PRESENT STATUS OF MANAGEMENT AND TECHNICAL PRACTICES ON ALLUVIAL FAN AREAS IN ARIZONA

State of the Art

Final Report

Prepared by:
Robert L. Ward
Consulting Engineer
706 North Gentry Circle
Mesa, Arizona 85203

November 1988

Prepared for:
Arizona Department of Transportation
206 South 17th Avenue
Phoenix, Arizona 85007
in cooperation with
U.S. Department of Transportation
Federal Highway Administration
The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Arizona Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names which may appear herein are cited only because they are considered essential to the objectives of the report. The U. S. Government and The State of Arizona do not endorse products or manufacturers.
Present Status of Management and Technical Practices on Alluvial Fan Areas in Arizona

As an assessment is made of alluvial fan flooding problems in the southwestern United States, with particular emphasis given to such problems as they presently exist in Arizona. A review is made of state-of-the-art technical procedures and floodplain management practices that are presently available for application to this environment. Application of National Flood Insurance Program (NFIP) criteria to highway planning and urbanization on alluvial fans is also discussed. An overview is presented relative to current policy utilization by the Arizona Department of Transportation (ADOT) in planning highway projects to comply with NFIP criteria.

A secondary objective of the study consists of a review of the Corps of Engineers Regulatory Program (Section 404 of the Clean Water Act), as it is presently being applied to alluvial fan areas and ephemeral washes in Arizona. Discussions examine the history of the "404" program and evaluate its impact on highway development in Arizona and explore clarification of such key terms as "ordinary high water mark" and "headwaters." ADOT's policy for compliance with "404" program criteria is also evaluated.

The report concludes with research recommendations that could enhance the ability to effectively manage the development of alluvial fans.
Table of Contents

1 INTRODUCTION .. 1

2 DESERT GEOMORPHOLOGY ... 7
 2.1 The Desert Profile ... 8
 2.2 The Alluvial Fan .. 10
 2.2.1 Alluvial Fan Terminology ... 12
 2.2.2 Alluvial Fan Morphology ... 15
 2.2.3 Mechanisms of Alluvial Fan Deposition .. 21
 2.2.4 Alluvial Fan Dissection ... 24
 2.3 Pediments .. 30

3 NATIONAL FLOOD INSURANCE PROGRAM ACTIVITY IN ARIZONA 36
 3.1 Federal Program .. 37
 3.2 State Program .. 40
 3.2.1 State-Owned Lands ... 40
 3.2.2 State Flood Control Assistance Programs ... 40
 3.2.3 State Coordinating Agency ... 41
 3.3 Local Programs ... 43
 3.4 ADOT and the NFIP .. 45
 3.4.1 Federal-Aid Highway Program .. 45
 3.4.2 Non-Federal-Aid Highway Program ... 47

4 ROAD DAMAGE AND MAINTENANCE COSTS ON ALLUVIAL FANS 50
 4.1 Highway System Damage Categories .. 51
 4.2 General Comments/Recommendations ... 53

5 ENGINEERING AND REGULATORY PROBLEMS ON ALLUVIAL FANS 58
 5.1 NFIP Problems on Alluvial Fans .. 60
 5.2 Local Floodplain Policies Adopted for Alluvial Fans ... 63
 5.3 Local Technical Procedures for Alluvial Fan Analyses .. 65
 5.4 Critique of Alluvial Fan Regulatory Environment in Arizona 69

6 TECHNICAL PROCEDURES FOR ANALYZING ALLUVIAL FANS 72
 6.1 FEMA Procedure .. 73
 6.2 Edwards and Thielmann Procedure, Cabazon, California ... 87
 6.3 Federal Insurance Administration, 1980 Experimental Procedure 91
 6.4 Soil Conservation Service Procedure ... 97
 6.5 Simulation Of Alluvial Fan Deposition By A Random Walk Model 103
 6.6 Continuous Hydrologic Simulation Model ... 113
 6.7 Corps of Engineers Design Standards for Alluvial Fans .. 118
 6.8 Two-Dimensional Flow Models ... 130
 6.8.1 RMA-2 Model .. 130
 6.8.2 Schamber Model .. 131
 6.8.3 Diffusion Model ... 134
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Arizona Population Statistics</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Basic Desert Profile</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Profile of Hieroglyphic Canyon Fan</td>
<td>17</td>
</tr>
<tr>
<td>Figure 6.1</td>
<td>Critical Depth vs Flow Path Width, Incised Channel With 30-Foot Bottomwidth</td>
<td>93</td>
</tr>
<tr>
<td>Figure 6.2</td>
<td>Critical Depth vs Flow Path Width, Overland Flow Conditions</td>
<td>94</td>
</tr>
<tr>
<td>Figure 6.3</td>
<td>Typical Flood Hazard Delineation For An Alluvial Fan</td>
<td>133</td>
</tr>
<tr>
<td>Figure 7.1</td>
<td>Flood Damage Curves for Alluvial Fans, 1 Story, No Basement</td>
<td>160</td>
</tr>
<tr>
<td>Figure 7.2</td>
<td>Flood Damage Curves for Alluvial Fans, Split Level, No Basement</td>
<td>161</td>
</tr>
<tr>
<td>Figure 7.3</td>
<td>Flood Damage Curves for Alluvial Fans, Two or More Stories, No Basement</td>
<td>162</td>
</tr>
</tbody>
</table>
Table of Tables

Table 3.1 - Definition of FEMA Flood Hazard Zones 39

Table 6.1 - Toe-Down Depths for Armored Fill on Alluvial Fan Residential Lots .. 126

Table 7.1 - Effectiveness of Management Tools for Specific Flood Hazards .. 152

Table 7.2 - Susceptibility of Management Tools to Damage by Flood Hazards ... 153

Table 10.1 - Estimated Cost to Install Data Collection System & Develop Historical Profile for One Alluvial Fan ... 237

Table 10.2 - Estimated Annual Cost to Operate & Maintain Data Collection System for One Alluvial Fan Site 238

Table 10.3 - Estimated Cost to Conduct Physical Model Studies of Floodplain Management Tools for Alluvial Fan Sites ... 239

Table 10.4 - Estimated Cost to Develop Guidelines for the Use of Technical Procedures to Conduct Engineering Analyses of Alluvial Fan Sites 240

Table 10.5 - Estimated Cost to Determine Potential for Aquifer Contamination on Urbanizing Alluvial Fan Sites 241
1 INTRODUCTION

The arid and semiarid desert environments of the southwestern United States present a unique landscape comprised of fluvial systems that behave much differently from those found in more humid climates of the country. This difference in behavior is a function of such factors as short duration, high intensity rainfall, abrupt changes in topography, and a sparse vegetation community which creates the relatively bare surface conditions of desert soils. These factors combine to magnify runoff, erosion, and sediment transport processes into much more visible and destructive forces during flood events. The results of these processes have led to the formation of surface features with names such as playas, fans, bajadas, badlands, etc.; all of which are names that would undoubtedly be foreign to the citizenry of the midwestern or eastern United States.

The rainfall/runoff response associated with these landforms produces flooding and erosion problems that are dramatically different from the more familiar and classic riverine environment of the midwest or eastern United States. With the recent population increases sustained by "sunbelt states", such as Arizona and California, both residential and commercial development have begun to encroach into the normally dry floodplains of the desert washes and rivers, as well as onto the bajadas, alluvial fans, and pediments of the desert landscape.

The alluvial fans in these desert areas are especially prone to development pressures because of the elevated panoramic views that such locations provide to the prospective homeowner. However, if proper planning and engineering does not accompany such development, the unknowing homeowner may suddenly find his residence in the midst of a violent and destructive flood.

This has been previously demonstrated on poorly planned developments on alluvial fans in California. The communities of Rancho Mirage and Palm Desert, California incurred over $32,000,000 in flood damage as a result of severe storms in 1976 and 1979 (Anderson-Nichols 1981).

The dangers of alluvial fan development were even observed over 50 years
ago. The community of Montrose, California (a suburb of Los Angeles) experienced a severe alluvial fan flood in 1934. This event resulted in the death of 39 people and reports of 46 others missing. Property damage was listed as 198 homes completely destroyed and 401 rendered totally uninhabitable. (Corps of Engineers, undated).

For the most part, it can probably be said that urbanization of desert floodplains and alluvial fans has taken place with little or no regard for the flooding and erosion hazards that would imminently occur. In those cases where some degree of hazard was acknowledged, it was probably either underestimated or analyzed with engineering techniques that were inappropriate for the site being developed. The engineering infrastructure (roads, bridges, utilities, etc.) that accompanied this urbanization frequently suffered from similar problems, i.e., engineering design was being prepared without a complete understanding of the severity and fluvial characteristics of the flooding and erosion hazards that are produced by desert landforms.

In Arizona's case, it is not difficult to understand the circumstances that led to this problem. Consider the following scenario:

1. In 1950, Arizona's total population was 749,587. Due to this small population base and the relative remoteness of many communities, the flood damage that did occur, and had historically occurred, probably received little publicity, especially outside of Arizona, where future Arizona residents were then located. Accordingly, the absence of frequent and widespread flood damage did little to focus efforts toward the development of effective floodplain management techniques for the desert environment.
2. By 1980, population figures had almost quadrupled to 2,718,426. Figure 1.1 indicates a significant upward population trend starting around 1960.

Figure 1.1
Arizona Population Statistics

3. During this period of population growth there were no effective local, state, or federal floodplain management programs in place to delineate flood hazards and to regulate development in flood prone areas.

4. The ephemeral washes and alluvial fans that are characteristic of desert environments are normally dry, only flowing during those occasions when rainfall exceeds losses due to interception, infiltration, and depression storage. The absence of frequent flooding, or flowing water, creates a false sense of security to the newcomer on the desert scene.
As a result of these factors, urbanization of desert floodplains was allowed to continue for many years before a series of severe floods occurred to focus attention on the problem. Substantial property damages were incurred in response to riverine floods of December 1965-January 1966, October 1977, February-March 1978, December 1978, February 1980, and October 1983. Many of these floods resulted in Federal Disaster Declarations.

Fortunately, during this same period, accelerated efforts were being made at federal, state, and local levels to cope with flooding problems on both a nationwide and local basis. This was evidenced by passage of the Flood Control Act of 1960, the National Flood Insurance Act of 1968 and, within Arizona, creation of the Flood Control District of Maricopa County in 1969 and passage of state legislation in 1978 mandating the establishment of county flood control districts in every county in Arizona. This legislation simultaneously authorized State financial and technical assistance to these county flood control districts.

These new programs promoted a definite awareness of the flooding problems that were being created by the desert population explosion in the west. Perhaps the most visible and publicized products of these programs were the federal Flood Insurance Studies and accompanying floodplain maps. Although these maps were a welcome improvement over the lack of floodplain information previously available, the maps were sometimes prepared using methodologies that did not totally acknowledge the very dynamic nature of the desert fluvial system, especially the alluvial fan. Such a problem is predictable in light of the fact that dense urbanization of such environments was a relatively new phenomenon that had not previously received widespread study by the engineering profession. As a result, there were no proven technical procedures available that could be applied with a reasonable degree of certainty that the characteristics of the system were being accurately simulated. In many cases there was probably a less than complete understanding of how the system would respond under actual flood conditions.
Although there may have been previous research completed on the behavior of desert fluvial systems, it is the opinion of the author that the majority of the practicing engineering community was probably not aware of much of this research because it previously had little to no practical application to the more conventional urban settings that engineers were used to dealing with in humid climates. However, with the increase in desert population, the engineer was now dealing with a new and unfamiliar environment that had been rarely observed during an actual flood event.

For several years now, the technical deficiencies of certain methodologies, when applied to desert fluvial systems, have been recognized. Accordingly, the engineering profession has become more aware of these problems and improved methods are being sought to provide more realistic floodplain analyses of the desert environment.

A primary purpose of this report is to examine flooding problems on alluvial fans in Arizona. This examination will focus on a review of existing floodplain management policies and an overview of specific analytical techniques that have, or might be, employed to quantify alluvial fan hazards. Application of National Flood Insurance Program (NFIP) criteria to highway planning and urbanization on alluvial fans will also be discussed. An overview will be presented relative to current policy utilized by the Arizona Department of Transportation (ADOT) in planning highway projects to comply with NFIP criteria.

A secondary objective of this study will be a review of the Corps of Engineers Regulatory Program (Section 404 of the Clean Water Act), as it is presently being applied to alluvial fan areas and ephemeral washes in Arizona. Discussions will focus on the impact of the "404" program on highway development in Arizona and explore clarification of such key terms as "ordinary high water mark" and "headwaters". ADOT's policy for compliance with "404" program criteria will also be evaluated.

A concluding objective of this study will be to present an assessment of
current technology being used to evaluate alluvial fan flooding and to outline any research that could be pursued to improve our ability to effectively manage the development of alluvial fans.
2 DESERT GEOMORPHOLOGY

Prior to discussing floodplain management policies and analytical techniques for alluvial fans, it is necessary to present a discussion of desert geomorphology in order that the reader may have a basic understanding of the processes that are responsible for fan development, as well as the characteristics of fans that create flooding and erosion/deposition hazards.

This section of the report is not meant to be an exhaustive discussion of alluvial fan systems. The available literature includes many excellent articles that are available to those readers who wish to pursue a more detailed review of alluvial fan formation, geology, and flooding characteristics. Many of these articles will be referenced herein since they have provided an invaluable source of information for this report.
2.1 The Desert Profile

Perhaps the most fundamental way to initiate a discussion on alluvial fans is to define a basic desert profile within which an alluvial fan is likely to occur. Cooke and Warren (1973) state that the simplest and most frequently recurring desert profile is composed of a mountain flanked by plains. Figure 2.1 illustrates this basic desert profile.

The piedmont plain, which extends outward from the mountain front, may contain two basic landforms: 1) pediments; and 2) alluvial plains. Alluvial plains may in turn contain playas (the lowest level of a closed desert drainage system), alluvial fans, and bajadas (an area of coalescing alluvial fans).

Although the focus of this report is on alluvial fans, certain similarities between fans and pediments can often lead to confusion when trying to identify these landforms. Accordingly, since pediments are a very common feature in Arizona, Section 2.3 is devoted to a brief discussion of pediment characteristics.

The remaining subsections of this chapter define an alluvial fan, present terminology used to describe the features of a fan, and identify the physical processes that are responsible for the formation and evolution of this unique landform.
Figure 2.1
Basic Desert Profile

Mountain Area

Mountain Front

Pediment

Alluvial Plain

Baselevel Plain

Bedrock

Sub-Alluvial Bench

Alluvium
2.2 The Alluvial Fan

An appropriate way to begin a discussion on alluvial fans would be to summarize some of the "fan" definitions that are found in the available literature. Such a list of definitions provides a view of alluvial fans through the eyes of several different researchers.

Alluvial fans

1. Cooke and Warren (1973) - "Alluvial fans are deposits with surfaces that are segments of cones radiating downslope from points which are usually where streams leave mountains, but which may be some distance within the mountain valleys, or may lie within the piedmont plain."

2. Bull (1977) - "An alluvial fan is a deposit whose surface forms a segment of a cone that radiates downslope from the point where the stream leaves the source area. The coalescing of many fans forms a depositional piedmont that commonly is called a bajada."

3. Blissenbach (1964) - "An alluvial fan is a body of detrital sediments built up by a mountain stream at the base of a mountain front."

4. Doehring (1970) - "An alluvial fan is a relatively thick deposit of coarse, poorly sorted, unconsolidated clastics found as a semi-conical mass whose apex is adjacent to a mountain front. It has a relatively smooth subaerial surface which is inclined away from the mountain front."
Although this report focuses on alluvial fan activity in Arizona, it should be noted that the existence of alluvial fans is not limited to desert regions. Rachocki (1981) states:

"Alluvial fans are found in valleys or in the foot-hills of mountains in all latitudes irrespective of climatic conditions. They were formed, and are still being formed, at the fronts of ice-caps and glaciers, as well as in moderate semi-arid and arid regions."

Cooke and Warren (1973) support this position by stating:

"Alluvial fans are by no means confined to hot deserts. They occur in cold arid areas such as northern Canada (Leggett, Brown and Johnston, 1966) and also occasionally in humid areas. But in humid areas of perennial drainage, streamflow tends to remove the potential fan debris through the drainage system."

Fans do, however, appear to be more common in basin-range deserts. As reported by Rachocki (1981), Langbein and Schumm (1958) consider an annual rainfall rate of 10 to 14 inches to be an optimum range for the development of alluvial fans. Such a low rainfall rate creates a sparse cover of vegetation (thus exposing more surface area to erosion), yet still supplies sufficient water for transporting the eroded material. As is the case in Arizona, such rainfall most frequently takes the form of short-duration, high-intensity storms which produce substantial runoff rates that are capable of transporting large volumes of sediment and debris.

Until approximately the 1960 era, alluvial fan research has reportedly been very minimal in relation to other landforms. Rachocki (1981) indicates that approximately 100 research papers have been dedicated to alluvial fan processes during the past century. However, Bull (1977) considers these landforms as

11
being the object of intensive study, especially during the last two decades.

The results of the author's literature search would indicate that there has been an increase in publications on alluvial fans during the past 20 to 30 years. Some of this increased attention is undoubtedly attributable to the urbanization of fans that began to occur during this period.

2.2.1 Alluvial Fan Terminology

Prior to discussing alluvial fan characteristics, it would be beneficial to define certain terms which are frequently used when analyzing fan processes. An excellent summary of alluvial fan terminology is presented by Rochacki (1981). For the reader's convenience, these definitions are repeated herein. In several cases, the definitions are cross-referenced to an originator. Not all of these terms will be used in the abbreviated discussion presented in this report.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>abandoned channels</td>
<td>channels no longer connected to mountains (Denny, 1967)</td>
</tr>
<tr>
<td>abnormal fanhead incision</td>
<td>an incision of the fanhead caused by climatic changes or tectonic movement (Hooke, 1967)</td>
</tr>
<tr>
<td>alluvial fan</td>
<td>see Section 2.1</td>
</tr>
<tr>
<td>apex</td>
<td>the highest point of an alluvial fan, generally where the stream emerges from the mountains (Drew, 1873)</td>
</tr>
<tr>
<td>base</td>
<td>the term applied to the outermost or lowest zone of the fan (Blissenbach, 1954)</td>
</tr>
<tr>
<td>braid bars</td>
<td>flat gravel and sand bars separating several braided channels (Denny, 1965)</td>
</tr>
<tr>
<td>braided distributary channels</td>
<td>secondary channels that extend downslope from the end of the main stream or fanhead trench and are characterized by repeated division and rejoining (Bull, 1964)</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>cross-fan profile</td>
<td>A topographical profile of an alluvial fan, roughly parallel to the mountain front (Bull, 1964)</td>
</tr>
<tr>
<td>drainage basin</td>
<td>The area above the fan apex that is drained by the mountain stream (Bull, 1964)</td>
</tr>
<tr>
<td>ephemeral stream</td>
<td>A stream, or part of a stream, that flows in direct response to precipitation (Bull, 1964)</td>
</tr>
<tr>
<td>fan bay</td>
<td>The uppermost part of a fan that reaches into the mountain canyon (the term used by Davis, 1938; defined by Blissenbach, 1954)</td>
</tr>
<tr>
<td>fan-bench</td>
<td>Small scale form of coalescing alluvial fan (the term used by Carter, 1975)</td>
</tr>
<tr>
<td>fan dissection</td>
<td>A general term to include both entrenchment and incision (Wasson, 1977)</td>
</tr>
<tr>
<td>fan entrenchment</td>
<td>Downcutting into the fan surface of a channel that is contributing sediment to the fan surface. Entrenchment usually occurs during fan construction (Wasson, 1977)</td>
</tr>
<tr>
<td>fanhead</td>
<td>The area of the fan close to the apex (Blissenbach, 1954)</td>
</tr>
<tr>
<td>fanhead trench</td>
<td>A stream channel entrenched into the upper, and possibly the middle, parts of a fan (Bull, 1964)</td>
</tr>
<tr>
<td>fan incision</td>
<td>Downcutting into the fan surface by a channel that crosses the fan margin. Incision is usually associated with fan destruction (Wasson, 1977)</td>
</tr>
<tr>
<td>fan mesa</td>
<td>An alluvial fan remnant left standing in the process of fan degradation (the term used by Eckis, 1928; defined by Blissenbach, 1954)</td>
</tr>
<tr>
<td>fan segment</td>
<td>Part of an alluvial fan that is bounded by changes in slope (Bull, 1964)</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>hanging fan</td>
<td>a fan formed by the in-filling of a small tributary valley whose surface is continuous with the older, dissected main surface (Lustig, 1965)</td>
</tr>
<tr>
<td>intermittent stream</td>
<td>a stream, or part of a stream, that flows only occasionally upon receiving water from seasonal sources such as springs, and from bank storage, as well as from precipitation (Bull, 1964)</td>
</tr>
<tr>
<td>intersection point</td>
<td>the point at which the main channel merges with the fan surface (Hooke, 1967)</td>
</tr>
<tr>
<td>midfan</td>
<td>the area between the fanhead and the outer fan margin (Blissenbach, 1954)</td>
</tr>
<tr>
<td>normal fanhead</td>
<td>the incision produced by changes in slope in the upper reaches of the fan (Hooke, 1967)</td>
</tr>
<tr>
<td>trenching</td>
<td></td>
</tr>
<tr>
<td>paraglacial alluvial fans</td>
<td>fans which are products of an environment in the process of transition from predominantly glacial to predominantly fluvial conditions (Ryder, 1971)</td>
</tr>
<tr>
<td>piedmont plain</td>
<td>a broad sloping plain formed by the coalescence of many alluvial fans (Bull, 1964)</td>
</tr>
<tr>
<td></td>
<td>synonyms: piedmont alluvial plain, compound alluvial fan, bajada.</td>
</tr>
<tr>
<td>pseudotelescopi</td>
<td>the structure of an alluvial fan created by the slumping of unconsolidated fan deposits</td>
</tr>
<tr>
<td>structure</td>
<td>(Blissenbach, 1954)</td>
</tr>
<tr>
<td>radial line</td>
<td>a straight line on the fan's surface extending from the fan apex to the fan toe (Bull, 1954)</td>
</tr>
<tr>
<td>rock fan</td>
<td>an area of bare or thinly covered bedrock at the point where the ravine slope is suddenly reduced (Wyckoff, 1966)</td>
</tr>
<tr>
<td>sand-finger fan</td>
<td>a small form of alluvial fan developed by the flow of water-saturated sands (the term used by Carter, 1975)</td>
</tr>
</tbody>
</table>
2.2.2 Alluvial Fan Morphology

As can be inferred from the previous sections of this report, a mountain/plain interface could be considered a primary prerequisite for the creation of an alluvial fan (see Figure 2.1). A drainage channel, connecting the two areas, then becomes the conduit for transporting water, sediment,
and debris from the mountain to the piedmont plain.

The connecting channel is confined to a relatively narrow width while traversing the mountain area. Narrow channel widths promote highly concentrated flow (large unit discharge), which in turn creates large sediment transport rates capable of moving sizeable volumes of sediment. Upon passing the interface between the mountain mass and piedmont plain, the channel is no longer confined by canyon walls. Accordingly, the flow is free to spread laterally, which causes a large decrease in unit discharge and a corresponding decrease in sediment transport rate. Being no longer able to transport the sediment/debris load delivered to the terminus of the confined channel, sediment deposition occurs on the piedmont plain and the birth/growth of an alluvial fan results. The shape of such fans are characterized by their resemblance to the segment of a cone.

As a point of interest, it should be noted that early theories on the mode of sediment deposition attributed this phenomenon to an abrupt change of channel slope as the water passed the mountain/piedmont plain interface. Bull (1977) attributes this theory to Chamberlain and Salisbury (1909) and indicates that it has, unjustifiably, continued to be published in some literature sources "despite contradictory arguments and evidence published by Bull (1964a), Melton (1965), Denny (1965), and Hooke (1972)." Bull notes that the slopes on the upper reaches of most fans are very similar to the channel gradients extending upstream from the fan apex. There is a decrease in slope in the downstream direction (all fans have concave radial profiles) but there is no abrupt slope change at the mountain/piedmont plain interface. Bull is a strong advocate of the "loss of channel confinement" theory as the most probable mechanism triggering the sediment deposition that creates the surface of an alluvial fan.

To illustrate the concavity of a stream profile on an alluvial fan, the author plotted a profile for Hieroglyphic Canyon, which has transported material onto an alluvial fan along the southwest side of the Superstition
Mountains near Apache Junction, Arizona. The results of this investigation, presented in Figure 2.2, indicate the existence of a very smooth, concave profile extending from the mountain onto the alluvial fan.

Clearly, there is a substantial reduction in slope from the upper end of the watershed to the toe of the fan. However, this decrease in slope is gradual, and, even though it will create a reduction in sediment transport
capacity, the reduction due to a slope change will undoubtedly be substantially less than that resulting from an abrupt reduction in unit discharge as channel flow leaves the confines of a mountain canyon and spreads across a piedmont plain. The author agrees with Bull's hypothesis that a change in channel geometry is the primary mechanism for sediment deposition on a fan surface; however, the gradual slope reduction also has to be considered as a contributing cause for this deposition, although to a much lesser extent than the change in channel geometry.

The morphology of an alluvial fan is dependent upon a complex interaction of several variables. Bull (1968) lists such factors as: 1) area, lithology, mean slope, and vegetative cover of the source area; 2) slope of the stream channel; 3) discharge, climatic, and tectonic environment; and 4) geometry of the mountain front, adjacent fans and the basin of deposition. The role of each of these variables in fan formation is obvious when viewed within the context that a fan is formed by the erosion and transport of material from a mountain area onto an adjacent plain. All the listed variables in the first three categories are directly connected to the erosion or sediment transport process. The variables in category number four address physical constraints that place limitations on the available area of deposition. For example, the geometry of a mountain front might dictate how abruptly a channel might transition from the confined geometry of a canyon to the unconfined environment of the fan surface. The face of a mountain front might also include irregular outcrops of bedrock that would prevent the flow of water along an unobstructed 180 degree arc adjacent to the mountain front. Adjacent alluvial fans would obviously reduce the lateral area available for fan growth. The basin of deposition might terminate along a river. Base-level changes in the river could induce headcutting or aggradation on the fan surface.
Some attempts have been made to describe the morphology of alluvial fans with mathematical relationships. Bull (1962a) proposed the following relationship between fan area and source area:

\[A_f = cA_d^n \quad (2.1) \]

where \(A_f \) = fan area
\(A_d \) = drainage basin area
\(c \) = empirically derived coefficient
\(n \) = empirically derived exponent

Based on a sampling of seven fans (by various researchers), an average value for \(n \) was found to be 0.93. The values used to compute this average ranged from 0.8 to 1.01.

Unfortunately, the variation in the coefficient, \(c \), is much larger. For the same seven fans, \(c \) was found to vary from 0.15 to 2.1. This wide variation is attributed to variables such as drainage basin lithology, climate, mean slope, and the amount of space available for fan deposition. Relative to basin lithology, Bull notes that fans derived from mudstone areas are approximately twice the size of their source areas, while fans derived from quartzite basins are only one-sixth the size of the source areas. Tectonic tilting has also been cited as a major factor in causing a wide variation in the coefficient of Equation 2.1.

Based on an investigation of fans in western Fresno County, California, Bull (1964) also developed empirical relationships between: 1) drainage basin area and fan slope; and 2) fan area and fan slope:
for drainage basins comprised of 48% to 86% mudstone & shale:

\[S_F = 0.23 A_D^{-0.16} \]
(2.2)

\[S_F = 0.034 A_F^{-0.28} \]
(2.3)

and for drainage basins comprised of 68% to 68% sandstone:

\[S_F = 0.022 A_D^{-0.32} \]
(2.4)

\[S_F = 0.025 A_F^{-0.34} \]
(2.5)

where \(S_F \) = overall fan slope (ft/ft)

\(A_D \) = drainage basin area (square miles)

\(A_F \) = fan area (square miles)

The reader should be cautioned that Equations 2.2 through 2.5 were developed from site-specific data. Accordingly, the coefficients and exponents contained in those equations would not necessarily be appropriate for application to other sites.

Troeh (1966) presents the theoretical development of a three-dimensional equation to describe the surface of an alluvial fan. Based on the equation of a right circular cone, and adding a component to reflect the concavity of the radial fan slope, the following relationship was derived:
\[Z = P + SR + LR^2 \]

(2.6)

where \(Z \) = elevation at any point on the surface of the cone (fan)
\(P \) = elevation at the central point of the cone (theoretical fan apex)
\(S \) = slope of the fan at point \(P \)
\(R \) = the radial distance from point \(P \) to point \(Z \)
\(L \) = half the rate of change of slope along a radial line

The location of point \(P \) in Equation 2.6 is found by the projection of a perpendicular from the tangents to several contour lines on the fan. The point which most nearly fits the intersection of all the perpendiculars is considered as point \(P \).

For a given fan, Equation 2.6 is ultimately reduced to a function of \(R \). Troeh demonstrates the solution of the equation by writing Equation 2.6 for three different points on a fan surface, and then performing a simultaneous solution of three equations containing three unknowns (\(P, S, \) and \(L \)). Application of this procedure (by Troeh) to a pediment near Gila Butte, Arizona produced excellent agreement with actual landform contours.

2.2.3 **Mechanisms of Alluvial Fan Deposition**

A review of alluvial fan literature indicates that fans are formed in response to *water-laid deposits* and *debris deposits*. A third mechanism, called a *sieve deposit*, has also been observed on alluvial fans. Each of these phenomena are discussed in the following paragraphs.

1) **water-laid deposits**

Bull (1977) describes water-laid deposits as "sheets of sediments" that are deposited as surges of sediment-laden water are dispersed across the
fan surface after leaving the confines of a well-defined channel. The sediment/water mixture is transported across the fan by a dense pattern of shallow, braided, distributary channels that generally have a depth of flow ranging from about 4" to 20". As is characteristic of braided systems, these shallow channels are prone to rapid sedimentation which causes a diversion of water to a new flow path or braid.

Rachocki (1981) presents excellent photographic documentation of both pure sheetflow and shallow braided flow that were observed on man-made alluvial fans created as part of a gravel pit operation. Rachocki's photographs illustrate surges of pure sheetflow, occurring near the apex of the fan, which transition into a classic braided-flow pattern as water moves further down the fan surface.

A second type of water-laid deposit described by Bull refers to the filling of channels that have been temporarily entrenched into the fan surface. Although he does not elaborate on this phenomenon, it is assumed that he is referring to larger and more well-defined channels than those associated with the braided distributary system. These larger channels are also subject to receiving overloads of sediment which can cause aggradation and subsequent backfilling. Bull notes that the sediment deposits in these larger channels are coarser-grained and more poorly sorted than those deposited in the shallow, braided distributary channels. The thickness of these deposits is most frequently found to be between 2" and about 40".

2) debris-flow deposits

The second major type of fan deposition occurs in response to debris flows, which are very viscous, dense mixtures of water and sediment. Hooke (1967) describes debris flows as quasi-plastic substances which leave deposits consisting of cobbles and boulders imbedded in a matrix of fine material. Due to the very high viscosity in debris flows, the settling velocity of individual sediment particles is greatly reduced, thus allowing debris flows
to retain relatively large particles in suspension.

Debris flows can be identified in the field as longitudinal lobes or tongues. In the author's opinion they have a strong resemblance to fresh lava flows.

Sharp (1942), as referenced by Hooke (1967), also describes the probable formation of bouldery, sharp-crested levees on some alluvial fans as being created in response to coarse material being accumulated in front of a debris flow and subsequently being shoved aside by the advancing debris front. Levees formed in this manner tend to confine the remainder of the debris flow. Hooke also notes that some debris flows may overflow the banks of an entrenched channel and create levees along the channel banks.

A second category of debris flows has been described by Bull (1977) as a "mudflow". As the name might imply, a mudflow is "a type of debris flow that consists mainly of sand-size and finer material." As a matter of interest, Bull notes that the term "mudflow" is often used in a generic sense to refer to all types of debris flows, since mud is a common ingredient in all such flows.

3) sieve deposits

Unless the alluvial fan surface is formed with high concentrations of silts and clays, it will tend to be relatively permeable. Under such conditions, water flowing over the fan surface will be subject to large infiltration losses. When the infiltration rates are high enough, the entire flow may infiltrate into the fan surface prior to reaching the toe of the fan. When this occurs, the sediment being carried by the water will be deposited at the point where there is no longer sufficient water to transport the material. This phenomenon was described and named by Hooke (1967):
"Because water passes through rather than over such deposits, they act as strainers or sieves by permitting water to pass while holding back the coarse material in transport. I call the lobate masses thus formed "sieve lobes" or "sieve deposits" and the mode of formation is sieve deposition."

Hooke gives a very detailed account of the formation of sieve deposits on laboratory fans. He also made a field identification of such deposits on several fans in California, and points out that sieve deposits may be initiated by the complete infiltration of the transporting water or by a break in fan slope.

2.2.4 Alluvial Fan Dissection

Depending upon the interaction of the many variables that influence alluvial fan morphology, the fan surface may exhibit varying degrees of channel incisement or dissection. Such incisement might take the form of a major fanhead trench, that could extend from the apex to midfan, or it might be localized incisement resulting from rain falling directly on the fan surface. The types of, and possible reasons for, fan dissection are discussed in the following paragraphs.

1) Fanhead trench

A fanhead trench is connected directly to the trunk stream feeding the apex of a fan. The depth and length of these trenches may vary from fan to fan. Several hypotheses have been presented to explain their occurrence. These include: 1) climatic changes which might cause a substantial disruption in the amount of sediment being delivered from the mountain area to the fan; 2) tectonic changes which can cause differential movement along the mountain/alluvial fan interface (such movement might occur as the result of normal mountain building processes or movement along a faultline); and 3)
the occurrence of exceptionally large floods (Denny 1967) which may create sediment transport rates far in excess of the available sediment supply.

