progression
along an artery. The shaded area in the cycle represents Main Street Thru green time.
Hence, from sync time 60 to sync time 23, the signal will always have the Main Street
Thru phase active. If there are vehicle detections on any other phase (Phase 2 = Main
Street Left, Phase 3 = Side Street Thru, Phase 4 = Side Street Left), the control logic may
only switch at the yield point. If there are no calls on any other phase, the signal will
remain in Main Street Thru at least until it returns to the yield point. If there are calls on
another phase besides Main Street Thru, the priority in which they are responded to are as
follows: Phase 2, Phase 3, and Phase 4. If, for example, there were calls on Phase 2 and
Phase 4 by the time the sync clock reached the yield point, Phase 2 would be activated at
sync time 23. Then, Phase 2 would terminate at or before (if maximum green is reached
or allotted green time is expended) the Phase 2 Force-off point (sync time 30) and Phase

82

7. Simulation Experiments using TRAF-NETSIM -

0

90 -

|

23— Vield Point
Phase 4 Force-off =iy -
30
Phase 3 Force-0ff ———— g
% Indicates minimum Main

Phase 2 Force-off Street Thru Green duration

Figure 54. Graphic display of how Main Street Thru will maintain platoon
progression along an artery.

4 would then become active. Once Phase 4 is terminated, the signal will return to the
Main Street Thru phase.

The function of the semi-actuated signal control iogic developed here is to simulate semi-
actuated traffic signal control logic as accurately as possible. For the purpose of this
implementation, it is assumed that semi-actuated control logic allows for four phases
(Phase 1 —> MST, Phase 2 —> MSL, Phase 3 —> SST, and Phase 4->SSL), but may easily
be modified to allow for eight or more phases.

Essentially, the C program will operate under the following conditions:

(1) main street through may terminate only at a specified point in the
synchronization time, referred to as the yield point, and only if there is a
demand for a different phase;

(2) all phases except MST may terminate due to force-off, maximum green
reached, or allotted green time expended;

(3) all phases except MST may be active after the yield point, given there is
demand for that respective phase, and may only switch to a phase in a certain
sequence up to and including phase 1. For example, if the current phase is
phase 3, the next phase could be phase 4 or phase 1. If the current phase is 2,
then the next phase could be either 3,4, or 1;

(4) to assure platoon progression, MST must always be active between the point
where the synchronized clock reaches the last force-off in the cycle and the
yield point (Figure 54); and

(5)if there are no calls in any phase, the control logic will rest (remain) in MST
(i.e., Phase 1).

The C program for the semi-actuated signal control logic, the parameter file for the
control logic, and a sample run of the program can be found in Appendix K.

83

7. Simulation Experiments using TRAF-NETSIM -
7.4.3 Validation Experiments and Results

Validation was conducted using a TRAF-NETSIM nerwork model for a real collection of
streets and intersections located in Tucson, AZ. Appendix L contains the TRAF-
NETSIM input file which defines this network. All input configurations and loadings
represent real data from the actual sreet network. Figure 49 shows a link/node
representation of this network. This particular area was chosen to provide an accurate
representation of waffic conditions along a section of the Campbell Avenue anterial.
Furthermore, this section was of interest because it contains an arterial with large
signalized intersections and is located near the football and basketball stadiums of the
University of Arizona, which represent major traffic sources and sinks. The simulations
performed used external signal control logic to control the signals at the four of the
central intersections: nodes 335, 369, 401, and 483. The external signal control logic and
the interface logic were verified to perform as designed. This was accomplished by
analyzing the numerical and graphical output data and by verifying that phase calls and
signal changes occurred at the desired times.

As a further test, simulations were run to compare the external fixed-time and semi-
actuated signal control logic with the internal TRAF-NETSIM counterparts. This was
accomplished using simulation runs representing 15-minute interval between 11:00 a.m.
and 11:15 a.m. on a weekday. The simulation was repeated five times for each signal
control method, using different random number seeds for each of the five runs.
Performance measures were aggregated across all four intersections and the
interconnecting streets by defining them to be a “section” in the TRAF-NETSIM input
file. These performance measures from the five runs were then averaged for each

controller. Table 7(a) and 7(b) summarizes the results comparing the internal and
external implementations of the controliers.

The difference between the two implementations of fixed-time control is due to slight
timing differences. Using the external signal control logic, termination of the current
phase may be delayed by one or two seconds after calls are placed for a new phase. This
effectively causes a switching delay. For reasons unknown at this time, the switching
delay is not constant, and therefore could not be compensated for precisely. Because of

7. Simulation Experiments using TRAF-NETSIM

Table 7(a). Summaries of performance measures for fixed-time logic.

TRAF-NETSIM
Internal External Difference
Fixed-Time Logic | Fixed-Time Logic
Delay 1424 1438 10%
{Vehicle Minutes)
Stops 33 3.26 1.2 %
(per Trip)

Average Speed 12.9 12,5 3.1%

(MPH)

Table 7(b). Summaries of performance measures for semi-actuated logic.

"TRAF-NETSIM
Internal External
Semi-Actuated Semi-Actuated Difference
Logic Logic
Delay 815 902 10.6%
(Vehicle Minutes)
Stopg 2.4 2.8 16.7%
(per Trip)

Average Speed 18.0 17.3 39%

(MPH)

this, some of the switching times differed by one or two seconds between the internal and
external fixed-time control implementations. If this delay was constant, it would be
possible to adjust the parameters of the external fixed-time control logic to compensate
for this delay and allow the two implementations to perform identically. Further
investigation is required to determine the cause of the switching delay.

The semi-actuated control implementations, on the other hand, were expected to show
some difference. This can be attributed primarily to the fact that the external semi-
actuated control logic was operating using only passage detector information and did not
receive the presence detector information that the internal controller was able to use.
Because of this lack of presence information, the external controller would sometimes
allocate unneeded green time to the left turn phases. Additionally, some of the disparity

85

7. Simulation Experiments using TRAF-NETSIM

between the two implementations is once again due to the switching delay. Even though
the external controllers did not duplicate the behavior of the internal controllers exactly,
the results of these tests are nonetheless positive. The real objective was not 1o create
perfect replicas of the internal controllers, but to prove that external signal logic can be
effectively simulated and evaluated using TRAF-NETSIM and the interfacing method
developed here. That goal was indeed accomplished, while identifying some areas where
the interface can be improved in the future.

7.5 Integration of COP/PREDICT and TRAF-NETSIM

The validated simulation model was used 1o test and evaluate the traffic-adaptive control
algorithm, COP (see Section 5.2.3), together with the traffic flow prediction model,
PREDICT (see Section 5.3). A single intersection, number 483 on Figure 49, was used as
the test intersection. The performance of the COP algorithm was compared to the existing
semi-actuated control logic (internal logic to TRAF-NETSIM) based on the total number
of stops. Fifty experimental runs of the simulation model were made for COP/PREDICT
and fifty for semi-actuated control logic.

Figure 55 shows the results of the simulation experiment. A straight line has been fitted
to the data to indicate the trend as a function of link volume. This straight line is fit to the
data only for the purpose of showing the general trend and it is not proposed that stops
are a linear function of volume. The results indicate a significant reduction in the number
of stops using the COP/PREDICT method.

86

% Stopped

7. Simulation Experimerus using TRAF-NETSIM

100 T n T

951 (o] -
90r -

2% 00 .2

o 0]
85r . oo-"'. o o

50 + +
80" lo) B o

° -0
751 8 +
o %5
o .
70 °© 5o . z i
.‘- +
+
651 ey i
+
80r 5 + h
+

55 4
5 + o1 L 1 1 L 1 1 1 . R
800 2 0' 300 350 400 450 500 550 600 650

Figure 55. Comparison between well-timed semi-actuated control
(represented by the '0' and the dotted line) and the COP
intersection control logic (represented by the '+' and the solid line).

Volume (vphpl)

87

700

8 IVHS ACTIVITIES AND PROPOSAL DEVELOPMENT

8. IVHS ACTIVITIES AND PROPOSAL DEVELOPMENT

In Phase I of the RHODES Project, the research team had developed a national
consortium in response to a FHWA request for proposal DTFH61-92-R-00001, that
included ADOT, The Cities of Tucson and Tempe, several private companies and other
academic institutions. The proposal entitled "A Real-Time Traffic Adaptive Signal
Control System" was submitted to FHWA, a copy of the proposal was provided to
ADOT. Although our consortium did rot win the contract, in the sprit of partnership
among the public sector, private sector, and academia, several other proposals were
developed and submitted to ADOT and FHWA during RHODES Project - Phase 2a.

RHODES ITMS Proposal

Significant effort was focused on the development of problem statement and work
statement for a research project to field test some of the concepts of the RHODES system
at a location in Maricopa County. After several meetings with traffic engineers and
technical mangers within ADOT, Phoenix, and Tempe, the research team proposed the
development and field testing of real-time traffic adaptive control at an interchange along
the I-17 Corridor. A draft proposal was developed and submitted to ADOT in April
1992. This was later revised to accommodate resource constraints, and resubmitted in
September 1992 entitled "Real-Time Traffic Adaptive Control for Integrated Traffic
Management of the I-17 Corridor”. The proposal received favorable reviews but due to
further institutional and budgetary considerations, the proposed scope was divided into
two phases and the proposal for phase one was submitted to ADOT in June 1993. (This
phase was approved for funding in December 1993.)

Advanced Traffic Management Systems Proposal

With Loral AeroSys as the lead, a consortium was developed that included TASC, KLD
Associates, Ball Systems Engineering, City of Tucson, PAG, ADOT and the University
of Arizona, to respond to FHWA RFP DTFH-92-R-00073 for the development of ATMS
Support Systems. The proposal was submitted to FHWA in June 1992. It was awarded
to this consortium in October 1992. The funding level of the contract is approximately
$3 Million for five years; UA subcontract is for $274,000 for five years.

8. IVHS ACTIVITIES AND PROPOSAL DEVELOPMENT

Other Proposals (not funded)

The research team also developed and submitted several proposals to FHWA during the
contract period of the RHODES Phase II{(a) Project and the subsequent 4-month period.
Specifically, they were:

March 1992: “Sun of RHODES", an equipment grant proposal to SUN Corporation
for a platform for real-time traffic conwol, for $ 67,000

June 1992: "Traffic Models for Testing Real-Time Traffic Adaptive Signal Conirol
Logic: Phase I" to FHWA in response to RFP DTFH-61-92-R-00110. The
University of Arizona was the prime with subcontractors JHK & Associates,
TASC, and the City of Tucson. $ 977,000 was requested; In addition, UA
proposed a cost share of $82,000, ADOT of $40,000 and City of Tucson of
$11,000.

May 1993: "IVHS Research Center of Excellence” to USDOT/FHWA in response
to RFP DTFH-93-X-00017 for the establishment of a IVHS research center at the
University of Arizona. A consortium was developed that included the following
partners:

ADOT,

City of Tucson,,
Maricopa County,
Hughes Missiles Systems,
US West,

DEC,

TASC,

Loral AeroSys,

JHK & Associates,
Computran,

Oak Ridge National Laboratories, and
Viggin Corporation.

$ 1 Million per year was requested. In addition, the partners committed a total of $
650,000 (including UA cost-share) if the proposal was funded.

June 1993: "Model Enhancements for Evaluating Traffic Operations Under IVHS"

with TASC (prime contractor). Approximately $ 1.2 Million for five years was
requested with UA request totaling $737,000.

89

8. IVHS ACTIVITIES AND PROPOSAL DEVELOPMENT -

IVHS related activities and meetings

The key researchers on the project participated in the following meetings during the
RHODES Phase II(a) Project period and the subsequent 4-month period:

L. Head, P. Mirchandani and D. Sheppard (the presenter) gave a presentation on
"Traffic Controls for IVHS" at the Spring ASCE Meeting in Tucson, April 2, 19952

P. Mirchandani gave a seminar on "Real-Time Urban anterial Traffic Control” to the
Civil Engineering Department and the Florida Department of Transportation, April
30, 1992

L. Head, and P. Mirchandani participated at the ADOT/ASU/UA retreat on IVHS
and Arizona Research Thrusts, April 24, Sedona, AZ.

P. Mirchandani organized a meeting of the Arizona Traffic Engineering Community
(AZTEC) for mission planning for IVHS efforts in traffic engineering for the State
of Arizona, at the University of Arizona, April 20, 1992

P. Mirchandani delivered a paper "A Hierarchical IVHS-ATMS Structure for Real-
Time Traffic Control” (co-authors L. Head and D. Sheppard) at the 25th ISATA
Silver Jubilee Conference, Florence, Italy, June 1-5, 1992

P. Mirchandani gave presentations on "Real-Time Advanced Traffic Control
Systems"” to the Faculty of Engineering at the University of Sienna, June 5, 1992;
and to the Faculty of Electronics at the Warsaw University of Technology. Poland,
June 10, 1992.

L. Head attended the Integrated Traffic Management Systems Workshop and the
1992 'IéRB Signal Systems Committee summer meeting in Newport Beach, CA,
June 22-25.

P. Mirchandani visited Dr. Christopher Wrathall of MIZAR in Torino to discuss
UTOPIA, a real-time traffic control system implemented in that city by MIZAR,
June 1992,

L. Head and P. Mirchandani met with Dr. Larry Klien of Hughes, on July 14 in
Phoenix (with individuals from ADOT, Maricopa County, and Cities of Phoenix
and Tempe), and on July 15 in Tucson (with individuals from Pima County and
City of Tucson) to plan field tests for state-of-the-art vehicle detectors in Arizona.
(This project is funded by a contract from FHWA to Hughes Ground Systems.)

L. Head presented a progress report on RHODES PHASE-II(a) to the PAG
Transportation Planning Commirtee on September 1, 1992.

L. Head and P. Mirchandani (presenter) gave a presentation on IVHS to the
University of Arizona Phoenix Alumni Association in Phoenix, September 23,1992.

L. Head and P. Mirchandani participated and gave a presentation on RHODES at
the ATRCJADOT IVHS meeting in Tempe, AZ, October 15, 1992.

8. IVHS ACTIVITIES AND PROPOSAL DEVELOPMENT

L. Head and P. Mirchandani participated and gave a presentation on RHODES at
the JHK Workshop on Freeway Management Systems, October 22, 1992.

P. Mirchandani (presenter), L. Head and D. Sheppard gave an invited presentation
on "RHODES: A Hierarchical Reai-Time Traffic Control Systems" at the San
Francisco ORSA/TIMS Meeting November, 14, 1992.

S. Sen gave an invited presentation on "Coordinated Optimization for Phases
(COP)" at the San Francisco ORSA/TIMS Meetng , November 1-4, 1992.

P. Mirchandani visited FHWA, Washington D.C., as a member of the Technical
Advisory Committee on ATMS Support Systems Project conducted by Loral
AeroSys.

L. Head, P. Mirchandani and D. Sheppard attended the Transponation Research
Board 72st Annual Meeting , January 10-14, 1993. D. Sheppard gave a presentation
on "Real-Time Speed Advisory for Urban Traffic Management”.

L. Head and P. Mirchandani gave a presentation to ADOT, City of Phoenix, City of
Tempe, and Maricopa County Traffic Engineers on potential application of
RHODES results to 1-17 corridor, March 26, 1993.

P. Mirchandani met with Greg Shelton, Product Line manger for Technology and
Commercial Programs, and Fred Smoller, Program Manger for Intelligent Sensor
Systems to discuss possible research collaborations in the IVHS area with UA and
the public agencies within the State of Arizona, April 12, 1993.

L. Head and P. Mirchandani visited JHK & Associates in Pasadena to find out more
aboutgéHK/LA's "Smart Corridor" Project and JHK's traffic control systems, June
14, 1993.

L. Head and P. Mirchandani (with Mike Ward of Loral AeroSys.) visited the Jet

propulsion Laboratory to discuss mutual interests in the IVHS area, and data fusion
and parallel processing for IVHS applications, June 15, 1993.

91

REFERENCES

REFERENCES

’

- , U.S. Department of Transportation, Federal Highway
Administraton, November 1989.

Baras, J. S., William S. Levin and T. L. Lin, (1979), "Discrete-Time Point Processes in
Urban Traffic Queue Estimation”, [EEE Transactions on Automatic Contro], AC-
24, No. 1, 12-27.

Chang, E. C.-P., S. L. Cohen, C. Liu, N. A. Chaudary and Carroll, (1988),
"MAXBAND-86 : A Program for Optimizing Left-Turn Phase Sequence in
Multilateral Closed Networks", Transportation Research Record 1181, 61-67.

Chaudhary, N. A. and C. J. Messer, (1993), "Passer IV - A Program for Optimizing
Signal Timing in Grid Networks," Texas Transportation Institute, The Texas A&M
University System, College Station, Texas, prepared for the Transportation
Research Board, 72nd Annual Meeting, Washington, DC.

DeGroot, M. H., (1970), Optimal Statistical Decisions, McGraw-Hill, Inc., New York,
NY.

Gartner, N, H., (1983), "OPAC: A Demand-Responsive Strategy for Traffic Signal
Control", Transportation Research Record No, 906, 75-81.

Gartner, N., H., (1981), "Discussion of Improved Estimation of Traffic Flow for Real-
time Control", Transportation Research Record, No. 795, 38-39.

Garmer, N. H., P. J. Tarnoff and C. M. Andrews, (1991), "Evaluation of the Optimized
Policies for Adaptive Control (OPAC) Strategy" . Transportation Research Board.

Gill, P. E., W. Murray and M. H. Wright, (1981), Practical Optirnization, Academic
Press, London.

Hadi, M. A. and C. E. Wallace, (1992), "Improved Optimization Effeciency in
TRANSYT-7F," Transportation Research Center, University of Florida,
Gainesville, Florida, for presentation at the ORSA/TIMS Joint National Meeting,
Orlando Florida.

Higle, J. and S. Nagarajan, (1992), "Real-time Prediction of Turning Flows: A Dynamic
Bayes Procedure” Interim Report - RHODES Project: PHASE L.

Little, J. D. C., M. D. Kelson and N. H. Gartner, (1981), "MAXBAND; A Program for

Setting Signals on Arnteries and Triangular Networks", Transportation Research
Record 793, 40-46.

Okatani, I. and Y. J. Stephanedes, (1984), "Dynamic Prediction of Traffic Volume
Through Kalman Filtering Theory”, Transporiation Research Part B ;
Methodological. Vol. 18B, No. 1, 1-11.

Segall, A., (1976), "Recursive Estimation from Discrete-Tlme point Processes”, IEEE
Transactions on Information Theory, IT-22, no. 4, July 1976, 422-431.

Sen, S., (1991), "Coordinated Optimization of Phases", Working Paper, Systems and
Industrial Engineering Department, University of Arizona.

92

REFERENCES -

Stephanedes, Y. J., P. G. Michalopoulos and R. A. Plum, (1981), "Improved Estimation
of Traffic Flow for Real-time Control", Wﬁﬂm No. 795,
28-38.

Tarnoff, P. J., "The results of FHWA urban traffic control research: An interim report,”
Imfﬁgﬁnmmmg Vol. 45, pp. 27-35, April 1976.