Bull (1977) presents a mathematical expression relating tectonic activity to both the entrenchment and aggradation of alluvial fans. For fan deposition to occur along the mountain front, the following inequality must be maintained:

\[\frac{\Delta u}{\Delta t} \geq \frac{\Delta w}{\Delta t} + \frac{\Delta s}{\Delta t} \] \hspace{1cm} (2.7)

where \(\frac{\Delta u}{\Delta t} \), the rate of change of tectonic uplift for the mountain

\(\frac{\Delta w}{\Delta t} \), the rate of change of channel downcutting in the mountain

\(\frac{\Delta s}{\Delta t} \), the rate of change of fan deposition at the mountain front

Conversely, when uplift becomes less than channel downcutting in the mountain area, channel entrenchment will tend to extend onto the fan surface and move the loci of deposition downslope from the fan apex. Under such conditions, the fan head is bypassed as an area of deposition and will become prone to localized erosional processes. Bull defines this condition with the following inequality.

\[\frac{\Delta u}{\Delta t} < \frac{\Delta w}{\Delta t} - \frac{\Delta e}{\Delta t} \] \hspace{1cm} (2.8)

where \(\frac{\Delta u}{\Delta t} \), \(\frac{\Delta w}{\Delta t} \), and \(\frac{\Delta e}{\Delta t} \) are as defined for Equation (2.7) and \(\Delta e/\Delta t \) is the rate of erosion of the fan deposits adjacent to the mountain.
Denny (1967) presents a hypothetical case where local gullying on the abandoned upper segments (that have been bypassed by a fanhead trench) of the fan may cut deeper into the fan surface than the adjacent fanhead trench. This creates a condition where bank erosion of the fanhead trench may cut through to a local gully and allow the gully to capture the flow of the fanhead trench. This phenomenon, which is called channel "piracy", will shift the loci of deposition to a new point on the fan. Channel piracy is an important mechanism in the development of an alluvial fan.

Channel entrenchment can provide both lateral movement of sediment deposition across the width of fan as well as lengthwise along a radial line extending from the fan apex to the toe. Lateral movement can be caused by channel piracy or through channel avulsions that might be created by plugs of mudflow or debris flow. Such lateral shifting might also occur as a simple function of one part of the fan being raised sufficiently higher than an adjacent part, thus creating the potential for a steeper gradient of flow towards the lower area.

Deposition along a radial line can occur in response to an imbalance between sediment transport rate and supply. This phenomenon can move the location of the intersection point (point at which the invert of the entrenched channel intersects or merges with the fan surface) up and down a radial line, thus allowing sediment to be deposited either closer to, or farther from, the fan apex. For example, an excess of sediment (beyond the existing transport capacity) would cause deposition in the channel and a subsequent retreat of the intersection point towards the fan apex. Conversely, should existing transport capacity exceed the sediment supply, the channel bed would tend to degrade and advance the intersection point towards the fan toe.

Based on observations of laboratory fans, Hooke (1967) relates the following description relative to the movement of the intersection point:
"The intersection point on laboratory fans is commonly near midfan. This appears to be because fluvial deposition predominates near the toe and occurs without downfan migration of the intersection point, while overbank debris flow deposition predominates near the fanhead. Thus the average radial position of the intersection point should be related to the relative importance of debris flows and fluvial processes in transporting material to a fan.

The intersection point on laboratory fans shifted gradually due to debris-flow and fluvial deposition. The intersection point would migrate up-fan as low banks of the main channel were buried. Subsequent water flows then eroded a new channel offset laterally from the previous course."

Bull (1977) provides the following account of radial deposition:

"Migration of the depositional area along a given radial line occurs as a result of entrenchment or backfilling of the stream-channel extending from the source area. Fanhead trenches commonly extend half the length of the fan. Some streams are permanently entrenched, and may have channel bottoms that are as much as 50 meters below a fan surface with an old soil profile. Other fanhead trenches appear to be temporary, being less than 15 meters below a fan surface having no visible soil profile; and having been entrenched and backfilled one or more times before the present channel downcutting."

2) dissection not related to fanhead trenching

Channels or gullies on a fan can also occur without being connected to a fanhead trench. As mentioned in the previous paragraphs, fanhead trenching can cause sediment deposition to bypass the fanhead area near the apex.
Being deprived a supply of new sediment from the mountain area, these bypassed fanhead areas will begin to erode and create a local drainage network to dispose of precipitation falling directly on the fan surface.

A change in base level along the toe of a fan can also initiate dissection of a fan surface or accelerate (deepen) existing dissection. A common example of this type of base level change occurs when a stream is flowing along the toe of a fan. The location of such a stream can cause fan dissection in two ways. The first way would accompany a long-term lowering of the base-flow in the stream or an actual lowering of the streambed. Such a condition would create a steep slope from the fan toe to the streambed. Water flowing over such a precipice would cause headcutting back into the fan surface.

The second method would accompany a swing in the stream-flow alignment either into or away from the toe of the fan. As the stream swings into the fan, the toe would be undercut, causing a sharp drop-off (as described previously) from the fan surface to the streambed. Conversely, as the stream alignment migrates away from the fan toe, an aggradational tendency will be induced (Blissenbach 1954).

Bull (1964) presents an interesting statistic on the location of fanhead channels relative to a medial position, which is defined as a radial line projected perpendicular to the apex at the mountain front. This definition assumes that water has the freedom to flow through a 180 degree arc upon passing the mountain front. Based on a sample of 76 fans in California, two thirds of the fanhead channels were found to be located within 30 degrees of the medial line. Only three channels were found to have a deviation of more than 60 degrees from the medial position. Bull concludes that the large concentration of channels within a 30 degree arc on either side of the medial line implies that this central segment of the fan is prone to receiving more deposition than those areas nearer the lateral edges of the fan. This is
consistent with the general shape of a fan, which is a cone-shaped landform with a convex cross-profile. Such a profile has a maximum depth at the center of the cone.
2.3 Pediments

Although this report is directed towards a discussion of engineering problems associated with the development of alluvial fans, an encounter with a pediment may be a more common occurrence for development in Arizona. Accordingly, a very brief discussion of pediment characteristics is provided to alert the reader to the existence of these two different landforms.

A review of current literature reveals considerable differences of opinion on the formation of pediments, and even the definition of a pediment. Several definitions obtained from available literature are summarized as follows:

pediments

1. Cooke and Warren (1973, page 196) - "In most cases, the pediment is a complex surface, comprising patches of bedrock and alluvium, in places capped by weathering and soil profiles, punctuated by inselbergs, and scored by a network of drainage channels."

2. Bull (1977) - "In trying to distinguish an alluvial fan from a pediment in the field, it is useful to remember that alluvial fans are formed in a depositional environment and that pediments are formed in an erosional environment. Many pedimented areas have a large number of streams and rills that drain to the piedmont, but an alluvial-fan piedmont has fewer streams each acting as a major conduit for water and sediment that is transported to the fanhead. Bedrock knobs rarely protrude through the alluvium of fans but are typical of pedimented terrains, where a veneer of alluvium and colluvium mantles bevelled bedrock. As a general guideline, fans may be distinguished from pediments as being landforms where the thickness of deposits is more than 1/100 the length of the landform."
Bull goes on to state that the continued lack of tectonic uplift (along the mountain front) will change the depositional environment of an alluvial fan to an erosional environment where pedimentation is the main process operating on the landscape (see Equations 2.7 and 2.8). He attributes the scarcity of earthquakes in south-central Arizona as a prominent factor for the abundance of pedimented landscapes which are typical of this area.

3. Doehring (1970) — "The term pediment, as used herein, refers to a low gradient, subplanor, topographic surface located at the foot of a mountain mass in an arid or semiarid, mid- to low-latitude desert region and which meets the mountain front at an angular junction. Pediments are underlain by consolidated rock, do not follow lithologic or structural anisotropies or inhomogeneities, are usually fan-shaped in plan, and may have an alluvial veneer not exceeding 50 ft. in thickness."

4. Hadley (1967) — "Pediments are erosional surfaces of low relief, partly covered by a veneer of alluvium, that slope away from the base of mountain masses or escarpments in arid and semiarid environments."

As with alluvial fans, pediments most frequently occur between a mountain front and an alluvial plain. However, unlike alluvial fans, pediments may not always be part of a clearly defined drainage system. The surface of a pediment often occurs in more than one drainage system and it may be impossible to assume that present drainage networks on a pediment were associated with its formation (Cooke and Warren, 1973).

Due to similarities in their locations along a mountain front, and in some cases their similarity in shape to a segment of a cone (Hadley 1967, presents a topographic map of a pediment which has a very distinct fan shape), it can
be difficult to differentiate between a pediment and a fan without extensive field investigations. Hadley notes that most pediments exhibit an irregular plan view, with the irregularities more pronounced where the pediment intersects rock surfaces with varying resistance to erosion. Some researchers (Gilluly, Johnson, and Rich) also present field data that describe pediments as widening from a canyon mouth to the downstream end.

From a distance, pediments have been described as having a relatively smooth surface. However, close examination of the surface will usually reveal an intricate pattern of dissection. Gilluly (1937) (as referenced by Hadley, 1967) describes a pediment on the Ajo quadrangle of Arizona as having dissected drainage channels approximately 40 feet deep near the head of the pediment. The channels were noted to decrease in depth in the downstream direction.

Based on an analysis of topographic maps, Doehring (1970) reports that: "the drainage texture (spacing of low order drainage channels) tends to become finer in a headward direction on pediments but remains relatively constant on alluvial fans." Doehring's paper presents a methodology, called the "texture curve method" to identify the drainage texture of landforms from topographic maps.

Relative to surface deposits, Hadley (1967) indicates that pediments have been described as having from no alluvial cover to over 100 feet of gravel and fine-grained alluvium veneer. Causes for this variation in thickness are attributed to base-level changes, stream discharge from the mountains, and climatic changes. Hadley also references an interesting suggestion by Tator (1962) that the thickness of pediment alluvium often averages about the depth of effective stream scour.

Although there is no consensus of opinion regarding the process of pediment formation, Hadley (1967) notes that two processes are generally recognized as the most probable cause of pedimentation: 1) lateral planation by streams; and 2) weathering and removal of debris by rill wash and unconcentrated flow.

The theory of pediment formation by planation (reduction of a land area
by erosion to a nearly flat surface, Webster's New World Dictionary, 1984) assumes that stream-flow emanating from the mountains will continually migrate back and forth across the pediment surface and gradually wear it down by erosion. Obviously, this theory apparently makes the assumption that sediment deposition is not a prominent process on a pediment surface. Hadley (1967) in referencing the planation theory to one of its strong proponents (Douglas Johnson) summarizes Johnson's comments:

"...pediments, or rock planes, as he called them, are the product of normal stream erosion. Pediments ("rock planes") result from the fact that the heavily laden streams of arid regions are not able to cut vertically; they therefore tend to migrate laterally."

The second theory (weathering and rill wash) assumes that material will be weathered from the mountain front and removed by rill wash, unconcentrated flow, or stream action. As noted in the preceding paragraph, this theory must also assume that the weathered material will be transported across the pediment rather than being deposited upon it.

In comparing these two theories, many researchers feel that pediment formation may be a combination of both processes, although Hadley (1967) indicates that the theory of weathering and rill wash seems to be the more widely accepted of the two scenarios.

After reviewing several technical papers on alluvial fans and pediments, the author is left with the definite impression that a major difference between pediments and alluvial fans is that fans are a depositional landform while pediments are an erosional landform. It is interesting to note that Bull (1977) indicates that a continued lack of tectonic uplift may transform an alluvial fan into a pediment environment. This is in concert with the predictions of Equations 2.7 and 2.8, which relate the rates of change of tectonic uplift to channel downcutting, fan deposition, and fan erosion. In other words, a fan will tend
to transition into a pediment environment when the erosional forces dominate
over the depositional forces.

Due to the lack of depositional tendencies on a pediment, it would appear
that they might be a more stable environment (from a drainage perspective)
than a fan. In the absence of large debris flows, and general sediment deposition,
pediments should not be prone to abrupt channel shifting during flood events.
Although Denny (1967) indicates that channel piracy may still occur on pediments,
he also states that many of the gullies on pediments are eroded into the rocks
of the mountain block.

Relative to drainage issues, Cooke and Warren (1973) present an excellent
summary of the topography of a pediment. Excerpts from their description are
quoted as follows:

"Although many published accounts may give a contrary impression,
a pediment which is a clean, smooth bedrock surface is rare indeed.
In most cases, the pediment is a complex surface, comprising patches
of bedrock and alluvium, in places capped by weathering and soil
profiles, punctuated by inselbergs, and scored by a network of drainage
channels.

Another important yet neglected feature is the presence of cut-and-fill
features on pediments. Channels 1-3 meters deep and now filled with
alluvium have been described....(by various researchers). The presence
of buried channels indicates that the relations between erosion and
sedimentation in the pediment zone have changed during the period
of pediment development, probably as a consequence of changed
environmental circumstances. The filling of channels and other
depressions in bedrock by alluvium is commonly responsible for the
general smoothness of many pediments.

Closely related to buried channels are pediment drainage nets. These,
too, have rarely been considered. There are three common types. (i)
Channels occurring in the upper part of the piedmont plain, which commonly form a distributary system and die out lower down the surface. Such channels often straddle the piedmont angle, [piedmont angle is the angle produced by the intersection of the lines representing the slope of the mountain front and the slope of the piedmont plain (Cooke & Warren, 1973)] and they are deepest at intermediate positions on their longitudinal profiles. (ii) Channels occurring on the lower part of the piedmont plain, which are generally deepest at the lowest point in their longitudinal profiles, and usually form part of a drainage system that has been rejuvenated on one or more occasions by lowering of base-level. Such systems may cover the whole pediment. When drainage in this type of net is rejuvenated it often leads to the destruction of the pediment surface. (iii) On relatively undissected surfaces, often between areas characterized by types (i) and (ii), drainage nets may consist of complex and frequently changing patterns of shallow rills. These drainage nets are similar in pattern and location to those on alluvial fans, and they may perhaps be explained in similar terms. Type (i) is probably generated by drainage in the catchment area behind the pediment, type (ii) may result from runoff on the pediment surface itself, and type (iii) probably arises from rillflow, perhaps characteristic of declining sheetfloods, in the intermediate zone. Drainage incision may reflect adjustments to climatic or tectonic changes, or changes in the nature of waterflow within the system. Such changes could have accompanied pediment formation, or they could be younger and lead to pediment destruction".
3 NATIONAL FLOOD INSURANCE PROGRAM ACTIVITY IN ARIZONA

One of the principal objectives of this study is to examine the application of NFIP criteria to floodplain management, especially on alluvial fans, and to evaluate ADOT procedures for coordinating the planning and design of highway projects in floodplain environments with the Federal Emergency Management Agency (FEMA).

The following subsections of this report address these issues at the federal, state, local, and ADOT level.
3.1 **Federal Program**

As indicated previously, Congress passed the National Flood Insurance Act in 1968. This Act created the National Flood Insurance Program (NFIP) which was designed to reduce future flood losses through local floodplain management efforts and to transfer the costs of residual flood losses from the general taxpayer to the floodplain occupant.

An integral part of this program was the development of flood risk studies to provide data for local floodplain management and to establish actuarial insurance rates.

Based on an estimate of projected property-at-risk, FEMA routinely employs different levels of detail when preparing these risk studies (FIS/FEMA, 1984). Three levels of study detail are defined as:

- detailed flood insurance study
- limited detail flood insurance study
- existing data study

The level of study detail in these three categories ranges from the preparation of very detailed Flood Insurance Rate Maps (FIRM) to simple approximations of floodplain limits based on existing technical data or historic floods.

Communities participating in the NFIP are required to use these studies and floodplain maps and to enact certain floodplain management measures (in accordance with the amount and nature of flood risk data provided by FEMA) to regulate new floodplain construction in order to reduce future flood damage.

The policies and management criteria embodied by the NFIP are listed in 44 CFR (Code of Federal Regulations), Parts 69 through 77, dated October 1, 1986 (see Federal Emergency Management Agency, 10/1/86). This document does not specifically make reference to alluvial fan flooding. However, several special flood, mudslide, and flood-related erosion hazard zones are defined. These zones
are defined in Table 3.1.

In order to provide technical guidelines for engineers who are retained to prepare Flood Insurance Studies (FIS) as part of the NFIP, FEMA has published a document entitled "Guidelines and Specifications for Study Contractors", September 1985. Appendix 5 of that document outlines a specific procedure for preparing Flood Insurance Studies on alluvial fans. It also states that Special Flood Hazard Areas on alluvial fans are to be identified as Zone AO, which is further defined as follows:

"Zone AO is the flood insurance rate zone that corresponds to the areas of 100-year shallow flooding (usually sheet flow on sloping terrain) where average depths are between 1 and 3 feet. Average whole-foot depths derived from the detailed hydraulic analyses are shown within this zone."

Accordingly, this review of federal flood control programs indicates that efforts have been made to address the unique flooding problems on alluvial fans. Discussions on details of the technical procedures will be presented in subsequent sections of this report.
<table>
<thead>
<tr>
<th>Zone Designation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Area of special flood hazard without water surface elevations determined.</td>
</tr>
<tr>
<td>A1-30, AE</td>
<td>Area of special flood hazard with water surface elevations determined.</td>
</tr>
<tr>
<td>AO</td>
<td>Area of special flood hazards having shallow water depths and/or unpredictable flow paths between 1 and 3 feet.</td>
</tr>
<tr>
<td>A99</td>
<td>Areas of special flood hazard where enough progress has been made on a protective system, such as dikes, dams, and levees, to consider it complete for insurance purposes.</td>
</tr>
<tr>
<td>AH</td>
<td>Areas of special flood hazards having shallow water depths and/or unpredictable flow paths between 1 and 3 feet, and with water surface elevations determined.</td>
</tr>
<tr>
<td>V</td>
<td>Areas of special flood hazards without water surface elevations determined, and with velocity, that is inundated by tidal floods (coastal high hazard area).</td>
</tr>
<tr>
<td>VI-30, VE</td>
<td>Areas of special flood hazards with water surface elevations determined and with velocity, that is inundated by tidal floods (coastal high hazard area).</td>
</tr>
<tr>
<td>VO</td>
<td>Area of special flood hazards having shallow water depths and/or unpredictable flow paths between 1 and 3 feet and with velocity.</td>
</tr>
<tr>
<td>B, X</td>
<td>Area of moderate flood hazard.</td>
</tr>
<tr>
<td>C, X</td>
<td>Area of minimal hazards.</td>
</tr>
<tr>
<td>D</td>
<td>Area of undetermined, but possible, flood hazards.</td>
</tr>
<tr>
<td>M</td>
<td>Area of special mudslide (i.e., mudflow) hazards.</td>
</tr>
<tr>
<td>N</td>
<td>Area of moderate mudslide (i.e., mudflow) hazards.</td>
</tr>
<tr>
<td>P</td>
<td>Area of undetermined, but possible, mudslide hazards.</td>
</tr>
<tr>
<td>E</td>
<td>Area of special flood-related erosion hazards.</td>
</tr>
</tbody>
</table>
3.2 State Program

Floodplain management at the State level encompasses several areas of responsibility. By approval of Executive Order No. 77-6 on September 27, 1977, Governor Raul Castro directed each State agency to take the necessary action to support the goals of the NFIP. Brief discussions of the State's responsibility and programs are presented in the following subparagraphs.

3.2.1 State-Owned Lands

Under NFIP criteria, a State is considered a "community" and must comply with the minimum floodplain management criteria set forth in 44 CFR, Part 60, as a condition to the purchase of a Standard Flood Insurance Policy for a State-owned structure or its contents.

Discussions with the Arizona State Land Department (ASLD) reveals that State-owned lands located within delineated floodplains are carefully reviewed to insure that any proposed development on such lands is done in accordance with the criteria established by the NFIP. Representatives from ASLD indicate that they routinely send floodplain development plans to the Arizona Department of Water Resources (ADWR) for review, and also coordinate such plans with the floodplain managers of the local jurisdiction within which the property is located.

3.2.2 State Flood Control Assistance Programs

The Arizona State Legislature enacted several programs during the 1970's to promote the planning and installation of flood control projects. Since these programs do not specifically address alluvial fan problems, only a brief discussion will be presented for each program.

The Flood Control Assistance Program, which was created in 1973, authorized the State of Arizona to reimburse local sponsors for 50% of the cost of local expenditures for right-of-way, utility, and road relocation work required for federally approved flood control projects.
Two additional assistance programs were adopted by the State Legislature in 1978. These programs authorized county flood control districts to request the Arizona Department of Water Resources (ADWR) to conduct engineering studies and to develop plans to control specific flooding problems within the districts. To complement this planning program, the Legislature simultaneously enacted a financial assistance program which allows the State to fund 50% of the installation cost of any flood control plan found to be economically justified as a result of a completed State sponsored planning study.

A fourth program, approved by the Legislature in 1979, authorized the State to provide low-interest loans to county flood control districts for up to 25% (not to exceed two and one-half million dollars) of the installation cost of a flood control project developed under the State flood control planning program.

3.2.3 State Coordinating Agency

The State program that is perhaps most closely associated with the implementation of the NFIP in Arizona is the State Coordinating Agency (SCA). FEMA encourages (44 CFR, paragraph 60.26) states to demonstrate a commitment to the minimum floodplain management criteria set forth in the NFIP by designating an agency of state government to be responsible for coordinating the Program aspects of floodplain management in the state.

At the present time, ADWR has been designated as Arizona's State Coordinating Agency. The NFIP lists 12 duties and responsibilities that the SCA should maintain a capability to perform (following duties are paraphrased per Bond, ADWR, 1982):

1. Enact enabling legislation in floodplain management.
2. Encourage and assist communities in qualifying for participation in the NFIP.
3. Assist communities in the adoption of ordinances.
4. Provide communities and the public with information on floodplain management.
5. Assist communities in disseminating elevation requirements for flood-prone areas.
6. Assist in the delineation of flood-prone areas.
7. Recommend priorities for Federal floodplain management activities within the State.
8. Notify the FIA (Federal Insurance Administrator) of community failures in floodplain management.
10. Assure coordination and consistency of floodplain management activities with other agencies.
11. Assist in the identification and implementation of flood hazard mitigation recommendations.
12. Participate in floodplain management training activities.

Due to limited staff capability, ADWR has been unable to fulfill 100% of these obligations, but for the most part, ADWR has been very effective as the SCA in promoting the goals of the NFIP in Arizona.

To summarize this overview of state floodplain and flood control policies, it can be concluded that the State of Arizona has been very active in the last 15 years in developing programs to mitigate potential flood damage and to support the goals of the NFIP. However, none of the State programs have published official policies dealing specifically with alluvial fan flooding.
3.3 Local Programs

The NFIP provides local communities with a very comprehensive set of floodplain management criteria and a set of floodplain maps which delineate specific hazard areas. In Arizona, these criteria have presently (October 16, 1987) been implemented by 87 communities, cities, and counties.

The NFIP criteria is intended to be applied to all delineated flood prone areas, including alluvial fans. FEMA representatives in Region 9 were asked to provide a list of alluvial fans in Arizona for which floodplain delineations had been prepared. Access to such information would provide an excellent data base to locate communities that are attempting to regulate development on alluvial fans. Unfortunately, FEMA was unable to provide this information.

As a parallel effort to acquire input on how communities are attempting to use NFIP criteria to manage development on alluvial fans, a questionnaire was developed which presented specific questions on management policies, technical procedures, flood damages, and research needs for the alluvial fan environment. This questionnaire was sent to every county engineer/flood control district in Arizona, as well as to all major towns and cities that were thought to have possible contact with alluvial fan problems. Questionnaires were also distributed to ADOT, ADWR and several private consultants who were known to have had previous exposure to engineering problems on alluvial fans. A total of 49 copies of the questionnaire were circulated for input to this report. All local agencies that received the questionnaire had adopted floodplain regulations that met minimum NFIP criteria. Said agencies were also participating in the Regular Phase of the NFIP.

Unfortunately, the response to the questionnaire was very limited. Replies were only received from 16 local (non-state) agencies. It is the opinion of the author that this low response is due to the fact that the majority of the local agencies do not presently have development occurring on a true alluvial fan. As a result, they are not faced with the potential devastation that has historically
been experienced on some of the classic alluvial fans in California (Palm Desert and Rancho Mirage). The author has been exclusively involved in flood control engineering in Arizona for the last 14 years. During that period he has not witnessed, or read reports of, flood damage on a classic, active alluvial fan that is similar to those referenced for California.

The absence of development on active alluvial fans in Arizona is supported by the responses on the questionnaires. With the exception of the Pima County Department of Transportation and Flood Control District, no local agencies have adopted any special floodplain policies to regulate development on alluvial fans. The policies adopted by Pima County are discussed in Section 8.2 of this report.
3.4 ADOT and the NFIP

The impact of the NFIP on ADOT'S responsibilities for highway planning and engineering can be discussed within the context of two programs:

* Federal-Aid Highway Program
* Non-Federal Highway Program

Highways that are planned and constructed with federal funds must comply with formal procedures established by the Federal Highway Administration (FHWA) to insure that such projects are consistent with the standards of the NFIP. There is no formal requirement to comply with these FHWA procedures on non-federally funded highway projects. The following subsections present a brief discussion of each program.

3.4.1 Federal-Aid Highway Program

The Federal-Aid Highway Program Manual, (November 15, 1979) Volume 6, Chapter 7, Section 3, Subsection 2, (FHPM 6-7-3-2) prescribes policies and procedures for the location and hydraulic design of highway encroachments in floodplains. The policies of this manual are stated as follows:

1. to encourage a broad and unified effort to prevent uneconomic, hazardous or incompatible use and development of the Nation's flood plains,
2. to avoid longitudinal encroachments, where practicable,
3. to avoid significant encroachments, where practicable,
4. to minimize impacts of highway agency actions which adversely affect base floodplains,
5. to restore and preserve the natural and beneficial floodplain values that are adversely impacted by highway agency actions,
6. to avoid support of incompatible floodplain development,
7. to be consistent with the intent of the Standards and Criteria of the National Flood Insurance Program, where appropriate, and
8. to incorporate "A Unified National Program for Floodplain Management" of the Water Resources Council into FHWA procedures.

Implementation of these policies requires the preparation of a "Location Hydraulic Study", which includes the following requirement:

"Local, State, and Federal water resources and floodplain management agencies should be consulted to determine if the proposed highway action is consistent with existing watershed and floodplain management programs and to obtain current information on development and proposed actions in the affected watersheds."

Accordingly, there is no question that the Federal-Aid Highway Program places a strong emphasis on coordinating highway projects with all the agencies that might be impacted by such a project.

FHPM 6-7-3-2 also includes a section on Design Standards. Although these standards do not reference or include any special procedures to be used for alluvial fan locations, they also do not prescribe any specific technical methodology (i.e., HEC-1, HEC-2, etc.) that has to be used for the analysis and design of any highway project. Accordingly, the design engineer is free to exercise his best judgement in selecting a technical methodology that is most appropriate for a specific highway project. This gives the engineer ample latitude to vary his hydrologic/hydraulic design procedures to accommodate the change in flooding characteristics that might be encountered as a proposed highway alignment moves from a classic riverine environment onto an alluvial fan environment.

In 1982, the FHWA published a document entitled "Procedures for
Coordinating Highway Encroachments on Floodplains with the Federal Management Agency. Essentially, this publication supplements FHPM 6-7-3-2 by providing specific guidance on how highway project encroachments into floodplains and floodways are to be analyzed and coordinated with FEMA and local agencies in order to comply with NFIP criteria. This publication has been officially endorsed by FEMA (June 7, 1982) as providing "..... an excellent guideline for coordination between highway agencies, communities participating in the National Flood Insurance Program (NFIP) and FEMA, when flood plain encroachments involving highway construction are proposed".

In reviewing the floodplain policies established for Federal-Aid Highway Program projects, it is very clear that considerable emphasis has been placed on compliance with NFIP criteria and encouraging maximum coordination with all federal, state, and local agencies that might be impacted by such a project. From a technical engineering perspective, the prescribed procedures include flexibility that allows the engineer to select an analysis technique that he would consider to be most appropriate for the site under investigation (e.g., riverine or alluvial fan environment). As long as ADOT continues to comply with these policies, they will have a sound and effective basis from which to initiate planning and design studies for highway projects located in a floodplain environment.

3.4.2 Non-Federal-Aid Highway Program

Highway projects constructed in Arizona without financial assistance from the FHWA are not dutifully bound to comply with the procedures outlined in FHPM 6-7-3-2. However, as a practical matter, these federal procedures/guidelines present a very logical approach to the planning and construction of any highway system in a floodplain environment.

Recognizing the logic of this approach, ADOT personnel indicate that for non-federal-aid highway projects they make every effort to comply with NFIP criteria and employ a "good neighbor" philosophy in coordinating highway
floodplain encroachments with local agencies that might be impacted by such projects. As with the Federal-Aid Highway Program, ADOT has no specific policy or engineering techniques for application to highway design on alluvial fans versus a riverine environment. They maintain the same flexibility provided in the federal program, i.e., the highway planners and engineers are free to select the most appropriate design methodology for the site under investigation. This is a common-sense approach that does not bind the engineer to one specific methodology that may only be applicable to limited environments.

ADOT presently employs what could be termed a "three-phase" process in the planning and design of highway projects. The first phase in this process is the preparation of a "Project Assessment" which identifies the project objectives and locates one or more alternative highway alignments. Since this report is reviewed by the ADOT Drainage Section, a qualitative assessment can be made of any potential floodplain/drainage problems that might accompany any of the preliminary alignments. This review can be used as justification for eliminating those alignment alternatives that would be expected to produce very severe floodplain encroachments or drainage problems.

The second phase consists of a "Design Concept Report" which defines specific design criteria and includes a relatively in-depth analysis of major drainage problems, such as those that might be encountered on an alluvial fan or in a riverine floodplain. A site-specific methodology is employed at this phase to: 1) quantify the severity and extent of the flooding problems; and 2) develop a plan that could be used to effectively eliminate these problems from being a potential source of danger to the proposed highway project. It is in this phase that the engineer has the flexibility of selecting an analytical technique that would most accurately simulate the floodplain characteristics of the location under investigation.

Phase three of this process is "Final Design". At this point all major floodplain/drainage problems should already be resolved. The only remaining
task is to transfer the drainage plan into a set of construction drawings.

In summary, this three-phase highway planning process appears to be a practical approach to the design of non-federal-aid highway projects. It acknowledges the importance of complying with NFIP criteria and coordinating floodplain encroachments with local agencies. There are also no rigid policies which restrict the highway engineer from exercising good engineering judgement in selecting analytical techniques that are most suited for a specific project. If the engineer has an understanding of the basic fluvial processes associated with a specific site, he should have no problem working within the framework of either the federal or non-federal-aid program in developing a reasonable analysis of the floodplain problems associated with the site.
4 ROAD DAMAGE AND MAINTENANCE COSTS ON ALLUVIAL FANS

From a transportation system perspective, an important product of alluvial fan research would be to identify specific roadway problems that have historically been experienced on alluvial fans and to tabulate the cost associated with repairing such damage and/or implementing unique maintenance procedures to keep the system operational. In an attempt to gather such information, questionnaires were sent to the four ADOT District Engineers, all county highway departments, and several Arizona municipalities. The questionnaire requested information relative to: 1) the type of problem encountered; 2) the estimated annual maintenance cost to mitigate the problem; and 3) any maintenance program changes that have been implemented to eliminate or reduce damages to roadway systems on alluvial fans.

Unfortunately, a very limited response was received on this topic. This could be interpreted to mean that roadway damage on alluvial fans is very limited in Arizona, or that records are not kept to allow an agency to differentiate between alluvial fan and non-alluvial fan roadway problems. The following subsection summarizes the comments that were received for various components of a highway system.
4.1 Highway System Damage Categories

The following paragraphs pertain to comments received for the categories of roads, bridges, culverts, and grade crossings.

Roads

This category only pertains to the roadway surface/embankment. Comments received for this category of damage are summarized as follows:

- Washed-out roads
- Erosion of granite mulch backslopes
- Erosion and sedimentation
- Edge scouring and sediment deposition
- Rutting and erosion
- Roadways become channels when aligned parallel to fan drainage patterns.

The City of Tucson estimated an annual maintenance cost of $25,000 for this category of roadway damage, while Greenlee County estimated an annual cost of $300,000 for 359 miles of roadway. No maintenance cost data was received from any other agencies.

Bridges

No damage/maintenance data was received for this category other than a general comment of "erosion, scour and sedimentation".

51
Culverts

Comments received for this category are summarized as follows:

* Constricted openings create upstream watercourse aggradation.

* Reduced flow capacity due to sediment/debris deposition within the culvert and at the culvert inlet.

* Wash-outs and structural damage.

The City of Tucson estimates an annual maintenance cost of $75,000 for alluvial fan culvert installations, while Greenlee County estimates $30,000 per year for maintaining culverts dispersed through 337 miles of dirt roads. No annual maintenance cost data was received from any other agencies.

Grade (Dip) Crossings

Comments received for this category are summarized as follows:

* Sediment/debris deposition

* Standing water which renders the crossing impassable.

* Damage to asphalt paving.

* Scouring at pavement edge.

The City of Tucson estimates an annual cost of $20,000 to maintain grade crossings in alluvial fan areas, while Greenlee County estimates an annual cost of $15,000. No annual maintenance cost data was received from any other agencies.
4.2 General Comments/Recommendations

In an attempt to reduce or eliminate the problems presented in the preceding section, some agencies indicated the following actions were being pursued:

* Eliminate grade (dip) crossings.

* Design structures with more emphasis on erosion potential, i.e., cutoff walls and bank protection.

* Curb and gutter installations required along roads.

* On a case by case basis, flood control improvements may be required in conjunction with the road construction.

* Minor re-alignment of washes.

* General improvement in the overall quality of maintenance work.

* Closer control being exercised in the design and construction of roadway crowns, drainage channels, and berms.

* Install flood warning signs at grade crossings.

The type of roadway design and expected maintenance effort for alluvial fan environments should obviously reflect the level of service required for the area. For example, is the alluvial fan segment of the roadway part of the Interstate Highway system, or is it merely to provide local access for very sparse development. Perhaps one of the key design criteria might be whether the roadway could tolerate temporary closures during flooding conditions. If so,
grade crossings might be a preferable alternative to culvert/bridge installations.

For those cases of roadway design that involve low traffic volumes to sparsely inhabited areas, some interesting data is available from an article entitled "Alluvial Fans and Desert Roads – A Problem in Applied Geomorphology", by Asher P. Schick. This article documents recorded flood damage to roadways on alluvial fans in southern Israel. The data derived from this study were summarized by Schick as follows:

"(1) The road surface should stick to the original fan surface as closely as possible. Available evidence indicates that exposure to flood damage increases with vertical deviation of the road structures from the grade line.

(2) Sediment settling basins are ineffectual on arid alluvial fans. For all but insignificant flows, they are filled with sediment during the first minutes or even seconds of a flood. To make them effective, they must attain a capacity of at least one tenth of the total volume of some typical flood event. In the examples cited for the event of 12/2/72, this means 5–20 times larger settling basins than those that were in existence at that time. Big holes like that are difficult to dig, have to be re-excavated periodically, and might incur the wrath of nature lovers.

(3) In all cases examined in the framework of the project, bridgeless crossings were preferable to culverts. The crossings are, on the whole, less expensive, and entail a much smaller overall deviation from the grade surface of the fan. Further, it is possible to design them carefully in such a way that they will be (i) on the trace of the most probable flow lines; (ii) at a right angle to these flow lines; and (iii) vertically positioned slightly below the grade surface so that, during
flows, they will be covered by a thin veneer of sediment which helps to protect the road surface from erosion.

The above procedure requires the services of a proper geomorphic survey which has to precede the detailed planning stage.

In contrast to bridgeless crossings, culverts silt up easily, often require raised embankments, and entail the construction of lead ditches which are loci of lateral erosion.

(4) Drainage ditches running parallel to the roadway on its up-fan side do not serve any demonstrable purpose except for very small flows which can be dealt with routinely anyhow. A further disadvantage is the necessary periodic maintenance."

It should be emphasized that Mr. Schick's recommendations are for low-volume roadways where temporary closures (at dip crossings) can be tolerated. Obviously, the design of a major highway would require a different approach. However, the recommendations provided by Mr. Schick still provide beneficial guidance on the type of problems that should be anticipated in the roadway design, i.e., special provisions can be incorporated into the analysis/design effort to investigate sediment inflows for detention basin design, silting of culverts, and lateral erosion of drainage channels.

Within Arizona, some of the major problems encountered by the author in the analysis and design of roadway projects on alluvial fans, terraces, and bajadas are summarized as follows:

1. Due to the sheetflow characteristics of alluvial fans, it is often difficult to determine the proper location for a culvert crossing. Fan environments typically exhibit a dense braiding network of small
washes. It is not feasible to construct a culvert at the intersection of each of these washes; any attempt to do so would probably result in an uneconomically large number of culvert installations.

2. Due to the transient nature of braided flow patterns on alluvial fans, the ephemeral washes are prone to shifting alignments over a period of time. The occurrence of such a phenomenon may leave culvert crossings high and dry at some time after their construction.

This shifting flow pattern can also create uncertainties in the design of roadway embankment heights that parallel or cut diagonally across the fan drainage pattern. For example, a roadway may be initially designed and constructed in an area of the fan that is not in close proximity to any major drainage channels; however, after five to ten years, the drainage pattern on the fan may have shifted towards the road, so that the road is now in direct contact with a major drainage conduit. This creates a potential failure mechanism to the roadway as the result of embankment erosion and/or overtopping.

3. The design of alluvial fan detention basins (upstream of roadways) can be complicated by the large sediment inflows generated on fans and by the relatively steep slopes normally found on fans. Steep slopes generate excessive excavation requirements in order to obtain any flood control storage. Headcutting also becomes a problem at the upstream end of the basins.

Another critical factor in the design of alluvial fan detention basins is the problem of insuring that the transient flow pattern on the fan can be totally captured and routed into the basin. This may require the installation of a system of training dikes upstream of the basin.
4. The construction of drainage collector channels perpendicular to the fan drainage pattern can create substantial sedimentation problems if the sediment transport capacity of the collector channels is not capable of transporting the sediment inflows. This will almost always present a problem because of the natural decrease in slope that will occur as one moves from a down-fan direction to a transverse alignment across the fan. Such a slope reduction will create the potential for a velocity reduction and corresponding decrease in sediment transport capacity.

5. The design of culvert crossings will frequently be based on the interception of large areas of sheetflow or numerous channel braids. This presents a problem in trying to design a culvert that will be capable of passing the total sediment flows that are intercepted by the roadway and directed to the culvert entrance. If a proper design is not provided, the culvert will be susceptible to substantial sedimentation, which may degrade its design performance.

Each project encountered by the highway engineer will exhibit varying degrees of these problems, along with others that may be unique to each site. Although it is impossible to design the highway drainage system to be in equilibrium with all the flow events that may be encountered during the project life, serious impacts can be anticipated and provided for in the roadway design. An understanding of the hydraulic processes on alluvial fans can then be used to develop a complimentary maintenance program to deal with expected variations from the design conditions.
As suggested earlier in this report, it is the author's opinion that alluvial fans in Arizona have not historically been a source of major flood damage. This is attributed to the absence of any major development or highway encroachments on active fans in the State. This is in sharp contrast to the catastrophic damage that has occurred in neighboring states such as California (e.g., Rancho Mirage and Palm Desert).

However, as the rapid population growth in Arizona continues, alluvial fans, bajadas, fan terraces, and pediments are becoming more prone to urban development, along with the associated infrastructure of roads and utility services. In order to prevent the occurrence of tragedies such as those experienced in California, it will behoove all regulatory agencies in Arizona to become intimately familiar with fan characteristics so that poorly planned developments will not be allowed to occur on fans in Arizona.

Some communities in Arizona are already beginning to experience development pressure into alluvial fan environments. For example, the City of Scottsdale is presently developing a General Drainage Plan for the McDowell Mountain/Pinnacle Peak area, which contains numerous fans and a broad alluvial fan terrace. Pima County is currently formulating a Management Plan for fans in the Tortolita Mountains.

In order to gain direct input on the engineering and regulatory problems being encountered in such environments, numerous regulatory agencies (municipalities, counties, etc.) in Arizona were provided with questionnaires soliciting their response to specific issues regarding development on alluvial fans. The questions addressed the application of NFIP criteria to alluvial fan development, as well as the effectiveness of local floodplain policies and technical procedures presently in use on alluvial fans. The response to these questions is summarized in the following subsections of this report.

One difficulty perceived by the author during a review of the questionnaire
responses was the way in which an alluvial fan was being interpreted by the questionnaire respondents. It appeared that some responses were oriented to general drainage problems (that could occur anywhere) rather than to the unique environment of an alluvial fan.
5.1 NFIP Problems on Alluvial Fans

Comments on problems in the application of NFIP criteria to alluvial fans was requested for the following categories of construction: 1) private development; 2) roads; 3) bridges; 4) culverts; 5) drainage/flood control; and 6) utilities. Of the 19 questionnaire respondents, 9 indicated problems with private development, 7 had problems with roads, 5 encountered difficulties with bridges, 7 had problems with culverts, 6 indicated conflicts with flood control/drainage projects, and 4 agencies stated that utility services were a problem area when constructed on alluvial fans using NFIP criteria.

Typical comments representing the problems perceived by the agencies are summarized, and in some cases quoted, as follows:

* "Compliance for this program is considered too much red tape and expensive by many of the residents and developers."

* The use of AO zones with average depth classifications is considered unrealistic and overly conservative in establishing minimum finished floor elevations relative to existing land elevations. FEMA alluvial fan methodologies derive depth numbers which assume the formation of an entrenched channel below existing land grade and incorporate velocity head into a derivation of total depth.

* Difficulties are encountered in conducting scour analyses and modeling existing runoff patterns. Local engineers are not well-versed in alluvial fan characteristics.

* Uncertainties in defining the 100-year floodplain to establish building envelopes for private development on alluvial fans. Variable flow patterns and difficulties in predicting geomorphic response
upstream and downstream of developments.

* "People wanting to enlarge existing structures in designated floodways."

* "Generally, private development suffers from lack of specific information and expertise to cope with design problems and to recognize the need for caution. Public development has serious difficulty funding the relatively large projects for the relatively low probability flood episodes; relative to say, roads, sheriff, etc. which generally function daily."

* Geomorphic features that have caused problems in the presently urbanized areas of Maricopa County have not been due to alluvial fans. We have experienced problems with high sediment loads in streams, or overland flow emanating from undersized, but relatively stable channels. However, we believe this is a condition indicative of an arid pediment, presenting physical conditions significantly different than to those of alluvial fans."

* "The floodplains are very wide and have been delineated using empirical methods that are either obsolete or without application of engineering judgement and practical considerations. The economics of scale are sometimes absent."

* "Difficulty in determining drainage area; difficulty in determining flow splits for varying frequency. Drainage facilities frequently experience aggradation problems upstream and degradation problems downstream."
"The main overall problems stem from the poor quality of our Flood Insurance Rate Maps, which tend to include far too much area in the regulatory zone. The lack of adequate crest elevations makes it expensive and risky to obtain LOMAs. We are trying to get ADWR to help improve elevation control."

"FIRMS do not always indicate where flooding may occur. Public does not accept floodplain boundaries and does not understand the shifting nature of alluvial fan flood flows."

"In general, because of the diversity of alluvial fan processes and the mixture of inactive and active areas on a given fan, the NFIP rules should be more flexible, and yet demanding of site-specific data collection and analysis. One model and one set of NFIP rules will be insufficient and inappropriate to regulate development. One problem that has arisen from NFIP policies in the San Diego area is that, in areas of coalescing fans, flood hazard zones are juxtaposed against other zones in a manner that cannot be justified on a hydrologic basis. For instance, a Zone AO3 might lie adjacent to a Zone AO1, without there being any drainage divide or other topographic feature to influence the depth of flow."
5.2 Local Floodplain Policies Adopted for Alluvial Fans

An indication of the severity of alluvial fan problems in Arizona should be reflected in the number of local floodplain policies adopted to address the unique flooding characteristics of fans. Such policies might also be expected to fill "gaps" or deficiencies in the NFIP/FEMA policies. As before, the questionnaire was used as the primary data source to retrieve information from regulatory agencies relative to special floodplain policies adopted for the alluvial fan environment.

Of the 17 public agencies that responded to this question, only one agency (Pima County) had written guidelines prepared for an alluvial fan environment (Tortolita Fan Area Interim Floodplain Management Policies, see Section 8.2 of this report for detailed discussion). LaPaz County indicated a general policy of avoiding development on alluvial fans, and requiring "mitigation and floodproofing" when avoidance was not possible.

Nine of the 17 public agencies thought their current floodplain policies were adequate for alluvial fans, while 3 agencies stated their policies were not adequate, and 6 agencies indicated they did not know the effectiveness of their policies or that alluvial fan policies were not applicable to their area of jurisdiction.

The following comments are typical of those received in response to a question asking for recommendations on how an agency's current policies could be improved.

* "More experience with projects on alluvial fans. Develop design standards for stormwater collection, sedimentation basins, and channel construction in terms of erosion control."

* Supplement drainage policies and practices, that rely on avoidance, mitigation, and floodproofing, with the construction of public
works projects (improvements) to enhance the hydraulic capacity of floodways.

* "Consider the mapping of erosion hazard zones based on geomorphic assessment."

* "What we need are improvements to existing washes."

* "Identification of diffused drainage patterns, both in terms of soil characteristics and forces that need to be dissipated in the flowing waters would help. Regional detention facilities seem to be an answer, but this needs to be justified further."

* Conduct master drainage studies.

* "The policies seem sound, but the maps (FIA) themselves do not go far enough in assuring fairness for an individual property owner."

* "Improved FIRMS".
5.3 Local Technical Procedures for Alluvial Fan Analyses

Of equal importance as floodplain policies, are the technical procedures that are used by engineers to conduct hydrologic, hydraulic, and sediment transport calculations for the analysis of alluvial fan developments. The chances of an alluvial fan drainage system operating as intended will only be as good as the design calculations are in simulating the actual physical behavior of the processes at work on a fan. Conventional analysis techniques that have traditionally been used in more stable riverine environments may not be totally applicable to an alluvial fan or may have to be used with revisions and/or substantial engineering judgment.

Discussions of specific technical methodologies that may be applicable to fan environments are presented in Section 6 of this report. However, in order to obtain specific information on any innovative methods being used by regulatory agencies in Arizona, the questionnaire requested such agencies to describe the analytical procedures that they presently employ for the analysis of alluvial fans.

Of the 17 public agencies responding to this question, none indicated that they had adopted any specialized technical procedure for the analysis of alluvial fans. It should be noted that the majority of the questionnaire respondents indicated that they rely on the accuracy of technical studies prepared by registered engineers.

Eight of the 17 agencies felt their current procedures accurately simulated the behavior of an alluvial fan, while five agencies felt they did not, and four agencies had no comment on the technical accuracy of their procedures in an alluvial fan environment.

Nine of the public agencies also offered suggestions on how they felt their current technical procedures could be improved to better simulate the analysis
of alluvial fan problems.

Typical comments received in response to the question on technical procedures are summarized as follows:

* Commonly used computer models, such as HEC-1 and HEC-2, do not address sediment transport. Agency procedures should be revised to require the use of a sediment transport model. A design manual should be created for engineers to follow when working on alluvial fans.

* Accurate input (field) data is often difficult to obtain. This causes uncertainty in the accuracy of the analytical results. Recommend that: 1) additional data be collected to properly assess input parameters for a procedure; and 2) develop procedures in which a large amount of cross-sectional data can be accommodated and easily edited.

* Current procedures are not accurate and "are generally independent of each other. No comprehensive analysis is done on whole watershed system. Each part is studied only enough to satisfy FEMA and local requirements for that project only."

* "For master planning we have utilized diffusion modeling (as developed by Guymon and Hromadka) as a tool to predict flow paths for the East Fork of the Cave Creek Study and assessment of flow paths below the spillways for the structures we maintain."

* "Develop a procedure to relate all construction within fans to a future floodway designation which would eventually be FEMA designated Floodways."
Street patterns for urbanized areas are "evaluated to ensure that the water flows radially down and across the intersections. Side streets must be designed to contribute to streets radially flowing out...... masterplanning, identifying locations of regional detention facilities and accurately determining the hydrology may be a start to identifying solutions for such hazard areas."

"Assumption of gradually varied flow and rigid boundaries is not applicable". (Note: This comment was made in reference to an agency's use of HEC-2 and WSPRO.)

"Standard hydraulic procedures are usually adequate for design on alluvial fans where the channels are deeply and permanently (in the human time frame) incised into the alluvium. In active fan environments, these procedures inadequately describe the location, velocities and depths of flooding. In an active fan, one cannot assume that the next flow path will be the same as the last. Engineers need much more familiarization with alluvial fan processes. We have seen substantial confusion arise simply because inactive and active fans are not distinguished. Analyzing the past history of alluvial fan flooding is important to know what kind of assumptions are reasonable for modeling."

"Development on alluvial fans, if done correctly, will ultimately result in an orderly, fixed alignment for primary channels which traverse the fan, thus eliminating the bulk of unique, flood hazards associated with alluvial fans. However, development occurs in a piecemeal manner. This necessitates a conservative approach to establishing requirements for drainage improvements and FPE (finished floor elevations) that provides flood protection in the interim while
fitting into the long range drainage plan. Thus, procedures used for evaluating conditions for development purposes are (should be) conservative and probably not representative of actual flood potential and conditions."

Note: The following comment was made by the same individual in response to a question soliciting recommendations for improvements to current procedures. In this case, the individual is referring to the FAN computer model developed by Dave Dawdy for FEMA.

"A more finite, precise approach that eliminates the need for conservatism probably goes beyond the scientific ability to predict the impacts of future flooding events. There are too many sediment related variables which would need to be considered that are beyond our ability to control or predict".
5.4 Critique of Alluvial Fan Regulatory Environment in Arizona

Due to the absence of any substantial historical flooding problems/damages on true, active alluvial fans in Arizona, both state and local regulatory agencies have been slow to address the specific needs for these environments. This is supported by the fact that only one regulatory agency (out of 49 agencies/individuals who were provided with research questionnaires) in Arizona has adopted a policy dealing with a specific alluvial fan problem. In the absence of such policies, agencies are relying upon the technical expertise and judgement of professional engineers to prepare engineering studies for such environments that will acknowledge the unique, site-specific characteristics of individual fans.

Because of limited exposure to alluvial fan problems, it is probable that the majority of engineers engaged in the design of urban development on alluvial fans are not fully cognizant of the extreme complexity of the environment in which they are involved. Failure to acknowledge and understand the dynamic behavior of the fluvial processes at work on a fan can lead to costly design errors.

As alluded to earlier in this report, this lack of engineering expertise can partially be traced to the heretofore minimal activity that has occurred on fans in Arizona, i.e., it has not been a subject that many engineers have had an opportunity to be exposed to. Compounding the problem is the fact that many planning and zoning commissions are often composed of non-technical personnel who have even less understanding of the geomorphic problems associated with alluvial fans than do engineers. If the engineer preparing the study and the commission approving the study are both less than completely familiar with fan behavior, the probability of achieving a well-planned development are somewhat remote.

An evaluation of the effectiveness of present management and technical methodologies for true alluvial fans in Arizona is difficult to make in the absence (with one exception) of any special policies that are oriented towards this
problem. As stated previously, most agencies seem to rely on the judgement of professional engineers to accurately incorporate alluvial fan characteristics into any private development or roadway design; no special agency regulations are available that requires the engineer to address specific problem areas on a fan. Additionally, there are no special technical procedures that are required by an agency when an engineer is pursuing development on a fan; engineers are essentially left to select the methodologies they feel most appropriate for the project.

As development on fans, terraces, and pediments increases, regulatory agencies are going to find that the lack of specific planning policies and technical procedures for such areas will lead to poorly planned developments that are exposed to a high risk of flood damage. It is the author's opinion that agencies should develop master planning studies for these environments and establish technical guidelines that the engineer can use as a checklist to insure that the project design acknowledges the hydrologic, hydraulic, erosion, and sediment transport issues that are characteristic of these environments. Hopefully, through additional research, some improved methodologies might be available in the future which could be adopted by agencies for use in these environments. This should not be interpreted, however, to infer that an acceptable analysis of alluvial fan characteristics is impossible at the present time. If one understands the basic processes at work on alluvial fans, sound engineering judgement can be combined with presently available technical procedures to successfully design urban developments and transportation systems on alluvial fans, terraces, and pediments.

There is substantial evidence that several regulatory agencies in Arizona are aware of the need for these special policies. As mentioned previously, Pima County has already adopted "Interim Floodplain Management Policies" for the Tortolita Fan Area Basin. The City of Scottsdale initiated work (January 1988) on a "General Drainage Plan For the North Scottsdale Area"; this area includes several alluvial fans and a fan terrace, all of which will receive special
consideration during development of the drainage plan. The Flood Control District of Maricopa County has developed several "Area Drainage Master Studies" for portions of Maricopa County. Mohave County is presently involved in the design and construction of a comprehensive flood control plan for the Bullhead City area.

The Arizona Floodplain Management Association (AFMA) has also taken an active role in attempting to educate its membership on the problems encountered in the arid watersheds of the Southwest. AFMA frequently sponsors guest speakers at its meetings to address these topics.

Although the "Tortolita Fan Interim Floodplain Management Policies" is apparently the only instance of a formal agency policy specifically oriented towards an alluvial fan in Arizona, it appears that the need for these type of specialty studies/procedures is beginning to be recognized. Hopefully, this trend will continue in the future, and Arizona will be spared the experience of a "Rancho Mirage". To accomplish this goal, continued emphasis should be placed on educating regulatory agencies and technical professionals on characteristics and analytical procedures appropriate to alluvial fan analyses. Technical research should also be continued in order to improve the methodologies that are available for use on alluvial fans.
6 TECHNICAL PROCEDURES FOR ANALYZING ALLUVIAL FANS

One of the objectives of this research report is to "evaluate effectiveness of present management and technical methodologies in mitigating flood hazards in alluvial fan areas." Section 5.2 of this report discussed the floodplain policies (or lack thereof) presently being used to manage the development of alluvial fans in Arizona, while Section 5.3 reported no regulatory agencies in the State have presently adopted any specialized technical procedure for the analysis of alluvial fan processes.

In the absence of locally adopted procedures (with the exception of the Tortolita Fan Area), the author has conducted an extensive literature search to document technical methodologies and management practices that may have some application to either all or some portion of an alluvial fan. Section 6 presents a detailed discussion of these technical procedures, while Section 7 presents a review of alluvial fan management practices. This information is provided in order to give the reader a broad range of views on how the alluvial fan problem has been approached by other engineers, researchers, and federal agencies.

Some of the technical methods in Section 6 are more applicable than others. A synopsis of each method is provided along with a reference to the original article. The reader is encouraged to obtain the original article if more detailed information is desired.
6.1 FEMA Procedure

Perhaps the most widely known procedure for conducting a hydraulic analysis of alluvial fans is the methodology adopted by FEMA and presented (as Appendix 5) in a publication entitled "Flood Insurance Study Guidelines and Specifications for Study Contractors", Federal Insurance Administration, September 1985. The methodology presented in this publication was originally developed by Dawdy (1979) and subsequently modified in response to a report prepared by DMA Consulting Engineers (1985).

As the title suggests, this procedure was developed to delineate floodplain limits on alluvial fans. Accordingly, it does not provide procedures for developing design parameters for the construction of roads or commercial/urban structural improvements on fans.

Description of Methodology

The FEMA procedure was developed to provide a standardized technique for indentifying "Special Flood Hazard Areas" on alluvial fans. These areas are classified as "Zone AO", which is defined as follows:

"Zone AO is the flood insurance rate zone that corresponds to the areas of 100-year shallow flooding (usually sheet flow on sloping terrain) where average depths are between 1 and 3 feet. Average whole-foot depths derived from the detailed hydraulic analyses are shown within this zone."

The adopted procedure relies heavily on empirical equations relating depth and width of flow to discharge. Knowing these two relationships, an equation can also be developed relating channel velocity to discharge. Specifically, the geometry of the alluvial fan channel is based on field evidence that the channel

73
will stabilize (i.e., lateral erosion of the banks will cease) at a point where a
decrease in depth causes a two-hundred fold increase in width. Based on this
field data, Dawdy (1979) developed the following equations:

\[W = 9.5Q^{0.4} \] (6.1)

\[D = 0.07Q^{0.4} \] (6.2)

where \(W \) = channel width (ft.)

\(D \) = channel depth (ft.)

\(Q \) = discharge (cfs)

Assuming a rectangular channel, and knowing that \(Q = AV \), Equations 6.1
and 6.2 can be used to derive a relationship between velocity and discharge:

\[Q = 0.13V^5 \] (6.3)

where \(Q \) = discharge (cfs)

\(V \) = velocity (fps)

When using this method, these three equations form the basics for describing
single channel hydraulics on an alluvial fan.

In order to use these equations, information relative to the discharge at
the fan apex must be known. The FEMA procedure requires a complete flood
discharge–frequency distribution using log–Pearson Type III (LP III) analyses as
presented in United States Water Resources Council Bulletin #17B. Bulletin #17B
prescribes procedures to be used for the statistical analysis of stream gage
data. Unfortunately, very few (if any) alluvial fans containing stream gages
will be found in Arizona. Accordingly, in most cases, procedures other than
stream gage analyses will be required to determine the discharge-frequency relationship at the apex of a fan. Such procedures might take the form of computerized rainfall-runoff modeling (HEC-1), or regionalized peak discharge regression equations.

Once an appropriate peak discharge methodology has been selected and the discharge-frequency relationship established, the LP III statistical parameters (skew coefficient, standard deviation, and the mean of the logarithms of the computed discharge values) must be computed using relationships presented in the FEMA publication. These parameters are then used to compute the LP III transformation variables and a transformation constant. These statistical parameters are ultimately used in the computation of the fan widths (i.e., arc lengths from one side of the fan to the other) that define the floodplain boundaries for specific depth/velocity zones on the fan.

For a single channel region of the fan, the following relationship is employed:

\[\text{Fan Width}_{sc} = 950 ACP \] \((6.4) \)

where \(A \) = an avulsion coefficient (to be discussed in subsequent paragraphs)
\(C \) = LP III transformation constant
\(P \) = probability of occurrence of the discharge that corresponds to a selected depth or velocity of flow

Working within the framework of Equations 6.1 through 6.4, the basic operation of the FEMA procedure is summarized in the following steps. The same procedure is applied to both upper and lower boundaries of a "depth zone" (e.g., for a depth zone of 1.0 foot, the lower boundary is 0.5 feet and the upper boundary is 1.5 feet) and a "velocity zone".
1. Using an appropriate hydrologic methodology, compute the peak discharge for the 100-, 10-, and 2-year floods at the fan apex.

2. Using the discharge values from Step 1, compute the LP III statistical parameters.

3. Select a flood zone depth, for which a fan width is desired, that has a 1% annual probability of being flooded, (e.g., 0.5 ft, 1.5 ft, 2.5 ft, etc.)

4. Using Equation 6.2, compute the discharge corresponding to the depth selected in Step 3.

5. Using the LP III parameters from Step 2, compute the probability of occurrence of the discharge computed in Step 4.

6. Use Equation 6.4, along with the statistical data from Steps 2 and 5, to compute the fan width for the assumed conditions.

7. Use a topographic map to find a fan arc (contour line) that fits the width computed in Step 6. This arc then establishes a boundary limit (i.e., upper or lower, depending on the initial selection) for the flood depth zone being analyzed.

8. Steps 1 through 7 are repeated for all the flood depth zone boundaries (probably 0.5 feet through 4.5 feet, at 0.5 foot intervals) desired for the fan.

9. A similar procedure is then used to identify velocity zone boundaries. However, velocity zone calculations utilize Equation 6.3, rather than Equation 6.2, to determine the discharge value in Step 4.

10. The depth and velocity zones computed from these procedures are used to delineate specific boundaries on the fan that enclose areas of similar depth/velocity combinations.

As indicated previously, the 10 steps outlined above are only intended to illustrate the basic procedure used by FEMA for alluvial fan analyses. The complete procedure contains modifications (based on the 1985 DMA study), to
address channel bifurcations that essentially divide the fan into regions of both single channel and multiple channel flow. The boundary of these two regions is based on an empirical relationship between the length of the single channel region and the ratio of the canyon slope to the fan slope. A decrease in this ratio causes an increase in the length of the single channel region.

The multiple channel region also uses a different set of equations to determine the depth and velocity zones. The following relationships are used for the multiple channel region:

\[D = 0.0917n^{0.6}S^{-0.3}Q^{0.36} + 0.001426n^{-1.2}S^{0.6}Q^{0.48} \]

\[Q = 99,314n^{4.17}S^{-1.28}V^{4.17} \]

where \(D \) = total flow depth (ft) due to pressure head & velocity head

\(V \) = velocity (fps)

\(Q \) = discharge (cfs)

\(n \) = Manning’s roughness coefficient

\(S \) = alluvial fan slope (ft/ft)

The fan width in the multiple channel region is:

\[\text{Fan Width}_{MC} = 3,610 ACP \]

where \(A, C, \) and \(P \) are as defined for Equation 6.4.

An important distinction between these two flow regions (single channel vs. multiple channel) is the assumption that critical depth prevails in the single channel area on the upper reaches of the fan, while normal depth exists in the multiple channel region on the lower part of the fan.
In addition to providing guidelines on the analysis of adjacent, coalescing alluvial fans, the procedure also incorporates a mechanism to address channel avulsions. This phenomenon (avulsions) is an abrupt change of flow path across an alluvial fan. This is caused by debris, mud flows or sediment deposition that may cause total or partial blockage of a channel during a flood event. When this occurs, the flow path will be diverted to a different portion of the fan, where a new channel will begin to form. The continuing process of avulsions (over geologic time) is the mechanism that causes the uniform distribution of sediments that builds the fan into its classic conical form.

Consideration of avulsions is included in the FEMA procedure because avulsions cause a significant increase in the probability of flooding at any point on the fan. This increased probability occurs because of the potential for the flow-path to occupy multiple positions on a fan during a specific flood event, i.e., a channel may avulse halfway through a flood and occupy a new alignment for the remainder of that specific flood event.

The potential for avulsions is acknowledged in the fan width calculations (Equations 6.4 and 6.7) by including an avulsion coefficient. A coefficient greater than 1 would indicate that the specific fan under study has some degree of avulsion potential. A value of 1.6 is recommended in the absence of other data. Use of this value assumes that an avulsion will happen with the occurrence of every other 100-year flood (DMA, 1985).

Comments on Methodology

As stated previously, the FEMA procedure was developed specifically to delineate "Special Flood Hazard Areas" (A0 Zones) for use in flood insurance studies. As a result, the procedure does not include provisions for addressing sediment transport issues that may be crucial to the design of a specific structure or development on an alluvial fan. Furthermore, it only addresses the flooding potential of runoff that is delivered to the apex of the fan, i.e., it does not include the flood potential from rainfall falling directly onto the fan surface.
The procedure also excludes any mechanism to examine the attenuation and translation of a hydrograph as water flows from the fan apex to the toe.

In reviewing this procedure, the author would also urge caution in developing synthetic LP III parameters when no stream gage data is available at the fan apex. In the absence of gage data, the calculation of synthetic peak discharge data will strongly influence the LP III statistical parameters that are computed from such data. The user will get different statistical parameters, and subsequently different arc lengths for the depth-velocity zone widths, depending on the peak discharge that is used at the fan apex. Under such conditions, it would be important for the user to pay particular attention to the results obtained from any synthetic hydrologic modeling procedures in order to verify that the peak discharges obtained from such procedures are indeed representative of the upstream watershed.

For general verification purposes, the FEMA procedure might consider the addition of some mechanism that could be used to check the realism of the predicted depth/velocity zones (computed from Equations 6.2, 6.3, 6.5, and 6.6) as a function of the peak discharge used at the fan apex. For instance, if Manning's equation were applied to the apex discharge, with a flow depth equal to that in a previously computed depth zone, would the resulting channel width and flow velocity be realistic? Through an iterative process, such a procedure could also be used to determine the hydraulic geometry required to produce a flow velocity equal to those predicted for a specific velocity zone. Simple continuity checks, such as these, might serve to minimize the possibility of gross inconsistencies between realistic hydraulic parameters and selected peak discharge data. However, an admitted limitation of such a procedure would be the failure to reflect a reduction in down-fan peak discharge due to transmission losses and hydrograph attenuation due to channel storage effects.

The user of the FEMA procedure should also be cautioned that the methodology does not acknowledge the vertical element of the fan topography, i.e., there may be small hills that are elevated sufficiently above the fan surface.
so that they would not be subject to the floodwater inundation limits described by the depth-velocity zones produced by application of this procedure.

An in-depth examination and critique of this procedure has been undertaken by French (1984). The primary criticism presented in the French report focuses on the validity of using Regime Theory (Equations 6.1, 6.2, and 6.3) to evaluate channel hydraulics on an alluvial fan. As a possible alternative, French suggests use (with some modifications) of the minimum stream power hypothesis presented by Chang and Hill (1977) and Chang (1982).

Modifications are recommended to: 1) address infiltration losses; 2) account for unsteady water flow and unsteady sediment supply; 3) address the validity of the minimum stream power concept at supercritical flow; and 4) develop a more technically defensible treatment of the criteria used by Chang (1982) to evaluate channel bank stability.

French also notes the inability of the FEMA procedure to address the impact of debris flows on the upper portions of a fan. Debris flows are considered to possess substantial damage potential. Very similar phenomena, mudflows and mud floods, can also cause tremendous damage on fans. In the spring of 1983, severe mudflows inundated portions of alluvial fans along a 30 mile length of the Wasatch Front Mountains in Utah. The damage from these mudflows, and efforts to reproduce the events through numerical modeling, are documented in a report published by the Corps of Engineers (1988) (see Section 6.8.2 of this report). Damage from both mud floods and mudflows are covered by FEMA under the National Flood Insurance Program, however, there have been disputes over damages from mudflows because of difficulties encountered in distinguishing mudflows from other types of hyperconcentrated flows. FEMA has defined Flood Hazard Zones "M", "N", and "P" for use in delineating areas of mudslide hazard (see Table 3.1 in this report).

It should be noted that the French report was based on a critique of the FEMA procedure as published in July 1983. The September, 1986 FEMA procedure contains revisions to address both single and multiple channel segments. These
revisions to the original Dawdy procedure were based on the results of a 1986 study prepared by DMA Consulting Engineers for FEMA. The DMA study was commissioned to address two key assumptions in Dawdy's original work. These assumptions were:

1. the location of any stream channel on a fan is random; i.e., it has an equal probability of occurring anywhere across the fan;

2. the flow forms its own channel and remains in one channel throughout the flow event (with the exception of avulsions, which are accounted for by the avulsion coefficient)

DMA completed this study by undertaking an analysis of historical flood data from several alluvial fans in the southwestern United States. The data base developed for this study included aerial photographs of each fan before and after a recorded flood event. An extensive review was also made of the Anderson-Nichols (1981) study that had previously been prepared for FEMA (see Section 7 of this report).

The results of the DMA study support Dawdy's first assumption of a random stream channel location on the fan, but indicated that the single channel concept for the entire length of the fan was not realistic. Accordingly, revisions were recommended to modify the original procedures to include both the single and multiple channel regions. These revisions include the previously referenced equations (6.5, 6.6, and 6.7) for determination of the depth–velocity relationships and fan width in this region, as well as the empirical data for estimating the length of the single channel region.