93

APPENDICES

APPENDICES

A-1

APPENDICES

APPENDIX A: DISPATCH 1.0 Program Listing -

/:===:=========:========:=:======:=x==========================:=======:==-/
/x= =*/

/*= Intersection Mcdel and Simulation Version 2 =x/

/t =!/

/*==c=m=ss=z===sxss=e=ssScassSSs=ssS=sTssssSsoS=ssSssS=sIsSs=sss=s ssssssssT/

/= ==/

[*= Campbell Ave. & Sixth St. Intersection, Tucson, Arizona =/

/*= =v/

/*= Developad By: Dr. K. Larry Head =*/

/== Revision: June 2, 1982 =v/

[x= Programmed By: Greg Tomooka =%/

/*= Started: June 9, 1992 =*/
/*= Completed: June 1C, 1992 =w/

/*= Revised: June 29, 1992 =/

/*= Programming Assisted By: Dr. K. Larry Head =t
* = =t/

Sr= Purpose of Program: =*/

/r= =%/

] *= This program simulates an eight-phase intersection., Given that -t/
/*= the detector is DETECT time units from the stop bar, queues feor =/
/= each phase (1, ..., 8) will bulld up or decrease according to a =*/

J*= controller programmed for determining the number of units leaving =*/
/= from the stop bar. Alsc, the queues do not build up until the =*/
/= units reach the stop bar (DETECT time units after cross.ng the =*/

/*= detector). ==/

/*= =»/

[re This updated version will decide when to change phase =%/

/= combinations based upon a linear combinaticen of delay and total ==/

/2= number of stops. The program evaluates in a range equal =*/

/= to the DETECT value about the original PHASETIME value. This =/

[*= is not necessarily a symmetrical range about PHASETIME. =t/

/*= =x/

/¥ =ms=z==cz===ss ===r=wssSxE=SS====S TamEss====s==S======= S==s====%/

[Em R EEE AN SRS XSRS ECRErESTASEESSSSSrxSESSSSSSsAssss ssssazmsk/
/= = f

/*= Program is set for the following MAXIMUM number of values =%/

/*= Number of Stages, J = 500 =%/

/*= Number c¢f Phases, P = 200 =t/

/*= Number of Discrete Time Units, T = 1000 =*/

/= =*/

/*= The input file is read into a structure in the following order: =/

/r= Intersection ID number =%/
/= Number of phases =x/

[r= Minimum green time =%/

/r= Clearance time =~/

/%= Total number of stages =*/
[= Stages =t/

J= Time horizon =*/

/x= Arrival data for phases: 1 2 3 45 6 7 8 =%/
/%= =%/

/= Input File: queues ,dat =v/
Vil OutPut File: optimal.sol v/
/*= =*/

/‘-8-x-ﬂ--ﬂ-'-----a--:':s.-x::sx:nn--n:zsz--In-I::’-=a=======g==‘ -gsgx==-'/

tinclude <stdio.h>
$include <stdlib.h>
tinciude <math.h>

/* A O T Constants - ./

A-2

APPENDICES

¥define JMAX 50¢C /* maximum number -of stages =/
tdefine PMAX 200 /* maximum number of phases */
tdefine TMAX 1000 /* maximum time horizon €/
#define DF_SFRATE 1 /* saturation flow rate ./
§define DF_DETECT 7 /* travel time from detectcr LO stop

line =/
tdefine MAX HORIZON 300 /* maximum allowabie time horizon */

typedef struct {

int id : /* Identification number of intersectior */
int P /* Number of possible phases */
int Gamma ; /* Minimum green time */
int Delta ; /* Clearance time; All phases red */
int J /* Total number of stages regquested */
int stage[JMAX] ; /* Stages =/
int T /* Total time horizcn v/
int a[TMAX+2)[PMAX+2] ; /* Arrival data */
} intersection_t ;
intersection_t Tucson ;
double linearcombo () /* function returning p.i. */
main ()
{
int P /* current stage number */
int t /* current time */
int s ; /* stage index >/
int q[TMAX+2] [PMAX+2) ; /* table of gqueue lengths */
int tphase [TMAX+2} ; /* current phase during time t */
int phase ; /* current stage
int sfrate ; /* input sat. flow rate */
int detect ; /* input time from det. to stop */
int phasetime ; /* input change of phase time */
float stop_wt ; /* input stops weight */
float delay wt ; /* input delay weight */
int time ; /* input total time horizon =/
int c ; /* change of phase index ®/
double pil[TMAX+2) ; /* p.i. for changing phase at c */
int stops [TMAX+2] [PMAX+2] /* total stops for each phase */
int delay | TMAX+2) [PMRX+2] ; /* total delay for each phase */
int t_stops[TMAX+2] ; /* total stops for changing phase
at ¢ */
int t_delay [TMAX+2] ; /* total delay for changing phase
at ¢ */
int optq|[TMAX+2) [PMAX+2] ; /* table of optimal queue lengths */
double optpi ; /* optimal p.i.
*/
int opttime ; /* optimal time to change phase */
int opttphase [TMAX+2] /* optimali phase combination
for corresponding time units */
FILE *Data, *OutPut ; /* Input and Cutput Files */

/* ==mmesm==ms==a====x= READ THE DATA FROM INPUT FILE =====sss==s======= */

Data = fopen{"queues.dat", "r") ;
OutPut = fopen("optimal.sol", "w") ;

fscanf (Data,"%¥d™, &Tucson.id) ;

A3

APPENDICES

----- \n"}

fprintf (CutPut,"” Information for Intersection Identification # Avi2d\nv,

Tucson.id) ;

----- \n") g

fscanf (Data, "%d", &Tucson.Pj
fprintf (OutPut,™ Number of FPhases = %4d", Tucson.P} ;

fscanf {Data, "%d", &¢Tucson.Gamma) ;
fprintf (OutPut,” Minimum Green Time = %Bd\n", Tucson.Gamma) ;

fscanf (Data, "%d", {Tucson.Delta) ;
fprintf (QutPut,” Clearance Time = 43d", Tucson.Delta) ;

fscanf (Data, "%d", &Tucson.J} ;
fprintf (OutPut," Total Number of Stages = $%4d\n", Tucson.d) ;
fprintf (OutPut,™ Sequence cf Stages: ")y 2
for (p = 1; p <= Tucson.J; ++p) |{
fscanf(Data, "%d", &¢Tucscn.stagel(pl) ;
fprintf (OutPut,"%3d ", Tucson.stagelpl) ;
}
fprintf {QutPut,"\n") ;

fscanf (Data, *8d", &Tucson.T) ;
fprintf (QutPur,™ Time Horizon = %9d\n\n", Tucson.T)

’

fprintf (OutPut, "Arrival Datal\n™) ;

fprintf (OutPut, "--~----m----—sememm e oo \n™)
fprint £ (OutPut, "Time 1 2 3 4 5 6 7 8\n") :
fprintf (OutPut,M--c--—--oo—smom o m o mea e m e a e \n") ;

for (¢t = 0; t <= Tucson,T; ++t) {
fprintf (OutPut, "%3d ",)
for (p = 1; p <= Tucson.P; ++p} {
fscanf (Data, "8d", &Tucson.alt)[pl)
fprintf (OutPut,"%2d ", Tucson.alt](p]) ;
)
fprintf (OutPut, "\n") ;
1£(t%10 == 0)
fprintf (OutPut, "\n") ;
}
fprintf (OutPut, "\n™) ;

/* mwommzscazs=s=e====x REQUEST FOR INPUT INFORMATION ==rsss===ssm=s===== %/

EraxrrsczEEssrEam=veanm====\7")

printf(™"\n"} ;

Printf (P\Nems=mtansmaonaeentennnsesnaswe - seammw=ae

’

printf(™\n Intersection Model and Simulation: An Optimization
Program\n™) ;

Printf("\nec=sss=mxz=sss=ssscazzzosssssassessss== P —— m=====
==s====-=g===:z===z--.===“) ;

/* mrexmexsmm=amz=ss=zxzsazs REQUEST FOR TIME HORIZON ===msexzmsazssxsscmmxx */

zero)."

printf ("\n\n The following information is required.\n") ;

printf("\n To enter the default value in parentheses, enter 0 (a

Y 2

printf(™\n Unless otherwise noted, all inputs should be of integer

form.\n\n\n") ;

A4

APPENDICES

princf(“Enter tctal time horizsn {(Default time horizon = %4d time units):
", Tucson.T)
scanf ("%3", stimej ;

i1f (time > O) ¢
i1f (time > MAX_HORIZON)
Tucson.T = MAX_HORIZON ;
print £ ("\nWARNING! -—-~> You exceeded the maximum time horizon.\n"} ;
printf(Time Horizcn has been set te 3¥5d\n\n",
MAX_HORIZON) ;
}
else Tucson.T = time ;
for (t = Tuecson.T + 1; t <= Tucson.T; ++t) {
fprintf(CutPut,"%3d ",)
for {(p = 1; p <= Tucscn.P; ++pi {
fscanf(LCata,"¥3", &Tucscn.a{t}ipl)
ferint £ (CutPut,"%2d ™, Tucson.alt]ipj)
}
fprintf(QutPut, "\n"} ;
if(t8il == 0)
fprintf (OutPut,™\n") ;
}
fprintf (OutPut, "\n") ;

}

printf ("\nEnter saturation flow rate (1 = Default rate): ™) ;

scanf(m"sd", ésfrate) ;

printf("\nEnter travel time from detectecr to stop line (7 = Default time): ~)

scanf ("sd", &detect) ;
printf ("\nEnter initial time when phase combination is scheduled to change\n")

printf(" (Default change time = %4d; this value must be between %3d and
$3d): ", Tucson.T/2, 0, Tucson.T) ;
scanf ("8d", é&phasetime) ;

printf ("\n\n\nCaution: There are only two (2) measures of effectiveness for
this model.\n%) :
printf{("\nThe sum of the two weights must add up to exactly one (1.0}.\n\n\n"}

printf("\nEnter decimal weight for stops (No default value,\n")
printf(" but delay weight will be calculated for you.): ") ;
scanf ("8f", &stop_wt)
{f (stop_wt >= 1.0G00) {

delay wt = 0.0000 ;

printf ("\nNOTICE: Since stop weight is greater than or equal to one,\n"j
printf(" it has been set to one and delay weight has been set
to zero.\n\n") ;

}
eise if (stop_wt <= 0.0600) ({
stop_wt = 0.C000 ;
delay wt = 1.000C ;
printf ("\nNOTICE: Since stop weight is less than or egqual to zero,\n"}) ;
printf(" it has been set tc zerc and delay weight has been set
to one.\n\n"} ;
)
else 1f (stop _wt != 1.0000) {
delay wt = (1.000000060 - stop_wt} ;
printf("\nBased upon the value entered for stop weight, delay weight =
48.5f", delay_wi) ;
}

A-5

APPENDICES

printf (" \n\n\nResults are being sent to an output file labeled "optimal.sol’
...An\n\n\n\n")

{f (phasetime == 0) phasetime = Tucson.T/2 ;
1f (sfrate == Q) sfrate = DF_SFRATE ;
if (detect == 0) detect = DF_DETECT

fprint f (QutPut, "Current 3aturation Flow Rate = &7d \n", sfrate) ;
fprintf (OutPut,“Delay from Detector to Stop Line = 33d ", detect) ;
fprintf (CutPut, "\n\n\n") ;

/* =sExes=smcxssess=sxexszw=zx= [NITIJALIZE VARIABLES =====s=saomsszss==sss=== */

optpl = 939999999999959.55555000 ;
opttime = 0 ;

for(t = 0; t <= Tucson.T; ++t) |
t_stops(t] = 0 ;
t_delayi{t] = 0 ;
pilt) = C.0 ;
for{(p = 1; p <= Tucson.J; ++p)
glitllpl = 0 ;

optglitlfpl = C ;
stops{t}(p) = O ;
delay{tl{p} = 0 ;

}

for{p = 1; p <= Tucson.J; ++p}
q[0)ip} = Tucson.a(0](p) ;

/% mx=swxex SIMULATE INTERSECTION mxcm=sszc=r=xss=z=cxxzx ¥/

for (¢ = (phasetime - detect/3); ¢ <= (phasetime + (2 * detect)/3}; ++c) {
pilc) = 0.0 ;
s = 1;
for(t = 0; t <= Tucson.T; ++t} {
tphase(t] = Tucson.stage!s] ;
if(t == ¢} |
phase = Tucson.stage[s] ;
++5 ;
}
if(t >= detect) {
tor(p = 1; p <= Tucsen.P; ++p} {
qlt+l] [p} = qlt){p] + Tucson.a[t-detect]{p] -~
depart (tphase(t], qlt](p},
Tucson.a({t~detect] {p], t, p, sfrate)
delayic] [p] = delay{e]lip] + git+1)ip} ;
if (gqlt+1}(p) > qlclipl)
stops{c) (p] = stops (c¢]l(p] + (qlit+l)lp) - qfit]ip))

’

}
}
else
for(p = 1; p <= Tucson.P; ++p) qltlip! = 0 ;
} /* End of t loop */

for (p = 1; p <= Tucson.P; ++p) |
t_stopsic) = stops[c}ip] + t_stopsic] ;
t_delay{c) = delaylcli{p] + t_delayic] ;
}
pilc) = linearcombo(t_stopsic], t_delay(c}, stop_wt, deliay_wt) ;
if (pilec) < optpi) |
optpi = plic] ;¢

A-6

A R —— e e s ot s o

APPENDICES

opttime = c ;

for(t = 0; t <= Tucson.T; ++t) {
opttphase(t) = tphaselt]! ;
for{p = 1; p <= Tucson.P;

optgi{tllpl = gltlip]

++p)

} /* End of if piic} =/
) /* End of ¢ locep */

/* =sme==mz=x=s=====s===== PRINT QUEUE MATRIX s=======s=s==s====z==sc=s=== */

fprintf (OutPut, "\nOptimal Performance Index = %7.3f When Changing Phase Combo at
t = %3d", optpi, opttime) ;
Fprintf {OULPUL, ™ \Nm = s oo e e e e e e e— o —me - — oo

fprintf (QutPut, "\n\n\n Optimal Queue Matrix\n\n®) ;
FPrintf (OULPUL, M r e e oo o e e e e eSS oC oo S—-sm o

fprintf (OutPut, "\nTime Phasel Phase2 Phase3 Phase4 Phased> Phase& Phase?
Phase8 Phases\n") ;
fprintf (OutPut, ===~ -----= =--~--- ——=w-= sc—ses m-o—o- eoooos —oeoos oooo-
- mem—e- \n"} ;
for(t = 0; t <= Tucson.T; ++t}) {
fprintf (OutPut, "%3d L & I
for{p = 1; p <= 8; ++p)
fprintf (QutPut, "%4d ", optqlt)(pl) :
if((opttphase(t] == opttphaseft-1]) |} (t == 0))
fprintf (OutPut, "%4d\n", opttphase(t]) ;
else
fprintf (OutPut, "%¥4d4 *=**\n", opttphaselt]) ;
1f (810 == 0)
fprintf (OutPut, "\n"}) ;
}

fprintf (OutPut, "\n") :

fprintf (QutPut,"*** Note that phase combination changes here.\n") ;
fprintf (OutPut, "\n\n\n\n\n") ;

/* =mmmz=z=w=s=x== PRINT TOTALS FOR EACH PHASE CHANGE INDEX ===ss=e=z==sxx =/

fprintf {OutPut, "\nAnalysis for Phase Combinaticn Change at time ¢ E { %44,
24d)", (phasetime - detect/3), (phasetime + (2 * detect}/3)) ;
FPTintf (OULPUL, M\ N- = —m o e e e e e e oo

------------ ") H
fprintf(Qut.Put, "\nPerformance Index = (¥8.5f * Total Stops) + { %8.5f * Total
Delay)\n\n", stop wt, delay wt) ;

for (¢ = (phasetime - detect/3); ¢ <= (phasetime + (2 * detect)/3); ++c) {
if ((c - phasetime + detect/3) == 6)
fprint f (OutPut, "\n\n\n\n\n")
if { ((c - phasetime + detect/3 + 1)%7) == 0)
fprintf (OutPut, ”"\n"} ;
fprintf (CutPut, "\nPhase Results for Changing Phase Combination at Time:
$4d\n", ¢)
FPLAntf (OULPUL, Mom s s o s e o e e e e e S —C— e oo ™

fprintf (OutPut, "\nPhase: 1 2 3 4 5 € 7 8
Total\n"} ;
fprintf (OutPut, "Stops: ") ¢

APPENDICES

for (p = 1; p <= Tucson.P; -+p}
fprintf (CutPut,"¥5d ", stops{c]ipl) ;
tprintf (OutPut," %6d“,t_stops[c)) ;

fprintf (OutPut, "\nDelay:") ;
for (p = 1; p <= Tucson.P; ++p)

fprintf (OutPut, "85d ",delaylcllp}) :
fprintf (OutPut, ™ %6d\n",t_delaylc]) :

fprintf{QutPut,”

\n")
fprintf(OutPut, " Performance Index = %16_4f\n\n",
} /* End of for ¢ loop =/
} /* me= END OF MAIN PROGRAM - -
/* ==c=mmscs=s=zzozszzse=xs== CALCULATE DEPARTURES ==s=========s===s==s====

int depart(int phase, int g, int fin, int t, int p, int sfrate)

{
int fout ; /* number of departures */

’

if ({p == phase/10) || (p == phase%10)) { /* Green signal */

if ({(g '= 0) && (g >= sfrate))
fout = sfrate ;
else if ((q i= Q) &¢ (g < sfrate))

fout = q ;
else
fout = fin ; /* Green signal */
}
else
fout = 0 ; /* Red signal

return{fout)

*/

/= CALCULATE CONVEX COMBINATION
double linearcombo (int brakes, int waits, double stop_wt, double
{

double coco ;

coco = stop_wt * brakes + delay_wt * waits ;
return (coco) ;

A-8

delay_ wt)

~/

pilel)

APPENDICES

APPENDIX B: DISPATCH 1.0 Sample Program Output

123456789

identification

rtersection

in

Information for

Time

Minimum Green

Number of Phases
Clearance Time =

Total Number of Stages =

~

48

3?
314

Sequence of Stages:
Time Horizon =

Arrival Data

™

10

0
0

c 0 0 0 0 O

11

6 0 ©

0
¢

0 0 0 6 ¢

1

16

0 0 0

0

18
19
20

0

0 0 0 ¢C

21

o 0

0

22

i

24

25
26
27

-

60 0 0

o]

29
30

31

32
33

34

35
36

38

39
40

41

42
43

o

A-9

APPENDICES

44

(@]

-4

45
46

<y e

(o)

(o]

51

()

0

¢ ¢ ¢

4

(&)

56

57

—

S8

59

60

61

62

63

64

65

€6
67

68

69
70

7

0

72 0 ¢ 0 O

73
74

o]

0 O

75

16
117

¢ 0 0
¢ 0 ¢ 2

0 0

0

78

79
80

c 0 0 0

1
0

81

]
¢

0 ¢ ¢
o 0 0 0 O

0
¢

82

83

84
85

86
87

88
89

80

91

92
93
94

(e

95
96
97

98
99

10C

101

A-10

APPENDICES

~

-

102

™

-

104
108
106
107
108
108
110

o

111

~
-t

o 0 ¢

C

114

115
116
117
118
119
120

o

(o]

-

121

-

122
123
124

¢ 0 ©

[

125

126
127

¢ ¢ 0 ¢ 0 0 ©

0

128

o 0 ©

129
130

131

132
133
134

¢ ¢ 0 0 0 O

]

0

o]

0
6 0 0 0 0 0 O O

0 0 0

135
1386
137

0

139
140

0

c 0

o ¢ 0 0

0 o

0

141
142
143
144

¢c 0 0

]

145

146
147
i48

0o ¢ ¢ 0 0

0

0

149

150

<

151

152

153

0

154

155
156
157
158
159
160

A-11

APPENDICES

161
162
163
164
165
166
167
168
169
170

171
172
173
174

0

0

o 0 0 0 ©

175

176
1717
178

179

180

181
i82

0

o 0 0

183
184

185
186
187
188

0 ¢ 0 0

o 0

0O 0 0 0

0

0

189
190

0 0
(S
o 0

o 0

i81
192
193
194

]

0

o 0 O

1

0 0 0 ©

0

195
196
197
198
199
200

60 0 2

0

0 0 0 ©
o 0 ¢ ©

0

0

8 0 0 0

201

1

o 0 0

202

203
204

0 ¢ 0 0

¢ 0 0 0O

205

206
207

208
208
210

6 ¢ 0 ¢ ©
0

c o & 0

211
212
213
214

c 0 O

g 0 0 O

0

215
21%
217
218

c 0 0 0 C ©

0

A-12

APPENDICES

219
220

221

N

«~

(o]

223
224

225
226
227

228
229
230

231
232
233
234

235

236
237
238

239
240

241
242
243
244

o]

¢ 0 0 0 O

245
246
247

¢ ¢ 0 0 O

1

0

248
249
250

0O ¢ 0

2

251

252

253

o 0 0 0 O

2]

~—t

255
25€
257
258
259
260

261

262
263
264

265

266
267

268
269
270

271
272

o0 0 0

0

273
274

275

276

A-13

APPENDICES

(o]

271
278

s

280

281
282
283
284
285

<«

~

286
287

288

289
290

291
292

293
294

295
296
297

[

298
299

300

0 ¢ 0 0 O

0

301
302

0 0 6 0 ¢

e 0 0

303
304

305

0O 0 0 ¢

0 ¢

306
307

308

0o 0 0 0 ¢ 0 0

o 0 0 20 0 0 0 O

309
310

311
312
313
314

¢ 0 O
30 19 97

2

22 28 38 45

Current Saturation Flow Rate =

10

or to Stop Line =

atect

Delay from D

154

5631,000 When Changing Phase Combo at t

\
1

Optimal Performance Index =

Optimal Queue Matrix

Phases

Phase8

Phaseé Phase?l

Phasel Phase? Phase3 Phase4 Phase5b

Time

37

37
37

[+]

37

A-14

APPENDICES

(&)

(&1

<

(&)

Q

(&)

(@]

(&)

37

(&)

<

<

a7

<

(]

<

10

<«

(&)

11

37

<

o

<

[e)

37

2

(o)

e

13

37

[&]

14

37

15

37

<

37

17

37

(&)

18

37

Q

37

Q

«©

o

20

37

21
22

37

Q

3?7

24

(@]

25

<

26
27

37

o

37

28
29

37

37

30

37

(=]

37

32

37

33
34

37

37

—t

35
36

37

190
11

37

37

37
3?