The DMA data also indicated that Equation 6.1 provides a reasonable estimate of the width of a single channel on an alluvial fan. This conclusion was based on an analysis of 11 fans. Using the data from four fans, a conclusion was also reached that the total width of multiple channels across the fan width,
for a given radius from the apex in a split channel region, was found to be 3.8 times the channel width in a single channel region. This rather small data base was used to develop the numerical coefficient in Equation 6.7. The reader will note that the ratio of Equation 6.7 to Equation 6.4 is 3.8.

No changes were recommended by DMA relative to the default avulsion coefficient of 1.5. This was based on the fact that insufficient flood data was available to make such a recommendation.

Application in Arizona

FEMA was requested, by the author, to provide a list of alluvial fan sites in Arizona for which the published fan methodology has been applied. FEMA's response (written communication from John L. Matticks, Federal Insurance Administration, March 7, 1988) stated that "no effective Flood Insurance Rate Map was prepared based on a detailed flood analysis using the alluvial fan methodology for any community in Arizona." However, the author is personally aware of the FEMA fan procedure having been applied on the Tortolita Alluvial Fan in Pima County. In fact, this site is presented as a case study in this research report. This site was probably omitted from Mr. Matticks' letter since the effective FIRM has not yet been approved for this site. Conversations with a local engineering consultant also verified that a Flood Insurance Study for the Bullhead City area also used the FEMA fan procedure. No other applications of this method in Arizona are known to the author.

Application of the FEMA alluvial fan procedure to the Tortolita Fan has generated considerable controversy. In fact, the Pima County Department of Transportation and Flood Control District formally appealed the study to FEMA on March 3, 1987. The appeal is based on allegations that the procedure is "scientifically deficient in light of new and previously unavailable data regarding activity of alluvial fan processes in the study area" and "technically deficient when examined in relationship to the technical guidelines issued by FEMA and the alluvial fan flooding literature cited by FEMA."
The appeal is well-documented and raises several valid issues which challenge the accuracy of the Flood Insurance Rate Maps (FIRM). As with any pioneering methodology (especially one that deals with such a complex and dynamic environment as an alluvial fan) engineering judgement is required to ensure that application of the methodology will produce realistic results. It is within this framework that the appeal seeks revision of the FIRMs for the Tortolita Mountain fans. The basis of the appeal touches on several issues of which the practicing engineer should be aware, whether FEMA's or some other procedure is being used for an alluvial fan analysis. Accordingly, the following paragraphs are devoted to a brief discussion of the contested technical issues in the Tortolita Alluvial Fan Flood Insurance Study

1. An extensive geological investigation was conducted to identify active and inactive portions of the alluvial fans. Based on the age of soil deposits, Pima County defined an active fan area as one which has been subjected to at least one alluvial fan flooding event in the last 10,000 years. Those areas which did not meet this criteria were considered inactive.

This is an important distinction which is used in the appeal to identify areas on the fan that are sufficiently elevated above the present day channels emanating from the mountain front and onto the alluvial fan surface. These areas are considered inactive and not subject to classic alluvial fan flooding processes, (at least within the last 10,000 years) because they are no longer hydraulically connected to the "trunk stream" that carries water from the mountain watershed onto the fan. Accordingly, an argument is made that inactive fan areas should not be mapped with the FEMA alluvial fan flooding procedure. The appeal notes that inactive fan areas are subject to flooding, but only from runoff generated on the inactive fan surface, not from the mountain watershed which feeds the fan.
2. The location of the alluvial fan apex is a critical factor in the application of the FEMA procedure. The apex location essentially dictates where the upstream end of the "AO" flooding zones will begin to be delineated. The Tortolita fans contain several deeply entrenched channels that, in some cases, extend several thousand feet downstream of the mountain front where the study contractor had located the majority of the fan apices. These channels exhibit sufficient capacity and bank stability to adequately convey the 100-year flood with substantial freeboard. Additionally, the age of the surrounding soil deposits indicated no evidence of recent (within the last 10,000 years) overbank flooding.

Based on this evidence, a valid argument is made that the areas adjacent to the entrenched segments of such channels are not subject to the "AO" depth/velocity zones that result from the FEMA alluvial fan procedure. Instead, the appeal recommends that the fan procedure be initiated at an apex location corresponding to the point at which the channel entrenchment begins to lose definition, i.e., the point at which the flow is not longer confined by channel banks and is thus allowed to spread across the fan surface. This point is commonly located near the middle part of the fan and has been defined by Hooke (1967) as the "intersection point".

3. The depth/discharge relationship for the single channel region (Equation 6.2) has been rearranged in the 1986 FEMA publication so that discharge is determined as a function of depth. The appeal claims that the coefficient of 0.07 in Equation 6.2 was rounded to approximately 0.1 when this mathematical manipulation was performed. This round-off assumption causes a substantial change in the coefficient for the transformed equation. If the original coefficient of 0.07 (Equation 6.2) is carried through the mathematical transformation, the resulting equation is:

\[Q = 771D^{2.8} \]
As published in the 1985 FEMA manual, the transformed equation is:

\[Q = 280D^{2.6}. \quad \ldots \ldots \ldots \ldots \quad (6.9) \]

The coefficient of 280 in Equation 6.9 will be obtained if the original coefficient of 0.07 in Equation 6.2 is changed to 0.106. Obviously, a substantially different result will be obtained when using Equation 6.8 instead of Equation 6.9. The use of Equation 6.8, which would appear to be the more correct relationship, will result in narrower fan flood widths (Equation 6.4) than those obtained using Equation 6.9.

Accordingly, based on this mathematical analysis, it appears that the single channel widths of probable fan flooding zones computed using the equation in the 1985 FEMA manual will be in error.

4. The 1985 FEMA publication provides guidelines for addressing the flooding potential on coalescent fan areas. These guidelines state that "separate depth-frequency relationships should be developed for each source of flooding and combined based on the probability of the union of independent events. The Pima County appeal alleges that these guidelines have been misapplied to the Tortolita Fan Area and have generated zones of depth-width (velocity?) values that are greater in the coalescent areas than on the adjacent single fan areas. The appeal argues that such a condition is unrealistic.

It would appear to the author, however, that if two overlapping (coalescent) fans were to flow simultaneously, there would be more floodwater involved than if only a single fan were flowing. Under such circumstances, it would appear logical to expect deeper flow depths and higher velocities in the overlap area than in the adjacent areas that are only receiving water from a single fan.
This summary discussion of the Tortolita Alluvial Fan Flood Insurance Study demonstrates the need for: 1) thorough field inspections of a study area; 2) familiarity with fan flooding characteristics; 3) the application of sound engineering judgement to the technical analysis; and 4) a thorough review of study results to insure that realistic answers are being obtained.
6.2 Edwards and Thielmann Procedure, Cabazon, California

Cabazon is a community of scattered residential development located northwest of Palm Springs in Riverside County, California. Floodplain maps published in 1973 and 1974 delineated very generalized, broad floodplain limits on the alluvial fans surrounding this community. These maps did not designate floodway limits or contain any information on depth and velocity of flow. As a result, this information was inadequate for community officials to make land use decisions or to develop design criteria for proper flood-proofing measures. To overcome this deficiency, an engineering study was commissioned which resulted in the development of land use guidelines and recommended flood-proofing criteria. The results of this study, which are summarized below are presented in a report by Edwards/Thielmann (1982).

Development of Methodology

In recognition of the unique flooding characteristics of an alluvial fan, the consultant conducted a literature search in order to identify a technical methodology that would be appropriate for such an environment. This resulted in the selection of the FEMA procedure (Section 6.1) that was developed by Dawdy (1979). However, since the FEMA procedure is oriented towards the identification of probabilistic depth-velocity zones, that are used to establish flood insurance rates, revisions to the procedure were required in order to more realistically analyze engineering problems that must be addressed when working in such an environment.

The FEMA procedure assumes the probability of flooding at a given point on the fan decreases as water moves down fan. This assumption acknowledges the fact that the downslope widening of the fan surface provides a greater area over which a channel of a given width may occur. For flood insurance purposes this produces ever-widening "probability zones" within which a channel of given geometry and discharge could be randomly located. These zones also exhibit
decreasing values of depth and velocity in the downfan direction.

Edwards and Thielmann suggest that the discharge, depth and velocity would remain relatively constant as the water is transported by a specific channel in a downfan direction. Accordingly, for engineering design purposes, they have opted to remove the statistical component from the FEMA method, under the justification that "By eliminating the statistical component from the Dawdy (FEMA) method, the resulting flow characteristics represent conditions on the cone resulting from the 100-year peak discharges as determined at the apex, rather than conditions that would occur at any given point on the cone from an event which has one percent probability of occurring annually at that point."

They suggest that failure to follow this approach could lead to the design of flood-proofing measures or development criteria (in downfan locations) that could not withstand the flows that might realistically occur.

The second revision made to the FEMA (Dawdy) procedure was to assume normal depth would be a more realistic scenario than critical depth (as assumed by Dawdy). This modification acknowledges the potential for supercritical flow on the steep fan slopes and produces a more severe velocity parameter for design purposes. Edwards and Thielmann justify this assumption on the basis that the development of a critical depth channel would not occur until some time into the runoff hydrograph. Accordingly, until critical depth conditions are established, supercritical flow will probably be the predominant regime. It should be noted that in the 1985 revision to the FEMA procedure, normal depth is assumed for the multiple channel region of the fan, but critical depth is still assumed for the single channel region on the upper portions of the fan.

Based on the stated assumptions, Edwards and Thielmann present revised equations for computing flood depths, widths and velocities on an alluvial fan. These equations are based on Manning's Equation with an assumption of a wide, rectangular channel. The derivation of these revised equations also incorporates
Dawdy's criteria that an alluvial channel will continue to widen until a decrease in depth results in a two hundred fold increase in width, i.e., \(\frac{dD}{dW} = -0.006 \). The final equations resulting from these modifications are listed as follows:

\[
D = \left(\frac{Qn}{178.8S^{1/2}} \right)^{3/8} \quad (6.10)
\]

\[
W = \frac{17.16(Qn)^{3/8}}{S^{3/16}} \quad (6.11)
\]

\[
V = 0.41Q^{1/6}S^{3/8}n^{-3/4} \quad (6.12)
\]

where \(D \) = depth of flow (ft)

\(W \) = width of channel (ft)

\(V \) = velocity of flow (fps)

\(Q \) = discharge (cfs)

\(S \) = channel slope (ft/ft)

\(n \) = Manning's roughness value

When these relationships were applied to the Cabazon study, depths of 1 to 3 feet, velocities of 10 to 26 feet per second, and widths of 100 to 600 feet were reported for 100-year peak discharge values ranging from 6000 cfs to 30,000 cfs, and slopes ranging from 2 percent to 18 percent. Support for the computed velocities is reportedly provided by indirect field measurements (by the USGS) of flooding on alluvial fans. These measurements yield velocities in the 15 to 25 fps range. Application of the FEMA procedure to the same fans produced slightly lower velocities and deeper flow depths.

It is interesting to note that the flood hazard boundaries developed by the consultant for the Cabazon study were based on topographic constraints.
identified from topographic maps, aerial photographs, and historic flood data. These boundaries were not based on the channel widths computed with Equation 6.11. This was done to acknowledge the potential for flooding to occur at any point on a given contour of an alluvial fan.

Criteria for development standards for the community was based on established flood hazard boundaries and hydraulic calculations using Equations 6.10, 6.11, and 6.12. Scour depths were determined as a function of velocity, using Equation 6.12 and a scour depth/velocity relationship published by the Los Angeles Flood Control District.

Typical development standards that resulted from the study include requirements for: 1) slope protection to prevent damage from scour and erosion; 2) building pads to be elevated to a height above ground equal to the sum of the depth of flow plus the velocity head; and 3) limitations on minimum lot sizes and permissible housing densities. This third standard was established to insure that sufficient clear, unobstructed areas would be available to convey flood waters through a fully developed community.

For the Cabazon study, the consultant established permissible housing densities on the basis of the ratio of the computed channel width to the available flooding width. Minimum lot widths were found to range from $1/3$ to $1/2$ acre for single family residential use. Calculations also indicated that 30 to 35 percent of the lot width, in the direction of flow, must remain unobstructed.
6.3 Federal Insurance Administration, 1980 Experimental Procedure

Prior to publication of the FEMA/Dawdy procedure, described in Section 6.1 of this report, the Federal Insurance Administration (FIA) had experimented with a special flood insurance zone designated as "AF" (for alluvial fan). The mechanics of this procedure were based on unpublished work undertaken by Lare and Esyter of the Albuquerque District of the Corps of Engineers. A discussion of this procedure, presented in the following paragraphs, is based on an article by Magura and Wood (1980).

Description of Methodology

One of the most notable differences between this procedure and the FEMA/Dawdy procedure is the absence of a statistical parameter that reduces the probability of flooding in the downfan direction. As the reader will recall from Section 6.1, the FEMA/Dawdy procedure assumes that as the fan width increases (in the downfan direction), the probability of flooding along a given contour decreases because of the wider area available for a random channel location.

The FIA procedure places considerable emphasis on dividing the fan into separate reaches that exhibit similar flow characteristics. For example, possible reach limits are identified as: 1) the fan apex; 2) intersection points with main valley and canyon sides; 3) points of substantial change from an entrenched channel to a braided channel; 4) a change in overbank encroachments (structures); and 5) points of substantial change in gradient. Adherence to this recommendation will insure that each reach has relatively constant channel geometry and flow characteristics.

In conducting the hydraulic analysis of the fan, the FIA procedure utilizes two of the same assumptions contained in the FEMA/Dawdy method; i.e., 1) critical flow will be the dominant regime on the fan surface; and 2) channel geometry will stabilize when a reduction in flow depth produces a two-hundred
fold increase in flow width.

The critical depth assumption is used to develop a set of curves relating overbank flow depth to a total flow path width. This is accomplished through the following steps:

1. Field inspections are conducted on the fan to determine the most representative channel geometry for the different reaches of the fan. For example, a rectangular cross-section (30-feet wide and 5-feet deep) was found by Lare and Eyster to be most representative for a site that was studied in New Mexico.

2. Using the representative channel geometry determined from Step 1, a water surface profile model (such as HEC-2) is used to develop hydraulic data for a range of discharge values and total flow widths. The total flow width includes both the incised channel bottomwidth and the overbank width. When using this procedure, the bottomwidth for a given channel is held constant and the overbank widths are varied. Using a critical depth assumption, the model is then run for these different combinations of discharge and total flow width. The model results will produce depths of flow and velocity data for the different elements of the cross-section.

Figures 6.1 and 6.2 represent typical depth-width curves that will result from applying the procedure described in Steps 1 and 2. These figures, which were adapted from the Magura/Wood article, also identify the cross-section variables that are used in the analysis. Figure 6.2 represents a sheetflow condition that would be typical of areas on a fan where there are no well-entrenched or defined channels.
Figure 6.1 Critical Depth vs Flow Path Width
Incised Channel With 30-Foot Bottomwidth

Critical Depth (ft)

Q=2000 cfs
Q=5000 cfs
Q=10000 cfs
Q=18000 cfs
In concert with the previous emphasis on dividing the fan into separate reaches, each of which exhibits similar characteristics, the FIA procedure provides the following guidelines on how the different reaches might be analyzed:

1. *Areas within the canyon, or areas on the fan surface where a deeply entrenched channel exists* can be investigated with conventional procedures such as HEC-2. Caution should be exercised, however, to
insure that the channel has sufficient conveyance and stability to preclude the possibility of an avulsion.

2. Areas on an alluvial fan protected by structural works (channels, diversion structures, debris basins, etc.) should be analyzed with a very critical evaluation of the performance capability of such structures. Issues such as adequate scour depths, sediment transport capacity, bank erosion, channel freeboard, etc. should be closely scrutinized.

3. Majority of areas where natural fan processes, such as trenching, lateral migration of channels, and sediment deposition are free to take place, should be analyzed under the two following categories:

a. Unentrenched Fans – A critical depth analysis for a shallow sheetflow condition (see Figure 6.2) is employed in this situation. The depth of flow to be used in this area is based on the previously cited assumption that lateral channel widening will terminate when a reduction in depth results in a two hundred fold increase in flow width. Using a chart similar to Figure 6.2, ratios of dD/dW can be computed for a given discharge until a ratio of 0.005 is found. The depth and flow velocity associated with this depth-width combination would then be considered representative for this reach of the fan. It should be noted that computed depth-velocity parameters are applied to all areas of the fan within this reach. This is based on the logical assumption that this is a random flow pattern that could, at some time, occur at any point across this reach of the fan.
b. **Entrenched Fans** - This condition is recommended for "those cases where an unbroken flow path exists which conveys up-canyon flow down-fan to a point where sediment deposition takes place."

Straight, meandering and braided channels are included under this condition. Based on field data and/or topographic maps, a typical cross-section is developed for this reach. A depth-width relationship is developed, similar to that illustrated in Figure 6.1, and a flood depth (for the selected discharge) is determined in accordance with the \(\frac{dD}{dW} = -0.005 \) criteria. As previously discussed for the unentrenched fan condition, the computed depth and associated velocity parameters are assumed to apply at any point across the fan contained within this reach. Whenever, a noticeable change in channel geometry or slope is encountered, a new reach should be established, new depth-width curves developed, and new depth-velocity characteristics determined.

Comments on Methodology

Application of the FIA procedure allows the engineer to address both natural topographic and man-made features on an alluvial fan. The procedure emphasizes the importance of observing and measuring actual topographic features and provides a relatively simple basis for developing hydraulic data that could be used beyond the establishment of special flood hazard areas. Combined with bed-material samples, the hydraulic parameters developed from this procedure could also be used in sediment transport and scour calculations.
6.4 Soil Conservation Service Procedure

Under Public Law 566 (Watershed Protection and Flood Prevention Act), the Soil Conservation Service (SCS) is authorized to investigate the need for, and, if economically justified, design flood control projects at the request of local project sponsors. Several P.L. 566 projects in Arizona have required a flood damage analysis of alluvial fan environments in order to develop the benefit:cost ratio which determines the economic feasibility of a given project. In order to impart some degree of consistency and standardization to alluvial fan damage analyses, James Malone (Hydraulic Engineer, SCS) developed a computer program to both analyze the hydraulics of fan flooding and to quantify the financial damage that would be expected to result from such flooding.

Unfortunately, this methodology was developed over 18 years ago and apparently has not been widely used. Mr. Malone no longer works for SCS, and the Phoenix SCS office was unable to locate complete documentation on the procedure. However, a brief outline (Malone 1971) of the methodology was available from SCS and provided enough data to generate a description of the basic assumptions used in the procedure. Accordingly, although the following discussion is not as complete and detailed as would be preferred, it does provide the reader with some basic ideas on yet another technical approach to analyzing alluvial fan flooding.

Description of Methodology

The SCS procedure focuses on the lateral (overbank) flooding that would occur on an alluvial fan in response to flows exceeding the bankfull capacity of an incised channel. Basic input parameters include a runoff hydrograph at the fan apex and a typical cross-section for the channel reach that extends downstream from the fan apex.

Based on the limited documentation available to the author, it appears that the procedure is based on the hydraulic capacity of a single cross-section
that is considered representative of the entire channel length. The procedure does not incorporate any continuous water surface profile calculations that would allow differentiation in bankfull capacity from the apex to the toe of the fan.

In essence, the procedure consists of routing the apex hydrograph (at selected time intervals) through this typical channel section to determine at what point in the hydrograph the bankfull channel capacity will be exceeded. The user has the option of selecting either one or both sides of the channel as overflow paths. Once the program determines that the channel capacity is exceeded, hydraulic calculations are performed to determine the velocity, depth, and volume of water that will spread laterally from the channel bank during the current time interval. The program includes controls to maintain flow continuity (i.e., overbank flow plus remaining channel flow does not differ from total available hydrograph flow for the current time interval) and computes infiltration losses for the laterally flowing water that escapes from the defined channel. Infiltration losses are also considered in maintaining continuity with the total hydrograph runoff volume.

Based on the limited text that was published in the 1971 outline, and the author's interpretation of the partial computer code that accompanied this outline, the overbank flooding calculations appear to proceed as follows:

1. Read apex hydrograph and determine discharge for current time.

2. Compare discharge from Step 1 to bankfull channel capacity to determine if overflow potential exists.

3. If Step 2 indicates overflow potential, compute overflow hydraulics; otherwise retrieve next set of hydrograph coordinates (Step 1).
4. The depth, velocity, and rate of overbank flow are computed through a trial and error procedure that is initiated by sequentially stepping through a range of overbank flow depths, until a depth value is found which will produce total flow continuity between the main channel, the overbank, and the hydrograph discharge for the current time. This set of calculations is predicated on the assumption that critical flow conditions will occur as water spills from the channel into the overbank. The calculation sequence is as follows:

a. Using the assumed overbank depth, compute the overbank flow velocity as critical velocity, i.e., \(V = \sqrt{gh} \).

b. Using a previously computed main channel velocity, and the value of the current time interval, compute the length (in the main channel direction) along which overbank flow may occur. (Note: If the user has indicated that overflow may occur along both sides of the channel, this length is multiplied by two.)

c. Using \(Q = AV \), the total overbank flow is computed as the product of the assumed depth times the length (Step 4.b) times the velocity (Step 4.a)

5. If the discharge is Step 4.c is less than the overflow discharge from Step 2, a new overbank flow depth is assumed and Step 4 is repeated. The first depth value that produces an overbank flow equal to or greater than that from Step 2 is used as the most representative depth for the current time interval. The program increases overbank depth values in 0.005 foot increments.
6. The ultimate overbank flow depth produced by Step 5 is used to generate the lateral flow distance and area of inundation that will occur during a user selected overbank time interval. As discussed previously, the selected overbank depth is used to compute critical velocity, which is then multiplied times the selected time interval (0.02 hours was used in the program) to determine the lateral flow distance for the current overbank time interval. This lateral distance is multiplied by the previously computed downslope, main channel length (Step 4.b), for the current hydrograph time interval, in order to compute the surface area of overbank inundation.

7. For the second and successive lateral flow time increments, a velocity adjustment is made using Manning's Equation. The hydraulic radius is assumed equal to the depth of a unit-width flow-strip and the energy slope is assumed equal the difference between successive overbank flow depths divided by the flow length for the previous overbank time interval. A Manning's roughness value is input by the user.

This "friction velocity" is subtracted from the critical velocity associated with the current overbank depth value to derive an adjusted lateral velocity which is used to compute a lateral flow distance for the next overbank time interval. This adjusted velocity is also used to compute a new critical depth, which is then assumed to represent the overbank flow depth for the next block of laterally propagating flow. This procedure results in an ever-decreasing lateral velocity and associated lateral flow depth. The lateral flow calculations are allowed to propagate out from the channel bank until the overbank flow depth is less than 0.04 feet. Procedures are included to keep track of cumulative surface area inundation and flow volumes.
As indicated previously, infiltration losses are included in the lateral flow calculations and are used, in addition to the adjusted velocity calculation, to reduce the depth of the widening overbank flow.

Comments on Methodology

Again, due to lack of sufficient documentation, there was no information available to explain how succeeding intervals of the apex hydrograph were manipulated to adjust overbank flow depths for the increasing channel discharges (beyond the first discharge interval that exceeds bankfull capacity) that will cause an increasing amount of water to flow over the channel banks.

The available documentation also failed to explain the mechanics of routing the overbank flood wave downstream. The 1971 report states that the "downslope velocity is the same as channel velocity and remains constant." This would appear to be a questionable assumption, since the flow concentrated in the main channel will undoubtedly flow much faster than the shallow sheetflow associated with the overbank. The report also indicates that the area flooded by the overbank flood wave diminishes as the wave propagates downstream. However, again there was no documentation to explain the technical basis for the attenuation of the wave.

Although the foregoing discussion is not a complete description of the SCS procedure, it provides insight into the general concept that is being employed. In summary, this concept is based on identifying the bankfull capacity of an incised channel and then determining the depth, velocity, and discharge of overbank flow when the channel capacity is exceeded by runoff emanating from the apex of an alluvial fan.

Without having an opportunity to review the results of a case history where the procedure has been applied, it is difficult to critique the realism of the results that the procedure would produce. An obvious limitation of the procedure is that it requires the existence of a stable (non-erodible) channel cross-section and confines the analysis to this single cross-section location.
Such an approach may be applicable to a project that requires an analysis of a stabilized, man-made channel of constant cross-section. Application of the procedure to such a project may provide beneficial data on overbank flooding characteristics. However, utilization of the procedure for a natural channel reach of variable cross-sectional geometry may generate substantially erroneous results.

A unique feature of the program is the capability to convert the overbank hydraulic data into a financial summary of predicted flood damages. Obviously, this requires the user to develop some type of rating curve for the project area that will relate depth and/or velocity of overbank flow to dollars of flood damage.

Discussions with personnel from the SCS office in Phoenix indicate that the only known application of this procedure in Arizona has been for the economic analysis of the Guadalupe Flood Retarding Structure near Interstate 10 and Baseline Road, south of Phoenix.
6.5 Simulation Of Alluvial Fan Deposition By A Random Walk Model

Although the procedure described in this section may not have a substantial amount of practical value to engineers engaged in the design of highways, urban development, and flood control improvements on alluvial fans, it does provide a very unique and interesting approach to the mathematical construction of an alluvial fan.

This methodology, developed by Price (1974), consists of a 3-dimensional computer model (Alfan) which incorporates mathematical algorithms that quantify the physical parameters responsible for the creation of an alluvial fan. The primary objective of this undertaking was to obtain a better understanding of the "hydrogeologic fabric" of fans. Such research could provide benefits relative to estimation of aquifer parameters, interpretation of aquifer tests, accurate correlations of borehole data, and a better understanding of the types of data collection needed to adequately define the alluvial fan hydrogeologic system.

Price has essentially taken the observations and theories presented in Section 2.2 (The Alluvial Fan) of this report and converted them into mathematical expressions that can be used to quantify both the form and stratigraphy of a fan. The resulting model quantifies and integrates the following processes to simulate fan development:

1. Tectonic activity
 a. timing
 b. magnitude

2. Drainage basin processes
 a. accumulation of erodible material in the mountain source area.
 b. degradation of mountain stream in response to mountain uplift.

103
3. Alluvial fan processes
 a. uses 3-dimensional node network to govern the probability of
direction of flow on the fan surface.
 b. differentiates between water flows and debris flows.
 c. acknowledges physical barriers that might restrict fan growth
or development.
 d. simulates branching of flows.
 e. simulates the random distribution of flow events with respect
to both time and magnitude.
 f. simulates fan entrenchment when conditions favor such a
phenomenon.

The following paragraphs present a brief discussion of the techniques
employed by Price in developing this model.

Tectonic Activity

As the reader will recall from Section 2.2.4, Bull (1967) developed an
expression (Equation 2.7) that requires the rate of change of tectonic uplift of
the mountain mass to be equal to or greater than the sum of the rate of change
of channel downcutting in the mountain plus the rate of change of fan deposition
at the mountain front. Accordingly, tectonic activity is incorporated in the
model as a function of vertical movement along a fault line assumed to be
located at the mountain front. Relative uplift along the fault is then assumed
to be a function of earthquake activity. Price justifies these assumptions on
the fact that topographic development in the Basin and Range province is
frequently the result of normal faulting and is closely associated with earthquakes.

Earthquake activity is simulated in the model by using the Poisson probability
law to predict the interoccurrence times of earthquakes, and a set of regression
equations relating the magnitude of an earthquake to both the vertical dis-
placement and length of movement along the fault. The timing and magnitude
distributions used to model the tectonic activity are assumed to be independent of each other.

Two sets of regression equations were developed to apply to earthquakes with a magnitude of less than 6, and for events with a magnitude of 6 or greater. For example, the vertical movement along a fault, as a result of an earthquake magnitude of 7 (Richter scale), is computed with the following equation:

\[
H_f = \frac{10^{(M_e - 5.02)/1.04}}{30.48} \quad \text{(6.13)}
\]

where \(H_f\) = maximum vertical displacement along the fault (feet)

\(\text{Me} = \) earthquake magnitude (Richter scale)

A random value of the earthquake magnitude is generated from the equation:

\[
M' = \left(-\frac{1}{\beta}\right) \ln(1 - R_u) + M_o \quad \text{(6.14)}
\]

where \(M'\) = random value of earthquake magnitude

\(\beta = \frac{b}{\log_{10} e}\)

where \(b\) is the parameter in the formula of Gutenberg and Richter (1954)

\(R_u\) = a random value from a uniform distribution over the open interval (0, 1)

\(M_o = \) minimum magnitude of earthquake events to be considered (events with a magnitude less than 4 are ignored as being insignificant from an engineering perspective)
Equations 6.13 and 6.14 are only a sample of the numerous algorithms used to model the occurrence of tectonic activity. The complete set of equation forms computer subroutine *Uplift*.

Drainage Basin Processes

The development of alluvial fans is very dependent upon the decomposition, erodibility and transport of material from the mountain source area to the fan surface. *Alfan* includes a subroutine (*Basoil*) which computes the thickness of a weathered soil layer as a function of both time and the rate of increase of the weathered thickness of the material. The relationship employed by *Basoil* is presented as follows:

\[y_s = m_s (1 - \exp(-\eta t_s)) \]

where \(y_s \) = thickness of the weathered layer (feet)
\(m_s \) = maximum thickness of weathered layer (feet)
\(t_s \) = time increment in years
and \(\eta = \epsilon c / m_s \)

where \(\epsilon \) = dimensionless constant, equal in numerical value to \(m_s \)
\(c \) = rate of soil accumulation in feet per year

The thickness of this weathered soil layer (at the time of a simulated flow event) becomes an important factor in determining if a debris flow will occur (this will be discussed in subsequent paragraphs). Unfortunately, Price does not provide a clear explanation of the algorithm that is used to transport the weathered material from the source area to the fan.

The process of channel degradation within the mountain source area is
modeled under the assumption that erosion will lower the stream channel in the basin at the point where the mountain boundary fault crosses the stream channel. The following relationship is employed for this purpose:

\[h = H_0 \exp(-k_c t) \ldots \ldots (6.16) \]

where \(h \) = elevation of the stream bed in feet above the base level at time \(t \)

\(H_0 \) = elevation of the stream bed in feet above the base level immediately following an uplift at time \(t_0 \)

\(k_c \) = average rate of decline of the rock channel (feet/year) near the fault crossing

Alluvial Fan Process

The movement of water and debris flows across the alluvial fan surface is controlled by a network of 3-dimensional nodes that are used to compute the probability that flow will move from a central node to an adjacent node (the term *one-step transitional probabilities* is used by Price). These probabilities are computed by having the computer first subtract the elevation of the central node from the elevation of each adjacent node. If this elevation difference is positive for any node, the probability of movement to such a node is considered to be zero. If the elevation difference is zero or a negative value, there is a possibility that flow could move in the direction of such a node and, therefore, the gradient to each of those nodes is computed. An assumption is then made that the probability of flow to each node is proportional to the computed gradient between the central node and each adjacent node. Specifically, this probability is computed by the following equation:
\[P_s = 0.25 + 0.75S \] \hspace{1cm} (6.17)

where \(P_s \) = probability of movement
\(S \) = gradient (slope) from the central node to an adjacent node

At this point the model makes an important distinction between water flows and debris flows. For water flows, the gradient is computed from the base of flow at the central node to the adjacent nodes, while the gradient for debris flows is computed from the top of the debris flow at the central node. Accordingly, this provides debris flows with a capability to move up a land slope, as long as the land surface elevation is not higher than the top of the debris flow. The presence of a debris flow or water flow is determined as a function of the thickness of the weathered soil layer in the mountain source area at the time a specific flow event occurs.

The flow of water and deposition of sediment onto a fan surface will be controlled by certain physical boundary conditions. These boundaries might typically include the mountain front and periphery of the area allotted for fan development. When the random member generator triggers a potential flow movement into such a boundary, the flow will not move.

Price also discusses the requirement for a flow event in the model to reach an "absorbing state". An absorbing state is defined as one in which the one-step transitional probability equals 1. Once an absorbing state is reached, the flow event ends. The user has an option of defining absorbing barriers along the perimeter of the grid network. It should also be noted that Price indicates an absorbing state can also be reached under the law of conservation of mass. This requires that the volume of deposited sediment must equal the total sediment load transported during the flow event.
Alfan includes a procedure to simulate the branching or braiding of flow patterns that typically occur on an alluvial fan. Branching occurs in the model when flow becomes trapped by either of the two following constraints:

1. no flow may cross or intersect itself.
2. no water flow may occur in the direction of a positive gradient (uphill)

When either of these conditions are reached, Alfan retraces the course of flow and searches for another node of possible movement. When one is found, a new flow path is initiated.

A unique case may occur in which no movement can take place in any direction along the previous flow path. This would simulate a blocked channel or a depression in the fan surface. When this occurs, the channel or depression will be filled with water and/or sediment to the elevation of the lowest outlet of the depression, where a new flow path will then be computed.

As for tectonic uplift events, the time distribution of flow events is also determined by application of the Poisson probability law. The ultimate expression developed to predict the timing of flow events is:

\[t' = \left(-\frac{1}{\lambda_f} \right) \ln (1 - R_e) \ldots (6.18) \]

where \(t' \) = years

\(\lambda_f = \text{mean rate of occurrence of flow events in flows per year} \)

\(R_e = \text{random value from a uniform distribution over the interval} \ 0 < R_e < 1 \)
The same general form of algorithm is used to compute the random occurrence of an uplift event. The timing of flow events and uplift events are independent of each other. The model computes a random time for a flow event and a random time for an uplift event. The two times (flow event vs. uplift event) are then compared and the model selects the earlier time to determine what event to pursue. If a flow is selected, subroutine *Storm* is called, if a tectonic event is selected, subroutine *Uplift* is selected.