38

12
12

39

37

4C

37

41

37

-t

42
43
44

37

37

37

14
15
15
15
15
15

45

4€

37

37

37

48
49
S0

37

37

37

15
15
15

51

37

52

53

37

-

54

37

55

37

15
15
15

56

37

37

58

37

59
60

37

3

37

16

62

A-15

APPENDICES

63
64
65
66
67
€8
69
70

71
72
23
74
75
76
17
78
19
80

81
82
83
84
85
86
87
88
89
30

91
92

94
95
96
97
38
99
100

101
102
163
104
105
106
107
108
109
110

111
112
113
114
115
116
117
118
119
12¢

W@~ [0 BT IV R RN R R R Y) s Www W W W WwWw WWwWwWwiwww

W W W WO W 0w WD

0 O

10
10
10
10
10
10
10
10

U

N e e e

(SR

N = = e R

LU wovuvme v, oo s bW WwWwN

LWLy

O COO0OO0OO0O0

(ol ol =)

0O0O00O0C0O0O00C OO0 O0O00 00 00O OO0 O 0000

COO0C0ODO0O OO0 00

OCO0OO0O0DO0O00 OO0

R R I I IR BT B B« AR)] Lo T SR AT AR o AT ¢ A Mo AR V)

B R N]

-~

[
OCOWVWWVWWYWY®

[
O

11
11
11
11
11
1]
11

P

il

11

11

11
11
12
13
14
14

1
1

14

0000000000 OO0 O0O0DQOO0O00 OO0 QOO0 0000O0 OO0 00O0CO0O00Oo Q00O 0O0O0oaA

0000000000

A-16

(7 Y- R A o bW RN NN NN NN NN NN

[I R N A TR SN VR R VL R)

5
4

10
10
10
10
10
10
10

10
10
10
10
i0
10
10
10
10
10

Qo000 0 00

OO0 00000 COO0OO0O00O00O0O OO0 OO0 000 OO0 Q000000000

OO0 O0O0CO OO0 000

*

16
16
17
19
20
20
21
22

22
22
22
23
24
25
26
26
27
28

3¢
30
30
3C
30
31
31
32
34
34

34
34
34
34
34
36
37
37
37
37

3?
37
37
38
39
39
39
39
39
39

39
41
41
43
43
43
43
43
43
43

37
37
37
37
37
37
37
37

a7
37
37
37
37
37
37
37
37
37

37
37

5
37
37
37
37
37
37
37

37
37
37
37
37
37
37
37
37
37

37
37
37

-
i

37

"
317
37
37
37

37
37
37
37
37
37
37
37
37
37

APPENDICES

121
122
123
124
125
126
127
128
129
130

171
172
173
174
175
176
177
178
17%

10
11
11
11
11
13

1
i

i3
13
13

13
13
14
14
14
14
14
14
14
14

14
14
14
14
14
i4
14
14
14
14

14
14
14
14
14
14
14
14
14
14

14
14
14
14
14
14
14
15
15
15
15
15
15
15
15
15
15
15
15

e I AR A BCAT AR AN AN AN)
OO0 0O0OO0OO0CO0O

P A R AR A AN A T AN -]
000000000

LTINS R T I PN B e A
o000 O0OOC0OO0OO0O0

\l‘l\l‘l\)\ld~l~)\l
NOOODOOOOO

ETENC I S R PN BN
W NN UWWwWwWwW

omcnsquq\xq
IS S

-
~N NN

4
i

1€
16
16
16
1€
16
16
16
16

l6
16
16
16
16
i6
16
1€
16
16

16
16
16
17
17
17
17
17
17

17
17
17

17
16
15
14
13

-

LoD WO WO

OO0 0O N W

OOOOOOOOOO OOOOOOOOOQ OOOOOOOOOO 0O000 00O O00Oo OOOOC}OOOOO

o000 0000

10
10

N
4

10
1

10
11
11
11
12

1
i

12

12
12
ES

12
12
12
12

12
12
12

4
4

12
12
12
12
12
12

12
12
13
13
13
13
i3
13
13

ks e OO O0Q OOOOOOOOOO OOOOOOOOOO OOOOO()O(’OO ()O()OOL)OOOO

[el Lol el

43
44
44
44
44
44
44
45
46
16

16
46
46
47
47
47
47
47
48
a8

48
48
48
48
48
48
48
48
48
49

a9
49
19
50
50
49
48
47
47
48

48
49
48
47
46
45
44
43
43
43

42
41
40
39
38
37
36
35
34

37
37
3?
37
37
37
37
37
37
37

37
37
37
37
37
37
37
37
37
37

37
37
37
37
37
37
37
37
37
37
37
37
37
37
48
48
48
48
48
48

4B
48
48
48
48
48
48
48
48
48

48
48
48
48
48
48
48
48
48

APPENDICES

180 15 10 7 0 1 13
181 15 10 7 G 1 13
182 15 10 7 0 1 13
183 15 1 7 0 1 i3
184 15 10 7 0 1 13
185 15 10 7] 1 1

186 15 10 7 0 1 13
187 15 10 7 0 1 13
188 15 10 9 0 1 14
189 15 H 9 0 1 15
190 16 11 9 0 1 15
191 16 11 9 c 1 15
192 16 12 9 0 1 1

193 16 13 9 0 1 15
194 16 13 10 0 1 15
195 ie i3 10 0 1 17
196 17 14 10 0 i 17
197 17 14 10 o] 1 17
198 17 14 10 0 1 17
198 1? 14 10 0 1 17
200 17 14 10 0 1 17
201 17 14 10 0 1 17
202 17 14 10 0 1 17
203 17 14 10 0 1 17
204 17 i5 10 0 1 17
205 17 15 10 0 1 17
206 17 15 10 0 1 17
207 17 15 1 0 1 17
208 17 15 10 C 1 17
209 17 15 10 0 1 17
210 17 15 10 0 1 17
211 17 15 10 0 1 17
212 17 15 10 0 1 17
213 17 16 10 0 1 17
214 17 17 10 o 1 17
215 17 18 10 [} 1 17
216 17 18 10] 1 18
217 17 18 i0 0 1 18
218 17 18 11 0 1 18
219 17 i8 11 o} 1 18
220 17 i8 11 ¢ 1 18
221 17 18 11 0 1 19
222 17 18 11 0 1 19
223 17 18 11 0 1 19
224 18 18 11 0 1 19
225 18 18 11 0 1 19
226 18 18 11 0 1 19
227 i8 18 11 0 1 19
228 18 i8 11 0 1 20
229 18 18 11 0 1 20
230 18 18 11 0 1 20
231 18 18 11 0 1 20
232 18 18 11 0 1 20
233 18 18 11 0 1 20
234 18 18 11 0 2 20
235 18 18 11 0 2 20
236 18 18 11 0 2 20
237 18 18 11 o 2 20

A-18

P I L = R =R

= [e e =

. o =] R I o oy e = o

[

33

32
32
31
30
29
28
27
26
26

[
-

24
23
23
23
22
21
22
21
20
20

19
18
18
17
16
15
14
14

1
+

14

13
12
12
11
11
11
10

OOCO0OQ+HNIWDMUO

OO0 0000

48

48
48
48
48
48
48
48
48
48
48

48
48
48
48
48
48
48
48
48
48

48
48
48
48
48
48
48
48
48
48

48
48
48
48
48
48
48
48
48
48

48
48
48
48
48
48
48
48
48
48

48
48
48
48
48
48
48

APPENDICES

238
239
240

241
242
243
244
245
246
247
248
249
250

2531
252
253
254
255
256
257
258
259
260

261
262
2€3
264
265
266
267
268
269
270

271
272
273
274
275
276
277
278
279
280

281
282
283
28B4
285
286
287
288
289
290

291
292
293
294
295

18
18

i

18
18
18

18
18
18

18
18

4
1

18
18
18
18
18
18
18
is
18

18
18
18
18

18
18
18
18
18

i8
18
is
18
18
18
18
i8
18
i8

18
18
18
19
19
20
20
21
21
21

21
21
21
21
21

8
18
i8

18
18
18
18

¥
i

18

18
18
18

i8
ig
18
18
18
18
18
18
18
18

18
18
18
19
19
18
19
19
18

19
18
19
19
19
20
21
22
23
23

23
23
23
23
24
24
24
24
24
25

25
25
25
25
25

—
[T

[T I =T [
bt b bS e b pt e

e

i1
12
12
12

i4
15
16
16
16

17
17
19
18
19
19

.
i

19
19

19
18
19
19
19
13
19
19
18

19
18

1

pe

20
21
21
21
22
22
22

22
22
23
24
24

[o i« N e]

OO0V O0OO0OOQ0OO0O OO0 00000000 OO0 OO0 QOO0 COO OO0

OO0 0DO0O0CO0O0O0 OO0

o0 0 o0o0Oo

N

N

NN NN NNDRRN LS S BN NE SR NS NI SIS S I SN

[SIN SER SIS S NS S

N

NN RN NN [SEE SR CRE SR VAN S VI SIS BN

LS SIS NI ST N

A-19

NN
O OO

a0
L

20
20
290
206
290
20
20
20
20

20

0
290
2C
20
20
20
20
29
20

290
21
23
23
23
23
23
23
24
24

o
<

24
24
24
24
24
24
24
24
24

24
24
25
25
27
21
27

~
z

28
28

28
28
28
28
28

e s D W N DN NN PONNRNDON NN NN N bl b b e A B e s

L7 NV R RV N NS BV IS RPN)

w»nw

o o O

OO0 00O0O0O00O00O0 GCOO0O0O0O0COO0OO0OO0 OO0 OO0 COO0QO0 QOO0 OD0O0OO0OC

COO0CODO0OOCO0O0O0

O o Oooo

48
48
48

48
48
48
48
48
a8
48
48
48
48

48
48
48
48
48
48
48
48
48
48

48
48
48
48
48
48
48
48
48
48

48
48
48
48
48
48
48
48
48
48

48
48
48
48
48
48
48
48
48
48

48
48
48
48
;8

APPENDICES

296
297
2938
299
300

301
302
303
304
305
206
307
308
309
310

311
312
313
314

*wk

21
21
21
21
21

22
22
22
22

25
25
25
25
25

2€
27
27
27
27
27
28
28
28
28

28
28
28
28

24
24
24
24
24

o0 000

24
25
25
26
26
26
26
26
26
A

OO0 0000000

2¢
26
26
26

o OO0

NN NN DN NN NN

NN NN

Note that phase combination changes here.

Analysis for Phase Combination Change at time t

Performance Index = (0.250C0 * Total Stops)

Phase Results for

Phase

Changing Phase Combination at

3 4 5
26 17 2
2163 1417 218

8
28
28
28
28

28
28
28
28
28
28
28
28
28
28

28
28
28
28

oA N> I AN NS]

AN AN D

A NN

[154,

Total
184
20780

Performance

6 7

29 6
3927 355
Index =

Phase

1 2

22 28
3685 3164
Results for
1 2

22 28
3685 3164
Results for
1 2

22 28
3685 3164
Results for

5924

184
20873

Changing Phase Combination at

3 4 5 6 7

26 i? 2 29 [

2163 1437 218 3927 355
Performance Index =

Changing Phase Combination at

3 4 5
26 17 2
2163 1457 218

Perfcrmance

[3 7

29 6

3927 35%
Iindex =

Changing Phase Combination at

A-20

(s3]

O O 0000000 o OO

o000

163)

48
48
48
48
48

48
48
48
48
48
48
48
48
48
48

48
48
48
48

APPENDICES

tops: 22 28
Delay: 3685 3164

Phase Results for Changing Phase Combination at Time: 158
Phase: 1 2 3 4 5 6 7 8 Total
Stops: 22 28 26 17 2 29 6 55 185
Delay: 3685 3164 2163 1499 218 3927 355 143 21154

Performance Index = 15911.75CC
Phase Results for Changing Phase Combinaticn at Time: %9
Phase 1 2 3 4 5 & 7 8 Total
Stops: 22 28 24 17 2 29 € 56 184
Delay: 3685 3164 1851 1520 218 3927 335 6216 20636

Performance Index = 15748,0000C
Phase Results for Changing Phase Combination at Time: 160
Phase 1 2 3 q 5 6 7 8 Total
Stops: 22 28 23 17 2 29 6 57 184
Delay: 3€85 3164 1696 1541 218 3927 355 6289 20875

Performance Index = 15702.2500
Phase Results for Charnging Phase Combination at Time: 161
Phase: 1 2 3 4 5 6 7 8 Total
Stops: 22 28 23 17 2 29 6 £8 185
Delay: 3685 3164 1696 1562 218 3927 355 6362 20869

Performance Index = 15773.0000C
Phase Results for Changing Phase Comblnation at Time: 162
Phase: 1 2 3 4q 5 [7 8 Total
Stops: 22 28 23 17 2 29 6 58 185
Delay: 3685 3164 1696 1583 218 3927 355 6435 21063

Performance Index = 15843.5000
Phase Results for Changing Phase Combination at Time: 163
Phase 1 2 3 4 5 6 7 8 Total
Stops: 22 28 23 19 2 29 [3 58 187
Delay: 3685 3164 1696 1607 218 3927 355 6510 21162

Performance Index = 15918.2500

A-21

APPENDICES

APPENDIX C: Listing of COP Program

/'=ﬂ==‘==l==2=x:z===========:==:===s===:.—_22=====_—_=:=======:s=======:==m======: ===x/

/= ==/

/*= Coordinated Optimization of Phases (COPs) =*/

J*= =%/

/¥ =ammm—Emcc sz cesRCEas TS s SsEE s ssE A SEETrSSSSoSTssSS=IsSEsSa=oos z===s=====x==¥/
/* ==rxs===szec==scrxs=sscz=x ACKKNOWLEDGEMENTS ==s==s==xsa=====sss=z=S=asz=z===x

THE COP MODEL WAS DESIGNED BY DR. SUVRAJEET SEN, PROFESSOR
IN THE SYSTEMS AND INDUSTRIAL ENGINEERING DEPARTMENT
AT THE UNIVERSITY OF ARIZONA.

THE SUCCESSFUL DEVELOPMENT OF COP HAS BEEN THE RESULT
OF THE COOPERATIVE EFFORTS OF THE FOLLOWING INDIVIDUALS
WHO MADE THIS PROGRAM FULLY OPERATIONAL:

DR. S. SEN DR. K.L. HEAD DR. P. SANCHEZ

SYSTEMS AND INDUSTRIAL ENGINEERING DEPARTMENT HEAD: DR. P. MIRCHANDANI

s Tm AT S S AR I ENE T RSSO ARESECSISCoRASEESES=SSSSSSSSSS SSIRET=ST=R

--- CODED 08-04-92 BY G. TOMOOKA
~-- TITLE - COP

~=-- FONCTION - THIS I5 THE PRIMARY EXECUTIVE ROUTINE OF THE COP MODEL

~-= ARGUMENTS - NONE

THIS PROGRAM BEGINS BY READING AN INPUT FILE CONTAINING THE FOLLOWING
INFORMATION:

INTERSECTION IDENTIFICATION NUMBER

NUMBER OF PHASES

MINIMUM GREEN TIME

CLEARANCE TIME

TOTAL NUMBER OF STAGES

STAGES

TIME HORIZON

ARRIVAL DATA (A COLUMN FOR EACH MOVEMENT WITH VALUES
REPRESENTING "PHASE™ REQUESTS)

NEXT, COP DETERMINES THE AMOUNT OF TIME TO ASSIGN TO EACH STAGE

(PHASE COMBINATION, E.G. 26 REPRESENTS A STAGE WHICH ALLOWS MOVEMENTS

2 ANC 6 TO PROCEED UNDER GREEN TIME). FURTHER, CCP ASSIGNS A STAGE

AT LEAST THE MINIMUM GREEN TIME OR ASSIGNS NO TIME (I.E., SKIPS THE
STAGE). 1IN ORDER TC ASSIGN THE MINIMUM GREEN TIME, THERE MUST BE

AT LEAST (GAMMA + DELTA} TIME UNITS REMAINING TO ALLOW VEBRICLES TO TRAVEL
THROUGR THE INTERSECTION. NOTE THAT THE MINIMUM GREEN TIME MUST BE

AT LEAST EQUAL TO: (TOTAL TIME HORIZON/NUMBER OF STAGES).

THE, COP ALGORITHM INCORPORATES A DYNAMIC PROGRAMMING METHOD. SPECIFICALLY,
IT FINDS THE OPTIMAL SOLUTION BY UTILIZING THE BACKWARD AND FORWARD
RECURSION TECHNIQUES. THE OPTIMAL SOLUTICN IS SENT TC AN OUTPUT FILE
CALLED "COQP.OUT™.

A-22

APPENDICES

ALSO, THERE IS A TIMING MECHANISM INCLUDEDS IN COP TO DETERMINE THE TIME

T
ELAPSED WHILE EXECUTING THE BACKWARD AND FORWARD RECURSIONS. THESE TIMINGS

ARE STORED IN AN OUTPUT FILE CALLED "COP,.TIME".

NONE

F () ~ ADDS UP STOPS ON OPPOSING MOVEMENTS
DURING GREEN AND STOPS ON ALL
MOVEMENTS DURING CLEARANCE TIME

LAST_F () - IS FOR THE LAST STAGE, SIMILAR TO F();
ADDS UP STOPS ON OPPOSING MOVEMENTS
DURING GREEN AND STOPS ON ALL
MOVEMENTS DURING CLEARANCE TIME

G - CALCULATES THE AMOUNT OF GREEN TIME

TO ASSIGN TC A STAGE
COP_MIN() - DETERMINES THE MINIMUM OF TWO INTEGERS
GETRUSAGE () - OBTAINS START AND FINISH TIMES

TO DETERMINE CPU TIME OF ALGORITHM

JMAX MAXIMUM NUMBER OF STAGES
PMAX MAXIMUM NOMBER OF PHASES
TMAX MAXIMUM TIME HORIZON (TIME UNITS OR TIME INTERVALS}

INTERSECTION_T STRUCTURE TYPE DEFINITION FOR EACH INTERSECTION
ID INTERSECTION IDENTIFICATION NUMBER
P NUMBER OF PHASES POSSIBLE

GAMMA MINIMUM ALLOWABLE GREEN TIME (TIME UNITS)
DELTA CLEARANCE TIME FOR INTERSECTION DURING ALL RED

J TOTAL NUMBER OF STAGES
STAGE!] ARRAY OF STAGES
T TOTAL TIME HORIZON (TIME UNITS OR TIME INTERVALS]

A MATRIX OF ARRIVAL DATA (PHASE REQUEST DURING TIME INTERVAL)

¥, I, Jd INDEX FOR THE CURRENT STAGE

vilil MATRIX OF VALUES FROM VALUE FUNCTION

X} MATRIX OF DECISION

S STATE VARIABLE REPRESENTING AMOUNT OF TIME REMAINING
XJ DECISION VARIABLE

SJ_STAR OPTIMAL STATE

S$J_STAR _PLUS OPTIMAL NEXT STATE

STOPS NUMBRER OF STOPS PER STAGE

TOTAL_STOPS TOTAL NUMBER OF STOPS FOR THE SOLUTION
VALUEJ VALUE FUNCTION EVALUATION

TEMP TEMPORARY VARIABLE

A:23

APPENDICES

tinclude <stdic.h>
¢inciuvde <math.h>
f§include <sys/types.h>
$include <sys/times.h>
tinclude <sys/time.h>
$include <sys/resource.h>
tdefine JMAX 50C /* Maximum number of stages */
tdefine PMAX 200 /* Maximum number of phases */
tdefine TMAX 1000 /* Maximum time horizon */
§define BIG_INT $99999999 /* Large integer value to
initialize value function */
typedef struct f{
int id ; /* ldentification number of intersection */
int P ; /* Number of possible phases x/
int Gamma ; /* Minimum green time ~/
int Delta ; /* Clearance time; All phases red */
int J ; /* Total number of stages requested */
int stage{JMAX] ; /* Stages */
int T ; /* Total time horizon */
int a{TMAX+2] [PMAX+2] ; /* Arrival data */
} intersection_t ;
intersesction_t Tucson ;
int £O) ;
int last_f() ;
int g() ;
int cop_min() ;
int getrusage() ;
int main()
{
int m, i, 3 ; /* Current stage number */
int v [PMAX+2] [TMAX+2) ; /* Table of values ®/
int X {PMAX+2]} [TMAX+2] ; /* Table of decisions */
int s ; /* State variable ~/
int x3 ; /* Decision variable */
int sj_star ; /* Optimal state v/
int sj_star_plus ; /* Optima) next state */
int stops ; /* Stops per stage
*/
int total stops : /* Total stops for all stages */
int valuei ; /* Value function evaluation */
int temp ; /* Temporary storage variable */
FILE *Data ; /* Input data file *x/
FILE *QutPut ; /* Output file */
FILE *Timings ; /* File containing CPU timings
for dynamic program ~/
struct rusage first_time; /* Get starting time =/
struct rusage second_time; /* Get finishing time */
/* mwmmmms=s=sssssss==s= READ THE DATA FRCM INPUT FILE =sesssmss=sssz=ssms v/
getrusage {RUSAGE_SELF, &first_time) ; /* Get routine start time */
Data = fopen("cop.dat™, "r") ; /* Open data file */
OutPut = fopen("cop.out™, "w") ; /* Open output flle ./

A-24

APPENDICES

Timings = fopen("cop.time®, "am) ; /* Append to timing fiie */

fprintf(OQurPut,"Intersection Information:\n"™) ;
fprintf (QULPUL, Mmom s s e m e m e —— e \n")

fscanf (Data, "8d™, &Tucson.id) ;

fprintf (OutPut,"Intersection Identificatrion Number: &d\n", Tucson,id)

fscanf (Data, "%d", &Tucson.P) ;
fprintf (OutPut, "Number of Phases = &din", Tucson.P) ;

fscanf {Data, "%d", &Tucscn.Gamma) ;
fprintf(OutPut,"Minimum Green Time = %d\n", Tucson.Gamma) ;

fscanf (Data, "%d", &Tucson.Delta) ;
fprint £ (OutPut, "Clearance Time = &d\n", Tucson.Delta)} ;

fscanf (Data,"%d", &Tucsorn.Jd) ;
fprintf (OutPut,"Total Number cf Stages = &din", Tucson.J) ;

fprintf (CutPut, "Seguence of Stages: "y o:
for (i = 1; 1 <= Tucson.J; ++1) {
fscanf (Data, "%d", &Tucson.stageiil} ;
fprintf (OutPut,"8%d ", Tucson.stageli}) ;
if ((i%10) == Q) fprintf(OutPut,™\n ")y :
} /* End for i loop */
fprintf (CutPut, "\n™) ;

fscanf (Data, "8%d™, &Tucson.T) ;
fprintf (OutPut,"Time Horizon = %d\n\n", Tucson.T) ;

fprintf (CutPut,"Arrival Data\n") ;

fprintf(QutPut,"--——-m-—emmsm \n") ;
fprintf(OutPut,” 1 2 3 4 5 € 7 8\n") ;
fprintf (OutPut,"——-——--—-—-v e cen o \n") ;

for (i = 0; i <= Tucson.T; ++i) |
for (3 = i; J <= Tucson.P; ++3) {
fscant (Data, "%d", &Tucson.af{il(3}]) :
fprintf (OutPut,"%2d ", Tucson.a(i][3])
} /* End for 3 loop */
if ({1 % 10) == 0) fprintf (OutPut,™\n") ;
fprintf (OutPut, "\n") ;
} /* End for i loop */
fprintf (CutPut, "\n\n") ;

/* Get routine end time */
getrusage (RUSAGE_SELF, ésecond_time}

fprintf(Timings,™ %5d %3d", Tucson.T, Tucson.Gamma) ;

fprintf(Timings, " 8.3f ",
second_time.ru_utime.tv_sec - first_time.ru_utime.tv_sec +
1.0e-6 * (second time.ru_utime.tv_usec -
first_time.ru_utime.tv_usec)) ;

‘

/= =u= == BEGIN THE BACKWARD RECURSION =me=mc=ssam=ss=xz=s==z ¥/
getrusage (RUSAGE_SELF, &first_time); /* Get routine start time */
for{s = 0; s <= Tucson.T; ++s8) { /* 1Initializing */

v[{Tucson.J+1) (s} = 0 ;

A-25

APPENDICES -

X[Tucson.J+1]){s] = 2 ;
j /* End for s loop */ -

m = Tucson.J+1l /* Backward recursion begins v/
for{i = Tucson.J; j > 0; --3) {

~-m ; /* Change the phase */
for(s = 0; s <= Tucson.T; ++s} |
v[3j]is} = BIG_INT
if(s < Tucson.Gamma + Tucson.Delta) |{
X{§}Is}) = 0 ;
if(j==Tucson.Jd) v{j}(s) = last_£f(s,s,Tucson.stage{mj, Tucson.F,
- Tucson.7?) o
else v{jjis] = vii+l]jls) ;
}
else {
xy =0 ;
X[3)Is) = x3 ;
if (j==Tucson.J) valuej = last_f(s,s,Tucson.stage{m], Tucson.?P,
Tucson.T) ;
else valuej = f(xi,s,Tucson.stage(mj,Tucson.P, Tucson.T) ;
temp = valuej + vi{j+ll(s -~ g(xj,Tucson.Delta)] ;
viil(s] = temp ;
for (x3j = Tucson.Gamma; xj <= s - Tucson.Delta; ++xj) {
1f{i==Tucson.J) valuej = last f(s,s,Tucson.stageimj,
Tucscn.P, Tucson.T}
else valuej = f{xj,s,Tucson.stage(m}, Tucson.?P, Tucsen. T} ;
temp = valuej + vi{j+l}is - g(xj,Tucson.Deltal] ;
if(temp < v{jils]) {
vijli{s] = temp ;
X[310s) = x3 7
}
} /* End for xj loop */
} /* End else loop */
} /* End for s loop */
} /* End for 3 loop */

/* meassmssszzsssessss=s=s== BEGIN THE FORWARD RECURSION s====smsazszaxzsssz=zz=z */

fprintf (OutPut,”™ Coordinated Optimizaticn of Phases (COP) Solutien\n™) ;
fprintf(OutPut, P~ s e e e e e e e e e e m - — s oo
-=-\n") ;

sj_star = Tucson.T ;

stops =~ f(X[1){si_star],s3j_star,Tucson.stage(l], Tucson.P, Tucson.T} ;

fprintf (CutPut,* 3j = %3d State = &3d Decision = §%3d Phases = %3d Stops =
$3d\n", 1, sj_star, X{1l){sj_star], Tucson.stage{l], stops} ;

total_stops = stops ;

for(j = 1; 3 < Tueson.J; ++3) {
s3_star_pius = sj_star - g(X(j)([s]j_star],Tucson.Delta} ;
stops = f(X!1j+1]{si_star_plus],sj_star_plus, Tucson.stage|3+1],
Tucson.P, Tuecson.T)
fprintf{QutPut,” J = %3d State ~ %3d Decision = A3d Phases = 3%3d Stops
= %3d\n", J+1, s) star_plus, X[J+1)(s)_star_plusi, Tucson.stage{]+1],
stops) ;
sj_star = s3j_star_plus ;
total_steps += stops ;
) /* End fer 3 loop */

fprintf (OutPut, "\n Total Stops =
t3d\n\n", total_stops) ;

A-26

APPENDICES -

getrusage (RUSAGE_SELF, &second _time) ; /* Get rocutine end time */
fprintf(Timings, © %.3f\n\n",

second_time.ru_utime.tv_sec - first time.ru_utime.tv_sec +

1.0e-6 * (second time.ru_utime.tv_usec -

first_time.ru_utime.tv_usec)j ;
return 0O;

} /* End of main function */

/% wms=mmummm=s=s=ess=xx RADD UP TOTAL NUMBER OF S5TOPS =es=c=scsss=zssm=~z=x %/

int f{int x. int s, int stage, int P, int T)
{

int k ;

int sum ;

int k_max ;

int j

sum = 0 ;
k_max = cop_min(T+1, T-s+g(x, Tucson.Delta)) ;
/* Add all stops on the opposing movements */

for(} = 1; 3 <= P; ++3) |{
for{k = T-s; k < k_max; ++k)
if ({3 '= stage/10) && (J !'= stagesl0))
sum += Tucson.alk} (]3] ;
) /* End for j loop */

/* Add all stops on all movements during delta */

for(j = 1; j <=~ P; ++9) (
for{k = T-s+x+1l; k < k_max; ++k)
if ((3 == stage/10) || {3 == stage%l0))
sum += Tucson.alk)[3) ;
} /* End for j loop */
return{sum} ;
} /* End of int f function */

/* mEx= - - ADD UP ALL STOPS e=sa=smmsxsmsswasxc=cz=xxs==zzx ¥/

int last_f(int x, int s, int stage, int P, int T)
{

int k ;

int sum ;

int k_max ;

int j ;

sum = 0 ;

X _max = cop_min(T+1l, T-s+x) ;

for(jy = 1; 4 <= P; ++J) {
for(k = T-s; k < k_max; ++k)

A21

APPENDICES

/*

/t

int

/t

int

Add stops on all opposing movements */

if ((j !'= stage/10) && (j != stage%l0))
he sum += Tucson.alk]{j) ;

Add stops on all movements */

for(k = T-s+x+1; k < k_max; ++k)
sum += Tucson.alk][j] ;

} /* End for j loop */

return(sum) ;
/* End of int last_f function */

z===s===ss========= CALCULATE AMOUNT OF GREEN TIME
g(int z, int Delta)
if(z == 0) return(0) ;

else return{z+Deita) ;
/* End of int g functicn */

=zzr===a=zzz=x==ez==mxa== DETERMINE MINIMUM VALUE
cop min(int x, int y)
if(x < y) return(x) ;

else return(y) ;
/* End of int cop_min function */

A-28

*/

*/

16

9375782

8
37 48 26 38 15 38 37

= 8
= 2
1

40

dentification Number:

Time

b

cages:
Data

&

ersection
Number of Phases
Minimum Green
M

T

APPENDIX D: Listing of the Output of the COP Program

Sequence of S
Time Horizon =
Arriva

Total Number of Stage

APPENDICES
Intersection Information:
Clearance Time =

In

-

-

~

0
0 0

0 0 0 ©
0o 0 0 O
¢ 0 0 0 ©
0 0 0 ¢ O
[¢]

[}

-t

A-29

0

0 0 0 0

¢

APPENDICES

Coordinated Optimization of Phases (COP) Solution

State = 40 Decision =

3= 1 4 Phases = 37 Stops = 2
i = 2 State = 3 Decision = 8§ Phnases = 48 Stops = 3
j = 3 State = 25 Decision = 0 Phases = 26 Stops = ¢
j = 4 State = 25 Decision = 13 Phases = 38 Ztops = 9
j o= S5 State = 11 CDecision = 5 Phases = 15 Stops = 2
j = 6 State = 5 Decision = ¢ Phases = 38 Stops 0
j 7 State = 5 Decision = 3 Phases = 37 Stops 1
3 = 8 State = 1 Decision = 0 Phases = 16 Stcps = 0

Total Steps = 17

A-30

APPENDICES

APPENDIX E: Subroutine CONTROL

OOO0O00O0000A0ONAO00N0000NO0N0O00000000000a0000n

(¢}

NnnooOoO0a0n

o000 0o0n

SUBROUTINE CONTROL (NODE)

SUBROUTINE CONTROL
PURPOSE : THIS IS AN INTERFACE ROUTINE FOR EXTERNAL CONTROL LOGIC.
IT CALLS A CONTROL ROUTINE, AND SETS NETSIM DETECTOR
DATA TO CALL THE PHASES INDICATED BY THE CONTRCL LOGIC,
ARGUMENTS : NCDE ~ THE CURRENT NODE BEING UPDATED BY NETSIM
INPUT : INTEGER RETURN CODE FROM CONTROL LGGIC.
THE PHASE BEING CALLED IS DETERMINED BY THE BIT PATTERN:
EACH BIT WHICH I5 ON WILL INDICATE A PHASE TO BE CALLED,
87654321. IF NO BITS ARE ON (RETURN CODE = (), THE DETECTOR
OUTPUT WILL NOT BE CHANGED, I.E. NETSIM'S BUILT IN CONTROL
LOGIC WILL BE USED,
OUTPUT : NONE
SUBROUTINES CALLED : SIGNAL LOGIC ROUTINES
CALLED BY : DETQ5

VARIABLES USED :

DPPOUT ARRAY OF DETECTOR DATA BY PHASE AND PORT

DTEXST ARRAY OF DETECTORS WHICH EXIST DEFINED BY PHASE AND
PORT.
INTERSECTION SPECIFIC. (C,1) = (DOES NOT, DOES) EXIST

ITEMP TEMPORARY VARIABLE

IRC RETURN CODE FROM EXTERNAL SIGNAL CONTROL LOGIC

IPHASE DO LOOP VARIABLE FOR LOOPING OVER PHASES

IPORT DO LOOP VARIABLE FOR LOOPING CVER PORTS

IRPP PHASE AND PORT ID NUMBER (POSITION IN DPPOUT ARRAY)

PUT VARIABLE DECLARATIONS HERE

IMPLICIT INTEGER (A-Q, T, S)

COMMON /SIN345/DPPOUT (8 * 6)
COMMON /SIN354/DTEXST (8 * 6)
COMMON /SIN355/LOWRAM (751)
COMMON /SIN104/CLOCK

CALL THE EXTERNAL CONTROL LOGIC (SELECT ONE, COMMENT OUT THE REST)

semi-actuated, multiple intersection algorithm
SYNC_TIME = LOWRAM(38) + 1
IRC = TRANSLATE(SYNC TIME, NODEj

multiple intersection, fixed time algorithm
SYNC_TIME = LOWRAM({38) + 1
IRC = FIXED(SYNC_TIME, NODE)

simple, single intersection, fixed time algorithm
CALL TEST(IRQC)

WRITE PHASE CALL INFORMATION TO FILE ‘'phasecalls’

A-31

APPENDICES

N = NODE
IF ((N.EQ.335).CR.(N.EQ.369).0R. (N.EQ.401) _OR. {N.EQ.483)) THEN
WRITE (35, 9000) SYNC_TIME, CLOCK, RODE, IRC

9000 FORMAT ('SYNC: ', I2,° CLOCK: *,I3," NODE: ', I3,' IRC: ', I
ENDIF
C
C IF THE EXTERNAL LOGIC RETURNED O, DO NOTHING.
c
IF (IRC .EQ. 0) THEN
GO TO 100
ENDIF
c
C CLEAR ALL OF THE CURRENT DETECTOR DATA
c
DO 10 IPHASE = 1, 8
DO 20 IPORT = 1, 6
INPP = {IPHASE - 1) * & + IPORT
DPPOUT(INPP) = O
20 CONTINUE
10 CONTINUE
c
C SET DETECTOR DATA TO CALL PHASES SPECIFIED BY EXTERNAL CONTROLLER
C
DO 30 IPHASE = 1, 8
ITEMP = IAND(IRC, 2**(IPHASE - 1))
IF (ITEMP .EQ. 0) GO TO 30
DO 40 IPORT = 1, 6
INPP = (IPHASE - 1) * 6 + IPORT
DPPOUT (INPP) = 1
40 CONTINUE
30 CONTINUE
o
100 CONTINDE
RETURN
o
END

A-32

APPENDICES

APPENDIX F: Programmers Notes

Versions of TRAF-NETSIM used

This research was all conducted using and enhanced version of TRAF-NETSIM which
includes surveiliance detector capabilities. It is probably an enhancement of version 3.0,
hut the exact version is not known. The source code and the documentation for card type
42 were provided by FHWA. The version of GTRAF used was that provided with TRAF-
NETSIM version 3.0 for MS-DOS. The latest version of TRAF-NETSIM, version 3.1,
may have some differences to that used here.

Defining phase movements in the input deck

When defining the phases at the intersections to be controlled externally, is best to define
each phase to represent a complete set of allowed movements, so that only one phase need
be active at a time. Although the external control interface allows calls to be placed on
multiple phases, like 2 and 6 in a dual ring configuration, the phases may not switch at the
same time. For example, during testing, a si- qulation was run which placed calls to phases
on both rings of the controller, 2 and 6,4 and 8, 1 and 5, and 3 and 7. When phases 2 and
6 were terminating, sometimes phase 2 would switch 1 second before phase 6 would
switch. The simple solution was to group the phase pairs together, and only call one phase
at a time.

Interfacing C and FORTRAN code

External signal logic does not have to be developed in FORTRAN. Other languages can be
linked to the FORTRAN simulation. The sample fixed and semi-actuated controllers were
developed entirely in C. Sec those files fixed.c and translate.c for examples of how to
write C functons that can be used by a FORTRAN program. Following are descriptions
of a few of the techniques.

+ C functions which are called directly by a FORTRAN program should
have an underscore appended to the function name, i.e. void foo_().
This underscore should only appear in the C code, not in the FORTRAN
code.

A-33

APPENDICES -

+ FORTRAN common blocks can be accessed in C as structures. See
translate.c for an example, where common block SIN368 is accessed.

« Variables passed from FORTRAN to C as parameters are passed by
variable. In the C program they should be treated as pointers to
whatever variable type they represented in the FORTRAN code.

» Variables returned by a C function are returned by value, not as pointers.
For example, to return an integer from a C function, simply return an
integer value, not a pointer.

+ Don’t forget that FORTRAN arrays indices start with 1 and C arrays
begin with 0. There is no data lost in translation, just be sure to index
the array properly for each given language.

Compiling, linking and running under UNIX

The following describes how to build and run the TRAF-NETSIM executable under
UNIX. Assuming that all files are contained in the same subdirectory, compile all files to
object form using ‘f77 -Nx600 ¢ *.0’ for the FORTRAN files and ‘cc -¢ *.c” for any C
files. Then, to link everything into an executable file called netsim, use *f77 -0 netsim
*0’. To run a simulation, then, use IO redirection, such as ‘netsim < input.trf > outfile’.

Viewing graphics files generated under UNIX

If the simulation was run under UNIX, it is possible to transfer the graphics files to a MS-
DOS computer for display using GTRAF. The files can be transferred using Kermit, but it
is much faster to transfer them using a floppy diskette. Note that some of the following
discussion will apply specifically to the computers in the University of Arizona RHODES
research lab.

On catalina, a collection of utilides called Mtools has been installed which allows MS-DOS
format floppy diskettes to be read and written directly in the SPARCstation fioppy drive.
There are manpages which describe the utilities. To process the graphics, the files that are
needed are the .tf input file and the graphics files produced by the simulator. For example,
if you run a simulation titled ‘tucson’ then the command ‘mcopy tucson* a:” will copy all
the necessary files to a floppy disk in the drive. Type ‘eject’ to eject the disk. Note that the
files can get very large, so it may be necessary to limit the simulation run time and/or
compress the files before ransferring them to disk. Once the files are copied, take the disk

A-34

APPENDICES

to the PC. The files need to be copied into the directory c:\tsis\rafNio and renamed as
described in the GTRAF manual. An easy way to do this is to set up a batch file 10 do the
copying and renaming. See TUCSON.BAT in that directory for an example. You can
simply replace the word TUCSON is that batch file with whatever name your simulation
used. After the data is copied and renamed, then you need to start TSIS and run the
CONVERT utility to convert the data, and the CASELOG utility to ad the name of your
data to the list of available cases. The graphics files can then be viewed as normal with
ANETG or SNETG.