The magnitude of flow events is derived from an exponential distribution of flow magnitudes. After some mathematical manipulation, the final algorithm for computing the flow magnitude is presented as:

\[y' = -\gamma \ln(1 - R_u) \]

where \(y' \) = random value of peak flow rate (cfs)
\(\gamma \) = mean peak flow rate (cfs)
\(R_u \) = random value from a uniform distribution over the interval
\(0 < R_u < 1 \)

The magnitude of a flow event is completely independent of the timing of such events.

Although Price does not elaborate on the details involved in computing the magnitude of a flow event, it would appear that the user must develop some type of hydrologic data for the source area in order to provide a value for \(\gamma \).

As indicated previously *Alfan* has the capability of generating both debris flow deposits and water flow deposits. The model is configured to trigger a debris flow when a storm event occurs at a time in which the thickness of weathered material in the source area equals or exceeds the value of a parameter designated \(y_c \). If the thickness of the weathered material is less than \(y_c \), a water flow will result. The user has the option of varying the value of \(y_c \) to
reflect the erodibility (ability to be transported from the mountain slope to the mountain stream) of the source basin material. A low value of y_e would indicate a source basin that is composed of easily erodible weathered material.

The coefficient c in Equation 6.16 can also be varied to determine the rate of weathering (decomposition) of the soil layer. Smaller values of c will cause a longer period of time to ensue before a sufficient thickness of weathered soil (y_s) is generated to cause a debris flow ($y_s \geq y_e$).

During a debris flow, the volume of material that is transported from the source area onto the fan is simply the product of the thickness of the weathered material times the erodible area of the source basin. Price does not provide details on how sediment volumes are computed for water flows. It is assumed that a similar scheme would be used involving the thickness of the weathered material and the size of the source area. Immediately after a storm event occurs, Equation 6.16 is used to begin regeneration of a new weathered soil layer.

The actual shape and deposition of material on the fan surface is controlled by the volume of sediment transported from the source area and two user-designated variables, B_{thick} and W_{thick}, which identify the mean thickness of debris flow and water flow deposits, respectively. Although other options are available in the model, both debris flow and water flow deposits are generally assumed to be tapered in the direction of flow from a maximum of two times B_{thick} (or W_{thick}, as appropriate), at the point of initial deposition, to zero at the end of the flow.

A final feature of Alfan is its capability to simulate temporary entrenchment of the fan through a process termed "negative deposition". This process will occur when either of the following conditions exist:
1. when the fan material just below the point where the main channel crosses the fault lies at a higher elevation than that of the stream channel emerging from the mountain area just above (upstream of) the fault, or

2. a flow event occurs when there is very little erodible sediment in the source basin, causing the mountain channel to flow onto the fan surface with an underload of sediment.

The course of erosion that results from either of these conditions is a random walk, which is computed by the transitional probability concept discussed previously.

As originally developed, the output from this model provides data relative to the stratigraphy and topography of the fan. The original paper by Price provides illustrations showing how this output data can be used to generate both topographic and geologic maps of an alluvial fan. Illustrations were provided where the data was used to develop geologic cross-sections of the fan, both perpendicular and parallel to the mountain front.

Although this model is oriented towards the geologic and hydrogeologic investigations of alluvial fans, it provides an excellent example of how the complex, theoretical processes at work on a fan can be transformed into mathematical relationships that can be used to explore the impact and sensitivity of certain variables that control alluvial fan formation. The results of the experiments conducted by Price indicates that the model creates a landform that has the geologic characteristics and topography of an alluvial fan.
6.6 Continuous Hydrologic Simulation Model

Urbanization of alluvial fans will undoubtedly create a significant risk for property damage if such development is not properly planned. Recognizing that conventional riverine flood hazard delineation techniques are not suited for application to alluvial fans, James, Pitcher, Heefner, Hall, Paxman, and Weston (1986) describe the development of a methodology which attempts to address the unique hydrologic, hydraulic, geologic, and sediment transport processes that are responsible for damage to urbanized areas located on alluvial fans.

This methodology, which is called a continuous hydrologic simulation model, actually consists of five sub-models which have been linked together in order to continuously track the erosion, flow, and deposition of the water/sediment mixture from a mountain source area onto an urbanized fan environment. The five sub-models are identified as follows:

1. Runoff and Sediment Yield Model
2. Landslide Prediction Model
3. Steep Channel Routing Model
4. Sediment Deposition and Culvert Blockage Model
5. Multiple Path Flood Routing Model

Unfortunately, the 1986 publication that describes this procedure is very brief and does not provide specific details on how the algorithms in the different sub-models are linked together. However, the text does provide sufficient information on the general methodology that is employed by each sub-model. Accordingly, the model is summarized in the following paragraphs in order to provide the reader with yet another interesting approach to the mathematical simulation and analysis of alluvial fan flooding characteristics.
Runoff and Sediment Yield Model

The runoff portion of this sub-model uses a water-balance accounting procedure to track the total amount of water stored in the snowpack, on the ground surface, in the phreatic zone, in any perched water table, and within bedrock. Water is allowed to flow from and through these different zones to ultimately reach the stream channel. Temperature and solar radiation are used to estimate evapotranspiration and to distinguish rain from snow.

Other than a statement that "Mountain storage gage data were used to estimate the storm precipitation increase with elevation", no information was provided in the article relative to the options for inputting frequency, duration, distribution, and amount of rainfall to the model. There was also no discussion provided relative to the methodology that was used to perform overland flow runoff calculations. However, this sub-model is described as being developed from the Stanford (Kentucky version) Watershed Model. Accordingly, it is presumed that the hydrologic calculation scheme in the Stanford model forms the basis for runoff calculations in this sub-model.

Sediment yields were computed with the Modified Universal Soil Loss Equation (MUSLE). Both the peak discharge and total runoff volume (computed in the runoff segment of this sub-model) are used by MUSLE (along with four other parameters) in computing the sediment yield from the watershed.

Landslide Prediction Model

Factors related to soil classification, depth, permeability, moisture content, cohesion, internal friction angles, ground cover, slope, and elevation are used by this sub-model to predict the timing, location, and volumes of landslides. For the example discussed in the published article, calibration mechanisms were available to match data from observed landslides.

Application of this model to the example watershed utilized a grid network consisting of 263 grid cells over a 2.54 square mile area, to identify the soil parameters required for input to this sub-model. There was no information
provided to indicate how the landslide data was integrated with the four other sub-models. It may be that the output from the *Landslide Prediction Model* is an end product in itself and is merely used to predict zones subject to a high risk of landslide activity.

Steep Channel Routing Model

This sub-model uses kinematic routing to translate runoff hydrographs through the network of steep mountain channels. The depths and velocities of flow resulting from the channel routing operation are used as input data to sediment transport equations which were in turn used for sediment routing operations. Sediment transport calculations were based on equations developed by Smart (1984) for channels with slopes ranging from 4% to 20% and median grain size diameters greater than 0.4 mm.

No details were provided on the actual sediment routing operations used in this sub-model; only a statement is made indicating that a sediment balance is applied to each channel reach to model aggradation and degradation.

This sub-model also contains the capability to simulate debris flow blockage of channels and the subsequent filling, overtopping, and erosion (collapse) of these temporary dams.

Sediment Deposition and Culvert Blockage Model

Movement of the sediment laden water across the fan surface will frequently encounter culvert crossings of roads. These culverts are often prone to complete or partial blockage due sediment deposits. The Sediment Deposition and Culvert Blockage Model simulates this potential for culvert blockage. This sub-model description also infers that a weir flow calculation is performed to represent the overflow that would occur across the road surface when water ponds above the headwall (or roadway embankment) elevation at the culvert inlet.

Sediment transport calculations utilize the Meyer–Peter, Muller (MPM) bed-load transport equation, with an assumption of inlet control at the culvert
entrance. Although specific details are not provided, the article indicates that
a friction slope is calculated for the water movement through the inlet pool
and is used to generate the hydraulic data needed for the MPM calculations.

The discussion of this sub-model also implies, although specifics are not
given, that sediment is routed through culverts and transported to downstream
locations for additional culvert routings.

Multiple Path Flood Routing Model

This subroutine is used to trace flow paths through the street systems
that would exist on an urbanized fan. Provisions are included in this sub-model
to combine local runoff into the routed hydrographs and to acknowledge grade
changes and infiltration losses as flows exceed the street capacity and pass over
permeable soils of adjacent residential lots.

Due to the propensity for critical flow conditions to occur on the relatively
steep street slopes that would be typical of alluvial fan developments, kinematic
routing procedures are employed. Flow splits at street intersections are based
on energy and momentum relationships. The hydraulic geometry of streets is
based on surveyed cross-sections. This cross-sectional geometry can be combined
with the peak discharge data from the kinematic routing calculations to determine
depths and velocities of flow, as well as areas of inundation along the streets.

Although complete technical details of this methodology are not provided
in the foregoing summary, the general approach should alert the reader to the
fact that analytical tools are available that may have useful application to
specific problems encountered by the engineer working in an alluvial fan
environment. A review of such methodologies should also serve as a stimulus
to those innovative engineers who may wish to develop an analytical technique
to solve a specific problem encountered in the design of civil works projects on
a fan. As both this and the preceding technical discussions indicate, a sound
understanding of alluvial fan processes can serve as the basis for developing mathematical relationships that can prove invaluable in quantifying the impacts of both hydraulic and sediment transport processes on alluvial fans.
6.7 Corps of Engineers Design Standards for Alluvial Fans

Under contract to FEMA, the Los Angeles District Corps of Engineers (COE) has published a report entitled: "Engineering Standards For Flood Protection of Single Lot Developments On Alluvial Fans" (undated). The author was furnished a "draft" copy of this report by the COE. Although the report is undated, references in the report indicate it was prepared in 1985 or later.

Description of Methodology

Although the introductory chapters of the COE report present a brief discussion on alluvial fan characteristics and management practices, the majority of the report is devoted to the presentation of quantitative relationships that can be used by a professional engineer in designing elevated floodproofing measures for single lot developments on alluvial fans. Considerable emphasis is placed on the use of sound engineering judgement in applying the design aids presented in the report. The COE relates the design of floodproofing measures on alluvial fans to the three general hydraulic zones or flow patterns described by Anderson-Nichols (1981): 1) channelized zone; 2) braided zone; and 3) sheet-flow zone. A detailed discussion of these zones is presented in Section 7 of this report.

Basically, the COE concludes that development can be allowed in the channelized zones if it can be shown that the channel capacity is sufficient to contain the flow from the design event (typically a 100-year flood). Unless the channel is incised into bedrock, restrictions should preclude any development near the channel banks; this provides a measure of safety against lateral bank erosion. Obviously, no development of any kind should be allowed in the channel area.

Flow in the braided zone is characterized by multiple channel patterns which can cause rapid shifts in the flow alignment. This is also a zone with a high potential for sediment deposition. The COE recommends that any structures
built in this zone be elevated on armored fill or by the use of posts (piles).

Due to the flatter surface slope, the sheet-flow zone is typically associated with lower-velocities (3 to 5 fps) which do not transport large quantities of sediment. The COE recommends elevated structures in this zone as well as the use of walls.

Given the absence of a rigorous methodology to quantify the boundaries of these three zones, the COE recommends close examination of topographic maps and aerial photographs of a given project area. Certainly, extensive field investigations are also warranted. As a matter of interest, the reader will recall that the FEMA procedure (Section 6.1) utilizes an empirical relationship to determine the length of the single channel region on a fan. The single channel region is analogous to the channelized region referenced by the COE.

Prior to discussing the specific equations recommended by the COE for designing flood proofing measures, a review of their general design procedure is warranted. The COE suggests the following steps be followed as part of the design process:

1. Undertake an evaluation of the characteristics of the entire watershed. This would include the mountain source area as well as the fan surface.

2. Prepare a hydrology analysis to determine the peak discharge values associated with storms of up to at least the 100-year event. The COE notes that this data may already be available through various federal agencies or local regulatory agencies. The author would like to add that special attention should be given to the location on the fan at which the discharge values apply, i.e., apex, midfan, etc. Flood hydrographs can experience extreme attenuation as they pass through the braided and sheet-flow zones of a fan.
3. Examine any available historic data on flood behavior, flow direction bias, and any significant topographic features on the fan which might obstruct or deflect flow patterns.

4. Determine the potential (probability and magnitude) for debris flows. This will require a close examination of the mountain source area. Historic records would also be helpful.

5. Calculate the hydraulic parameters (depth and velocity) for the location at which the flood proofing measure will be designed. The equations used for these calculations are based on water flow, not debris flow.

6. Develop and evaluate alternative flood proofing designs for the site.

7. Evaluate the impact of any potential debris flows on the alternative designs. The COE suggests that debris flow effects can be accounted for by increasing the height of fill, streamlining the shape of the fill, or, in the case of posts, increasing the size and height of the posts.

8. Examine the impact that the proposed design will have on adjacent and downstream properties. If adverse impacts are created, a mitigation plan will be required.

9. If a Master Plan has been developed for the area (see Section 7), check to make sure the design alternatives are compatible with such a plan. The author would recommend that this step be accomplished prior to initiating work on the design alternatives (Step 6).

10. Evaluate the costs of the alternatives and select the most feasible design for submittal to the local regulatory agency.
In undertaking the design of single lot, elevated floodproofing measures, the COE recommends using the equation developed by Edwards and Thielmann (See Section 6.2) for computing depth and velocity (Equations 6.10 and 6.12 respectively). Very simply, these equations are used to compute the height of the fill (or posts) and the velocity to be used in bank erosion protection and scour calculations.

Due to the potential for significant amounts of debris in alluvial fan flows, the COE recommends that this phenomenon be considered by raising the height of the fill, increasing the thickness of the slope protection, or by increasing the height, embedment, and thickness of posts to account for impact forces of debris. The magnitude of these increases is left to the judgement of the professional engineer, who should make such decisions on the basis of watershed characteristics and location of the structure on the fan. The COE does, however, provide quantitative guidelines for computing the height of flood proofing, exclusive of debris flow impacts. The following equation is presented:

\[H = D + \frac{V^2}{2g} + X \geq 2.0 \cdots \cdots \cdots \cdots \cdots \cdots (6.20) \]

where

- \(H \) = height of floodproofing measure (feet)
- \(D \) = depth of flow (feet), computed from Equation 6.10
- \(V \) = velocity of flow (fps), computed from Equation 6.12
- \(g \) = gravitational constant (32.2 ft/sec²)

and

\(X = D_{1.5Q \text{ design}} - D_Q \text{ design} \geq 0.5 \) feet

where \(D_{1.5Q \text{ design}} \) = depth of flow (ft) that would occur if the design discharge were increased by 50%

\(D_Q \text{ design} \) = depth of flow (ft) at design discharge (same as \(D \) above)
The velocity head is included in Equation 6.20 to address the potential for the flow to hit an obstruction and cause a conversion of kinetic energy (velocity) to potential energy (depth). The "X" term is a freeboard factor to provide a margin of safety for calculation uncertainties (a minimum freeboard dimension of 0.5 ft. is recommended). Equation 6.20 also requires a minimum total floodproofing height of 2 feet.

Due to the potential for high velocity flow on an alluvial fan, the occurrence of bank erosion and scour along the boundary of the fill must be investigated. In a similar vein, localized scour should also be analyzed for any posts that might be used to elevate a structure.

For elevated fill, the COE report addresses three types of bank protection: 1) rock riprap; 2) grouted rock; and 3) gabions. Of these three methods, rock riprap requires the most intensive technical analysis to establish the proper rock size and gradation.

rock riprap

The COE report presents an intermediate form of the Isbash method as the preferred approach to relating rock size to flow velocity on an alluvial fan. The recommended equation is published in the COE report as:

\[W_{50} = 12 \times 10^{-5} V^6 \]

(6.21)

where \(W_{50} \) = weight (lbs) of a spherical stone that has a diameter equal to the \(D_{50} \) rock size (ft) for which 50% of the graded riprap material is smaller

\(V \) = velocity of flow (fps), computed from Equation 6.12

The \(W_{50} \) values that are computed from Equation 6.21 are used to enter a table of stone gradations published in the COE report. A gradation is then chosen in which the minimum \(W_{50} \) is equal to or greater than the \(W_{50} \) computed
with Equation 6.21.

Equation 6.21 is described as an intermediate form of the Isbash method because of a judgemental factor that was introduced by the COE to account for the turbulence level that is expected to exist on an alluvial fan. The COE report states:

"Flow on an alluvial fan represents a decelerating condition as slopes tend to decrease and the channel width increases in the downstream direction. According to Stephen T. Maynord, the vorticity generated in an expansion is intense and irregular and can resemble the turbulence downstream of an energy dissipater. The turbulence of low on an alluvial fan is greater than for tranquil flow, but not as turbulent as at the end of an energy dissipater. Therefore, an intermediate form of the Isbash equation is chosen for computing riprap rock sizes on alluvial fans."

The COE accounts for this turbulence variation by adjusting the "c" coefficient in the Isbash equation taken from the Corps of Engineers Hydraulic Design Criteria (1970). The published equation is:

\[V = c \left(2g \frac{(\gamma_s - \gamma_w)}{\gamma_w} \right)^{1/2} D_{50}^{1/2} \]

where
- \(V \) = velocity (fps)
- \(c \) = coefficient
- \(g \) = gravitational constant
- \(\gamma_s \) = specific weight of stone (lb/ft³)
- \(\gamma_w \) = specific weight of water (lb/ft³)
- \(D_{50} \) = stone diameter (ft) of the rock size for which 50% of the graded material is smaller
The value of c is published as 0.86 for high turbulence levels that might exist at the end of an energy dissipater in a stilling basin, and 1.20 for low turbulence levels that might be associated with river closures. Through mathematical substitution and manipulation, Equation 6.22 is ultimately transformed into Equation 6.21. When c is assumed to be 0.86 and 1.20, the coefficient in Equation 6.21 will be 18.03×10^{-5} and 2.44×10^{-5}, respectively. Based on Maynord's discussion of turbulence levels, the COE chose an intermediate coefficient of 12×10^{-5} to be used in Equation 6.21.

For those readers who might wish to investigate the influence of different rock specific gravities and side-slope angles, the COE report also publishes a form of the Isbash equation taken from the ASCE Manual No. 54, Sedimentation Engineering (1975):

$$W_{so} = \frac{4.1 \times 10^{-5} G_s V^4}{(G_s - 1)^3 \cos^3 \theta} \quad \text{(6.23)}$$

where W_{so} & V are as defined for Equation 6.21

$G_s =$ specific gravity of the stone

$\theta =$ the angle the slope makes with the horizontal

Through sample calculations, the author has determined that Equation 6.23 will produce the same value for W_{so} as Equation 6.21, if the numerical coefficient in Equation 6.23 is changed from 4.1×10^{-5} to 14.5×10^{-5}. This calculation assumes $G_s=2.66$ and the side-slope is 2H:1V. Although not proven, it would seem that the use of this revised coefficient (14.5×10^{-5}) in Equation 6.23 would make it equivalent to Equation 6.21 for any realistic range of specific gravities and side-slope angles. This would provide the user with a more flexible equation.
if variations in specific gravity and side-slope were to be investigated. The use of this larger coefficient would provide a factor of safety of approximately 3.5 for the W_∞ values computed with the original coefficient in Equation 6.23.

grouted rock

If rock riprap of the required size and gradation is not readily available, the COE report suggests that grouted rock may be used as an alternative. Grouted rock can be installed with colored grout to enhance the aesthetic appearance of the product. It can also be covered with soil (18" minimum cover is recommended) and planted with shrubs or grass. For grass cover, a maximum slope of 3H:1V is recommended for ease of mowing.

The general design guidelines for grouted rock suggest 6 to 12 inch rock sizes placed in a layer approximately 12 inches thick. The rock layer is then grouted so that 50% of the interstitial voids are filled and about one-third to one-fourth of the stone diameters are left projecting beyond the grouted surface.

gabions

Gabions, which are wire-mesh baskets filled with stone and tied together to form a flexible mattress, can also be used if satisfactory rock sizes are not available for loose rock riprap. The typical thickness of these baskets ranges from 9 to 18 inches. This thickness is a function of flow velocity. Several gabion manufacturers publish design criteria for their products.

As indicated previously, the design of a bank protection measure for elevated fill must also address the scour potential along the boundary of the fill. The COE report recommends that toe-down dimensions for bank protection be based on data published by the Los Angeles County Flood Control District, with minor modifications by the COE. The recommended toe-down depths are reproduced in Table 6.1. It should also be noted that streamlining the shape of the fill would be an effective method of reducing the scour potential along the fill perimeter.
The use of posts or piles to elevate a structure above anticipated flood hazards is also subject to scour problems. Such structures create the same type of scour problem as is encountered in the design of bridge piers. The COE report suggests the use of the following equation developed by Shen and Neill (1964):

\[
\frac{d_s}{d} = 2 \left(\frac{b}{d}\right)^{0.46} F^{0.43} \quad \text{(6.24)}
\]

where
- \(d_s\) = depth of scour hole (feet)
- \(d\) = upstream depth of flow (feet)
- \(b\) = width of pier or post (feet)
- \(F\) = upstream Froude number

<table>
<thead>
<tr>
<th>Velocities (fps)</th>
<th>Toe-Down Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>0</td>
</tr>
<tr>
<td>2-4</td>
<td>3</td>
</tr>
<tr>
<td>4-6</td>
<td>6</td>
</tr>
<tr>
<td>6-10</td>
<td>8</td>
</tr>
<tr>
<td>10-15</td>
<td>10</td>
</tr>
<tr>
<td>15-18</td>
<td>12.5</td>
</tr>
<tr>
<td>18-20</td>
<td>14</td>
</tr>
</tbody>
</table>

The data in this table is taken from "Engineering Standards For Flood Protection Of Single Lot Developments On Alluvial Fans", Table 1, page 24, U.S. Army Corps of Engineers. Toe-down depths are for straight reaches.
This equation was developed for a group of circular cylinders. The COE recommends that answers obtained using Equation 6.24 be increased by a factor of 1.3 and then added to the general toe-dimensions listed in Table 6.1 to determine a total embedment depth for the post.

floodwalls

For the lower hazard areas on a fan (such as the sheet-flow area), freestanding walls may be considered as a protective measure for single lot developments. Recommended limitations on their use would be in areas where flow depths do not exceed 1 or 2 feet, and velocities are in the 3 to 5 fps range. They should not be considered in debris flow areas.

In designing this alternative, special consideration will have to be given to property access and the disposal of interior drainage.

costs

The cost of constructing flood proofing measures is obviously an important factor to consider in the decision to build a residence on an unprotected alluvial fan. Based on 1985 construction costs near the Rancho Mirage, California area, the COE report estimates that the cost to elevate a structure on piles could range from $9700 to $10,600; the cost for elevated fill protected by rock riprap could range from $13,400 to $130,000; and the cost of elevated fill with grouted rock could lie between $14,600 and $37,600. These cost differences are based on a typical residential structure subjected to a variable range of depth and velocity combinations.

Comments on Methodology

Table 6.1 lists toe-down depths as a function of velocity. The COE report does not indicate what type of bed-material (i.e., sand, gravel cobbles, etc.) this relationship was based on. Obviously the sediment particle size would influence the amount of scour potential at a given location. This table should
be footnoted to indicate the applicable range of sediment sizes.

Only three types of bank protection were presented in the report (rock riprap, grouted rock, and gabions. In the dynamic and high velocity environment that exists on an alluvial fan, the author would suggest that caution be exercised in using any of these three products. Even though quantitative relationships are presented for sizing rock riprap, these equations are theoretical. The technical literature contains many different riprap design procedures, nearly all of which will produce different rock sizes for the same set of design conditions. Accordingly, in the absence of full scale tests on an alluvial fan subjected to a severe flood, it is difficult to predict which riprap design methodology would yield the most accurate results.

Another critical factor in the stability of riprap installations is the quality control that is used to insure that the specified rock size and gradation is being used. With the large stone diameters that are typical of such installations, it is very difficult to make precise measurements of the rock characteristics (i.e., D50 or W50 and gradation). Obviously, if the design specifications are not complied with, the riprap blanket will be prone to failure.

For the case of grouted rock, the grout is the only agent holding the rock matrix together. If the grout begins to crack, there is a possibility that some loosened stones could be swept away. Also, there is a possibility that buoyant forces might tend to "pop" the grout blanket if sufficient water flows or seeps under the blanket.

Since the grouted rock blanket is a rigid mass, there would also exist the potential for this mass, or slab, to break if scour or piping forces were to remove the finer soil particles that form the embankment slope upon which the blanket is placed. Certainly a filter blanket would be a mandatory requirement to prevent piping for all three of the bank protection methods presented in the COE report.

Gabions provide the flexibility that does not exist in a grouted rock blanket. Accordingly, gabions can adjust to deformations in the embankment slope. The
primary caution in using gabions would focus on the potential for abrasion or debris impacts to break the wire used for the baskets. If the wire were to break, the stone contents of the baskets would be subject to removal by the high velocity flow.

As a fourth alternative to bank protection products, the author would suggest the possible use of soil cement. This product has been used extensively on flood control projects in Arizona and has successfully withstood very severe flood conditions.

Application in Arizona

The author is not aware of any specific alluvial fans in Arizona where the design guidelines presented in the COE report have been used. However, the elevation of structures on compacted fill is a common practice in riverine floodplain environments.
6.8 Two-Dimensional Flow Models

A common problem in conducting floodplain analyses on alluvial fans results from the expansion of flows (both water flows and mudflows) across those portions of the fan surface where no entrenched channel exists to carry such flows. These conditions can most accurately be simulated by two-dimensional (2-D) flow models.

Four 2-D models (RMA-2, Schamber, Link-Node, and Diffusion Analogy) are briefly described by Hamilton, MacArthur, and Li (Simons, Li & Associates, Inc. 1988). Although these models have not been perfected for alluvial fan analyses, three of the models show potential for further research and development that might lead to a 2-D model that could produce realistic simulations of expanding flow across alluvial fans.

The following subsections present brief discussions of these three models. The "link-node" model is excluded because it was judged to be a poor candidate for an alluvial fan environment.

6.8.1 RMA-2 Model

This model was developed at the U.S. Army Corps of Engineers' Hydrologic Engineering Center in Davis, California, in cooperation with Resource Management Associates.

The model is described as utilizing the complete two-dimensional momentum and continuity equations to simulate free-surface, steady or unsteady flows. The modeling approach employs a finite-element grid that is capable of using individual grid elements that may alternate between wet and dry conditions during passage of a flood hydrograph. SLA (1988) reports that there are presently no known applications of this model on alluvial fans.
6.8.2 Schamber Model

In response to severe mudflow damage that occurred in the spring of 1983 along a 30 mile length of the Wasatch Front Mountains in Utah, the Hydrologic Engineering Center was requested by the Omaha District Corps of Engineers to develop a practical method for analyzing mud and debris flow hazard areas. The results of this research, which were published in 1988 (U.S. Army Corps of Engineers, Omaha District), produced a computer model which was composed of three submodels to analyze the movement of mudflows from a steep mountain canyon out onto an alluvial fan. These three submodels are used to perform the following operations:

1. **estimate mudflow volume** - This operation is based on a mathematical relationship between drainage area and total debris flow volume. This relationship was developed on the basis of actual measurements of mudflow volumes that resulted from the 1983 event along the Wasatch Front Mountains. Accordingly, it should not be used in other geographical locations if topographic and geologic conditions differ from the Wasatch Front, Utah.

2. **generate mudflow hydrograph at the canyon mouth (alluvial fan apex)** - The mudflow hydrograph is determined as a function of the mudflow volume estimated in Step 1, the channel geometry of the canyon, and the physical properties (viscosity, yield strength, unit weight, etc.) of the soil-water mixture. A dam break analogy is used as an initial boundary condition for the one-dimensional modeling process that is used to develop the mudflow hydrograph.

3. **route the mudflow onto the alluvial fan surface** - The movement and expansion of the mudflow onto the fan surface is simulated
by a 2-D model which uses the mudflow hydrograph from Step 2 as an upstream boundary condition. Topographic data is provided to the model in the form of a "macro-element" grid drawn onto a topographic map. The corner of each grid element is given an x-y coordinate and an elevation.

A computer generated, finite-element grid is then expanded onto this predefined geometric surface. When the mudflow hydrograph is routed through the finite-element grid, the model records the lateral extent of mudflow movement, as well as the depth and velocity at each node point during the peak discharge of the event. Such data can be used to define hazard areas in terms of depth and velocity contours.

When combined with the FEMA procedure discussed in Section 6.1 of this report, the Schamber model becomes an important tool in producing much more accurate hazard delineations for alluvial fans that are prone to frequent mudflow events. The Corps' report (1988) divides alluvial fans into three regions which exhibit different types of hazards. These regions are identified as the:

1. **mudflow region**, which is closest to the apex and exposed to a high risk of mudflow damage; the

2. **transition region**, which is downstream of the mudflow area, but still subject to severe sediment deposition; and the

3. **clear water flood region**, which is on the lower portions of the fan where an approximate equilibrium condition exists between the sediment transport capacity of the flowing water and the sediment supply to the water. Depending on the existence of natural or
manmade channels, flood depths and velocities may be estimated for this region by application of the FEMA method or conventional riverine hydraulic models such as HEC-2.

Figure 6.3 illustrates a hypothetical fan that exhibits different hazard regions and possible methods for quantifying the hazard potential within each region. It should be emphasized that not all alluvial fans are alike. Accordingly, the type and magnitude of hazard will vary from one fan to another.

Figure 6.3
Typical Flood Hazard Delineation For An Alluvial Fan
Even though the Schamber model was originally developed for mudflow analyses, it would seem to provide a good foundation for further research and development for eventual application to water flows across alluvial fans.

6.8.3 Diffusion Model

Technical literature contains several references to diffusion modeling. SLA (1988) cites a diffusion model, called DHM, that was developed by Hromadka (1985). For the purpose of this technical discussion, the author obtained excerpts from a drainage study, prepared by NBS/Lowry (1987), which used a diffusion model developed by Dr. G.L. Guymon. It is believed that the Guymon model is a modification of the previous work undertaken by Hromadka.

The diffusion model applies the two-dimensional flow equations to a user-specified grid that is superimposed onto the area to be studied. Each cell formed by this grid must be square and must be identical in size. Input data for each cell describes boundary conditions (for linking to adjacent cells) and an average elevation and Manning's roughness value. Cell boundaries can also be coded to prevent flow from moving through a boundary.

Diffusion equations are developed for each cell, and cell boundary, comprising the grid. The solution of these equations provides the discharge, velocity, and depth of flow across each of the four sides of every cell in the grid network. By providing a flood hydrograph as an input parameter, the path and hydraulic characteristics of a flood can be traced through a drainage network.

The model is also capable of routing runoff from precipitation that falls directly onto the grid network, i.e., this runoff is in addition to that being input to specific grid cells in the form of a runoff hydrograph. However, the model is not capable of computing infiltration losses. Accordingly, the rain falling directly onto the grid network must be input in the form of "effective" rainfall that has already been adjusted for infiltration losses.
This data is supplied in the form of coordinates describing a hyetograph (effective rainfall versus time).

The most serious disadvantage of this model would appear to be the requirement to use a constant grid spacing (cell size). For watersheds that have complex or abrupt topography, this might require an unreasonably large number of cells to get an accurate definition of the surface contours.

This diffusion model was recently applied to the Upper East Fork of Cave Creek in Maricopa County, Arizona (NBS/Lowry 1987). This watershed is part of an alluvial fan that is characterized by a network of numerous small rills that have very little hydraulic capacity. Due to uncertainties in estimating the flow path across this fan, a four square mile grid network, with 660-foot square cells, was developed for application of the diffusion model. TR-20 was used to develop a flood hydrograph for input to the diffusion model.

The results of this modeling process provided a schematic of the water movement across the fan surface, as well as depth, velocity, and discharge data for each of the grid network cells. This information was ultimately used for an evaluation of several drainage plans for the study area.
7 MANAGEMENT PRACTICES FOR ALLUVIAL FANS

Section 6 of this report focused on some of the engineering procedures that have, or may have, application to the problem of quantifying certain hydrologic and hydraulic processes on alluvial fans. To provide maximum effectiveness, these technical procedures should be used in conjunction with a management plan that will establish regulatory policies for the urbanization of an alluvial fan, and, preferably, standardize the technical approach that will be applied to the analysis of a specific fan.

The Scope of Work for this research project confined the investigation of alluvial fan management techniques to those currently being used by regulatory agencies in Arizona. With the exception of Pima County (see Section 8.2, Tortolita Mountains), no regulatory agencies in Arizona were found to have developed special floodplain management policies for alluvial fans. Accordingly, this section of the report provides an extensive overview of management practices that have been published at the national level (FEMA).

As a matter of interest, the reader will recall that Section 6.2 of this report presents a brief discussion of development standards that were recommended for the community of Cabazon, California.
7.1 **Floodplain Management Tools For Alluvial Fans**

Under contract to the Federal Management Agency (FEMA), Anderson-Nichols, et al, (1981) prepared a comprehensive study to assess the effectiveness of floodplain management tools on alluvial fans. As stated in the Anderson-Nichols report, the general goals of the study were:

1. determination of the effectiveness of nonstructural and structural flood plain management measures in reducing flood losses in different types of alluvial fans;

2. recommendation of preferred management measures for specific alluvial fan conditions;

3. development of a process for selecting management measures which considers all important aspects of flood behavior and fan condition;

4. provision of information necessary for FEMA to develop environmental and inflationary impact assessments for management tools which are specified in future regulations; and

5. the development of damage information for structures on fans which will assist the Flood Insurance Administration in determining insurance risks where management tools are used.

Pursuit of these five major objectives also led to the identification of secondary goals, the most notable of which was the construction and operation of a physical model of an alluvial fan. This model was used to investigate the hydraulic and sediment transport processes that exist on fans, as well as the effectiveness of different development scenarios, i.e., street alignment, elevated
structures, local dikes, etc.