A few points to remember when using the graphics programs are:

1) They will not display the surveillance detector information.

2) They have limits on the number of detectors and vehicles allowed on the
network. If those limits are exceeded, then the graphics programs will
not work.

3) There may be some discrepancy between the signal switching times
displayed under ANETG and SNETG. SNETG appears to be more
accurate. The data in the output file ‘signals’ can be used to verify
switching times. Remember that signals are updated at the end of the
time step. If a call is placed on a new phase at time N, it can not take
effect until time N+1. Remember also that there is usually a 1 or 2
second delay from the time that the new call is received until the old
phase begins to terminate.

Obtaining presence information from surveillance detectors

Surveillance detectors can be defined to be of the presence type, as well as the passage
type. The subroutine POLL in code block surv.f is responsible for producing the presence
counts at surveillance detectors. It is called at the end of each time step by subroutine
CLNUP, found in code block nets.f. According to the documentation received from
FHWA (the memos written by H. Chen), the presence counts are supposed to be packed
into variable DTMOD. It appears that this feature rnay not be implemented correctly, since
the count values printed to the file ‘data’ are always zero for presence detectors. This is not
certain, however, and the presence detection capabilities were not investigated very
thoroughly. This information is provided just to give a starting point to work from, so that
in the future, presence information can be provided to external signal logic.

A-35

APPENDICES

APPENDIX G: Subroutines SENSOR and OUTDATA

DT

OO0 00000NONO000O0NN00O0O0Nn

D00 NNOONONOON0000000NON000000NON000000

SUBROUTINE SENSOR (IDIST, IDT, VLENTH, IFPOSB, ILEAD, ISPD, IV)

CODED 05~05-86 BY
RECODED 11-29-88 BY
RECODED 8-12-89 BY
REVISED 11-20-30 BY

HALATI

CHEN TO FIX THE DETECTION LOGIC

CHEN TO REMOVE REDUNDENT LOGIC TESTS
CHEN TO ADD SURVEILLANCE DETECTOR LOGIC

mmT >

TITLE - REGISTER DETECTOR ACTUATIONS MODULE ~ 3232.4433.1

FUNCTION - THIS ROUTINE REGISTERS A DETECTOR ACTUATION AND
DETERMINES THE DETECTOR PULSE WIDTH DEPENDING ON THE
DETECTOR TYPE

ARGUMENTS ~ IDIST : DISTANCE TRAVELLED IN CURRENT TIME STEP
ipT : DETECTOR ID NUMBER
VLENTH : VEHICLE LENGTH
IFPOSB : DISTANCE BETWEEN FRONT BUMPER AND UPSTREAM
NODE AT THE BEGINNING OF THE TIME STEP
ILEAD : DISTANCE BETWEEN DETECTORS LEADING EDGE AND
UPSTREAM NODE
ISPD : VEHICLE SPEED AT END OF TIME STEP, INPUT
ADDED THE FCLLOWING ARGUMENT
v : VEHICLE 1D NUMBER

THIS ROUTINE GENERATES VEHICLE ACTUATIORS. THE DETECTOR PULSE
WIDTH I5 GENERATED IN ACCORDANCE WITH THE DETECTOR TYPE. FOR
A PULSE DETECTOR A PULSE WIDTH OF 3 TENTH-OF-A-SECOND IS
GENERATED.

NONE

DTLEN DETECTOR LENGTH

DTMOD DETECTOR TYPE. FLAG (1/0) IF (PASSAGE, PRESENCE)
IBTDET DETECTION BEGIN TIME IN 0.1 SECOND INCREMENTS
IDTIME DETECTOR ARRAY. BEGINNING TIME OF ACTUATION

INC DO LOOP INDEX FOR TENTH-OF-A-SECOND INCREMENTS
LASTD DETECTCR ARRAY. END TIME OF ACTUATION

LASTDT DETECTION END TIME IN 0.1 SECOND INCREMENTS
IDELTA DISTANCE TRAVELLED IN ONE TENTH-OF-~A-SECOND

IL DISTANCE TO BE TRAVELLED BEFORE DETECTION BEGINS OR ENDS
IPCS VEHICLE POSITION AT THE END OF EACH TENTH-OF-A-SECOND
WACT FLAG (.T., .F.) IF VEHRICLE (WAS, WAS NOT) DETECTED

WDET FLAG (.T., .F.} IF AN ACTUATION IS REGISTERED

e e o A o 0 e - A o o e L o s P o o M

A-36

APPENDICES

IMPLICIT INTEGER (A-B, D-Q, S-V, X}, REAL (R,Z),LOGICAL (HW,Y)

C
CDT THESE VARIABLES WERE ADDED TO THE COMMON LIST
CCMMON /SIN104/ CLOCK
COMMON /SIN368/ ICOUNTS (50)
c--
COMMON /SIN313/ DTLEN (1)
COMMON /SIN341/ IDTIME(1)
COMMON /SIN342/ LASTD (1)
COMMON /SIN340/ WDET (1)
COMMON /SIN314/ DTMOD (1)
C
o RETURN IF VEHICLE HAS NOT YET CROSSED THE LEADING
C EDGE AND IS NOT IN MOTION.
C
IF (IFPOSB.LT.ILEAD .AND. IDIST.LE.O) RETURN
9
C SET TIME OF ACTUATION TO 1 AND COMPUTE THE TIME
[of WHEN THE VERICLE LEAVES THE SENSING AREA.
C
IDELTA = IDIST
IPOS = 0
LASTDT = 0O
IBTDET = O
C
CDT NOTE: THE LOGIC WHICH DETERMINES BEGIN AND END ACTUATION
C TIMES HAS BEEN CONVERTED FROM REAL TO INTEGER VARIABLES.
c THIS ELIMINATES MACHINE ERROR IN THE REAL ARITHMATIC AND WILL
C ALLOW 1/10 FT RESOLUTION. VARIABLES RPOS, RDELTA, AND RL ARE
C NOW IPOS, IDELTA, AND IL. THEY NOW REPRESENT FT*10 INSTEAD
C-- OF WHOLE FT.
cDpT SET A DETECTION "MODE"™ TO REPRESENT WHETHER A DETECTION
C WAS A BEGIN, END, OR CONTINUATION OF AN ACTUATION. THIS
C IS USEFUL FOR MONITORING PRESENCE DETECTORS.
c INITIALIZE MODE TO BE O = CONTINUING DETECTION THROUGHOUT
C THIS TIME STEP
MODE = 0
C’-_
C CHECK IF VEHICLE IS ALREADY ON DETECTOR
C
IF (ILEAD - IFPOSB .LE. 0) THEN
IBTDET = 1
IL = ((ILEAD - IFPOSB + VLENTH) * 10) + DTLEN(IDT)
C
ELSE
c
o VEHICLE HBAS KROT YET REACHED THE DETECTOR. COMPUTE
c THE INCREMENT OF TIME IN TENTH-OF-A~SECOND FRCM THE
c BEGINNING OF THE CURRENT TIME STEP WHEN THE VEHICLE
C FRONT BUMPER CROSSES THE DETECTOR LEADING EDGE.
C
IL = (ILEAD - IFPOSB; * 10
DO 30 INC = 1, 10
IPOS = IPOS + IDELTA
30 IF (IPOS .GE. IL) GOTO 40
40 CONTINUE
C
CDT SET ACTUATION MODE = 1, INDICATING THAT THIS IS A NEW
Cc DETECTION STARTING DURING THIS TIME STEP
MODE = 1
C__
IBTDET = MINCO (10, INC)
cDT DECREMENT JIPOS TO PREVENT IT FROM BEING INCREMENTED TWICE
9 FOR TRE SAME TIME INCREMENT.

A-37

APPENDICES

IPOS = IPOS -~ IDELTA

[$]

IL = IL + DTLEN(IDT) + (VLENTH*10)

ENDIF
c
C COMPUTE THE INCREMENT OF TIME IN TENTH-OF-A-SECOND
c FROM THE BEGINNING OF TIME STEP THAT THE REAR BUMPER
C CROSSES THE TRAILING EDGE OF THE DETECTOR.
C
DO 50 INC = IBTDET, 10
IPOS = IPOS + IDELTA
50 IF (IPOS .GT. IL) GOTO 6C
60 LASTDT = MINO (10, INC)
c
CoT SET MODE TO INDICATE THAT THIS IS A DETECTION WHICH
c ENDS DURING THIS TIME STEP. SET MODE = 2 IF THE DETECTION
C BEGAN IN AN EARLIER TIME STEP AND ENDS HERE. SET MODE = 3
C IF THE DETECTION BOTH BEGAN AND ENDED WITHIN THIS SAME TIME
c STEP.
c
IF (IPOS .GT. IL) THEN
IF (MODE.EQ.0) THEN
MODE = 2
ELSE
MODE = 3
ENDIF
ENDIF
C—-
C
c CHECK DETECTOR MODE OF OPERATION. IF A PASSAGE
C DETECTOR THEN REGISTER AN ACTUATION ONLY IF TEE FRONT
c BUMPER IS UPSTREAM OF THE DETECTOR LEADING EDGE AT
[of THE BEGINNING OF THE TIME STEP, AND GENERATE A PULSE
c WIDTHR OF 3 TENTR-OF-A-SECOND.
CHB STORE VEHICLE SPEED, AND INCREMENT ACTUATION COUNTER.
[of
WACT = ,FALSE,
IF (MOD(DTMOD(IDT), 2**3).EQ.1) TREN
IF (ILEAD ,GT. IFPOSB) THEN
WACT = ,TRUE.
LASTDT = IBTDET + 2
C
CDT SET THE ACTUATION MODE = 3 FOR PASSAGE DETECTORS. NOTE THAT
C THE .3 SEC PULSE WIDTR MAY ACTUATLLY CARRY OVER INTO THE
C NEXT TIME STEP., THE ACTUATION, HOWEVER, IS ONLY REGISTERED
c DURING THE FIRST TIME STEP IN WHICH IT OCCURS.
MODE = 3
Co=-
DTMOD (IDT) = DTMOD (IDT) + (ISPD - MOD(DTMOD(IDT)/2**3,2**7))
1 * 2%%3 + 2**10
ENDIF
ELSE
WACT =~ .TRUE.
ENDIF
C
cDT NOTE: VEHICLES COUNTS FOR PRESENCE DETECTORS ARE PROCESSED
C~- IN ROUTINE SURV.F. (COUNTS MAY NOT BE FUNCTIONAL)
o
c
O e s s e e e e T TS S TS T o mmmme e
IF (WACT) THEN
C WRITE DETECTOR DATA TO AN OUTPUT FILE ‘'data'. THE FILE
C I5 OPENED IN MODULE NETXEC.F

A-38

APPENDICES - -

a0

(2]

1009

O 00

(o] a0oo0n

an00oOnNno0o0n

START = IBTDET
= LASTDT
STATION NUMBER I3 ONLY AFPLICABLE TO SURVEILLANCE
DETECTORS
STATION = MOD(DTMCD(IDT)/2**22, 2*=8)
DETECTOR TYPE 1 = PASSAGE, 0 = PRESSENCE
TYPE = MOD(DTMOD({IDT), 2**3)
NUM Is THE VEHICLE COUNT FOR PASSAGE DETECTORS
NUM = MOD(DTMOD (1DT) /2**1G, 2**13) -
WRITE(20,1000) IDT,STATION,MODE, TYPE, 1V,CLOCK, START, END, NUM
FOGRMAT (10I7)

INCREMENT DETECTION COUNTER FOR SURVEILANCE
DETECTORS WITH STATION NUMBERS
IF (STATION .NE. 0 THEN
ICCUNTS (STATION) = ICOUNTS(STATION) + 1
ENDIF

WRITE OUT EXTRA DATA FOR DEBUGGING PURPOSES
WRITE(2C,2000) DTLEN(IDT),VLENTH,IDIST, IFPOSB, ILEAD,IL
G FORMAT (616)
ENDIF

CHECK IF OTHER ACTUATION WAS REGISTERED BY THIS
DETECTOR IN THIS TIME STEP. IF IT WAS THEN ADJUST
THE BEGINNING DETECTION TIME AND END DETECTION TIME

IF (WACT) THEN
WDET (IDT) = .TRUE.
IF (IDTIME(IDT) .EQ. 0) THEN
IDTIME(IDT) = IBIDET
ELSE
IDTIME (IDT) = MINO (IDTIME(IDT), IBTDET)
ENDIF
LASTD (IDT} = MAXO (LASTD(IDT), LASTDT)
ENDIF

RETURN
END

aaonNnnNnnNnnDonn

(8}

SUBRCUTINE QUTDATA

PURPOSE: THIS ROUTINE IS CALLED ONCE PER TIME STEP. IT OUTPUTS
NETSIM DATA TO FILES, AND RESETS SURVEILLANCE DETECTOR

COUNTS.
NOTE THAT THE FILES ARE OPENED IN MODULE NETXEC.

CALLED BY: NETSIM
SUBROUTINES CALLED: NONE
IMPLICIT INTEGER (A-2)
COMMON /SIN368/ ICOUNTS (50}
COMMON /SINO74/ SIGT (1)

COMMON /SIN390/ XSIGT (1)
COMMON /SINO73/ NACT (1)

A-39

APPENDKCES -

OoO00a

(g}

2000
C
C

[p]

2100

2200
2300

o W N

C
C
C
c

[3
7

COMMON /SIN115/ TTLND
OMMON /SINO75/ NMAP (1)
OMMON /SIN355/LOWRAM (751)
OMMON /SIN1C4/ CLOCK

THIS CODE WRITES THE SURVEILANCE DETECTOR CCUNTS TO
THE QUTPYUT FILE "“counts™

WRITE (30, 2000) CLOCK, ICOUNTS(1),ICOUNTS(2), ICOUNTS(3),
ICOUNTS (4) , ICOUNTS (5) , ICOUNTS (6), ICOUNTS (7) , ICOUNTS(8),
ICOUNTS(9),ICOUNTS(IO),ICOUNTS(II),ICOUNTS(lZ),ICOUNTS(lB),
ICOUNTS¢14),ICOUNTS(15),ICOUNTS(IG),ICOUNTS(17),ICOUNTS(lB),
ICOUNTS(IQ),ICOUNTS(ZO),ICOUNTS(Zl),ICOUNTS(ZZ),ICOUNTS(23),
ICOUNTS(24),ICOUNTS(ZS),ICOUNTS(ZG),ICOUNTS(Z?),ICOUNTS(ZB)

ICGUNTS(ZQ),ICOUNTS(30),ICOUNTS(31),ICOUNTS(32),ICOUNTS(33).

ICOUNTS (34)

FORMAT (IS, 2812)

RESET THE COUNTERE TO ZERO
DO DET = 1, 50
ICOUNTS(DET) = 0
ENDDO

WRITE OUT THE SIGNAL STATES TO FILE "signals”®

TEMPCLK = CLOCK + 1
SYNC = MOD((LOWRAM(38) + 1), 9S0) + 1
WRITE(40,2100) TEMPCLK, SYNC
FORMAT ('TIME: ', 1I4,' SYsNc: *,I4)
DC NOD = 1, TTLND
IF (NMAP(ROD) .EQ. 401) THEN
IF (NACT(NOD)} .GT. 0) THEN
WRITE(40,2200) NMAP (NOD),MOD(XSIGT (NACT(NOD)),2**4),
MOD (XSIGT (NACT(ROD)) / 2**12, 2**4)
ELSE
WRITE (40, 2300) NMAP (NOD) ,MOD(SIGT(NOD),b2"*4)
ENDIF
ENDIF
ENDDO
FORMAT (I10,16,14)
FORMAT (110, 16}

RETURN
END

A40

APPENDICES

APPENDIX H: Complete Listing of Changes to TRAF-NETSIM

The following descriptions list all changes that have been made to the original TRAF-
NETSIM source code. Note that in the source code, all changes are denoted by comments
with CDT being the begin comment, and C-- being the ending comment. Searching for
CDT in the code will quickly locate the modifications.

Code Block: detect.f

Routine: SUBROUTINE DETECT

Description of changes:

1) A modification was made to allow a vehicle to actuate multiple detectors during a single
time step. The change fixed problems which occurred with overlapping and adjacent
detectors. See (Tarico, 1992) for further details.

2) The argument IV, which is the vehicle ID number, was added to the parameters passed
to subroutine SENSOR.

Code Block: detect.f
Routine: SUBROUTINE SENSOR
Description of changes:
This is the only subroutine which received extensive modifications.
1) The argument I'V was added to the parameter list.
2) Common blocks SIN104 and SIN368 were added to the common list.
3) Vehicle position parameters were converted from real number to integer variables. See
(Tarico, 1992) for further details on this change.
4) Code was added to determine an actuation ‘mode’ which helps in interpretation of
collected detector data. The mode is interpreted as follows:
mode 1 =>The actuation was first registered (began) during the current time
step.
mode 2 => The actuation ended during the current time step.
mode 3 => The actuation both began and ended during the current time step.
mode 0 => The actuation continues throughout this time step. It began is some
previous time step, and will end in some later time step.
5) A block of code was added which outputs detection information to the file ‘data’. This
block is also where the surveillance detection counters are incremented when appropriate.

A4l

APPENDICES

Code Block: nets.f

Routine: SUBROUTINE NETSIM
Description of changes:

A call was added to a new subroutine OUTDATA.

Code Block: nets.f

Routine: SUBROUTINE UPACT

Description of changes:

The argument IN, which is the current node number, was added to the parameter list in the
call to subroutine DETQS5.

Code Block: nets.f

Routine: SUBROUTINE DETQ)5

Description of changes:

1) The argument IN was added to the parameter list.

2) Common block SINO75 was included.

3) A call was added to the new subroutine CONTROL, which is the external signal logic
interface routine.

Code Block: netxec.f

Routine: PROGRAM TRAF

Description of changes:

1) Common block SIN368 was included. This is the block which contains the detector
counts.

2) A block of code was added which open files for output data. Within this block of code,
the surveillance detector counts are initialized to zero also.

Code Block: newxec.f

Routine: BLOCK DATA SNET3
Description of changes:

The common block SIN368 is defined here.

Code Block: outdata.f

Routine: SUBROUTINE OUTDATA
Description of new subroutine:

A-42

APPENDICES

The main purposes of this subroutine are to output and reset the surveillance detector
counts, and 1o output the signal states. It is called once per time step.

Code Block: control.f

Routine: SUBROUTINE CONTROL

Description of new subroutine:

This subroutine serves as the interface between TRAF-NETSIM and any external signal
logic. To completely disable external signal logic, remove the call to this routine in
subroutine DETQS. The functions performed by this subroutine to call any desired external
signal and to set the TRAF-NETSIM detector data to call the phase(s) indicated by the
external logic.

A43

APPENDICES

APPENDIX I: Descriptions of New TRAF-NETSIM Output Data

Some of the changes made to TRAF-NETSIM allow descriptive data from a simulation to
be stored in output files. Four such files are created. They may be useful for debugging,

or for providing data for other experiments. Each of the files is described below.

data

This file contains detector data describing every actuation that was registered during the
simulation. Data is output every time an actuation is registered, regardless of the detector
type. Modify subroutine DETECT to change the included data. Following is a sample:

IDp STATION MODE TYPE VviD CLOCK BEGIN END COUNT
27 0 3 1 6 7 6 8 1
32 0 3 1 5 7 5 7 1
356 0 3 1 4 7 8 10 1
11 0 3 1 2 7 5 7 1
97 0 3 1 10 7 1 3 1
90 0 3 1 9 7 6 8 1
38 0 3 1 7 9 10 12 1
95 0 3 1 30 9 10 12 1
34 0 3 1 29 10 2 4 1
46 0 3 1 8 10 10 12 1

ID is the TRAF-NETSIM internal detector number.

STATION is the station number assigned to surveillance detectors on card type 42, or zero
for other types of detectors.