The Anderson-Nichols (A-N) study is probably the most comprehensive assessment of alluvial fan management tools that has been published in recent years, and clearly parallels several of the objectives of this report. Accordingly, it provides an excellent source of information to initiate a discussion on possible management practices that a regulatory agency might consider when faced with the pending development of an alluvial fan. The following sections discuss specific findings from the A-N study.
7.2 Hazard Identification

The A−N study addresses three hydraulic zones on an alluvial fan. These zones are defined as follows:

* channelized zone, usually near the apex of the fan, where a single, well-defined channel exists.

* braided zone, typically near the middle of the fan, where a prominent apex channel begins to lose definition and causes flow to transition into a braided pattern.

* sheet-flow zone, typically near the toe of the fan, where flow transitions from a braided pattern into a thin sheet of water that continues a lateral expansion as the flow moves down fan.

It should be emphasized that this is a theoretical, idealized description of flow patterns on an alluvial fan. As was discussed in Section 2.2 of this report, alluvial fans can exhibit several different flow patterns during their evolution, i.e., the idealized patterns described by the A−N study will not necessarily be found on every fan. Some fans may be entrenched all the way from the apex to the toe, while others may exhibit no entrenchment at all. The same argument applies to the occurrence of braided flow and sheet flow. However, it should be noted that the 1986 DMA study (referenced in Section 6.1 of this report) stated that the fans used for a data base in that study exhibited three general patterns: 1) single channel; 2) split channel; and 3) braided channel. Accordingly, field data does exist to justify these three general flow patterns on alluvial fans. Obviously, field investigations are highly recommended to ascertain the specific flow pattern on any given fan.
The description of alluvial fan processes in Section 2.2 provides a foundation for identifying the type of flood hazards that might be expected in response to the urbanization of a fan. Typical hazards identified in the A-N report include:

- inundation
- sediment deposition
- scour and undermining
- impact forces
- hydrostatic and buoyant forces
- high velocities
- unpredictable flow paths

Obviously, both the severity and occurrence of these hazards will depend upon the state of evolution that a specific fan is in at any given time, and upon the location on the fan (i.e., apex, midfan, toe). As a general approach, the A-N report recommends the following steps be taken to identify flood hazards on an alluvial fan:

1. gather data on historical flooding;
2. identify watershed and fan characteristics;
3. estimate location and severity of hazards based on flood history and characteristics;
4. delineate areas subject to flooding; and
5. use empirical relationships to quantify flood depths and velocities within the flooded zone.
7.3 Management Plan

The dynamic nature of an alluvial fan creates a much more complex management environment than that encountered in conventional riverine floodplains. The broad lateral extent of alluvial fans and the ever-changing flow paths dictate that a "whole-fan" management approach be considered. Only through application of this concept can the floodplain manager be confident that the solution of a flooding problem on one part of the fan has not transferred the problem, or aggravated an existing problem, on another part of the fan.

Preferably, the development of an alluvial fan should be based on a "Master Plan" that has examined all the interactive impacts of urbanization and flooding. Such a plan would allow urbanization to occur in an organized manner that would systematically accommodate floodplain problems. However, even on those fans where development has previously occurred without the benefits of a "Master Plan", any efforts to correct existing flooding problems, or expand the extent of urbanization, should only be undertaken with a complete understanding of the impact that such action might cause to other portions of the fan, i.e., one should look at the whole fan.

The A-N report explores alluvial fan management tools as a function of three development scenarios that were suggested by Tettermer (undated). A brief discussion of these scenarios follows:

1. Low-density development, as might be expected, could be permitted on the fan with the least amount of controls. This type of development could be permitted nearly anyplace on the fan with the exception of locations near the apex and incised channels. Typical development constraints would require: 1) floodproofing of all new structures, preferably by elevation above forecast flood levels; and 2) zoning restrictions on minimum lot sizes so that flow paths would not be constricted (this is in concert with the Cabazon, California study discussed in Section 6.2 of this report). Any existing structures would have to be protected
through the construction of some type of levee system.

Since the fan would be left in a relatively unconstricted state, i.e., flow paths are still free to meander across the fan, streets, landscaping, and utility systems would still be exposed to a high risk of damage.

2. **Moderate-density development** might occur in either a uniform distribution over the entire fan surface, or it might be restricted to protected "pockets" of high density development at specified locations on the fan. Under a uniform distribution of development, the A-N report suggests flood control be provided by alternatives such as local levees, channels, and enlarged streets designed to convey floodwaters.

 Under the protected "pocket" scenario, open spaces would be reserved as floodways to safely divert flood flows around the developed pockets. A local levee system would be required to convey flows into the floodway system.

3. **High-density development** would occupy nearly the entire fan surface. Such a scenario would certainly require a very carefully orchestrated "Master Plan" that would be able to completely control the movement of water and sediment from the fan apex to the toe. Runoff occurring on the fan surface would also have to be integrated into the drainage system.

 Planning for this degree of development density would undoubtedly require some type of debris and/or flood control structure at the fan apex, as well as an armored channel system to convey water from the fan apex to the toe. A suitable outfall for such a channelization system would also be mandatory.

 Due to the high housing density, fans developed under this scenario would be subject to extensive damage should the design level of the flood control system ever be exceeded. Accordingly, it would be prudent for planners and engineers to incorporate some type of safety valve into the system to help lessen the impacts from such an occurrence.
Obviously, the development of a "Master Plan" is a desirable prerequisite to the occurrence of any urbanization on an alluvial fan. The earlier such planning takes place, the more options will be available for the successful and cost-effective development of the fan. The A-N report recommends the following issues be considered in the development of a "Master Plan":

- the management plan should specify the type of management tools to be used, (channels, levees, etc., these will be discussed in a subsequent section) the location of each tool, and the design standards that are applicable to each tool.

- development scenarios should be established under a zoning plan which would limit residential densities (low, medium, high) to levels that are compatible with the adopted floodplain management plan.

- consideration should be given to reserving corridors of open space, which could be used for the location of specific management tools such as channels, levees, debris basins, etc.

- street and highway systems should be oriented, as much as possible, parallel to the fan slope and constructed in a manner that will minimize the blockage of flow.

- building codes should be established which require proper elevation of new floodplain structures and rigid design and construction standards for structural flood control improvements such as channels, levees, debris basins, etc.;
all subdivision development should be carefully controlled so that it is in full compliance with the adopted "Master Plan" and will not cause adverse downfan impacts.

all flood control improvement, or floodplain management tools, should be subject to a formal maintenance program, which would require periodic inspection and a specific maintenance and repair checklist for each of the different types of management tools that are constructed on the fan.
7.4 Description and Selection of Management Tools

For the purpose of this discussion, floodplain management tools are defined as the structural measures that are constructed on a fan to reduce the potential for flood damage. Based on meetings with local community officials, field investigations, and a literature search, the A-N study identified the following management tools:

- debris basins and detention dams
- levees and channels
- drop structures
- debris fences
- local dikes
- street orientation
- elevation of structures
- watershed management
- floodplain zoning

A brief discussion of each of these tools follows:

debris basins and detention dams

These measures will most frequently find application near the apex of the fan, where some type of structure is needed to attenuate the peak discharge of the flood wave as it emerges from the mountain canyon. Such basins perform an equally important function of trapping the large sediment and debris loads that often accompany the flood wave.

When used as a flood control basin, these structures will have restricted outlets that will meter the water out at a controlled rate that is compatible with the hydraulic capacity of downstream channels or other conveyance facilities.
The debris and sediment basins normally retain the trapped material within the basin. Accordingly, periodic sediment removal may be required as a maintenance function.

Levees and channels

Levees and channels can be used virtually anywhere on the fan where either a diversion or containment of floodwaters are desired. For example, a channel could be connected directly to the outlet works of an apex detention basin. Such a channel could then be used to convey the basin outflow all the way to the toe of the fan.

Levees might be used to increase the hydraulic capacity of either a natural or man-made channel.

The design of both levees and channels must consider the erosive potential of the high velocity flows which exist on the relatively steep slopes of an alluvial fan. This potential is increased by the concentration of water in a hydraulically efficient channel or along the bank of a levee. Accordingly, some type of channel lining is almost always required for the banks, and in some cases, may be recommended for the channel bottom.

Drop structures

Vertical drop structures may be used in either channels or on residential lots. The primary purpose of such structure is to reduce the slopes over which the water is flowing. This will cause a velocity reduction and corresponding decrease in erosion potential.

In a residential setting, drop structures might be used along the downslope side of terraced lots to reduce the potential for headcutting or gullying to occur as water cascades over the edge of each terrace.
debris fences

As the name implies, these structures are used in situations where debris flows are frequently encountered. They are designed to trap large rocks and debris items (logs, etc.) while allowing water and finer sediments to pass unobstructed. A typical configuration would consist of steel I-beams mounted vertically in a concrete foundation. The steel beams would be mounted 1 to 2 apart and project approximately 6 to 8 feet above the foundation.

local dikes

Localized systems of dikes can be used to protect individual structures or to divert water around an entire subdivision. They can also be used to collect and funnel water into street systems that have been designed to provide a dual use of transportation and water conveyance.

Local dikes could consist of either reinforced masonry walls or earth berms. As with levees and channels, the erosion potential along such dikes should be considered in their design. Dikes should be located with a complete assessment of the impact they may create to flooding patterns in adjacent or downstream areas.

street orientation

Streets aligned parallel to the slopes of fans can be very effective in conveying flows through developed areas. In order to provide any substantial flow capacity, streets should be depressed and have armored sides to prevent lateral erosion into adjacent lots. Such a configuration will undoubtedly create special design requirements for driveways and street intersections. A suitable outfall system will also be required to accept the floodwaters transported through the street system.
elevation of structures

This management tool is used to elevate structures above the base flood elevation. Both piles or compacted fill may be used to achieve such elevation. The use of piles allows water to flow under a structure, thus minimizing the obstruction and diversion of flow paths. Alternatively, the use of compacted fill can cause a significant flow diversion, is prone to erosion, and will usually require some type of supplementary channelization scheme to collect the diverted water.

watershed management

This measure is applied to the mountain source area that feeds water and sediment to the fan. Reforestation and forest fire controls are typical techniques that can be implemented to minimize runoff and sediment production. Obviously, this measure may have limited application to the desert watersheds in Arizona because of the frequent absence of a dense vegetative community in most of the mountain areas.

floodplain zoning

Zoning should be based on a Master Plan and would be used to reserve open spaces for channels, detention basins, etc., and to specify maximum land-use densities that would be allowed on specific areas of the fan. Due to development pressures usually associated with urbanizing real estate, zoning has not been widely used on alluvial fans.

Issues which should be considered in the analysis of management tools include:

- fan and watershed characteristics
- location and severity of hazards
- flooding pattern on the fan
prediction of future flood behavior
* existing and projected development
* effectiveness of each management tool for the situation in which it is being considered

The following design parameters should also be considered in the assessment of management tools:

* performance requirements (discharge, velocity, sediment load, etc.)
* susceptibility of the tool to anticipated forces (and possible failure) during a flood
* physical constraints that might limit the size, location, or orientation of the tool
* public acceptance (aesthetics, safety, disruption, cost)
* cost

The A-N report presents a recommended management tool selection process which will insure that key factors are considered. This process, which is summarized henceforth, includes several interpretive comments by the author, which were not contained in the original A-N report.

1. The type and location of flood hazards should be identified on the basis of a qualitative assessment of the fan surface and watershed characteristics. This step should include field inspections, a review of soil maps, topographic maps, aerial photographs, and any available historical flood data. A hydrology analysis should also be completed to develop an estimate of the peak discharge values that might be
expected at the fan apex.
The A-N study recommends that both a geologist and hydrologist be involved in this step of the selection process.

2. Estimate the depth, velocity, width, and path of the design flood (typically a 100-year event). A-N recommends that these estimates be based on empirical formulas for channel geometry and behavior. A non-specific reference is made to several formulas published in the A-N report.

3. Identify both existing and future land-use patterns on the fan. This is a very comprehensive step and should be pursued through the development of a "Master Plan." Such a plan should include multiple development options in order to identify some optimal configuration that is acceptable to the public and in harmony with the topographic and flooding patterns on the fan.

4. Using the "Master Plan" alternatives developed under Step 3, management tools should be selected which are best suited to the unique flooding problems that would occur at different locations on the fan for each of the possible development scenarios. Completion of this step should consider all of the previously cited design parameters for management tools. The end product of this step would be several floodplain management plans for the recommended "Master Plan" (or any desired alternatives). Each floodplain management plan would consider different combinations of management tools.

5. The A-N report includes a Step 5 in the selection process to evaluate and eliminate those management tools which are deemed inappropriate or unable to withstand the forces that they might be exposed to.
during a flood. It would appear to the author that this step would have already been accomplished as part of the design parameter analysis used to select the floodplain management tools in Step 4. Accordingly, the author would recommend that this "weeding out" process (Step 5) be conducted as part of, or concurrently with, Step 4.

6. Prepare a cost estimate for each of the management tools that are selected for the floodplain management plan(s). These costs would be based on the preliminary design data developed as part of Step 4. Completion of this step will provide the necessary data to make cost comparisons of the alternative management plans so that those which are not economically attractive can be eliminated.

7. Using the data developed from Steps 1 through 6, a final floodplain management plan can be selected. The entire community (land owners, developers, public officials) should be involved in this selection process. The adoption of a final plan should also identify funding sources that will be used to construct the recommended measures.
7.6 Performance Characteristics of Management Tools

When selecting floodplain management tools for specific sites on an alluvial fan, the engineer/floodplain manager should have an understanding of the expected performance and hazard susceptibility associated with such management tools when subjected to a flood event. Accordingly, based on data taken from the A-N study, Table 7.1 portrays the effectiveness of management tools in mitigating specific flood hazards, while Table 7.2 shows the relative damage potential that these hazards pose to management tools.

Table 7.1 Effectiveness of Management Tools For Specific Flood Hazards

<table>
<thead>
<tr>
<th></th>
<th>Inundation</th>
<th>Sediment Deposition</th>
<th>Scour & Undermining</th>
<th>Impact Damages</th>
<th>Hydrostatic & Buoyant Forces</th>
<th>High Velocities</th>
<th>Unpredictable Flow Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detention Dam or Debris Basin</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Levees & Channels</td>
<td>●</td>
<td>○</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Drop Structures</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Debris Fences</td>
<td>●</td>
<td>○</td>
<td>●</td>
<td>●</td>
<td></td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Local Dikes</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Street Orientation & Local Drainage</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Elevate on Piles</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Elevate on Fill</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Watershed Management</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Floodplain Zoning</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>
Table 7.2 Susceptibility of Management Tools To Damage By Flood Hazards

<table>
<thead>
<tr>
<th></th>
<th>Inundation</th>
<th>Sediment Deposition</th>
<th>Scour & Undermining</th>
<th>Impact Damages</th>
<th>Hydrostatic & Buoyant Forces</th>
<th>High Velocities</th>
<th>Unpredictable Flow Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detention Dam or Debris Basin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Levees & Channels</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Drop Structures</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Debris Fences</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Local Dikes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Street Orientation & Local Drainage</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Elevate on Piles</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Elevate on Fill</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Watershed Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floodplain Zoning</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

It should be noted that the effectiveness of the tools in Table 7.1 assumes that sound design parameters were employed and that a proper maintenance program is observed. The hazard ratings in Table 7.2 might be used by the engineer to incorporate features into the structural design (or maintenance program) that would give a specific measure a stronger capability to resist failure resulting from the occurrence of a specific hazard.

Although Tables 7.1 and 7.2 provide general guidelines on the performance characteristics of floodplain management tools, the results of the physical model
tests, conducted as part of the A-N study, furnish detailed data that can be used to draw more quantitative conclusions on the actual performance of these tools under severe flood conditions. Accordingly, comments on the results of these tests are included in the following paragraphs.

The model studies in the A-N report were conducted in three distinct phases:

1. Construct an idealized fan (with no urbanization) in order to study hydraulic relationships, flow patterns, and fan morphology.

2. Construct a scale-model replica of the Magnesia Springs fan (near Rancho Mirage, California) in order to study the effectiveness of existing flood control measures (based on a recorded flood event) and potential mitigation measures, and to study differences between an idealized fan and an actual fan.

3. Using the Magnesia Springs fan model, conduct tests of selected management tools relative to their effectiveness in protecting a model city.

The A-N report presents a detailed discussion of the hydraulic and morphologic relationships that were studied with the use of the idealized fan in Phase 1. For details of these model results the interested reader is referred to the original A-N study.

The discussion in the subsequent paragraphs is based on results from the second and third phases of the model study.

Debris Basin

A debris basin was simulated at the apex of the Magnesia Springs fan model by limiting the 100-year peak discharge in the laboratory model to a
prototype value of 1800 cfs (the estimated 100-year peak discharge is 4000 cfs with no basin). The downstream impacts of sediment retention in the basin was simulated by feeding clear water to the apex of the model.

In order to determine the impact of this simulated basin, the run was repeated with a 4000 cfs prototype hydrograph and sediment feeding to the apex. Near the fan apex, the debris basin, as would be expected, creates a substantial reduction in flow width (47%), flow depth (39%), velocity (33%), and unit impact force (43%).

However, near the toe of the fan, the depth and velocity are approximately the same for both cases, while the flow width is still substantially less (69%) with the debris basin in place.

It should be emphasized that the downstream impacts from construction of a debris basin (or detention dam) are largely a function of the storage volume and discharge capacity of such structures, i.e., the engineer has the option of designing these structures to provide literally any amount of desired hydrograph attenuation, within topographic and cost constraints that might accompany a specific site.

Since debris basins tend to trap sediment, they may help protect downstream development from sediment deposition problems; however, this reduction in downstream sediment supply may in turn aggravate channel degradation.

Levee/Channel System

The existing levee/channel system on the Magnesia Springs model was also modeled with a simulated 100-year peak discharge of 4000 cfs. This levee was breached during the 1979 flood, which had an estimated peak discharge of 5000 cfs.

The results of the model study for a prototype peak discharge of 4000 cfs indicated that the channel had sufficient hydraulic capacity to pass such an event only, however, if sediment that is deposited during smaller floods is periodically removed. The model levee was also found to be prone to failure
by erosion. The levee continued to fail (in subsequent tests) despite the application of riprap protection with a prototype rock size of 2.3 feet. The velocity measurements on the model indicated prototype velocities of up to 30 fps could be expected. These tests suggest that rock riprap is not a suitable bank protection measure for such an environment; more erosion resistant materials such as concrete or soil cement would be preferred. Gabions are also mentioned in the A-N report as a possible solution; however, due to the heavy debris load and transport of large rocks in these high velocity channels, the author would recommend extreme caution in their use because of the potential for the wire-enclosed baskets to be torn apart.

The model results indicate that the success of a levee/channelization concept is highly dependent upon a stable bank protection system and a periodic maintenance program to remove sediment deposits from the channel.

Phase 3 of the model study focused on the construction of various floodplain management tools to protect a scale model version of a residential area located on an alluvial fan. These tests utilized the Magnesia Springs fan model and simulated prototype peak discharge values ranging from 800 cfs to 4000 cfs. The results of these simulations are discussed in the following paragraphs.

Street Orientation and Protective Walls

Raised walls or dikes can be constructed along the upstream side of a development, and used in conjunction with streets to help guide water through an area without inundating lots and homes. Both straight walls (perpendicular to flow) and slanted, V-shaped walls were investigated. The V-shaped walls were found to be more capable of resisting overtopping at higher discharges than were straight walls. This was primarily attributed to the high velocities along the wall which reduced some of the sediment deposition problems. V-shaped walls were also found to be superior in making an equal distribution of water
into street alignments at each end of the wall.

The use of streets as flood conveyance facilities requires that they be depressed and include an erosion resistant side-berm. Due to the somewhat variable distribution of flood waters through the street system, the model tests indicate that they should be designed for twice their anticipated flow rate. Typical damage that was observed from the street scenario included sediment deposition, destruction of cars, damage to the street surface and adjacent landscaping.

Drop Structures

Drop structures, constructed between some adjacent lots, were found to reduce flood damage by preventing the formation of headcuts and small channels through the lots. The structures were considered to be aesthetically inconspicuous and inexpensive. The use of these structures create a terraced effect in a subdivision.

Interceptor Channels and Local Dikes

These type of channels and/or dikes are designed to intercept water upstream of a development and carry it around the development. The model studies indicated that interceptor channel failures were associated with the failure of such channels to transport the incoming sediment load. A primary cause of this problem is the flatter channel slope that results when a channel is aligned other than parallel with the fan slope.

In order to resist erosion, bank stabilization should also be considered for these measures.

Elevated Structures

Houses elevated on piers were examined in the model study. For this measure to work properly, it is recommended that they be used in combination with drop structures to prevent the formation of channels or headcutting between
the piers. If drop structures are not used, the occurrence of these phenomena can cause the piers to be undermined and a subsequent collapse of the home. Even with drop structures, the piers should be designed to withstand normal scour that would occur as the piers obstruct the normal flow of water across the lot.

One of the model tests also showed that unprotected street side-slopes allowed lateral erosion to occur on adjacent residential lots, which in turn caused serious erosion around the house piers.

It should also be noted that the use of this measure may be expensive, aesthetically unattractive, and not well-accepted by potential home-owners.
7.6 Quantitative Estimate of Flood Damage

The flooding characteristics of alluvial fans produce much more damage potential to urbanized areas than exists in the riverine environment. The A-N study attributes these additional damages to the following factors:

1. runup of high velocity water on the upstream side of a structure.

2. impact forces from high velocity flows

3. large amounts of sediment deposition in homes (and on streets and landscaping)

4. local scour along the foundations of structures.

Using standard FIA riverine depth-damage curves, Anderson-Nichols incorporated these factors into new curves that were considered representative of alluvial fan flooding conditions. These adjustments were made by incorporating a velocity factor and a cost for sediment removal into the riverine curves. As a point of interest and convenient reference, the A-N curves are reproduced as Figures 7.1, 7.2, and 7.3.

Certainly, there is very little recorded data to validate these curves, and the relative damage values would probably change in relation to the cost of homes on a specific fan, but in the absence of better data, they provide a useful estimating tool for the floodplain manager.

The interested reader can obtain more details on the development of these curves by referring to the original A-N study.
Figure 7.1 Flood Damage Curves for Alluvial Fans
1 Story – No Basement

Depth Above First Floor (ft)

Percent Damage

Riverine 5 fps 10 fps 15 fps
Figure 7.2 Flood Damage Curves for Alluvial Fans
Split Level – No Basement

Depth Above First Floor (ft)

Percent Damage
Figure 7.3 Flood Damage Curves for Alluvial Fans Two or More Stories – No Basement

Depth Above First Floor (ft)

Percent Damage

12 1 10 9 8 7 6 5 4 3 2 1 0 -1 -2

15 fps 10 fps 5 fps Reference
7.7 Summary of General Approach for Alluvial Fan Management

As stated previously, the alluvial fan study prepared by Anderson-Nichols is very comprehensive and provides sound recommendations from which a regulatory agency could begin to formulate a successful floodplain management plan. Certainly the A-N study is not the final answer to alluvial fan flooding problems; nor was it intended to be. However, it does provide a significant step towards the establishment of a data base that includes substantial contributions to both the technical and management issues that must be addressed as part of the urbanization of alluvial fans.

As concluding comments, the A-N report presents recommendations for a general floodplain management model for alluvial fans. These recommendations summarize the issues that have been discussed in Section 7 of this report. They are intended to provide interim guidance and serve as a foundation for the evolution of new and improved methodologies and management techniques for alluvial fans. The concluding A-N recommendations are presented as follows:

1. **Hazard identification** should be accomplished on all developing alluvial fans as soon as possible. Section 7.2 of this report presents a discussion of hazard identification techniques.

2. Communities should develop a **Master Plan** that can be used as the basis for regulating development on any fans expected to undergo urbanization. Section 7.3 presents issues to be considered in the preparation of a Master Plan.

3. Based on identified flood hazards, development concepts from a Master Plan, and any pertinent FEMA regulations, the community should evaluate and select floodplain management tools to control flooding.
problems. The following guidelines for management tool selection are categorized by the three basic channel patterns found to be prevalent on alluvial fans.

Channelized Zone
- Development prohibited unless whole-fan measures are implemented.

Braided Zone
- Basements and mobile homes prohibited.
- Streets aligned and designed to convey entire flood flow.
- Use of local dikes to direct flows into streets.
- Use of drop structures between homes built on high slopes to prevent excessive erosion.
- All management tools must be coordinated with tools in existing developments.
- Whole-fan management tools can be used instead of the above provisions.

Shallow Flooding Zone
- Elevation of structures on piles or armored fill.
- Street orientation to maximize flood conveyance.
- If up-fan subdivisions use depressed streets or channels to convey floods, these tools must be continued down to the fan toe.
- Use of drop structures between homes built on high slopes.
- Whole-fan management tools can be used instead of the above provisions.
Placement of Single Structures

* In undeveloped areas, elevate on armored fill or use local dikes, provided that no added flood damage to other structures results.

* In developed areas, local dikes, channels, and armored fill must tie in with existing flood control tools.

* Elevation on piles should be used if above criteria cannot be met.

* No single structure placement should be allowed in the channelized zone.

4. All proposed development plans (urban, commercial, industrial) should be reviewed by the local community and/or floodplain regulatory agency to ensure compliance with both the approved Master Plan and design criteria for the selected management tools.

A general checklist for required submittals by the developer might include such items as:

* plans for flood control tools,

* an engineering report that documents the adequacy of the proposed flood control tools,

* an analysis of flood impacts of the proposed tools on down-fan development, and

* a maintenance plan.

Although not included in the A-N recommendations, the author would suggest that the technical analyses completed by developers be based on standardized methodologies for a given fan, e.g., if a computerized rainfall/runoff model was used to develop the fan hydrology for the Master Plan, then this model should be used as the basis for all hydrologic design on that specific

165
fan.

Similarly, standardized approaches for sediment transport investigations should also be adopted. If standardization is not pursued, technical inconsistencies will undoubtedly arise as individuals attempt calculation shortcuts or employ engineering methodologies that may be totally unsuited for the environment in which they are being applied. The resulting engineering design will resemble an "apples and oranges" situation throughout the fan. Any deviations from these standardized methodologies would have to be supported by sound technical justification and approved by the floodplain regulatory agency.

In conclusion, the author would concur with the basic management approach presented in the A-N study. Perhaps one of the most important elements in this approach is the need for advance Master Planning and utilizing the whole-fan concept in order to anticipate, and plan for, the impacts that will accompany alluvial fan development.
CASE STUDIES OF ALLUVIAL FAN DEVELOPMENT

This section of the report presents an overview of three unique locales within Arizona for which large scale drainage studies have recently been initiated. The study locations are:

1. North Scottsdale area;
2. Tortolita Mountains (north of Tucson);
3. Bullhead City

All three sites contain landforms associated with alluvial fan processes and are either undergoing, or on the verge of undergoing, major urbanization.

The following summaries will address the activities that have led to the initiation of the project studies and outline the management techniques and technical procedures that have, or may be, employed to develop a flood control plan for each site.
8.1 North Scottsdale General Drainage Plan

In recent years the City of Scottsdale has extended its city limits to include a large area of the Sonoran Desert north of the Central Arizona Project (CAP) aqueduct and west of the McDowell Mountains drainage divide. This expansion encompasses approximately 115 square miles of watershed that contribute runoff to both Cave Creek (26 square miles) and upper Indian Bend Wash (90 square miles).

The physical character of the area includes steep mountain hillsides, alluvial fans and fan terraces, and literally thousands of ephemeral washes exhibiting various degrees of hydraulic capacity and stability. Although this area is very sparsely developed at the present time, the natural desert beauty has attracted substantial interest from developers. Accordingly, the area is on the verge of undergoing major urbanization, in fact, some development is already underway.

In order to promote orderly development of the area and preserve the natural character of the land, the City of Scottsdale has published the Tonto Foothills Background Study and the Land Use Element, General Plan. Although these publications discuss proposed land use densities, environmental issues, physical watershed characteristics, and a general assessment of flood hazards, there are presently no recommendations on how specific drainage and flood control issues should be addressed.

8.1.1 Floodplain Management Approach

In recognition of the urgent need for a comprehensive investigation of the drainage problems within this area, the City commissioned a "General Drainage Plan" study in January 1988 (Water Resources Associates, Inc. & Robert L. Ward, Consulting Engineer, 1988). The primary goals of this study were to quantify the existing flooding problems within the watershed boundaries and then superimpose the forecast land use densities onto the watershed and develop an integrated drainage plan to safely dispose of the increased runoff.
that is predicted to accompany future development. Completion of the "General Drainage Plan" will provide the basis for regulating development of the area in accordance with an approved "Master Plan" that anticipates, and plans for, the drainage response of the entire watershed under a fully developed condition. Such a plan also eliminates flooding problems that might be created by random construction of individual drainage systems that do not acknowledge the potential impacts on adjacent properties.

The floodplain management approach being pursued by the City is in agreement with the guidelines recommended in the Anderson-Nichols study for floodplain management on alluvial fans (see Section 7.7), i.e., 1) identify flood hazard areas; 2) develop a Master Plan for urbanization; 3) evaluate and select drainage concepts (floodplain management tools); and 4) regulate future development in accordance with the Master Plan and selected drainage concepts. Justifiably, the development of this "General Drainage Plan" embodies the "whole fan approach" to floodplain management.

8.1.2 Technical Approach

The engineering analysis that was used to develop the "General Drainage Plan" consisted of three primary phases:

1. Quantify existing runoff response and identify severe hazard areas.
2. Quantify runoff response that will result from complete development of the watershed.
3. Based on the information from Phases 1 and 2, develop management tools and an integrated drainage plan that will limit peak discharge values to magnitudes that are no greater than those occurring under existing conditions.

The hydrologic analysis of such a large project requires the use of a methodology that can:
reflect the hydrologic dissimilarities of different regions of the watershed;
- evaluate variable storm distributions;
- perform routing operations to hydraulically link the watershed sub-basins together;
- accommodate flow diversions;
- conduct reservoir routing operations for the evaluation of detention basin concepts;
- be easily modified to allow the user to quickly conduct "what if" scenarios for different land uses and floodplain management.

To acknowledge these criteria, a computerized rainfall/runoff model (HEC-1) was developed for the watershed. Extensive field work was conducted in order develop realistic input data for this model. Field investigations were supplemented with the use of aerial photographs, USGS topographic quadrangle maps, and SCS soil survey maps.

Relative to this research study, perhaps the most interesting aspect of the technical analysis concerns the manner in which the alluvial fan flows were routed through the HEC-1 model. Considerable emphasis and time were devoted to field investigations in order to identify the probable flow patterns on the alluvial fans and fan terraces. A key element of these investigations was to identify those fans which were considered to be active in terms of not being confined to a stable, well-incised channel capable of conveying the flow from the fan apex to the toe. This was a critical issue in developing channel routing parameters across the fan and in determining the potential flood risk for urbanization of the fan surface.

The selection of channel routing parameters across the fan surface is also a very important parameter in the attenuation of peak discharge as the flood wave moves from the apex to the toe of the fan. For those fans that do not have a stable, incised channel to carry the flow across the fan, the
water will begin to spread across the fan surface in a shallow, braided, sheetflow fashion. Such a flow pattern is capable of causing substantial hydrograph attenuation through both: 1) increased surface area available for infiltration losses; and 2) overbank storage effects. This is an important process to consider if there is a need for accurate peak discharge information on the lower portions of the fan.

In addressing the potential for hydrograph attenuation, field investigations revealed three distinct variations of alluvial fan formations:

1. dissected fans along the south side of the McDowell Mountains;
2. a broad alluvial fan terrace southwest of the Pinnacle Peak area;
3. an active alluvial fan apex (no major incised, downstream channel) at the east end of Pinnacle Peak Road, adjacent to the west side of the McDowell Mountains.

The following paragraphs present a discussion of the analysis techniques used for each of these landforms.

dissected fans

The first of these three landforms (dissected fans) were characterized by stable, incised channels leading from the apex to beyond the project limits. These fans also exhibited well-defined drainage swales for local runoff that was generated on the fan surface. These swales were not hydraulically connected to the apex channel.

The following procedure was used to model dissected fans:

1. Field investigations were made to measure approximate channel geometry at several locations along the length of the incised channels. Such measurements provided input data for the HEC-1 model, but more importantly, identified any location at which a
specific channel might begin to lose substantial hydraulic capacity and transition to a shallow, braided flow pattern. These field investigations also served to identify the stability of the channels, i.e., did the banks exhibit signs of frequent erosion and did overbank areas display indications of inundation/sediment deposition.

2. Using the channel geometry developed from Step 1, the HEC-1 model was run for the 100-year storm. The peak discharge values from the model were noted at selected concentration points along the channel alignments. Using these discharge values and the measured channel geometry, Mannings Equation was used to compute the depth, velocity, and Froude Number associated with the flow. The flow depth (along with a bank stability assessment) was then used to determine if the channel capacity would be exceeded. Flow velocity and Froude Number were also monitored to insure that reasonable values were being maintained. In accordance with previous research, an attempt was made to utilize channel parameters that would maintain flows at critical, or slightly supercritical, conditions.

3. At any locations where the flow was found to exceed channel capacity, an adjustment was made in the channel geometry, to reflect the lateral spread of water, and the model was re-run.

alluvial fan terrace

As defined in a recently published SCS soil survey for this watershed, an alluvial fan terrace is an inactive remnant of an old alluvial fan which is no longer a site of active deposition.

Geographically, this terrace is located west and southwest of Pinnacle Peak. The mountain source area for this terrace has completely eroded and
is no longer in existence, with the exception of Pinnacle Peak, which is only a small token remnant of what was probably once a northern extension of the present day McDowell Mountains.

This fan terrace is characterized by hundreds of small, braided washes which are one to two feet deep and have average top-widths ranging from 4 to 30 feet. The bankfull capacity of these washes ranges from approximately 25 to 250 cfs.

Certain portions of this terrace are subjected to relatively large inflows at the upstream end of the terrace where more well-defined drainage systems are capable of delivering 100-year peak discharges of approximately 8,000 to 14,000 cfs. Flows of this magnitude are not capable of being conveyed across the fan terrace within the bankfull capacity of the braided washes. Accordingly, large portions of the terrace can be expected to be inundated by shallow sheet-flow during these large floods. As indicated previously, this type of flow condition can be expected to produce substantial hydrograph attention due to infiltration losses and overbank storage effects. This attenuation was artificially simulated in the HEC-1 model by using a very wide channel bottomwidth to route water down the fan terrace. The following steps were used to select suitable channel geometry:

1. Cross-sections were surveyed for several typical washes on the fan terrace. Manning's Equation was then applied to the surveyed channel geometry in order to compute a bankfull discharge for each wash. From this data, an average bankfull capacity was determined for a "typical" wash.

2. Using aerial photographs, lines were drawn perpendicular to the average flow pattern through each sub-basin. The number of washes intersected by this line was then counted from the photo.
As many as two or three lines were drawn on some sub-basins in order to establish an average number of washes for that particular area.

3. The average bankfull capacity from Step 1 was then multiplied by the average number of washes from Step 2 in order to determine the total bankfull capacity of all the washes within a given sub-basin.

4. Once the total channel capacity per sub-basin was known (from Step 3), the HEC-1 model was executed (using estimated channel geometry for the fan terrace) to determine how much water would be delivered to the upstream end of each sub-basin on the terrace. If this rate of flow was found to be in excess of the total bankfull capacity of the sub-basin, then the water was assumed to spread across the sub-basin as wide, shallow sheet-flow. The channel geometry for the sub-basin was then adjusted to simulate this condition and the model re-run.

When sheetflow was predicted for a sub-basin, the channel geometry was selected so as to provide realistic depths and velocities of flow across the terrace. For these wide sheet-flow areas, realistic depths of flow (within the artificial channel used for the simulation) were considered to be on the order of 1.6 feet or less, while average velocities were assumed to range from 3 to 6 fps, with the higher velocities being encountered in the steeper, upper portions of the terrace. As the water moved down the terrace, it was assumed to spread laterally in a widening fan shape. This resulted in a slight decrease in both depth and velocity of flow in the down-terrace direction. Flow was maintained near critical
conditions on the steeper parts of the terrace and was allowed to go subcritical as flatter slopes were encountered on the lower portions of the terrace.

5. For those sub-basins on the terrace that were found to have total wash capacities approximately equal to the incoming flow, a trapezoidal cross-section with a 50-foot bottomwidth was used. Side-slopes for this artificial channel were varied from 50:1 to 200:1, as the water was routed down the terrace. The side-slopes were flattened in order to keep the depth of flow to less than 2-feet (the approximate maximum depth of a typical wash) and the average velocities in the 3 to 5 fps range. Due to the dense braiding pattern on the terrace, and the fact that additional runoff was being intercepted in the down-terrace direction, it was assumed that as the water moved down-slope, it would feed into more and more small washes, thus causing an increase in the total channel perimeter and width of flow. The flattening of channel side-slopes in adjacent downstream sub-basins provides a degree of simulation of this phenomenon, since such channel geometry also produces an increase in perimeter and topwidth.

The preceding discussion of channel routing procedures obviously has no means of physically simulating the increase in infiltration losses that will undoubtedly occur as floodwaters transition into a sheet-flow condition; however, the procedure may provide a crude approximation of attenuation due to overbank storage, since the wide channels cause a reduction in average flow velocities. Although the kinematic wave routing option, which was used in this study, is reportedly not capable of simulating hydrograph attenuation due to channel storage effects, the manipulation of channel geometry can artificially induce such attenuation. The only problem with this technique
is the non-availability of measured flow data that could be used to calibrate these adjustments to provide a proper degree of attenuation to correlate with actual flood events on fan terraces.

In the absence of such data, extensive engineering judgement must be used, in combination with empirical peak discharge equations, to make such adjustments.

active alluvial fan apex

As part of the existing flood hazard identification process, one alluvial fan apex was identified which was not entrenched across the fan surface. This apex is located at the east end of Pinnacle Peak Road, adjacent to the McDowell Mountains.

The fan surface below this apex exhibits a classic braided pattern. A cross-section measurement at a location approximately 1000 feet downstream of the apex revealed a channel bottomwidth of 57 feet and a bankfull depth of 2 feet. The estimated 100-year peak discharge at this location is approximately 13,500 cfs, while the bankfull channel capacity is about 1,000 cfs. Under these conditions, a major flood would cause widespread inundation below the fan apex, and perhaps cause a channel avulsion which might shift the major thrust of the flow to a different location on the fan.

Unfortunately, development is already underway within 3,000 feet of this apex location, and in the author's opinion, is exposed to a substantial risk of flood damage should a large storm occur.

The unstable flow pattern that presently exists at this apex is capable of directing flood waters in a wide arc. Depending on the flow direction that might accompany a specific storm, the outflows from this apex could impact a large downstream area that is composed of several sub-basins. Although the analysis of this fan apex is not yet complete, the author is considering combinations of "divert routines" which would divert different proportions of the apex discharge to different sub-basins. As a worst-case
scenario, the entire apex outflow might be diverted to each of the downstream sub-basins in order to evaluate the potential impact to different downstream areas. Routing such large flows across the fan surface will be accomplished with the procedures previously described for the fan terrace.

8.1.3 Management Tools

As stated previously, the "General Drainage Plan" analysis is not yet complete. However, a preliminary drainage concept has been developed and is presently being refined.

In recognition of the City's desire to preserve the natural beauty of the area, solutions are being considered that will minimize the need for man-made channels. As a result, detention basins are being proposed as a major element in the overall drainage plan. These proposed basins will be located across some of the major, well-defined washes in the project watershed. Their design will be somewhat unique in that they will be constructed in a manner that will allow unobstructed passage of sediment flows. This will eliminate the potential for downstream degradation that would occur if the basins were to trap the sediment inflow and create a deficit in sediment supply to downstream reaches of the natural washes. Such degradation is usually accompanied by bank sloughing, which in turn causes lateral channel bank movement.

In order to minimize sediment trapping, proportional weirs are being considered as a potential candidate for use as an outlet structure in these basins. Lateral overflow weirs may also be considered for use along the edge of channels.

Substantial portions of the watershed contain natural channels that have adequate hydraulic capacity to contain the peak discharge that is anticipated for the fully developed watershed condition. Field inspections and reviews of historical photographs indicate that these washes are stable and not prone to shifts in alignment. For these areas, a recommendation is
made that the washes be left in their natural state and that development be set back an appropriate distance from the edge of such channels.

For those areas of the watershed where topographic limitations make detention basins infeasible, and where natural washes are not sufficiently large to contain any significant amount of runoff, man-made channels are being proposed.

In order to acknowledge the environmental sensitivities of the project area, these channels will be designed to blend with the natural setting as much as possible. Since these channels will intercept a large swath of the small washes across the fan terrace, they will incorporate low-flow outlets that will allow a certain amount of water to leave the man-made channel and continue along the course of the natural washes. This will promote preservation of the natural vegetation community along these small washes.

As indicated previously, with one exception, the true alluvial fan portions of the watershed contain entrenched, stable, channel systems capable of conveying large flows across the fan surface. These systems will be left in their natural state. However, the remaining active alluvial fan apex at the east end of Pinnacle Peak Road will in all probability be controlled by a system of one or more detention basins placed at strategic locations within upstream portions of the source area. The large water and sediment inflows to this apex may cause problems in attempting to design a structure that will provide the desired hydrograph attenuation and still allow free passage of the sediment discharge. However, unless the flood waters are controlled at the apex, an extensive downstream flood control system will undoubtedly be required. Although design details are not part of the "General Drainage Plan" scope of work, it would appear that the most feasible and economic solution would be the pursuit of an apex detention basin (or multiple upstream basins).

Completion of the "General Drainage Plan" for the north Scottsdale area will provide the first step towards the development of a total watershed
management plan that can be used to analyze the drainage impact of different land use proposals. The computerized hydrologic model of the watershed will provide planners and drainage engineers with a valuable tool that can be used to analyze endless combinations of land-use changes and flood control alternatives. Since the model provides a continuous link among the sub-basins comprising the watershed, the impact of any changes in one area can quickly be determined for adjacent or downstream areas.

Undoubtedly, the preliminary concepts proposed in the "General Drainage Plan" will undergo revisions as development actually occurs in the watershed. However, the fact that the City is pursuing this urban expansion by employing the "whole fan" approach indicates that they are well aware of the hazards that would occur if the area was left to develop in a random, uncoordinated fashion. Continued pursuit of this approach should insure successful development of the watershed and eliminate the potential for any major flooding problems.
8.2 Tortolita Mountains

The Tortolita Mountains are located in Pima County, approximately 20 miles north-northwest of Tucson, Arizona. This small mountain range contains several canyons which outlet onto alluvial fans. Varying degrees of channel entrenchment exist at the fan apices, and in some cases, well out onto the fan surface. This is undoubtedly due to the fact that these mountains are not presently considered to be tectonically active. As discussed in Section 2.2.4 of this report, the absence of mountain uplift activity will promote downcutting in the mountain area and onto the fan surface. Beyond the areas of entrenchment, the fans exhibit a typical dense network of shallow, braided channels.

The majority of this area has a rural zoning classification and presently exhibits very sparse development. Planning projections by Pima County indicate that urban expansion from Tucson will eventually reach this area. In anticipation of this pending urbanization, Pima County adopted the Tortolita Area Plan (TAP) in 1977. This plan identifies general land use classifications for the project area. A large block of the TAP was designated as the Tortolita Community Plan (TCP). The TCP, which was adopted in 1982, projects specific zoning densities for an approximate 65 square mile area.

In recognition of the severe flooding problems that can accompany urbanization of an alluvial fan area, Pima County has initiated floodplain management studies that will ultimately lead to an integrated flood control/drainage plan for the entire area. Designated the "Tortolita Fan Area Basin Management Plan" (Cella Barr Associates, 1986), this project will address the flooding and erosion problems associated with nine major drainage basins located within a 164 square mile section of the Tortolita Mountains.

8.2.1 Floodplain Management Approach

The Tortolita Fan Area Basin Management Plan (TFAP), which will be conducted in three phases, is another excellent example of a regulatory agency having the foresight to initiate advance planning studies that will
employ the "whole fan" approach to develop a coordinated drainage plan for the urbanization of an alluvial fan environment. The three phases of this project are described as follows:

* Phase I consists of a broad-brush analysis of existing watershed hydrology and flooding problems, as well as a limited assessment of the increase in runoff that would accompany urbanization of the area.

Typical tasks to be conducted during this phase include field inspections, review of aerial photographs, topographic maps, well logs, and existing drainage studies, as well as conducting an inventory of existing drainage facilities and projected land use densities.

Since some development has already been initiated within the study area, and more is expected to occur prior to the completion of the three phases of the study, Phase I also included a Phase IA to produce interim floodplain management policies that could be used to guide new development that might be initiated prior to the completion of Phase III. These interim policies are to be revised and updated as more detailed information is available from the completion of Phase II and Phase III. Phases I and IA were completed in November 1987.

* Phase II will be used to develop a comprehensive flood control management plan for the study area. This plan will be based on an analysis of specific structural and non-structural management tools to mitigate the flooding and erosion hazards in the watershed. Phase II, which is estimated to be completed in the fall of 1988,
will also employ more detailed analyses of the hydrologic, hydraulic,
and sediment transport issues that must be considered in the
analysis of specific structural measures.

* Phase III will include final approval of the recommended management
plan, the development of a financing scheme for the plan, and the
initiation of construction for the recommended plan. Phase III is
scheduled for completion in late 1989.

Prior to proceeding to a discussion of the technical procedures used in
Phase I, it is worthwhile to outline the interim floodplain management policies
that were developed during Phase IA of the TFAP. These policies, which
were grouped into three general categories, are summarized as follows:

Interim Floodplain Management Policies For The Tortolita Fan Area

1. General Management Criteria
 a. leave major washes \(Q_{100} > 1000 \text{ cfs} \) in a natural
 condition and prohibit the installation of utility
 lines on a parallel alignment within a major wash.

 b. designate the Tortolita Fan Area as a "critical"
 basin, i.e., a basin in which the natural channels
 are not capable of containing the runoff from
 a 100-year event.

 c. require master drainage plans for any proposed
 development that will exceed specified acreage
 limitations or abut a major wash.
2. General Management Policies
 a. rezoning densities should not exceed densities stipulated in the *Tortolita Community Plan* or the *Tortolita Area Plan*.

 b. engineering studies must consider the potential for an upstream channel avulsion that might divert runoff from one watershed to another.

3. Specific Development Policies
 a. detention/retention structures are not allowed on major washes. For a 5-year event, retention basins must reduce the runoff volume from a development to less than that occurring under existing conditions.

 b. flooding from major offsite sources should be routed *through* developments rather than being diverted around the perimeter of the development.

 c. all channels shall have an earth bottom unless an alternative is approved by the Board of Supervisors.

 d. sediment transport must be considered in all drainage designs.

 e. unless exceptional circumstances dictate otherwise, channelization of major washes is prohibited.
f. groundwater recharge is encouraged and water quality standards should be maintained and enhanced, if possible.

Note: Items 3.g and 3.h apply to the Ruelas, Wild Burro, and Cochie Canyon basins.

g. maintain existing channel alignments to allow the use of Pima County methods and standards in the determination of design criteria for onsite drainage improvements.

h. recognize the instability of alluvial fan channels and, where appropriate, use the FEMA alluvial fan methodology to establish design parameters for urban improvements.

Note: Items 3.i, 3.j, 3.k, 3.l apply to floodplain encroachments in all other basins in the study area where the 100-year peak discharge of a wash exceeds 1000 cfs.

i. based on an arithmetic mean, floodplain encroachments may not create more than a one-half foot rise in the 100-year water surface profile, or create a maximum increase at any one location of more than 1-foot if the entire floodplain is contained on the proposed development site.
j. if the entire floodplain is not contained on the proposed development site, a floodplain encroachment may not cause more than a 0.1 foot rise in the 100-year water surface profile.

k. based on an arithmetic mean, a floodplain encroachment may not create more than a 0.1 foot rise in the 2-year water surface profile.

l. a floodplain encroachment may not cause more than a 10 percent increase in the flow velocities associated with the 10-year flood.

In summary, the floodplain management approach being pursued by Pima County for the Tortolita Fan Area conforms to the general recommendations presented in the Anderson-Nichols study, i.e., a comprehensive master drainage plan is being developed in advance of any substantial urbanization, and special emphasis is being directed towards the unique hazards and floodplain mitigation measures that must be considered on alluvial fans. The County's adherence to this approach should minimize flood control and drainage problems as the area undergoes urbanization.

8.2.2 Technical Approach

As indicated previously, Phase I of the TFAP is a broad-brush approach that does not use any sophisticated methodologies to analysis specific aspects of fan behavior. The hydrology analysis was based on peak discharge calculations using the empirical equation presented in the Hydrology Manual for Engineering Design and Floodplain Management Within Pima County, Arizona. This equation was applied to concentration points located at:
1. the confluence of waterways;
2. canyon exits at the base of the mountain front;
3. the termination of a defined waterway;
4. the termination of a sub-basin;
5. selected intervals in areas of sheet-flow.

No channel routing procedures were utilized to simulate peak discharge attenuation that would accompany sheet-flow across the fan surfaces. However, adjustments were made in the basin roughness factor to account for the difference in hydraulic resistance that would occur in: 1) mountain areas (n_b=0.046); 2) shallow flooding areas (n_b=0.070); and 3) contained channel flow (n_b=0.035). Where appropriate, weighted basin factors were used to simulate a mixture of these conditions within a given sub-basin.

The Phase I report does not contain any other quantitative calculations specifically related to alluvial fan analyses. The report does reference the results of the November 1986 Flood Insurance Study (FIS) that utilized the FEMA alluvial fan procedure for the Tortolita Fan Area. A detailed discussion of this procedure, as well as its application to the Tortolita Fan, was previously presented in Section 6.1 of this report. The FEMA alluvial fan model, that was used for the FIS, is presently being reviewed and revised by FEMA (Michael Baker, Jr., Inc.) in response to the appeal that was filed by Pima County in March 1987 (see Section 6.1).

The revised flood insurance maps are not expected to be completed until late summer 1988. Some of this revised data may be available for use in Phase II of the TFAP.

Discussions with representatives of Pima County (5/19/88) indicate that Phase II of the TFAP will utilize HEC-1 to provide a more detailed hydrologic assessment of the watershed; however, at the present time, this model has not yet been configured to the watershed characteristics.
8.2.3 Management Tools

Recommendations for specific flood control measures are to be developed as part of Phase II of the TFAP. Since work was only recently initiated on this phase, no management tools have yet been evaluated. Phase II recommendations are expected to be available in October 1988.

Although Phase I did not evaluate floodplain management tools, it did provide a brief discussion on criteria that should be considered in the selection of sites for detention/retention basins. These criteria include such factors as: 1) potential for groundwater recharge; 2) natural ponding areas; and 3) geologic suitability. Such a discussion indicates that detention/retention basins will receive substantial consideration as effective floodplain management tools during Phase II. A review of the "interim floodplain management policies" also indicates that there will be considerable emphasis placed on minimizing man-made channelization or other disturbances to natural washes.

Although the Tortolita Fan Area Basin Management Plan is still in the formative stages, its ultimate completion should provide an excellent foundation for the successful development of the Tortolita Fan Area.
8.3 Bullhead City

Bullhead City is located in Mohave County, along the east side of the Colorado River. Until 1984, Bullhead City was an unincorporated community that originated in 1946 as a construction camp for nearby Davis Dam. The scenic and recreational attractions along the Colorado River have made this area a popular attraction for tourists. This attraction has been greatly enhanced by the construction of several gambling casinos on the Nevada side of the river. As a result of these features, the area is experiencing rapid growth and urbanization.

Of the three case studies presented in this report, Bullhead City is somewhat unique, in that it is not situated on what would be described as a typical alluvial fan. The community is located approximately 10 miles from the watershed divide of the Black Mountains, which provides the headwaters and sediment source for the fluvial system that passes through the city. At the present time, the alluvial plain extending west from the mountains to the river does not exhibit the fan-shaped deposits and shallow, braided channel pattern that is commonly associated with alluvial fans. Instead, the land surface is highly incised with relatively deep (10'-50') channels. Near the Colorado River, some of these incisements exhibit bottomwidths that are several hundred to a thousand feet wide.

Although a detailed geological history of the area was not reviewed, it is the author's opinion that the incised land surface is probably due to a base-level lowering in the Colorado River, and possibly due to a lack of continued tectonic activity in the Black Mountains.

Even though the site is not the classic alluvial fan, the following discussion of the flood control plan projected for the area indicates the need to address some of the same problems that are found on more conventional fans.
8.3.1 **Floodplain Management Approach**

The rapid growth of the Bullhead City area, coupled with the absence of a master development plan, has created serious flooding problems. Portions of the community, both commercial and residential, are located in the very bottom of the floodplains for Black Wash and Bullhead Wash. A municipal airport has also been constructed across the floodplains of Highland Wash, Thumb Butte Wash, and Buck Wash. The only flood protection provided to these developments are small, non-engineered, sand and gravel diversion levees. Such structures are highly prone to erosion, overtopping, and failure when subjected to the high velocity flows emanating from these relatively steep-sloped (approximately 4% bedslope) washes.

The development pressure on this area led to the creation of an interagency state task force in 1984. This task force, which was composed of the Department of Water Resources, Department of Transportation, State Land Department, and the Office of Economic Planning and Development, was created to undertake an engineering evaluation of flood control problems related to transportation, airport expansion, and future land development in the Bullhead City/Riviera communities. This was the first step towards a master plan that could provide a coordinated approach to the resolution of the area’s flooding problems.

To pursue the stated objectives, a reconnaissance study of flood control alternatives was commissioned by the task force in October 1984. This study, which was completed in April 1985, provided concept plans and benefit:cost analyses for flood control projects on 13 washes within the Bullhead City/Riviera area.

In November 1986, the State Land Department auctioned 1287 acres of land in this area to Mr. Don Laughlin. Of this amount, 433 acres were deeded to Mohave County for expansion of the Bullhead City Airport. This sale included a stipulation that flood control improvements be constructed to
protect the airport and State Route 95 from the 100-year flood. The purchaser had the option of constructing such improvements in accordance with the concept plans presented in the task force study or of developing an alternate flood control plan that would be subject to approval by several state and federal agencies. The Mohave County Flood Control District opted to develop an alternative flood control plan that would increase the level of flood control benefits to the area. Accordingly, a revised plan (Kaminski-Hubbard Engineering, Inc., 1987) was created for Davis Wash, Highland Wash, Green Wash, Thumb Butte Wash, Buck Wash, Unnamed Wash #1, Bullhead Wash, and Secret Pass Wash. Two years were allotted for installation of the approved plan.

The development of this new plan addressed the possible interaction of flows from adjacent sub-drainage areas and considered the increase in runoff that would occur as 17 square miles of the watershed undergoes future urbanization. As a result, the proposed flood control improvements consist of an integrated system of diversion dikes, channels, and sediment basins which function in harmony with each other and incorporate the necessary hydraulic capacity to provide effective flood control benefits as the watershed undergoes future development. The recommended plan also considers the increase in concentrated sediment discharge that might occur in the Colorado River due to the diversion and combination of flows from several sub-drainage areas into a single outlet channel to the river.

The design of this system is another example of the "whole fan concept" being used to develop a master drainage plan for an entire watershed. Construction of the recommended flood control plan is already underway and its successful completion should provide substantial relief from the flooding problems that have historically plagued Bullhead City.
8.3.2 Technical Approach

The design of the recommended plan involved three primary phases of analyses: 1) develop watershed hydrology; 2) size channel and levee systems to safely convey the forecast runoff to the river; and 3) conduct sediment transport calculations to determine potential changes in streambed profile, toe-down depths for bank protection measures, and required dimensions for sediment basins.

The hydrology analysis utilized the SCS computer program, TR-20. The watershed was divided into homogeneous sub-basins which were hydraulically linked together in order to provide a continuous routing of floodwaters through the drainage basin. The incised nature of the alluvial plain, situated between the Black Mountains and the Colorado River, precludes the probability of a wide, shallow sheetflow pattern that was previously discussed for the north Scottsdale area. However, many of these incised channels are too wide (several hundred feet) to expect a uniform distribution of flow across the channel bottom. Existing low-flow channels, within these larger channels, will probably be enlarged to carry more water during major floods. As with HEC-1, the hydrograph routing calculations in TR-20 can be significantly influenced by the parameters used to describe the channel geometry. Hydrograph attenuation and translation are provided in TR-20 by the Modified Att-Kin routing procedure, which utilizes two parameters, \(x \) and \(m \), to control the degree of attenuation and translation, respectively.

In order to accurately simulate the routing characteristics of these very wide, incised channels, an assumption was made that an effective channel geometry would be created (during a flood) that would stabilize when a reduction in flow depth produced a two-hundred fold increase in flow width. The reader will recall that this concept, which was previously referenced on numerous occasions in Section 6 of this report, was based on field evidence, and is related to the affinity for alluvial fan channels to erode their channel...
boundaries in an attempt to achieve critical flow conditions.

Using the peak discharge values generated by the TR-20 model, an iteration procedure was employed to identify the point at which a reduction in channel depth caused a two-hundred fold increase in channel width (discharge was held constant during this iteration, only depth and width were varied. The resulting channel geometry was then used to compute appropriate x and m values for use in the Att-Kin routing procedure.

Another feature of this analysis which is related to alluvial fan characteristics is the potential for channel avulsions. A cursory glance at an aerial photograph of the dissected land surface would cause one to dismiss the potential for channel avulsions. However, close inspection of the drainage area reveals several instances where cuts exist through the natural ridges that separate the incised channels. These cuts provide alternate flow paths that may, or may not, be activated during a given flood event. Accordingly, flood waters have the potential, in some instances, to take different flow paths (similar to avulsions) when traversing this dissected alluvial plain. The potential for these flow-splits was eliminated by constructing man-made levees to block flow through these natural cuts.

The sediment transport analysis that accompanied the project design was based on a water and sediment routing model, FLUVIAL 12 (Chang, 1988). No special modeling techniques were required to simulate alluvial fan characteristics. The primary input parameters used to describe the physical properties of the watershed were the flood hydrograph from TR-20 and bed-material gradations.

In addition to providing information on changes in the stream bed profile during passage of the flood hydrograph, FLUVIAL 12 was also used to size a large sediment basin. This was accomplished by treating the proposed sediment basin as a large expansion in the channel routing geometry. This abrupt enlargement in cross-sectional area caused a corresponding abrupt decrease in channel velocity, which in turn created a substantial drop in
sediment transport capacity through the basin. With the natural sediment inflow to the basin being unaltered, this flow expansion causes a substantial amount of sediment deposition within the basin. Flood hydrographs for different return intervals were routed through this basin in order to determine basin dimensions and volume that would provide the most satisfactory results. The final configuration was approximately 10 feet deep, 400 feet long, and 90 to 160 feet wide. The total basin volume, below the outflow spillway crest, is 37,000 cubic yards.

The sediment basin was not provided with a low-flow outlet. Accordingly, the only means of evacuating water from the basin is through ground infiltration. It is the author's opinion that this could create a problem, since the bottom of the basin may become "sealed" as fine sediments settle from the water and cover the basin invert. Obviously, prolonged water ponding could create a health and safety hazard.

8.3.3 Management Tools

The flood control plan for this project has been defined as the "source to river" concept by the design consultant. The objective of this plan is to direct the path of flood water at its source toward a wash where the water will have a minimal impact on downstream development and a minimal need for flood control improvements.

This plan was pursued by constructing a series of diversion dikes (and in some cases, ridge cuts) at strategic locations to divert water from one sub-drainage area to another. As discussed previously, some of these dikes were placed at natural cuts between ridgelines to prevent potential channel avulsions. The well-incised land surface minimized the need for channelization. Accordingly, once floodwaters are diverted into a drainage path of minimal damage, only an occasional dike or levee is required at certain low-spots along the drainage alignment to prevent a break-out.

In order to protect the new airport, approximately 8,000 lineal feet of
combined levee/channel works are required. This structure intercepts water from four natural washes and diverts the flow to the proposed sediment basin located at the north end of the airport.

Rock riprap is proposed as a bank protection measure to prevent erosion of the levee embankments. The design criteria stipulated that the riprap be placed above the energy grade line for the design flood (100-year event) and below the embankment toe for scour protection. Toe-down depths were based on the maximum general scour predicted by the FLUVIAL 12 model plus one-half the antidune wave height. An additional four feet was then added to this total in order to provide a factor of safety. No specific analyses were performed relative to the potential magnitude of long-term aggradation/degradation, low-flow incision, or bend scour. No bridges were included in the proposed plan that would warrant an investigation of local scour at pier structures.

Some of the levee structures recommended for this plan are offset approximately 44 feet from an excavated low-flow channel. In these cases, the riprap bank protection is only placed along the levee embankment and may not be toed down to an elevation that is below the low-flow channel invert elevation. Accordingly, should the low-flow channel ever migrate (through lateral erosion) into the levee embankment, there might be a potential for undercutting and a possible failure of the bank protection. However, the 44 foot wide bench provides a substantial buffer that would probably not be totally eroded during a single flood, unless it were being attacked by flow around a severe bend. Certainly, a thorough inspection and maintenance plan will be an integral component to the successful, long-term operation of this project, as it is to all drainage projects located within the dynamic fluvial systems of the southwestern United States.

The remaining major element of the proposed plan consists of the sediment basin and outlet channel to the Colorado River. The majority of the drainage area upstream of the proposed airport expansion will be funneled into this
basin. As a sediment trap, this basin will serve to reduce the potential for a concentrated sediment discharge into the river, thus minimizing the possibility of a large delta formation which might cause localized disruption to existing river flow patterns. The outlet of this structure will consist of a concrete weir-crest spillway, which discharges to a lined channel (some sections have an earth bottom) that will convey outflows to the Colorado River. This outlet channel will include an energy dissipater to reduce the high flow velocities that will exist at the toe of the spillway outlet chute.

It should be noted that at the time (May 1988) the author reviewed the design reports for this project, all design details were not yet finalized. Accordingly, those readers who wish to field inspect the Bullhead City flood control project might find certain features that are different from those described herein.
Section 404 of the Clean Water Act of 1977 was originally created as a 1972 amendment to the Federal Water Pollution Control Act. During the last 16 years, this program, which regulates the discharge of dredged or fill materials into waters of the United States, has created substantial controversy, debate, and frustration in both governmental and private sectors.

Application of these regulations to the normally dry washes and arroyos of Arizona has often created confusion regarding certain definitions in the regulations, and raised serious doubts on the part of prospective permit applicants as to the necessity and practicality of applying such a program to a desert environment. These problems, along with a brief history of the program and its implementation in Arizona, are addressed in the following subsections of this report.
9.1 Evolution of the "404" Program

The "404" program can trace its ancestry to the Rivers and Harbors Appropriation Act of 1899, which combined several earlier laws and court decisions to authorize federal regulation over navigable waterways of the United States. The primary intent of this original Act was to protect and maintain the navigability of the nation's waterways. The Corps of Engineers was assigned the responsibility for administering this program.

Over the last 88 years, several new laws and court decisions have created significant changes in the Corps' assigned responsibilities for maintaining the navigability of the nation's waterways. These changes have seen the Corps' responsibilities evolve from preserving the navigability of major transportation waterways, such as the Mississippi River, to regulating the placement of fill in a dry desert wash.

Highlights of legislative, judicial, and administrative acts leading to the present day "404" program are summarized in the following paragraphs. This historical information is based on a report by Barnett (1982).

* 1899 - Congress passed the Rivers and Harbors Act of 1899, which authorized the Corps of Engineers to regulate activities that might influence the navigability of the nation's waterways. Section 9 of this Act regulated the construction of bridges, dams, dikes, or causeways, while Section 10 prohibited the unauthorized "obstruction or modification" of any navigable waterway. Section 13 of this Act also prohibited the discharge of refuse matter (unless authorized by the Secretary of War) which might affect a navigable waterway.

In administering Section 10 of this Act, "obstruction or modification" was generally understood to include excavation, fill, or any work
affecting the course, location, condition, or capacity of navigable waters. "Navigable waters" was in turn interpreted to be those waterways with the capability or potential for public use as a route of interstate commerce.

* 1966 - Supreme Court decision expands the scope of Section 13 (refuse matter) of the 1899 Act to include the regulation of industrial discharges, regardless of their impact upon the navigability of a waterway. Under this decision, the court ruled that the word refuse "includes all foreign substances and pollutants apart from those flowing from streets and sewers and passing therefrom in a liquid state."

* 1967 - The Secretaries of the Army and Interior sign a "memorandum of understanding" outlining procedures for consultation, public hearings, and conflict resolution on Section 10 (1899 Act) permit actions. This resulted in the Corps making a revision to its permit regulations whereby the Corps essentially stopped issuing Section 10 permits when objections were voiced by the Fish and Wildlife Service.

* 1969 - The National Environmental Policy Act of 1969 required that federal agencies consider the environmental impacts when making decisions relative to an activity regulated by a federal agency.

* 1970 - The Water Quality Improvement Act of 1970 required that any federal agency issuing a permit involving activities in the navigable waters of the United States must ensure that such activities would not violate applicable water quality standards.
1970 - By Executive Order 11574, President Nixon established the *Refuse Act Permit Program* (RAPP) in December 1970. The objective of this program was to insure that industrial wastes, not conforming to water quality standards, would not be discharged into the nation's waterways.

The responsibility for administering this new permitting program was given to the Corps of Engineers, while the Environmental Protection Agency (EPA) was to have complete responsibility for determining whether discharges conformed to water quality standards. In the face of significant controversy, a 1971 court decision brought the program to a halt.

1972 - The *Federal Water Pollution Control Act* was amended in 1972 to establish two separate programs to replace RAPP. One program was established under Section 402 to regulate point source discharges from both industry and municipalities. The second program was established under Section 404 to regulate the discharge of dredged or fill material into navigable waters.

Section 402 was to be administered by EPA, while the administration of Section 404 was delegated to the Corps of Engineers. However, the Corps' administration of Section 404 was subject to veto action by EPA, if the administrator of EPA determined that the proposed discharge would have an unacceptable adverse impact on municipal water supplies, shellfish beds, fishery areas, and wildlife or recreational areas.
These 1972 amendments also rejected use of the term "navigable waters" for the Section 402 and 404 programs. This term was replaced with "waters of the United States," which had a much broader meaning than "navigable waters."

* 1973 — Enactment of the Fish and Wildlife Coordination Act of 1973 required the Corps to consult with the U.S. Fish and Wildlife Service, as well as state fish and wildlife agencies, prior to issuing permits (under Section 10 of the 1899 Act) for work in navigable waters. This consultation requirement, which was oriented towards the conservation of wildlife resources, did not, however, require the Corps to accept the recommendations of the wildlife agencies, i.e., the Corps could legally issue a permit over the objection of these consulting agencies.

* 1974 — The Corps published a final regulation for the administration of the "404" program. However, in response to public comment and a review of judicial precedents, the Corps regulation was based on the traditional definition of "navigable waters", not the prescribed definition of "waters of the United States", which was being used by EPA in administering the Section 402 program.

* 1975 — The "navigable water" issue led to a court decision in 1975 that ordered the Corps to rescind that portion of their 1974 regulations that used the limited definition of navigable waters in administering the "404" program. In compliance with this order, the Corps published four new alternatives for the administration of Section 404. These alternatives were circulated for public and agency comment.
On July 26, 1976, the Corps published an interim final regulation which included an expanded definition of "navigable waters." The Corps recommended that this new regulation be implemented over a two-year "phase-in" process.

* 1977 - The revisions proposed by the Corps to the Section 404 regulations became effective on July 19, 1977. These new regulations completely eliminated the term "navigable waters" and made exclusive reference to the term "waters of the United States." These revisions also included wetlands within Section 404 jurisdiction and established the "nationwide permit" to streamline the permitting process for "routine activities."