MODE represents the detection mode, and is provided to assist in interpreting this data. It
is interpreted as follows:

mode 1 =>The actuation was first registered (began) during the current time step.

mode 2 => The actuation ended during the currerit time step.

mode 3 => The actuation both began and ended during the current time step.

mode 0 => The actation continues throughout this time step. It began is some
previous time step, and will end in some later time step.

TYPE indicates the detector type. 0 indicates a presence detector, and 1 indicates a passage
detector.

A44

APPENDICES -

VID is the TRAF-NETSIM internal vehicle ID number of the vehicle which caused the
actuation.

CLOCK is the time step during which the actuation was registered. Note that this value is
reset to zero at the beginning of the simulation period.

BEGIN is the 1/10 second inierval at which the actuation began.

END is the 1/10 second interval at which the actuation ended.~

COUNT is the cumulative count of actuations registered at that particular detector if itis a
passage detector, or zero if it is a presence detector.

counts

This file contains the counts collected at the surveillance detectors. The total counts are
output at the end of each time step. These counts are the same as those provided to the
external signal logic, if that is used. Modify subroutine OUTDATA to change the included
data. Following is a sample:

00000000000 00000000000000000O00O
1000001000001 00010060000000000
200100000000002200100010010000
300010101010000060G6000000060000
400000001000000111000101:11000020
500000000000001000000001100000

The first column is the time step during which the counts were collected. Each of the
remaining contains the counts at one of the surveillance detectors. Column 2 corresponds
to the surveillance detector with station number 1, etc. Note that only detectors with staton
numbers are counted.

signals
This file contains the signal states at each time step. Any intersections can be included.

Modify routine OUTDATA to change which intersections are included. Following is a
sample:

275 4 8

A4S

APPENDICES -

335 4 8
337 4 8
369 4 g
334 4 8
403 0 0
483 2 6 -
399 2 6
484 2 6
538 2 6
481 2 6
2
275 4 8
335 4 8
337 4 8
369 4 8
334 4 8
403 0 0
483 2 6
399 2 6
484 2 6
538 2 &
481 2 6

The 1 and 2 located to the left represent the time steps during which the signal states were
active. In the other data, the first number is a node number as specified in the .trf input
file. The next two numbers represent the phases active on ring 1 and ring 2 of the
controller at that intersection. Intersections which do not use a dual ring controller will
only show one phase value. A phase value of 0 indicates that the signal is in a all-red state.
Note that phases are still considered to be active during the amber period.

phasecalls
This file contains the phases which were called by the external control logic. More
precisely, is shows the integer return code which is returned from the external signal logic

to subroutine CONTROL. Modify subroutine CONTROL to change the data in this file.
Foliowing is a sample:

A-46

APPENDICES

SYNC: 1 CLOCK: 0 NODE: 335 IRC: 1
S;NC: 1 CLOCK: 0 NODE: 368 IRC: 1
SYNC: 1 CLOCK: 0 NODE: 491 IRC: 1
SYNC: 1 CLOCK: 0 NODE: 483 IRC: 1
SYNC: 2 CLOCK: 1 NODE: 335 IRC: 1 -
SYNC: 2 CLOCK: 1 NODE: 369 IRC: 1
SYNC: 2 CLOCK: 1 NODE: 401 IRC: 1
SYNC: 2 CLOCK: 1 NODE: 483 IRC: 1

SYNC is the value of the network-wide synchronization clock. This value will not be
available unless some intersection in the network is defined to have a semi-actuated signal
controller in the .tf input file.

CLOCK is the elapsed time in seconds in either the initialization or simulation periods.
Note that is is reset to zero at the beginning of the simulation peniod.

NODE is the node at which the signal state was being updated.

IRC is the integer return code that was returned by the external signal logic.

A47

APPENDICES -

APPENDIX J: External Fixed-Time Sigaal Control Logic

A e kN e A NSRRI EEEICrXrmACEIIECESsmss=s TxmTsmmed /

/= =%/

/*= Fixed Timing Plan Implementaticn =*/

/*= =/

/R R EEEEE TR TS EAETmETSSssEScoSEImS=S=x=m T Earmxss sSscxmmwx [
/x= ==/

/= Signal Switching Using Fixed Timing Plans - =%/

/= =*/

/*= City: Tucson, Arizona =%/

/= Intersections: Speedway Blvd. & Campbell Ave. =%/

/=) Campbell Ave. & University Blvd. =%/
/= Sixth St. & Campbell Ave. -/

/= Broadway Blvd. & Campbell Ave, =%/

/= =n/

/r= Concept Developed By: Dr. K. Larry Head =*/

/= Programmed By: Greg Tomooka =r/
/= Completed: September 1, 1992 =%/

/r= Revised: September 14, 1992 =*/
/= revised: 9-17~-92 by Doug Tarico =%/

/= Programming Assisted By: Dr. K. Larry Head =/
/= Dcug Tarice =*/

[= =w/

/= Purpose of Program: =%/

/t= =t/
/r= This program will determine if the signal at an intersection =x/

/= should be changed to the next phase according to a synchronized =*x/

/*= clock. If a phase is skipped (i.e., no left turn phase), then =x/

VAL the duration for that phase is set to zero in the timing plan. -/

/t- -t/
/* — - mmrosm */
/*== Emex mme==zx=x= = asmwxx - ®/
/*= Program Specifics: =/

/ig -1/
/*= INPUTS: =

Jr= =%/

/*= The timing plans are read from file 'fixed.plans' =/

f*= in the following format: =x/

/i- =t/

/%= Total sets of timing plans (i.e., number of intersections) =%/

/= Cycle length =%/

/*= Intersection #i ID number, offset time, phase =/

/*= durations of each phase {(in proper sequence) =%/

/t- =/

J*- where | = 1 to total intersections and a proper sequence =%/

/= of phases is: =*/

/= MST MSL SST SSL =x/

/= where we f

/x= MST = Main Street Thru traffic with permissive left turns =x/

/= MSL = Main Street Left turns =%/

/= SST = Side Street Thru traffic with permissive left turn =%/

/*= SSL = Side Street Left turns =t/

o= %/

/= Alen, the intersection requested and the current time will =%/
/= be read from the keyboard in the following format: =w/

/r= =*/

/h- Intersection ID number =%/

/r= Current time =/

L T ——— —— [—— mmmmm mamEemat
/*= OUTPOTS: =*/

S = -/

fr=- Phase which signal remain in or be set to. -/

A48

APPENDICES

/"= =*/
/2= Assumptions: =%/
/*= 1) All phases allow permissive right turns =x/
Jx= 2} All times and phase durations have units of SECONDS =%/
/= 3) Phase cduration is zero for all non-existent phases (i.e. =*/
/= phases that are essentially skipped} =%/
/2= =%/
/remRs=ss=sosr TSR TS EE SRS SRS RIS CEASESSISITSSS==T=Ss=2=ss =ss=====% /
#include <stdio.h>
#define MAXNODES 190 /* maximum number of rnodes */
#define MIKLEFT 2 /= minimum left turn phase length */
tdefine MAXLEFT 35 /* maximum left turn phase length */
tdefine MINTHRU 15 /* minimum thru phase length v/
tdefine MAXTHRU 2] /* maximum thru phase length */
int fixed_(t, r)
int *t, *r;
{
int 1 ; /* current node index */
int no_nodes ; /* total number of nodes
in timing plans file */
static int cycle ; /* network-wide cycle length */
int node_id{MAXNODES] ; /* current node number ~/
static int offset [MAXNODES) /* node offset value */
int mst [MAXNODES] ; /* Main Street Thru duration */
int msl[MAXNODES] ; /* Main Street lLeft duration ~/
int sst {MAXNODES} ; /* Side Street Thru duration =/
int ssl{MAXNODES} ; /* Side Street lLeft duration */
int mstb[MAXNODES] /* Main Street Thru start time */
int mste {MAXNODES] /* Main Street Thru end time =/
int mslb [MAXNODES] /* Main Street Left start time */
int msle [MAXNODES]} /* Main Street Left end time */
int sstb{MAXNODES]) /* Side Street Thru start time ./
int sste {MAXNODES] /* Side Street Thru end time */
int ss1b{MAXNODES] /* Side Street Left start time */
int ssle[MAXNODES) /* Side Street Left end time */
static int tr_mstb[MAXNODES] ; /* HMaln Street Thru start time x/
static int tr_mste[MAXNODES] ; /* Main Street Thru end time */
static int tr_mslb(MAXNODES] ; /* Main Street Left start time */
static int tr_msle{MAXNODES} ; /* Main Street Left end time */
static int ir_sstb[MAXNODES] : /* Side Street Thru start time */
static int tr_sste[MAXNODES] ; /* Side Street Thru end time */
static int tr_sslb{MAXNODES] ; /* Side Street Left start time */
static int tr_ssle(MAXNCDES] ; /* Side Street Left end time */
static int set_phase [MAXNODES] ; /* Switch/Keep current phase */
int req ; /* Index for requested node */
int reg_node ; /* Requested node 1.D. number */
int time ; /* Current time */
int tr_time ; /* Current time transformed, main
street thru now at zero */
int sum{MAXNODES] ; /* Sum of all phases 8 each node */
FILE *Plans ;

static int get_parameters;

/‘

flag to indicate if parameters have been

read in from the file fixed.plans

A49

*/

APPENDICES

/* only read the data file the first time this routine is called */

/*

if (!'get _parameters}
am================= READ THE DATA FROM INPUT FILE =re=sa=ss==s==s=xx */
Plans = fopen("fixed.plans”, "r™)

fscanf (Plans, "%d", &no_nodes) ;
fscanf (Plans, "%d", é&cycle} ;

for(i = 1; 1 <= no_nodes; ++i) |
fscanf (Plans, "%d %3 %d %d %4 %d",

énode id[i), &offset(i], &mstli], émslii], esstfii}, &ssli]) ¢
sum{i} = mat{i]l + msl{i} + sstlij + sslii] 7
if(sum{i] !'= cycle) fprintf(stderr,™\nwWARNING!!!!! =-- Phase durations for node

t3d do not sum to the cycle length of 33d%, i, cycle) ;

/*

I/*

}

m——escscx=m=as===== SET PHASE CHANGE TIMES ON CLCCK =s=zz2===z=======x=x= */

for(i = 1; i <= no_rodes; ++i) (
mstb{i] = offset(i} : /* Main Street Thru */
i1f((offset{i] + mst(i]) > cycle)
mste{i] = offset{i] + mst{i) - cycle - 1 ;
else mste{l) = offset[i] + mst{il ;

{f(mgl(i] == Q)
mslb(i} = msle{i] = mste[i} ;
else {
mslb[i] = mste(l] + 1; /* Main Street Left *~/
if({mslbli) + mslli)) > cycle)
msie{i] = mste{i) + msl{i] - cycle - 1 ;
else msle[i] = mste{i] + msl(i] ;
}

gstb(i) = msle{il + 1 ; /* side Street Thru */
if((sstb{i] + sst[i]) > cycle)

sstel{i] = msle(i] + sst(il) - cycle - 1 ;
else sste[i) = msle(i) + sst{i] ;

if{ssl{i) == O)
ssilpii) = ssleli} = sstefi} ;
else {
sslb{l) = sstefi) + 1 ; /* Side Street Left */
if((sslbli} + ssl{i]) > cycle)
ssie[i] = sste[i) + ssl[i) - cycle - 1 ;
else ssle{l] = sste{l] + ssi[i] ;

mmmammess=m===x TRANSFORM PHASE RANGES TC START AT ZERQ =ssscsmxsmzmmmms */

tr_mstb[i] = 0 ;
tr_mste{i) = mst[i) - 1 ;
tr_mslb(i] = mst(l]

tr_msle{i) = mst[i} + mslii} - 1

tr_sstbii] = mst{i] + msl(i) ;

tr_sste{l) = mst[i] + ms){i) + sst{i] -1

tr ssibfi} = mst[i] + msl{i) + sstii] ;

tr_ssle(i) = mst{i] + msl(i] + sst(i] + sslli] - 1

A-50

APPENDICES

/t

/-

/*

/t

/i

} /* end for */

fclose(Flans);
get_parameters = 1;

/* end "if ('get parameters)” */

rx==ss========= Assign parameters from NETSIM variables =========szs=== r/
assign time and req_node from parameters passed from netsim */

time = *t;
reqg_node = *r;

if(req _node == 335) req =1 ;
else if(req_ncde == 36%) req = 2 ;
else if(req_node == 401) req = 3 ;

else if (req node == 483) req = 4 ;
"/t return a zero if the intersection is not one of the
four under the control of this pilan */
else return(0);

E— = mw=w= SET REQUESTED NODE SIGNALS s==exrz=x=scczssmszmz== ¥/

if(time >= offset(req})
tr_time = time - offsetireq] ;
else
tr_time = time - offset{reg] + cycle ;

the bits of the phase number indicate the phase to call */

1f{(tr_time >= tr mstb(req}) && (tr_time <= tr_mste[reql)) |
set_phase(req) = 1 ; /* phase 1 */

}

else if((tr_time >= tr_mslb(req]) && (tr_time <= tr_msle(reql)) {
set_phase(req] = 2 ; /* phase 2 */

}

else if ({tr_time >= tr_sstb(req}) && (tr_time <= tr_sste(reg))) {
set_phase[req) = 4 ; /* phase 3 */

}

else if((tr_time >= tr_sslb(req]) && (tr_time <= tr_ssle(req})) {
set_phase(req) = B ; /* phase 4§ */

}

fprintf(stderr, "node: %d time: %d phase: %d\n",req node,time,set phaselreq]);

tll

re

}

turn (set_phasereq}) ;

/tmmnmmmzxaxmcscsexmmnnncex===x END OF FIXED =c=wecacaxssammaz==sszsc== *t/

Input TFile:

33

4 90
5 €68 50 15 20 5

3¢9 79 50 0 40 0
401 26 40 15 25 10
483 78 40 10 30 10

A-51

APPENDICES

APPENDIX K: External Semi-Actuated Signal Control Logic

/¥ remssEerasSEEsCSC RS S ST C S AP RETEISErSSTSSSESSS=aSSSSsSSESSSS == ===/

/r= Semi~Actuated Control Implementation =v/

/= Signal Switching Using Semi~Actuated Control =*/
/x= =~/

/= City: Tucson, Arizona =/

/r= Intersections: Speedway Blvd. & Campbell Ave. =x/

/*= Campbell Ave. & University Blvd. =t/
/r= Sixth St. & Campbell Ave. =w/

/o= Broadway Blvd. & Campbell Ave. =+/

/*= =*/

/*= Programmed By: Greg Tomooka and Doug Tarico =t/
/= Completed: October 28, 1992 =%/

/*= Revised: October 28, 1992 =¥/

/= ==/
[trEmmsr=secssrsrmE IS ESSR S SIE CCrSrCrrNrAECCSSEEEESSorsmSSSSTs=&=== ====’===i/
/‘===========-===a---=============:===’=====x=‘==,======‘=======: =====-==t/
/*= Program Specifics: =*/

/*= =*/

/*= Called By: translate =%/

/%= =x/

/= Subroutines Called: start_gap, update_gap, switch_phases =/

/== =*/
7 e e e e e . == —
/== Assumptions: =t/

= 1) All phases allow permissive right turns =nf
/= 2) Time resolution is 1 second. =*/

/*= 3) Phase duration of zero indicates a non-existent phase. =/

/= 4) Current network has a maximum of four phases at each node. =*/

/- 5) Parameter information must have nodes read in the same -/

/*= order in which they occur in the detector data =/
/tg -t/

/t---- FY Y == - - -n:as-”l/
/*= INPUTS: =x/

/= =t/

/= The timing plans are read from file 'semi_act.dat’ =*/

/= in the following format: -/

[t= =t/

/= Number of intersections =*/

/= Cycle length =/

/x= Intersection #i ID number, yleld point, P min. green, P max. =%/

/[*= green, P unit extension, P added time per actuation, =/

/*= P max initial green, P min. gap, P max. gap, =*/

AL P time to reduce to min. gap, P force-off time, -/
/*= =*/

/*= where 1| = 1 to total intersections, =/

[*= MST = Main Street Thru traffic with permissive left turns =%/

/*= MSL = Main Street Left turns =%/

/*= §5T = Side Street Thru traffic with permissive left turn =/

/*= SSL = Side Street Left turns =%/

/*= and P = phase denoted by: =/

/*= P = MST, MSL, 5ST, or SSL. =¥/

/r= =/

/*= Parameters passed in are: -t/

/x= sync : NETSIM sync clock time =%/

/= node_id : intersection ID number -t/

/= phasel, phase2, phasel, phased : =/

VAL Counts of the number of calls on each phase. =t/

A-52

APPENDICES

/*= =*/
/rmswrmrmm=sam=cesss=srsSss ISaESESseS=sSSEaSSSSSSXESsISSeSSSImSess s=sssss=x/
/S r= QUTFUTS: ==/
/x= ==/
/= Returns an integer ccde which specifies which phase should be =%/
/*= the currently active phase for the specified intersection. =*/
/*= =*/
/'==x==g===‘s=’=g==g’=====‘=g,“‘==’::a_—_======:=====s==x=‘=‘s==== ======g=t/
/= Program Description: =*/
/== - =*/
/x= This program will simulate a semi-actuated traffic signal =x/
/r= controller. Essentially, the controller simulated here =%/
/*= operates under the following conditions: ="/
2= ==/
/*= 1, Main street through may terminate only at a specified =r/
S*= vield point if there is demand on any other phase, =x/
/*= 2. All other phases (except MST) may terminate due to =*/
/== force-off, maximum green reached, or allotted green time =%/
/x= expended, =*/
/== 3, All other phases (except MST) may be active after the =x/
/== yield point (given there is demand for that phase) and =x/
/= can only change to a phase in the following seqguence up =*/
[*= to and including phase 1: 2, 3, 4, 1, =~/
/x= 4. To assure prcgression, MST must be active between the =x/
/= the following two points: The last phase's force-off =%/
/= point in the cycle and the yield point, =/
/= S. If there are no calls on any phases, the controller will =-*/
/*= rest in MST (i.e., phase 1), and =%/
/= 6. Phase 1 shall always refer to MST. =%/
/*= =t/
/rm=zz==w=== e ERxrEETwEEREEICsrsESRSs=S=s==z=s I=sszss=t/
$include <stdio.h>
¢define MAXN 5 /* maximum number of nodes
#define MAXP 5 /* maximum number of phases */
/*=== function declarations wm==t/
int switch_phases () ;
float start_gap() ;
float update_gap() ;
/* AR SSErEIsSETASECmREEaE GLOBAL VARIABLES To=srcSsrasEamsSaosesas
int n; /* current node index */
int o ; /* current phase index =/
static int gap activated[MAXN] ; /* flag denoting if gap at this

node in the current phase

has been activated */
static int gap_out [MAXN] ; /* flag: gap-out has occurred */
static float max_gap[MAXN] [MAXPj ; /* maximum gap between calls
static float gap{MAXN] ; /* current qgap "size” v/
static float min_gap(MAXN] [MAXP] ; /* minimum gap between calls
static float time_to_reduce{MAXN] {MAXP] ; /* time to reduce to min. gap */
static float reduce_time[MAXN] (MAXP] ; /* current time_to_reduce

time elapsed */
static float force_off{HAXN)lMAXP) ; /* phase force-off time (max) */
static int current_phase[MAXN] ; /* current phase on node */
static float current phase_start[MAXN]} ; /* current phase start time */

A-53

*/

v/

*/

*/

APPENDICES

static int init_done [MAXN!

static float min_green[MAXN) [MAXP) ;
static float init_qreen{MAXN] [MAXP] ;
static float total green_used[MAXN] ;
static float rtotal_green[MAXN][MAXP)} ;
static float current_time ;

static float time_since_last_call [MAXN]
static int opposing_calls {MAXN] ;
static int total_callsi{MAXN] {MAXP] ;
static flcat Dbeg_per{MAXN] ;

static float end_per|(MAXN] ;

static FILE *out;

/* mmre—smmzess===ac

START OF SEMI-ACTUATED PROGRAM

/* flag denoting whether
initial green £ime on this
phase has elapsed x/

/* mirimum green time per

phase */

/* actual initial green */
/* amount of green time used

in current phase */

/* actual total green */
/* current, "internal”™

clock time */

; /* time since last call in
current phase */

/* flag denoting whether or
not an opposing call has
been read for the activated
phase on this node E [0,1]) */
/* total calls on each phase
since last signal change */
/®* begin time cf permissive
period */
/* end time of permissive
period */
/* file for any status
messages */

=mmmsz=s=zzczcxx= %/

int semi_ act(int sync, int node_id, int phasel, int phase2, int phase3,

int phased)
{
static int nodes_processed ; /* number of nodes processed */
int par_node_id ; /* parameter node number
static int no_nodes ; /* total number of nodes
in timing plans file =/
static int no_phases ; /* maximum phases per node */
static int yield_pecint {MAXN] ; /* sync phase yield point */
static float add_before green{MAXN] [MAXP] ; /* added green per call
before phase activated */
static float max_init green(MAXN] (MAXP) ; /* maximum initial green */
static float add during_green{MAXN]IMAXP) ; /* added green per call
during activated phase */
static float max_green[MAXN] [MAXP] ; /* maximum green time, but
none for MST (phase 1) */
float new_green ; /* temporary new green */
int sync_time ; /* NETSIM sync time
int calls [MAXN) [MAXP) ; /* calls made on each phase

char header [80] ;
float allowable gap ;

static float time_since yp[MAXN] ;

FILE *Parameters ;
static int initialized=Q;

for current time unit */

/* parameter data title info */
/* gap size used when checking

for gap-out */
/* time elapsed since yield
point was reached */
/* parameter input file */

/* flag to indicate if
initialization has been done */

A-54

*/

*/

APPENDICES

/t AR KA A A A KRR RN R T N T A AN T E T R A R A A T A AR AT R TN N N R F AN */
Iy memm—eee— > EXECUTE THIS INITIALIZATION ONLY CNCE! === */
/I R R KA R A A A R A AR R AT T R R AR A AN F AT P RN R AT T RN RN o ./

-

if (l'initialized) {
/* S==msexs=e READ PARAMETERS IN FOR EACH NODE IN GRID =========s=== ~/
Parameters = fopen("semi_act.dat","r"j ;

fgets (header, 8C, Parameters) ;
fscanf (Parameters,"8d %d", &nc_nodes, &nc_phases) ;
fgets (header, 80, Parameters) ;
fgets (header, 80, Parameters) ;

for (n = 1; i <= no_nodes; ++n} |{
fscanf (Parameters, "%cd %d %f &f", ipar_node_id, ¢yield_pointin],
ibeg_per{nj), &end_peri{n}) ;
fgets (header, B0, Parameters)
fgets (header, B0, Parameters) ;
for (p = 1; p <= no_phases; ++p} {
fscanf(Parameters,"$f %f Af %% ¥f &L %L %L Af",

&émin_greeninj(pl, ¢max_green{n} [p],
tadd_before_greenin!(pj, éadd_during_green(n][p},
émax_init_green(n]{p], é¢min_gapinl]ipl, iamax_gapin} {p},
stime_to reduceln)[p], cforce off(n](pl) :
} /* End for (p = 1; p <= no_phases; ++p) */
} /* End for (n = l; n <= no_nodes; ++n) */

fclose(Parameters; ;

/= INITIALIZE VARIABLES - =/
out = fopen("semi_act.out”,"w") ;
current _time = 0.0 ;

nodes_processed = 0 ;

for (n = 1; n <= no_nodes; ++n) ({

time_since_last_callifn) = 0.0 ; /* Initialize time since

last call */
gap_activated[n] =0 3 /* Set gap activation off =/
gap_out [n] =0 ; /* set gap-out false */
current_phase(n] -1 /* Set all nodes to MST */
init_done(n) =0 ; /* Set initial green flag */
current phase_startin} = current_time ; /* Set current phase start */
total_green_used[n] = 0.0 ; /* Set total green used */

for (p = 1; p <= no_phases; p++} {
init _green(n){p] = min_green{n)ipl ;
total greenin)(p] = min_green(nl[pi;
} /* End for (p = 1; p <= no_phases; p++) */
} /* End for (rn = 1; n <= no_nodes; ++n) */

initialized = 1;

7% [22222 2R T2 2R RS R 2L RS AR SS 2Rl x/
/% emswme=s==ss==ss END OF ONE-TIME INITIALIZATION =ewass==sscc===== = */
a4 IETEEZEZEESAR IR R SRR AR SRR RS RS bR -/

/R R R R M R S B W AR W R aacrnzesxmwe ¥ [

VAR AR BEGIN CONTROL LOGIC Ty

/ H e o R R R RN EE A MmN wE s m—

A-55

APPENDICES

/>

/n—

/*

/*

/t

/t

/t

fprintf (out,"\nCurrent Time: #%5.2f", current_time) ;
======== CONVERT PARAMETERS PASSED FROM CALLING ROUTINE =========
if (node_id == 335)
n=1;
else if (node_id == 369)
n=2;
else if (node_id == 401)
n=3;
else
n=14;

sync_time = sync ;

calls{nj(l] = phasel ;
calls{n}{2) = phase? ;
calls{nj{3] = phase3 ;
calls(n] (4] phased ;

L

rmps=mccaxz=s=sz==x===== [PDATE TIME SINCE LAST CALL ===s=z=rass=sx==x=
if (callsin){current_phasejn]) > 0)

time_since last_callin] = 0.0 ;
else

time_since_last_callin] += 1.0 ;

eemmeamstsmanes==s=x BEGIN LOOP OVER ALL PHASES =ssr=ssxsmsssaxcsmzz=x

for (p = 1; p <= no_phases; ++p) {

O UPDATE TOTAL CALL COUNTER N

total_calls(n) (p) += calls(n}{p]

- Set "opposing calls™ flag Y

if ((calls[n}(p} » 0) && (current_phase(n) != p))
opposing callsin) = 1 ;

ErERxarxrmAREsE e Check if Initial green done =aw

if (((current_time - current_phase_start([n]) > init_green(r]{p)) &&
(current_phase(n] == p))
init_doneln] = 1 ;

carwrzz=xzx=szz=xza==z REDUCE GAP IF APPROPRIATE ==ss=s=zss=amszoz=zac

if ((current_phasel(n) == p) & (p !'= 1) && (opposing_calls{n})
&6 (!gap_out{n})}) {
if (gap_activatedin])
gap{n] = update_gap(} /
else /* 'gap_activated(n) */
gapi{n] = start_gap(} ;
) /= End if ((current_phase(n] == p} && (p != 1) && ...} */

A-56

*~/

*/

*/

*/

*/

*/

APPENDICES

/* ==mzsam==zz=cs==z=======xx CHECK FOR GAP-OUT ==s=====ss===sss=s======= */
if ({current_phasein] == p) & gap activatedin] && !gap_cutin}) (
if (gapln) <= add_during_green!n]{pl} {
if (gapin) > mirn_gapirn}(p])
allowable gap = gapinl;
else
allowable gap = min_gaplin](p];
}
else
if (add_during green(n])(p] » min_gap(n}(p]}
allowable_gap = add_during_green(nj({p};
else
allowable gap = min_gap(n](p]};

if (vime_since_last_callin] > allowable_gap) |
gap_out(n] = 1;

fprintf {out, "\n\n >>>> gap-out has occurred <<<<");

fprintf (out, "\nNode: %3d Gap = %5.2f Time Bet. Calls = %¥5.2f Last Phase:
xd\n", node_id, gap(n], time_since_last_calllnl, p) ;
fprintf (out, "Extension time: %5.2f Allowable gap: 45.2f Min Gap: %5.2f \n",
add_during_green{n}(p], allowable_gap, min_gap(nj(pl);

} /* End if time_since... */

I ’* End if current_phase... */
/* =mzzemzmsz=ssczsss ADD EXTENSION TIME IF NOT MST ==sssczxsem=zcm=s=== ¥/

if ((current_phase[n} == p) && (p != 1) && (!gap_out(n])
&6 {calls[n)[p] > 0)) {
new_green = add during_green(n](p] * callsin][p] + total_green{n}{p} ;
if (new_green < max_green(n](p])
total_green(n){p] = new_green ;
else
total_green(n]{p] = max_greenin}[pl] ;
) /* End of if ((current_phase(n] == p) && ... =/

/* memememsssss=sex ADD INITIAL TIME TO NON_ACTIVE PHASES ======a=z==xx */

if ((calls{n)(p] > 0} && (current_phase(n] != p} && (p != 1)) |
new_green = min_greenin](p] ¢ add_before_green[n](p} * total _callsinllp} ;
if {((inlt_green{n](p] < max_init_green{n](p)) é&
(new_green < max_init green{n} (p}})
init_green{n]{p] = new_green ;
else
init_green{n]{p] = max_init_greenin]{p} ;
} /* End of if ((calls(nl{pl > 0) && (current_phase[n]) == p}) */

} /* ~m=== END OF LOOP OVER ALL PHASES (p loop) ==w== */

/* e e ek CHECK IF PHASE CHANGE SHOULD OCCUR - e o */

p = current_phaseln);

/* ===s=e FIRST CHECK FOR SWITCH OUT OF MST =m======= =*/

if (p == 1} |
if ((opposing_calls(n]) &é (sync_time == yield point(n})) {
time _since_yp[n} = 0.0 ;
fprintf {out,™\n\nCalling switch_phases -- yielding to side street\n™);

A-57

APPENDICES

fprintf (out,"\nNode: %3d sync time = %3d yield point = %3d Last Phase:
sd\n", node_id, sync_time, yielc_pointi{n], p) ;
current _phasein) = switch_phases(} ;
fprirntf {out, "New Phase: %d\n", current_phase([nij)
} /* end of if (opposing calls,.. */
} /* end of if (p == 1) =/

/* ====== CHECK FOR SWITCH QUT OF OTHER PHASES ======== =x/

/* ===== CHECK FOR END OF ACCUMULATED GREEN TIME ===== */

if (init_done{n] && opposing_calls[n] &é
{total green_used{a! >= total greenin](pl) } |
fprintf(out,"\n\nCalling switch_phases -- total green used up (out of
green)\n"™);
fprintf (out,"\nNode: %3d Tot Grn = %5.2f Tot Grn Usd = %5.2f Last Phase:
d\n",node_id,tctal_green(n) {p},total green_usedin],p);
current_phase[n) = switch_phases{() ;
fprintf {out, "New Phase: %d\n", current_phase(n}) ;
) /* End of if ((init_done(n] && opposing_calls{n] ... */

/* =wzz=ssssszszsx= CHECK FOR FORCE-OFF ====s=z2sz=s====z %/

if ((time_since_ypin] >= force_off(n]ip])) |
fprintf (out,"\n\nCalling switch_phases -- force-off\n");
fprintf {out, "\nNode: $3d VForce 0ff = %5.2f Yeild = 83d Sync = %3d Last
Phase: %d\n", node_id, force_off(n)[p}, yield point{n}], sync_time, p);
current_phase{n) = switch_phases{() ;
fprintf (out,"New Phase: $d\n", current_phase(n]}) ;

} /* End of if (total green_used(n] >= ..., */
} /* end of else */

/* mo==s=w== CHECK FOR MAX GREEN EXCEEDED ==sas=za=== */
p = current_phase(n];

1f ((p !'= 1) &t (total green_used{n] >= max_green(n](p])) {
fprintf (out, *\n\nCalling switch_phases -- max-green (terminate phase)\n"):;
fprintf (out, "\nNode: 83d Max green = 85.2f Grn Used = %5,2f Last Phase:
td\n", node_id, max_green{n)[p]), total_green_used[n}, p) ;
if (max_green[n] (p] == 0.0)
fprintf (out, "\n\nNote that phase 3d was SKIPPED here because it does not
exist '\n\n\n", p) :
current_phase{n] = switch_phases() ;
fprintf (out, "New Phase: ¥%d\n", current_phase(n]) ;
) /* End of if ((p!=1) &é total_green_used(n) >= max_green ... */

/* essesszs====sssss=== INCREMENT TIME COUNTERS ss==s=s=zassssosxm===s */
total_green_used(a] += 1.0 ;
time_since_yp{n) += 1.0 ;
nodes_processed += 1 ;

if (nodes_processed == no_nodes) {
nodes_processed = 0 ;

A-58

APPENDICES

current_time += 1.C ;
) /* End if (nodes_processed == no_nodes) ~/

/t-tl-tti!!'-t.ll‘tfiI!t'I"!"'tl::Ii'!tltttltll’!lt'ttlll'!tt'l AEAEEE R RS2 S N

jrenexx FUNCTIONS xxmx/

/llttlﬁlllttlttt‘t'ill!'llit'ttiltttttltlttttttllllttllilttltltit FERRRERRRE AL [

/* ====m=z====x== RETURN PHASE IDENTIFIER TO CALLING ROUTINE ==s======== */
switch (current_phaseln]) {
case 1 : |
return(l);
break;

)

case 2 : {
return(2);
break;

}

case 3 : |
return(4);
break;

}

case 4 : {
return (8) ;
break;

}

default : return(0);

fprintf (ocut,”\n") ;

} /* End of function semi_act */

/* FUNCTIOR: switch_phases() EE=s==ssasassSsess */

int switch_phases ()

{
int phase, next_phase, i ;
int phase_set ;

phase_set = 0 ;

if (p == 1) {
for (i=1; i<4; i++}) {
if (!phase_set) |

phase = (((p-1+i) % 4) + 1) ;

if (total calls{nj{phase} > 0) {
next_phase = phase ;
phase_set = 1 ;

}

}
}
else if (p == 2) {
for (i=1; 1<3; i++) |
if (!phase_set) |
phase = (((p-1+i) % 4) + 1) ;
if (total_calls(n](phase) > 0) {
next_phase = phase ;

A-59

APPENDICES

phase_set = 1 ;

}
}
else if (p == 3) |
for (i=1; 1<2; 1++} {
if ('phase_set) |
phase = (((p-1+i) % 4) + 1) ;
if (total_calls({n}[phase] > 0) {
next_ phase = phase ;
phase_set = 1 ;
}

}

}

else if (p == 4) |{
next_phase = 1 ;

if (!phase_set)
next_phase = 1 ;

init_done(n) =90 ; /* Reset initial greer done flag =/
opposing_calls(n} =0 ; /* Reset opposing call flag =/
total_green_used(n) =C.0 ; A Reset amount of green used */
total_calls(n){next_phase] = 0 ; /> Reset total calls on new phase */
total_calls(n] [p] =0 ; /* Reset tctal calls on prev phase */
current_phase_start(n] = current_time ; /= Set current phase start >/
time_since_last_call(n] = 0.0 ;
gap_activatedin]) =0 ; /* Reset gap activation */
gap_out {n] =0 ; /* reset gap-out status *x/
init_greenin] [p] = min_green{n}[p] ;
total greenin]inext_phase] = init_green{n)|next_phase]};
return{next_phase) ;
} /* End of FUNCTION: switch_phases() */
/* e R DC N Rt FUNCTION: start_qap() - */
float start_gap{)
{
float new_gap ;
gap_activated(n] =1 ;
gap_outin) = 0 ;
new_gap = max_gapl[n] [current_phase(ni} ;
time_since_last_callln) = C.0 ;
reduce_time(n] {current_phase(nj] = 0.0 ;
return(new_gap) ;
} /> End of FUNCTION: start_gap() */
/* S Yp—— FUNCTION: update_gap) [—— */

float update_gapf(}

APPENDICES

fleoat newer_gap ;

if (time_to_;gduce{n][current_phase{n}] t= 0.0}
newer_gap * max_gap[n}(current_phase{n))-((max_qap[n][current_phase{n}} -
min_gap[n][current_phase[n}])/time_to_reduce[n][current_phase(n}})
* reduce_time([n] [current_phaseinl]j ;
else
newer_gap = 0.0 ;

reduce_time{n} (current_phase{n]] += 1 ;

if (newer gap > min_gap([n) [current_phase{njl)
return{nevwer_gapj ;

else
return(min_gap(n] [current_phase[n}}) ;

} /* End of FUNCTION: update_gap() */

A-61

APPENDICES

Input File:

nec_nodes no_phases

-

4 4
node yield beg _per end_per
335 68 c.0 57.0
min max ad_b4 ad_du
22.0 67.¢ ¢.5 5.0
9.0 42.0 0.0 2.0
22.¢C 67.0 0.5 5.0
9.0 42.0 ©.0 2.0
369 79 c.0 35.0
min max ad_b4 ad_du
21.0 66.0 0.5 5.0
c.c ¢c.0 0.0 0.C
16.0 66.0 0.5 4.0
0.0 .0 ©.0 0.0
4C1 26 0.0 56.0
min max ad_b4 ad_du
22.0 67.0 0.5 5.0
8.0 41.0 0.0 2.0
21.0 66.0 0.5 5.0
9.0 42.0 0.0 2.0
483 8 0.0 56.¢
min max ad_b4 ad_du
22.0 67.0 0.5 5.0
8.0 42.0 0.0 2.0
16.0 66.c 0.5 5.0
9.0 42,6 0.0 2.0

maxinit
27.0
9.0
27.0
9.0

maxinit
26.0
0.0
21.0
0.0

maxinit
27.0
8.0
26.0
9.0

maxinit
27.0

[y

Lo e S]
(SRS

mingap

—
[

O = O
o = O

mingap
1.1

[

1.
1.
1.

maxgap
7.

N N
o wnowm

maxgap
7.5

o 2O
. e
o 0o

maxgap
7.5

N~ R
o v o

maxgap
7.5

2.0
6.0
2.0

A-62

reduce

20.0
5.0

20.0
5.0

reduce

20.0
0.0

15.0
0.0

reduce

L%
v O W
o oo

reduce

20.0
5.0

15.0
5.0

force-off
100.0
15.
15.
57.

o OO

force-off
100.0
0.0
35.0
0.0

force-ofI

100.0
12.0
44.0
56.0

force-off

10¢.C
12.0
38.0
50.0

APPENDICES

APPENDIX L: TRAF-NETSIM Input File for Simulated Network

Campbell

Ooug Gettman,

o]
900

275
335
335
369
368
4C1
401
483
483
538
333
334
334
335
335
337
399
401
401
403
481
483
483
484
484
485
403
485
175
275
274
275
215
276
8274
8175
8276
233
333
332
333
433
333
8233
8332
8433
234
334
434
334
8234
8434
237
337
338
337

1

Arterial.

3352440
2752440
3691565
3351565
4011445
3691445
4832350
4012350
5382540
4832540
3341315
3331318
3351305

3341305 1

3372685
3352€85
4012205
3992205
4032690
4012690
4832210
4812210
4841380
4831380
4851345
4841345
4852360
4032360

275
175
275
274
276
275
274
175
276
333
233
333
332
333
433
233
132
433
334
234
334
434
234
434
337
237
337
338

500
500
500
500
500
500

500
500
500
500
500
500

500
500
500
500

500
500
500
500

309

180 180

1490
300

200
120

180
120
15¢C
180

250

80
7C
150

100

100

150

180

150

180

180

250

60

1590

129

12¢

-
w
o

150
150
100
150

15

80

150

150

100

100

External control
Deug Tarico
2

RO A W S o b b e D R) e e L e b e R e e B W WP OOWWWRLLWWW S WWAWWWW S W s LW

N

N

N~

S

s

—

-

[

o

-

L e e e

10

337

274

37¢C

334
1 402
368
484
35%
539
481
234
433
1 275
434
237
369
369
499
303
483
401
581
384
538
403
584
486
401
276

o

—

175

338

334

233

332

335

21

3693
17s8

01
275
483
335
538
369
€38
401
335
332
337
333
338
334
403
398
404
399
484
480
485
481
486
483
585
303
335

8175

276

8274
8276

274
275
275
275
433

B233

334

8332

233

8433

333
333
333
4§34

8234

333 234

338

437

8434

334
334
437

8237

335

8338

00

0
334
276
3€8
337
399
370
481
503
537
484
434
233
369
234
437
215
483
299
485
369
538
381
584
401
585
384
484
404
274

335

175

333

335

335

237

A-63

of nodes 355,369,401, 483
§2University of Arizona

31100

Otucnl2
369
175
401
275
483
335
538
369
638
401
335
332
337
333
318
334
403
3o8
404
399
484
480
485
481
486
483
585
303
335

276

274

434

437

335

2569

35
33
35
35
35
35
35
35
40
30
35
35
35
38
35
35
30
30
35
35
k]
30
35
35
35
3s
30
30
35
35
35
35
35
35

35
35
35
35
35
35

35
35
35
3

s
35
35
35

O CO0OO0C 00O OOCDCOOO0DO0OO0O0OO00MNDOO 000 OoO0OOo

(=]

~

0
3233

Fo)
19}

01
c2

o= e)
e w

—

P
O

b

-

b Rd D e g

O
O O S S = S =R SR

I N

o
b

—
[y

-

b

o)

[R o =
[e

b

e N
N

e
[

e

I S
R

[
[

APPENDICES

437
337
8237
8338
8437
368
369
370
369
8368
8370
293
399
398
399
499
399
8298
8398
8499
303
403
404
403
8303
8404
K1:38
481
480
481
581
481
8381
8480
8581
384
484
584
484
8384
8584
488
485
585
485
8486
8585
537
538
539
538
638
538
8537
8539
8638
275
275
333
334
337
337
369
399

337
237
.37
338
437
369
368
369
370
368
370
399
299
399
398
399
499
299
398
499
403
303
403
404
303
404
481
381
481
480
481
581
381
480
581
484
384
484
584
384
584
485
486
485
585
486
585
538
537
538
339
538
638
537
538
638
175
276
332
234
227
437
370
398

5C¢C
500

50¢C
500
500
5¢c0

500
500
500
500
500
500

50¢C
500
50C
500

500 1

50C
500
500
500
500

500
500
500
500

500
500
500
500

500
500
500
500
50C
500

150

75

100

120

10C

100

B0

100

100

180

100
100
100
100
100
100
100
100

-
€]
(o)

-y
(o]
(o]

200

80

WRNNWWNRNRRN WM R W R R e e Wk 2 N W R W RNWE R WE R W RN W NN

b

-

bt

-

[y

b

335 237
8437
337
337
337
279
8368
401 368
8370
369

369

401 4998
8299
299 401
8398
338 299
84389
399

399

399

404 485
8303
485 401
84C4
403

403

483 581
8381
381 483
8480
480 381
8581
481

481

481

485 584
8384
483 384
8584
484

484

585 484
B4B6
484 4021
8585
485

485

483 539
8537
638 537
8538
537 483
8638
538

538

53R

275

333

333

334

337

368

399

3384

333

338

335

398

499

501

303

480

581

483

483

485

403

486

638

483

539

274
233
433
434
338
368
295
499

A-H4

237

370

368

485

581

381

584

384

539

537

483

100
100
100
100
100
100
100
100

as
35

[N NI N
wuuww

25
25
30
30
25
25

30
30
35
35

25
25
30
30
25
25

a5

30
30

35
35
35
35
40
40

Ya b e
yr b

Vs

[I I SRS e

o
P P S B e e e e e R eI e e U

O O =l el

[
—

[
(SIS]

—-
[y

Py
-

[
P b b

[

e b
N e]

[S
s

[
S

(SRS NN SIS SIS B S
]

APPENDICES

403
481
481
484
485
538
8175
8276
8433
8434
8338
8368
8299
8499
8404
8480
8384
B486
8537
8638
481
484
484
486
233
334
334
337
335
338
399
403
401
404
274
175
234
333
368
335
398
299
480
381
384
483
537
638
175
274
27¢
233
332
433
234
434
237
338
437
3€8
370
299
398
499

303
381
581
584
585
539
175
276
433
434
338
368
299
499
404
480
384
486
537
638
483
483
485
485
333
333
335
335
337
337
401
401
403
403
275
275
334
334
369
369
399
399
481
481
484
484
538
538

160
100
100
100
100
100
100
100
100
100
100
1090
100
100
100
100
100
100
100
100

23319889
250177¢C
1302440
130227¢C

150

270

502350
48017490
3701680
1402550
1502570
4101210
1401200
1401390

801330

55
5
66
S
78
5
5
53
$
73
43
5
18
2

2
90
14
S0

¢]
90
9C
29
90

8
17
S0

3
95

2758175
2758274
2758276
3338233
3338332
3338433
3348234
3348434
3378237
3378338
3378437
3698368
3698370
3998299
3998398
3998499

230
460
210
200

30
100
450
270
130
200
290
260
120
150

25

22

22

18

19
40

14

403
481
484
485
538
538
8274
8233
8234
8237
8437
8370
8398
8303
8381
8581
8584
8585
8539
8332
401
538
403
585
332
433
275
369
237
437
369
483
303
485
27%
335
434
335
370
401
401
499
483
581
584
485
539
483

404
480
384
48¢€
537
638
274
233
234
237
437
370
398
303
3l
581
584
585
539
332
483
483
485
485
333
333
335
335
337
337
401
401
403
403
275
275
334
334
369
369
399
399
481
481
484
484
538
538

A-65

6001
350
250
270
602
160
5701
3102
220
140
4301
3301
130
110
€0
5
39
S
66
5
5
27
5
32
22
S
23
3

[
[o 3N BN &)

[
e eReReNeNel oo e RS

(o]
OO0 000 DO OO0

[S i

[
Q

—
OO
oo

10C
i0cC
100
100
100
150
460
37¢C
18¢C
600
260
83¢C
310
61¢
590
820
750
600
59¢
15
90
8
90
14
80
S0
19
390
27
8
80
1
95

30
340
289
415
160

S0
310
450
160
210
350
100
100

70

25

53

22

54

31
70

47

-

MRONONNNNNDRNNRNNRNDRN NN
[o e ol S e

APPENDICES

3903

404

381

480

581

384

584

486

585

537

539

638

175 11
274 11
276 11
233 11
332 11
433 11
234 11
434 11
237 11
338 11
437 11
368 11
370 11
299 11
398 11
499 11
303 11
404 11
381 11
480 11
581 11
384 11
584 11
486 11
585 11
537 11
539 11
638 11

4038303
4038404
4818381
4818480
4818581
4848384
4848584
4858486
4858585
5388537
5388539
5388638

337 335
334 335
334 335
337 335
275 335
369 335
369 335
275 335
335 369
401 369
368 369
370 369
403 401
399 401
399 401
403 401
369 401
483 401
369 401
483 401

e AEE RN REERC 4 AR EE ARt RS AES A AR AR A S EE R NRE L ERE RS EERT -

481 483
484 483

-

325
325

325
325

200
200

8
150
320
320

120
120

[R W S e Y Y I N N . S

0
0

8}
¢}

[¢}
0
0
0
0
0

0
0
0
0

M ~d D = 4

9
12
15
16
17
18
19
20
21
23
25
26
27
30
33
34

1 2900 35§
1 2900 37

€0
60
700
700
60
60
700
700
60
60
250
60
60
60
70C
700
60
€0
500
500

60
60

1
1
0
0
1
1
0
0
1
1
0
1
1
1
0
0
1
1
0

0

1
1

2
?

2

3250
3250

3250 1

3250

3200
3200

1200

2

22
24

28

2 1200 31

2 2900 38
2 2900 38

60
60

60
€0

60
60

60
60

60
60

A-66

1
1

-

1
1

3 3250 3
3 3250 6

3 3250 11
3 3250 14

3 1200 29
3 1200 32

60
60

60
60

60
60

311
261
361

~
v

50
181
181
583
633
583
261
361

90

40

80
583
633

90

40

90
449
449
633
583
261
361
311

Py

1

[arra

1133
1083
1083
889
839
789
BR9
789
889
832
789
€83
683
589
539
485
589
539
354
304
254
354
254
304
254
50
50

0

EaEEiEERRAEAERi T EEEEERER AR IIEERAAR 4 EEREY EIEESRREEE

35

35
35
35
35
33
35
3%
335
ER]
35
36
36
36
36
36
36
38
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
3¢
36
36

42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42

42
42

APPENDICES

481
484
538
401
538
401
275
333
334
335
337
369
399
401
403
481
483
484
485
538
333
334
337
399
403
481
484
485
275
538
275
275
275
275
333
333
333
333
334
334
334
334
335
335
335
335
337
337
337
337
369
369
399
339
399
399
401
401
401
401
403
403
481
481

483
483
483
483
483
483
175
233
234
275
237
335
299
369
303
381
401
384
403
483
90
90
90
SC
90
g0
90
90
90
90

MN&MLUN»‘@ﬂ'\lmuHmbﬂ\thNHmmem-ﬁmNmme

o o W W

275
333
334
335
337
369
399
401
403
48]
483
484
485
538
24
28
36

89
42

54
73

COO0O0QLCO0O0OO0O0O0

(ol &)

3000
3000

276
334
335
337
338
370
401
403
404
483
484
485
486
539
35
35
40
28
40
30
27
30
35
30

11122
11122
22122
22122
22122
22122
11122
11122
22122
22122
11122
11122
22122
22122
11122
12122
22122
22122
11122
11122
11122
22122
22122
22122
11122
11122
22122
22122
11122
12122
22122
11122
22122
22122

39
40
41
44
47
48
275
333
334
335
337
369

-399

401
403
481
4863
484
483
538

70U

700

60

60

700

700
335 275
433 333
434 334
369 335
437 337
401 369
499 399
483 401
485 403
581 481
538 483
584 484
585 485
638 538

22122
22122
11122
11122
11122
11122
22122
22122
11122
11122
22122
22122
11122
12122
22122
22122
11122
11122
22122
22122
22122
11122
11122
11122
22122
22122
11122
12122
22122
22122
11122
22122
11122
11122

Qo O = O Q0

2 3000 42 60 1 3 3000 43
2 3000 65 60 1 3 3000 46

274 275

332 333

333 334

334 335 -

335 337

368 369

398 399

399 401

401 403

480 481

481 48B3

483 484

484 485

537 538
35 35 100
35 35 100
40 40 100
28 28 100
40 40 100
30 30 100
27 27 100
30 30 100
35 35 100
30 30 100

11122 22122

11122 22122

22122 11122

22122 11122

22122 11122

22122 11122

11122 22122

11122 22122

22122 11122

22122 11122

11122 22122

11122 22122

22122 11122

22122 12122

11122 22122

12122 22122

22122 11122

22122 11122

11122 22122

11122 22122

11122 22122

22122 11122

22122 11122

22122 11122

11122 22122

11122 22122

22122 11122

22122 12122

11122 22122

12122 22122

22122 11122

11122 22122

22122 11122

22122 11122

A-67

60
60

1
1
311 1083
50 839
181 839
311 839
583 839
311 683
90 539
311 539
583 539
90 304
311 304
449 304
583 304
311 50
100
100
100
100
100
100
100
100
100
100

42
42
42
42
42
42
43
43
43
432
43
43
43
43
43
43
43
43
43
43
44
44
44
44
44
44
44
44
44
44
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45

45
45
45
45
45
45
45
45
45
45

APPENDICES

481
481
483
483
483
483
484
484
484
484
485
485
485
485
538
538
538
538
275
275
275
275
333
333
333
333
333
333
334
334
334
334
334
334
335
335
335
335
335
335
335
335
335
335
335
335
335
335
337
337
337
337
337
337
337
369
369
369
363
393
399
399
399
401

NN,

u-n.e.mm1-4wwwmm.nwmwmu;—»r—-awuuwwuhuuummanwcﬂwmmb

o o

P9 b b e O S AN DN DA NN D W

O O T I el o e el el el el i

11122
11122
22122
22122
11122
12122
22122
22122
11122
11122
22122
22122
11122
11122
11122
11122
22122
22122
11 32590

31 3250

21 150¢
21 3250
31 3000
41 1500
41 3250

11 0
21 150¢C
1 3250

41 1500
41 3250
11 3250
11 1500

21 1500
21 3250

31 1500
31 3259

41 1500
41 3250

11 3000
21 1500
21 3250
32 3000
41 1500
41 3250
42 80
21 1500
11 100
31 160

11 480

31 480

22122
22122
11122
12122
22122
22122
1il22
11122
22122
22122
11122
11122
22122
22122
22122
22122
11122
11122

n
o}

700
€0
700
60
60
60
60
60
700
700
6C
60
700
60
60
60
60
60
20700
60
50
207C0
60
60
60
20700
60
60
20700
700
60
60
6C
60
60
60
250
60
60
60
60
€0
60
60
60

e

[

-

[

[l S]

—

[

11122
11122
22122
22122
11122
12122
22122
22122
11122
11122
22122
22122
11122
122
122

[
-

b
~n
o

(8}

NN
LS I, O T
e

N

~

32590
1500
3250
1500
1500
3250

1500
3250
3000
2000
1500
3250
2000
1500
3250
3250
1500

NNNNNHNNH'—'NNHNMF‘NHN

N

1500
2 3252

N

1500
2 3250

~N

1500
3250

~N

3000
1500
3250

1500
3250

NN R

1 160

1 160
1 1500

22122
22122
11122
12122
22122
22122
11122
11122
22122
22122
11122
11122
22122
22122
22122
22122
11122
11122

)

7

7

60
60
60
60
60
60
00
60
60
60
60
60
60
60
60
60
60
60
60

60
60

&C
60
60

60
60

00
€0
60
60
00
60
60

60

60
60
€0

A-68

o

[S I R T i (S

PR

—

T

[P

W W Wwww

W

W oW W

3250

3250

1500
3250

1500
3250

1500
3250

1500
3250
3250
1500

1500
3250

1500

3250

1500
3250

1500
3250

1500
3250

€60

6C

60
€0

60
60

60
60

€0
60
60
60

60
60
60
60
60

60
60

7060
€0
60

700

60
60

60

60

60

o

[N = -

-

45
45
45
45
45
435
45
45
LE]
45
45
45
45
45
45
45
45
45
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46

46
46
46
46
46
46
36
4€
46

APPENDICES

401
401
401
401
401
401
401
401
403
403
403
403
481
481
483
483
483
483
483
483
483
483
483
483
484
484
485
485
538
538
538
275
2175
275
275
333
33
333
333
334
33¢
334
334
335
335

N DA AN DA OB NN B D DS DN D WWN B WWSs 0N ARNS NS B WWN e W

[

N S O S I I T e = i A e S e S

2]
o

€0
6C
60
60
60
60
60
60
60
60
60
60
€0

11 120¢C
14 0
23 0
31 C
31 1200
34 0
41 320¢
43
11
23
31
43
11
31
11
11 300¢C
16 0
21 2900
23 0
31 0
31 3000
36 0
41 2900
43 [t}
11 600
31 600
11 0
31 0
11 3000
22 1500
42 1500
1550
1550
1050
1050
1550
15250
1020
1020
1550
1550
1020
1020
111
111

[}

OO0 e 000

60
20500
2070¢C

(3]

6C
203060

60

20700
700
700
760
700
700
700

€0

60
20700

60
20706

60

60
20700

60
20700

160
160

60

60

60

60

60

oL uvuoobubLuvuyonnnw

o

W 0 B S 3 e R R W R A 3

335
335
337
337
337
337
369
369
399
399
399
399
401
401
401

WNRN o ONNWE e oS W

R 2 O R YR S O B R R

401 4
403 ¢

60
60
&C
60
60
60
60
60
60
60
60
60
60
60
60

60
60

111
111
1550
1550
102¢
1020
i1l
111
1550
1550
1020
1020
111
111
111

111
1550

cowMULM UM OoOULLUL NOO

o

0
5

1 2 1200 60 1 3 1200
2 ¢ 60 3 <
1 2 1200 80 1 3 1200
12 3200 60 1
11500 80 1
1 1500 60 1
1 1500 60 1
1 1500 60 1
2 o 60 3 0
12 3000 60 1 3 3000
1 2 2900 6 1
2 0 60 3 0
12 3000 60 1 3 3000
1 2 2900 60 1
101 0 150 1 1506
1 0 300 1 1500
1 1500 80 1
1 1500 60 1
1 2 3000 60 1 2 3000
1
1
202 20 0 750 40 15090010000000
202 20 0 750 40 15000010000000
102 10 0 60C 30 30000000000000
102 10 0 600 30 3000000000C000
202 20 0 75C 40 20000010000000
202 20 0 750 40 20000010000000
102 10 0 600 35 30000000000900
102 10 0 600 35 36000000000000
202 20 0 750 40 2000001060000
202 20 0 750 40 20000010000000
162 10 0 600 30 30000000000000
102 10 0 600 30 30000000000000
1 3299 01 110 110 40 20000000010000
1 9999 01 110 110 40 2000000£000000
-4
1 9999 01 110 110 40 20000000000000
1 9999 01 110 110 40 2000C000010000
202 20 0 750 40 25000010000000
202 20 0 750 40 25000010000000
102 10 0 €00 35 30000000006000
102 10 0 600 35 30000000000000
1 9999 01 110 110 40 20000000000000
1 9999 01 110 110 40 20000000000000
202 20 © 750 30 20000010000000
202 20 0 750 30 20000010060000
102 10 0 600 30 30000000000000
102 10 © 600 30 300000006C0000
1 9999 01 110 110 40 20000000010600
1 9999 01 110 110 40 20000000000000
1 9999 01 110 110 40 20000000010000
+m e
1 01 110 110 40 20000000000000
202 20 0 750 40 15000010000000

A-69

€0

6C

60
60

60
60

6C
€0

60

15
15
3¢
30
20
20
30
3¢
20
20
30
30
20
20

20
20
25
25
30
30
20
20
20
20
30
30
20
20
20

20
135

o

b

ot

Bymmxzm mmwmm4

{mmm—E mmwed

46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
56
46
46
46
46
48
46
46
46
46
47
47
47
47
47
47
47
47
47
47
47
47
47
47

47
57
47
47
47
47
47
47
47
&7
47

"
[4

47
47
4"

47
47

APPENDICES

403
481
481
481
481
483
483
483
483
484
484
484
484
485
485
485
485
538
538
538
538
8274
8433
8234
8237
8303
8581
8486
8175
8480
8499

1

2 45 520 5 102 10 0 600 3% 2000C000000000 20
2 60 1550 5 202 20 0 750 35 1560001000000C 12
6 60 1550 5 202 20 0 750 35 150000100CC0CC 15
4 60 550 5 102 10 0 600 30 2500000000000C 25
8 €0 550 5 102 ic 0 600 30 z500000000020C 25
1 60 111 0 1 9999 01 110 110 40 2000000001C000 20
2 60 111 0 1 9999 01 110 1i0 4C 20000000000900 20
3 60 111 o] 1 9999 01 110 110 40 200000C00Ci0000 2C
4 60 111 € 1 999% 01 110 110 40 20000050C00000C o]
4 60 1030 5 152 15 D 600 30 250000C0000000 25
8 60 1030 5 152 15 G 600 30 25000000000008 25
2 60 40 0 0 4502 0 0 0 40 15000C10000000 15
6 60 40 O 0 402 0 o] 0 40 150009010000000 15
2 60 155¢C 5 202 20 0 750 4C 2000CC1C0OCO0CO [%
6 60 1550 S 202 20 0 750 40 20000C10000000 20
4 60 1050 5 152 15 0 600 4C 250C0000080CCC 25
8 60 1050 5 152 15 0 60C 40 25000C000C000C 25
2 60 1550 5 202 20 0 750 40 2000060100C0000 20
6 60 1550 5 202 2 0 7506 40 20000010000002 20
4 60 1050 S 152 15 C 600 30 30000000000000 30
8 60 1050 5 152 15 0 600 30 300000000C00C0 30
274 1715 8276 276 125 8332 3321650

433 130 8233 233 255 B434 434 360

234 210 8437 437 42¢ 8338 3381550

237 540 B3€8 368 130 8370 370 55

303 330 8404 404 720 8381 381 15

581 25 8384 384 145 8584 584 75

4861550 8585 585 29¢C 8539 539 75

175 980 8638 638 980 8537 537 35

4801040 8398 398 850 8299 299 150

499 60

EmmmaR N —— + + t== + mmm=
275 335 369 401 483 538 0
0 2 0 4 o] 5 o] 6 e} 7 o]
85 95 95 100 105 105 110 110 12C

75
0
1

A-70

67
67
47
27
47
47
47
47
47
a7
47
27
47
47
47
47
47
47
47
47
50
50
50
50
50
50
50
50
50
50

20
140
147
170
210