* 1978 - On December 28, 1978, President Carter signed into law the Clean Water Act of 1977. This law created several significant changes in the "404" program; these changes are summarized as follows:

1. The Secretary of the Army was given authority to issue "general permits".
2. Exemptions were allowed for routine activities that were considered to have insignificant impacts.
3. Exemption of any discharge of dredged or fill material, which is determined to be a "best management practice" under an approved Section 208 plan.
4. Procedures for a state to assume administration of the "404" program.
5. Procedures to expedite permit processing.
6. Exemption of certain federal projects involving the discharge of dredged or fill material.
7. Procedures for handling violations and establishing penalties.
8. Recognition of a state's authority to control discharges of dredged or fill material within its jurisdiction.
9.2 Section 404 Permitting Process

As can be inferred from the historical data presented in Section 9.1, the Corps of Engineers has been given the responsibility for regulating a diverse range of activities in both "navigable waters" and "waters of the United States". Some of these activities fall under the Section 404 program, while other activities are regulated under different programs. Specifically, 33 CFR, Part 320.2 (Department of Defense, 1986) lists seven authorities under which the Corps may issue permits:

1. Section 9 of the Rivers and Harbors Act of 1899.
2. Section 10 of the Rivers and Harbors Act of 1899.
5. Section 14 of the Rivers and Harbors Act of 1899.

Depending upon the nature of the proposed work, a project may require permits under more than one of these authorities; e.g., an applicant for a "404" permit may find that a proposed bank stabilization project will also require a Section 10 permit.

In the interest of efficiency, the Corps has developed a permit processing
program which follows the same or very similar steps for all of the permitting authorities assigned to the Corps. The Corps has developed the following categories of permits that may be used to satisfy federal regulations:

1. Individual Permits

 a. *Standard permit*, which has been subjected to the complete permitting process, including the public notice and comment phase.

 b. *Letters of permission* may be issued through an abbreviated permitting process if the proposed activity is of a minor or routine nature and adverse public comments are unlikely. A public notice is not required for this form of an individual permit.

2. General Permits

 a. *Regional permits* may be issued by the Corps to authorize specific activities within a certain region of the country. For example, a regional permit was issued by the Corps in 1982 to allow construction of minor boat docks and related activities in the more highly developed areas of the Colorado River.

 b. *Nationwide permits* are issued by the Corps to allow specified activities on a nationwide basis.

 c. *Programmatic permits* are based on an existing state, local, or other federal agency program. The primary purpose of this permit is to avoid duplication of effort in the lengthy processing of permits.
3. Section 9 Permits

This permit relates to the construction of a dam or dike across any navigable water of the United States. The permit title refers to Section 9 of the Rivers and Harbors Act of 1899. Other sections of the 1899 Act are covered under either individual permits or general permits.

Individual permits are issued when the proposed activity does not fall into a category of work for which a general permit has already been issued. Applicants must apply to the Corps for an individual permit, and work on such a project cannot commence until the application process is completed and a written permit issued.

In some cases, a general permit may have already been issued by the Corps for specified types of routine activities in certain regions of the country, or even on a nationwide basis. If the proposed activity meets the criteria of an existing general permit, an application for a Corps permit is not required. However, there may be certain cases where the Corps must be notified of the proposed activity prior to initiation of work on such activity.

As published under 33 CFR, Part 330.6 (Federal Register, Volume 51, No. 219, November 13, 1986) the Corps has presently authorized 26 nationwide permits. Of this total, 10 permits apply to Section 10 of the Rivers and Harbors Act of 1899, 6 permits apply to Section 404 of the Clean Water Act, and 10 permits address both Section 10 and Section 404 activities.

When a general permit is not applicable to a proposed activity, the project sponsor must initiate the process to obtain an individual permit from the Corps. To assist applicants in this task, the Corps has published an information pamphlet entitled: "United States Army Corps of Engineers, Regulatory Program, Applicant Information" (EP 1145-2-1, May 1985). This document provides background information on the permitting process, defines certain terminology, identifies the steps in the permitting procedure (along with an estimated time-table), lists
the evaluation factors that will be used in deciding to approve or deny the permit, and provides a sample application form, along with step-by-step instructions on completing the form.

Basically, the pertinent information requested on the permit application deals with the applicant's name and address, a very detailed description (including drawings) of the proposed activity, and the location of the activity. The completed application is sent to the appropriate District Regulatory Office of the Corps of Engineers.

Upon receipt of the application, the Corps will determine whether the abbreviated "letter of permission" option is applicable or whether a formal public notice is required as part of issuing an "individual permit". From a time perspective, the Corps' pamphlet states:

"Most applications involving Public Notices are completed within four months and many are completed within 60 days."

Obviously, the processing time will to some degree, be dependent upon the complexity of the proposed activity and the number and magnitude of impacts that the activity will create on the environment. The Corps' pamphlet indicates that the following factors will be considered in processing a permit:

- conservation
- economics
- aesthetics
- general environmental concerns
- wetlands
- cultural values
- fish and wildlife values
- flood hazards
- floodplain values

206
• food and fiber production
• navigation
• shore erosion and accretion
• recreation
• water supply and conservation
• water quality
• energy needs
• safety
• needs and welfare of the people
• considerations of private ownership

Three general evaluation criteria are also listed as being considered in the processing of every permit:

• the relative extent of the public and private need for the proposed activity;

• the practicability of using reasonable alternative locations and methods to accomplish the objective of the proposed activity; and

• the extent and permanence of the beneficial and/or detrimental effects which the proposed activity is likely to have on the public and private uses to which the area is suited.

It is important to note the authorities of both the Corps and EPA during the processing of a Section 404 permit. Specifically, 33 CFR Part 320.2 (f) states:
"The selection and use of disposal sites will be in accordance with guidelines developed by the Administrator of EPA in conjunction with the Secretary of the Army and published in 40 CFR Part 230. If these guidelines prohibit the selection and use of a disposal site, the Chief of Engineers shall consider the economic impact on navigation and anchorage of such a prohibition in reaching his decision. Furthermore, the Administrator, (EPA) can deny, prohibit, restrict or withdraw the use of any defined area as a disposal site whenever he determines, after notice and opportunity for public hearing and after consultation with the Secretary of the Army, that the discharge of such materials into such areas will have an unacceptable adverse effect on municipal water supplies, shellfish beds and fishery areas, wildlife, or recreational areas."

Obviously, this statement indicates that the Corps does not have absolute control over the approval of a "404" permit. If conditions warrant, the EPA has the authority to initiate proceedings to veto a Corps' approved "404" permit.

Certainly, the foregoing evaluation criteria may pose a formidable first impression to an applicant's thoughts of ever receiving an approved permit. However, the Corps indicates that only 3% of all permit requests are denied.
9.3 Monitoring and Enforcement of the Section 404 Program

Enforcement of the permitting programs delegated to the Corps is very dependent upon a monitoring program to identify those who are performing regulated activities without a permit or those who may be exceeding the limitations of a general or individual permit. Certainly an effective monitoring program would require substantial staff to perform the necessary field investigations to identify violations.

To provide such "staff", the Corps not only relies on its own employees, but encourages members of the public and representatives of state, local, and other federal agencies to report suspected violations.

Enforcement guidelines are outlined in 33 CFR Part 326. Once an offending party has been identified, the federal code requires that steps be taken to notify the party responsible for the illegal activities. Depending on the status of the activity, this notification may take the form of a "cease and desist" order, and may include a directive that certain "initial corrective action" be undertaken within a specified time frame.

Upon completion of the specified "initial corrective action", or if a project was already completed when the violation was discovered, the Corps may direct that an "after-the-fact" permit application be pursued. The processing of this application may identify the need for additional corrective action before a permit will be issued.

If the applicant refuses to perform the prescribed corrective action, the Corps is authorized to initiate legal action as specified in 33 CFR Part 326.5. Both civil and criminal actions are available to enforce the provisions of the regulatory program. Maximum penalties for failure to obtain a permit prior to discharging dredged or fill material into waters of the United States, or for violation of the conditions of a permit once issued, are $60,000 per day in criminal fines, up to three years imprisonment, and $25,000 per day in civil penalties (personal communication, Corps/AFMA 9/2/87).
9.4 Section 404 Problems in Arizona

When reviewing the "family tree" of the "404" program (Section 9.1), it is obvious that its ancestral roots are linked to the regulation of true navigable waterways that were historically used for commercial purposes. Such waterways maintain a perennial flow and are sufficiently large to accommodate shipping traffic.

Through the years these regulatory programs have been broadened to cover not only navigational issues, but also an extensive list of environmental topics. During this process of evolution, terminology has been added to the programs which seems oddly out of place when applied to a desert environment composed primarily of dry washes. Perhaps the majority of the frustrations and problems associated with the "404" program in Arizona revolves around the jurisdictional limits of the program as defined by two key terms:

* "waters of the United States"; and
* "ordinary high water mark"

As stated under 33 CFR Part 320.2 (f), the "404" program applies to "...............the discharge of dredged or fill material into waters of the United States..........", while 33 CFR Part 328.4 (c.1) establishes jurisdictional limits along these waters as extending "........... to the ordinary high water mark." These key terms are defined as follows:

waters of the United States

This term has an extremely lengthy definition in 33 CFR Part 328.3 (a). An important excerpt from this definition states: "........... all other waters such a intrastate lakes, rivers, streams (including intermittent
streams), mudflats, sandflats, wetlands, sloughs, prairie potholes, wet meadows, playa lakes, or natural ponds, the use, degradation or destruction of which could affect interstate or foreign commerce including:"

ordinary high water mark

As defined under 33 CFR Part 328.3 (e): "..... that line on the shore established by the fluctuations of water and indicated by physical characteristics such as clear, natural line impressed on the bank, shelving changes in the character of the soil, destruction of terrestrial vegetation, the presence of litter and debris, or other appropriate means that consider the characteristics of the surrounding areas."

As a matter of interest and clarification, it should be noted that 33 CFR also uses the term "navigable waters of the United States", which is defined as:

"those waters that are subject to the ebb and flow of the tide and/or are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. A determination of navigability, once made, applies laterally over the entire surface of the waterbody, and is not extinguished by later actions or events which impede or destroy navigable capacity." (Reference: 33 CFR Part 329.4).

This term, *(navigable waters of the United States)* which refers to streams that are navigable in the traditional sense, only applies to permits issued under the *Rivers and Harbors Act of 1899* (primarily Sections 9 and 10 of that Act), and *does not* apply to Section 404 of the *Clean Water Act*.

A key phrase in the definition of "waters of the United States" is the inclusion of "intermittent streams". This phrase essentially brings all of Arizona's dry washes and arroyos into the regulatory program. As a result, any project
that will involve the placement of dredged or fill material into one of these
intermittent or ephemeral streams is a potential candidate for a "404" program
permit. Such projects might include culverted road crossings of small washes,
bank protection projects, or flood control projects that would require the
construction of levees, training dikes, or other types of fill within the
jurisdictional limits of a waterway. Under current definitions, the channels on
an alluvial fan would also be subject to "404" regulation.

The broad extent of "404" program jurisdiction is perceived by many state
and local agencies to be an unnecessary and impractical requirement for federal
regulation. Such a broad jurisdiction generates additional costs and delays in
getting floodplain related projects completed. Undoubtedly, numerous private
individuals and corporations have experienced similar frustration when attempting
to develop floodplain property. Unless notified by a local governmental agency,
most private individuals are probably not aware of the "404" program. This
can often lead to unintentional violations of "404" program requirements.

In order to obtain local input relative to compliance with "404"
program requirements, a questionnaire was developed and sent to 44 public
agencies and 5 private consultants. This was part of the same questionnaire
previously discussed under the alluvial fan sections of this report. Relative
to the "404" program, responses were received from 17 government agencies and
2 private consultants.

The questionnaire was structured to solicit a response to the following
issues:

* familiarity with the "404" program
* compliance with the program
* problems encountered with the program
* project delays caused by the program
* additional project costs caused by the program
* recommended changes to the program
* benefits attributed to program compliance

A summary of respondent comments is provided in the following paragraphs.

familiarity

Fourteen of the 17 responding government agencies indicated they were familiar with the "404" program. Each of the two responding consulting firms also indicated familiarity with the program.

As a matter of interest, it should be noted that the author's review of the responses to this question indicated that, even though an agency stated familiarity with the program, their response to some questions raised doubts as to whether they truly understood the program requirements.

compliance

Of the 14 agencies indicating familiarity with the program, 13 stated that they comply with program requirements. One agency did not know if they had any activities that were in non-compliance. Both consulting firms indicated that they design projects to be in compliance with "404" program requirements. The remaining 3 respondents expressed no opinion on this category.

problems with compliance

Five government agencies and one private consulting firm indicated problems had been encountered in complying with "404" program criteria, while eight agencies and one consulting firm stated that no problems had been encountered. Four respondents voiced no opinion on this issue. Typical comments and problems are summarized as follows:

* "...... the Corps of Engineers doesn't have any hard and fast
rules as to where to apply their program."

· "The main difficulty is in trying to mitigate the riparian habitat that other federal agencies feel we should mitigate."

· "They have asked us to stop construction because of presence of some endangered fish species (in dry streams) and also some endangered riparian vegetation which there is no existence of."

· "Resource agencies (e.g. U.S. Fish and Wildlife Service and Arizona Game and Fish Department) make recommendations for design changes that are often expensive, impractical from an engineering standpoint or which require revisions to engineering designs."

delays

Five agencies and one private consulting firm stated that compliance with the "404" program criteria had created project delays, while five agencies and one consultant also indicated no delays had been experienced. The remaining 7 respondents voiced no opinion on this issue.

Estimates of the magnitude of these delays ranged from "minor" to 20%-100%. Typical comments were:

· "Sometimes it appears that the regulatory division lacks any firm guidelines on scheduling the processing of applications. We are certainly not receiving permits in anything like the time prescribed in the Code of Federal Regulations. In one project, it caused a six month delay for a portion of the project. That delay became the basis of a lawsuit filed by a contractor against the County for violation of contract."
extra costs

Six public agencies and one private consulting firm indicated that the cost of a project had increased because of measures taken to comply with "404" requirements, and the remaining 9 respondents had no opinion on this issue. Estimated cost increases ranged from "minimal" to 5%-50%.

The only comment received on this issue was:

"Additional costs are encountered in mitigation of riparian habitat. Nobody seems to want to give any credit for there being any water available for wildlife."
(Note: Presumably, this comment is directed towards the reservoirs that are created as part of dam construction).

need for program changes

Six public agencies and one consultant expressed a need for "404" program changes. The remaining 12 respondents had no comment on this matter.

Recommended changes are summarized as follows:

"A Nationwide Permit for minor drainages (desert washes that rarely flow) would be helpful."

"Recommend that a local COE employee who is familiar with Section 404 be available for assistance."

"Introduce a standardized permit based on amount of land area disturbed."

"Find ways to cut down the amount of time taken for approval."

"Standardize the process so it is easy to implement."
- "Provide examples of what is needed to comply."

- "Jurisdictional area should be narrowed and mapped."

- "Jurisdictional intent and procedure should be published."

- "Regional/Agency type permits should be granted for flood control, highway department and public utility projects."

- Program places too much emphasis on environmental issues, while not giving any concessions to reduced property damage and potential loss of life resulting from the construction of flood control projects.

- "Define very clearly those selected streams in Arizona for which the regulations should apply, thus eliminating the "n th" tributary application of the regulations which is currently being used."

- "If they want to regulate environmental mitigation in ephemeral washes, specific legislation should be passed."

- "We feel that the natural resource agencies will often make comments about technical issues that are outside of their area of jurisdiction and expertise. We feel that either the Corps should instruct the natural resource agencies to confine their comments to what they are supposed to know best or not make the applicant respond to these "extra-territorial" comments."
As part of their flood control program, some agencies have acquired large tracts of floodplain property, which provides prime riparian habitat. A comment was made that the "404" program should be changed to allow mitigation credit towards such lands.

Several respondents emphasized the need for a better definition of "ordinary high water mark", as it is applied to the dry washes in Arizona.

Program Benefits

Three government agencies and one consultant felt that the "404" program provided certain benefits, while seven government agencies stated that the program produced no benefits. Eight respondents offered no opinion on program benefits.

Some of the benefits/comments related by the respondents are listed as follows:

- "... ultimately encourages preservation and/or restoration of riparian habitat as an element of design for flood control projects."

- "... anything that requires an agency to take a closer look at what their project is doing to floodplains, watersheds, and riparian habitat is important in maintaining a quality environment."

- "We find that going through the "404" permit process slows the project down, does not provide or promote any better design and does not promote a better regulatory environment for the general..."
public. This permitting process is only a way for other agencies, of the environmental type, to have a say in your floodplain project."

* "The program tends to promote more environmentally sensitive design for both public and private projects."

* "Better design and effective regulation."

* "It does provide more effective regulatory environment and keeps the developers honest. Also, the public administrators."

In summary, the relatively minimal response to the "404" questionnaire would tend to suggest that, on a statewide basis, the "404" program is not viewed as a major problem by local government agencies. This conclusion is based on the fact that only 17 of 49 potential respondents felt the program was of sufficient importance to warrant a response. Additionally, only six of the 17 respondents indicated that they had encountered problems in complying with the program.

It may be that many of the smaller municipalities and counties in Arizona are not acquainted with the "404" program and its broad jurisdictional limits. As a result, many projects may be constructed without any knowledge that the project is subject to Corps' regulatory criteria. If these "possible" unreported violations were brought to the Corp's attention, there might be much more opposition to the program than the questionnaire survey indicated.
9.5 Nationwide Permits

The Corps of Engineers has approved 26 Nationwide Permits that authorize the pursuit of certain routine and relatively minor activities that would fall within the jurisdiction of either Section 10 of the Rivers and Harbors Act of 1899 and/or Section 404 of the Clean Water Act. The primary intent of such permits is to eliminate the delays, paperwork, and expenditure of man-power that would otherwise accompany the processing of an individual permit for these minor projects.

As stated previously, 16 of these Nationwide Permits relate to activities normally regulated under the "404" program. Several of these permits are directly applicable to activities that frequently occur in the dry washes of the desert. Examples of such permits are summarized as follows:

Nationwide Permit No. 13

This permit authorizes the placement of a limited amount of bank stabilization to prevent erosion along a watercourse. For application to a dry desert wash, the major limitations are:

a. The bank stabilization activity must be less than 500 feet in length.

b. The activity is limited to less than an average of one cubic yard per running foot placed along the bank.

Nationwide Permit No. 14

The placement of fill for "minor road crossings" of a wash or stream is authorized under this permit. Limitations require that the crossing be culverted, bridged, or otherwise designed to prevent the restriction of, and to withstand, expected high flows.

A "minor road crossing fill" is defined as a crossing that involves the discharge of less than 200 cubic yards of fill material below the plane of ordinary high water.
Nationwide Permit No.18

This permit authorizes the placement of up to 10 cubic yards of fill into any waters of the United States, with the exception of wetlands. However, the fill cannot be placed for the purpose of stream diversion.

Nationwide Permit No.26

Up to 10 acres of surface area of certain waters may be filled under this permit. However, there are numerous restrictions regarding the placement of such fill. Some of the more prominent restrictions are listed as follows:

a. If the fill will impact between 1 to 10 acres of waters of the United States, the Corps' District Engineer must be notified prior to initiation of work.

b. The permit is only applicable to non-tidal rivers, streams, and their lakes and impoundments, including adjacent wetlands, that are located above the headwaters, and other non-tidal waters of the United States that are not part of a surface tributary system to interstate waters on navigable waters of the United States. (Note: As of April 1988, the Colorado River is the only waterway in Arizona that is classified as a "navigable water".)

c. There are numerous (14) conditions that must be complied with when operating under this, or any of the other nationwide permits. These conditions relate to environmental, navigation, maintenance, tribal rights, historic properties, and water quality issues.

d. Under certain circumstances, work cannot begin until notification to proceed is received from the Corps.
Of all the nationwide permits, #26 has probably received the most attention and use within Arizona. However, with all the "conditions" attached to this permit, its usefulness would appear to be very limited. The value of this permit is potentially diminished by the condition that it only applies to waters located above the "headwaters" of a stream. This term is defined as follows:

headwaters

The point on a non-tidal stream above which the average annual flow is less than five cubic feet per second. For streams that are dry for long periods of the year, district engineers may establish the "headwaters" as that point on the stream where a flow of five cubic feet per second is equaled or exceeded 50 percent of the time. (Reference: 33 CFR Part 330.2 b)

The use of this term to establish a jurisdictional limit for Nationwide Permit No.26 injects the same type of uncertainty that is associated with defining the "ordinary high water mark" as the lateral limit of waters of the United States.

By referencing the definition of "headwaters" to an average annual flow of 5 cfs, hydrologic calculations must be performed to determine the location on a stream where this threshold is exceeded. Given the numerous hydrologic variables that influence the average annual flow, and the multitude of hydrologic methodologies that could be employed in calculating such a parameter, it would be nearly impossible to achieve consistency in identifying headwater locations if standardized procedures were not adopted.

Personal correspondence (February 29, 1988 and April 4, 1988) between the author and the Los Angeles District Corps of Engineers revealed that the Corps has delineated headwater limits for most of the major streams within the jurisdiction of the Los Angeles District. Headwater limits were based on a statistical analysis of hydrologic data. The Corps published a list of these streams, and their headwater limits, in March 1982. This list is presently used...
by the Corps when decisions related to headwater limits are required.

For Arizona, this list of streams and headwater limits is very conservative, in that it shows the vast majority of streams and ephemeral washes as lying above the headwaters of the state's major river systems. Accordingly, if less than 1 acre of surface area of fill is contemplated in a wash above these headwater limits, and no historic properties will be impacted, the work may proceed under Nationwide Permit No.26 without having to notify the Corps. However, project activities that would impact between 1 and 10 acres of surface area would still require that a formal notice be sent to the Corps and that any construction activity not be initiated until authorized by the Corps.

Use of the Corps' 1982 list of headwater delineations for Arizona substantially improves the utility of Nationwide Permit No.26 for small-scale projects on desert washes and alluvial fans. The Arizona Department of Transportation (ADOT) has successfully utilized this nationwide permit for the majority of their projects which require compliance with "404" program criteria.
9.6 ADOT Policy for "404" Program Compliance

All "404" program investigations for ADOT projects are coordinated by the office of Environmental Planning Services (EPS). Discussions with the manager of this office revealed that compliance with this regulatory program is not presently a major hindrance to ADOT projects. Most of the "404" program activity directed to this office has been disposed of under Nationwide Permit No. 26 which allows, with certain restrictions, the discharge of dredged or fill material into not more than 10 acres of non-tidal waters of the United States. As discussed in Section 9.6, a special category of this nationwide permit essentially exempts those projects which impact less than 1 acre of such waters. The majority of ADOT projects meet the criteria of this special category.

EPS has adopted a standardized procedure to address "404" program requirements for ADOT projects. This procedure, which also includes those ADOT projects contracted to private consultants, is standardized through the use of an ADOT evaluation form entitled "INITIAL PROJECT ENVIRONMENTAL DETERMINATIONS". This form serves as a checklist to insure that: 1) socioeconomic; 2) cultural; 3) natural environment; 4) physical; and 5) construction impacts, associated with the proposed project, are identified.

The evaluation form concludes with a list of recommended actions, one of which is the possible requirement for a "404" program permit.

Relative to "404" program criteria, every ADOT project is approached as follows:

1. Each project is evaluated to determine if more than 1 acre of surface area of waters of the United States will be impacted. If less than 1 acre is involved, a written "memo to file" is prepared documenting the investigation and no further action is required under Nationwide Permit 26.
2. If the project is found to impact between 1 and 10 acres of waters of the United States, EPS requests investigations of the project by the State Game and Fish Department and the Arizona Commission of Agriculture and Horticulture. These two agencies assess the environmental impact to wildlife and plants, respectively. Contract consultants are also used to provide a "cultural resources investigation" of the project to determine any archaeological impacts. In accordance with the Arizona State Historic Preservation Act of 1982, an assessment of any historical value of the project site is also prepared. A "visual qualities" assessment is also made of the site to determine if there would be any adverse impact to scenic and recreational values.

The information obtained from these investigations is then transmitted to the Corps in accordance with the notification requirements of Nationwide Permit No. 26.

When federal funding is involved in a project, ADOT follows these same procedures, but additionally requests an investigation from the federal Fish and Wildlife Service.

For those projects which lie beyond the authorization of any nationwide permits, ADOT submits an application for an individual "404" permit.

The procedure adopted by ADOT for screening projects to determine eligibility for "404" program requirements is a thorough, consistent approach which appears to function very well. ADOT personnel indicate that this standardized approach, along with extensive application of Nationwide Permit No. 26, has resulted in minimal manhour costs to insure compliance with the "404" program. Discussions with local Corps' representatives indicates that the Corps also feels the present ADOT procedures provide a reliable and functional approach for the determination of "404" permit processing requirements.

The fact that this screening process is applied to all ADOT projects has undoubtedly produced a keen awareness of "404" program criteria with all ADOT
design engineers. This may well explain ADOT's comment that "Section 404 has not been the cause of any significant design changes." Accordingly, it does not appear that the "404" program is presently creating an obstacle to highway planning and development in Arizona.

A consensus opinion from ADOT personnel, who were interviewed during the course of this research study, indicates their major criticism of the "404" program is the difficulty in establishing the "ordinary high water mark" when trying to determine the lateral extent of "waters of the United States." ADOT staff also expressed a strong desire to see some type of regional or nationwide permit adopted that would totally exempt the smaller desert washes from "404" program jurisdiction.
9.7 Summary of Section 404 Issues

It does not appear that enactment of Section 404 of the Clean Water Act gave substantial consideration to how it might be applied in a desert region. The "404" program has evolved from previous federal acts and laws that were based primarily on preserving the navigability of a riverine environment that was subject to perennial stream flow. Accordingly, some of the key terminology used in the "404" program to determine jurisdictional limits is very awkward when applied to a dry desert wash.

As presently structured, the "404" program is an environmental protection package; it does not contain any provisions for being a floodplain management or flood control program. In the author's opinion, the criticisms of the program in Arizona may largely be traced to four factors:

1. Application of a traditional riverine program to a non-riverine, desert environment that is characterized by normally dry streams that are prone to rapid shifts in alignment during flash flood events.

2. Use of key program terminology that is poorly suited to the fluvial systems of the southwestern United States. For example, "waters of the United States" and "ordinary high water mark" are simply not descriptive terms to apply to a dry, sandy arroyo in the desert.

3. A possible misperception, by both local government and the private sector, that the program was primarily intended to be a floodplain management oriented program, rather than environmentally oriented. Many people are undoubtedly surprised to learn that such factors as endangered plant and animal species, historical sites, food and fiber production, cultural values, etc. are major issues that will decide the fate of a permit application.
The title "Clean Water Act" does not readily cause one to think in terms of historical and cultural issues. Perhaps a title such as the "River System Environmental Protection Act" would be more consistent with the true purpose of the "404" program.

4. Regulatory programs, whether they be federal, state, or local, are often greeted with resistance and viewed as another bureaucratic obstacle to the efficient accomplishment of some task. Undoubtedly, the paperwork associated with "404" program compliance, as well an occasional project delay or cost increase, have generated a negative reaction on the part of some agencies and individuals.

In summary, the "404" program provides a useful function in protecting and preserving the environment along the nation's river systems and wetland areas. Within Arizona, certain elements of the program have received criticism, but not on a scale that suggests a need for massive changes. The Corps of Engineers is aware of these shortcomings and is receptive to considering changes in the program that would make it more adaptable to the unique river system characteristics of the Arizona desert.
10 RESEARCH RECOMMENDATIONS

The two primary objectives of this report are to: 1) present an overview of the status of floodplain management and engineering analysis techniques on alluvial fans in Arizona; and 2) evaluate application of Section 404 of the Clean Water Act to the ephemeral washes in Arizona. Concluding comments and specific recommendations relative to each of these objectives are presented in the following subsections of this report.
10.1 Alluvial Fans

To date, Arizona has been spared a major flood disaster on an active alluvial fan. This is primarily due to the fact that there has historically been very little urbanization of alluvial fans in Arizona. However, this trend is beginning to change, as major metropolitan areas such as Tucson and Phoenix expand into the surrounding desert foothills. In order to avoid the potential for flood disasters, this urban expansion onto alluvial fans must be based on a master drainage plan that considers the unique flooding hazards that exist on fans. Such a plan should be based on the "whole fan" approach in order to anticipate and mitigate the impacts that development on flood control systems will impart to adjacent or downstream properties.

Information presented in this report indicates the availability of several technical procedures that may have application to portions, or all, of an alluvial fan analysis. The selection of a specific technique will depend on the needs of the project. These procedures are not represented as being a complete solution to the analysis of alluvial fan problems; however, when used with sound engineering judgement, they can provide reasonable design data.

From a floodplain management perspective, the alluvial fan management study prepared for FEMA by Anderson-Nichols & Company, Inc., provides practical guidelines for the successful urbanization of a fan environment. Communities that are faced with the impending development of an alluvial fan should review the FEMA study and proceed in accordance with the recommendations presented therein.

The following recommendations for alluvial fan issues are divided into two categories. General recommendations are provided as guidelines for tasks that can be performed without the need or delays associated with further research. A second category outlines technical recommendations that will outline needed research to improve the technical accuracy of methodologies used to quantify alluvial fan process.
10.1.1 General Recommendations

The awareness of alluvial fan problems in Arizona and techniques for improving the accuracy of technical studies for such landforms could be enhanced by adopting the following recommendations:

Education - One of the most effective ways to prevent flooding disasters on alluvial fans is to insure that regulatory agencies, professional engineers, and the general public are made aware of the problems associated with these landforms.

Short-courses, seminars, and newsletters would provide ideal mechanisms for distributing such information. These events could be sponsored by FEMA, the Arizona Department of Water Resources, the Arizona Transportation Research Center, the Arizona Floodplain Management Association, county flood control districts, and local chapters of professional societies.

Special emphasis should be given to requiring non-technical administrators, who may be involved in decisions regarding zoning or floodplain management policies, to participate in this education process.

Information Exchange - This concept is actually an extension of the recommendation for education on alluvial fan issues. As public agencies, engineers, and planners gain more experience with alluvial fans, forums should be established where a free exchange of
information can take place. Topics could include public awareness programs, design standards, actual performance levels of installed management tools, and risk assessment.

* **Existing Management Policies & Tools** — As stated previously, FEMA has already published excellent guidelines for floodplain management on alluvial fans. Several technical methodologies have also been presented for use on alluvial fans. Agencies should be made aware of this literature and encouraged to read it. Development of a master plan and use of the "whole fan" concept should be emphasized to any agencies or developers who are faced with the urbanization of an alluvial fan.

This research report presents a compendium of pertinent alluvial fan issues and literature reviews. Distribution of this report to regulatory agencies would provide an excellent foundation upon which new ideas, concepts, and expanded literature reviews could be based.

* **Knowledgeable Design Professionals** — Public agencies and developers should be encouraged to utilize professionals who understand alluvial fan processes and have prior experience in the analysis of these landforms. It is highly recommended that a qualified geologist be a key member of the project team. Emphasis should be placed on extensive field work in order to develop an accurate profile of the physical characteristics of the specific alluvial fan under investigation.
10.1.2 Technical Recommendations

The following recommendations pertain to technical research that would require funding by a public agency. A brief discussion of the suggested research plan is followed with an estimated budget and performance time.

- **Primary Research Goal—Data Collection** — One of the consistent, major omissions noted by the author during a review of the technical literature used for this research study, was the lack of measured data taken from actual flood events on alluvial fans. If such data were available, significant improvements could be made in the accuracy and calibration of mathematical relationships that are presently used to quantify the hydrologic, hydraulic, and sediment transport processes on alluvial fans.

Accordingly, three or four test sites should be selected for installation of monitoring systems. These systems would include:

1. continuously recording rain gages
2. continuously recording stream gages
3. scour gages
4. sediment transport measurements
5. sedimentation "poles" to measure sediment deposition on the fan surface.
6. photographic surveillance

The data collected from such a system would be used to: 1) quantify the degree of hydrograph attenuation that accompanies movement of a flood wave across the fan surface; 2) quantify scour processes; 3) quantify sediment deposition patterns; 4) quantify sediment
yields; and 5) monitor changes in flow patterns and the occurrence of channel avulsions. The collection of such data would be used to develop new and more accurate modeling procedures for use on alluvial fans.

Both undeveloped fans and fans that are about to undergo major urbanization should be included in the test sites. The inclusion of urbanizing fans would provide valuable data on the actual performance of floodplain management tools and identify the fluvial system impacts that urbanization causes to the alluvial fan environment.

For the sites that are ultimately selected for instrumentation, a historical profile should be developed that would include aerial photographs, topographic maps, any available flooding reports, and a geologic history. A new topographic map should also be prepared for the site in order to establish a baseline condition for the monitoring program. Rectified aerial photographs should be made after any major flow event in order to identify changes to the overall fan surface.

* **Secondary Research Goals** — Although the author considers a data collection system to be the most important research need at the present time, there are also other issues that warrant investigation. These include:

1. Expand the FEMA/Anderson-Nichols' physical model studies to investigate more complex urbanized settings, in order to develop
more definitive design standards and performance curves for specific flood-hazard mitigation measures. Use this data to develop a "design manual" for alluvial fan management tools.

This modeling should also include an analysis of highway design criteria that could be used to promote more functional and economic cross-drainage systems for roadways located on an alluvial fan.

In addition to evaluating the effectiveness of structural mitigation measures, the laboratory models should also be used to develop and test numerical models that might more accurately predict flow characteristics across alluvial fans (e.g., 2-dimensional models).

2. Continued literature search and technical evaluations to provide practical guidelines on existing technical procedures that could be used for both better floodplain delineations and the design of floodplain management tools on alluvial fans. Although the goal of new, improved technical procedures is already included in the higher priority recommendation for "data collection", an interim solution would be the compilation and publication of existing techniques that could be used on alluvial fans until field studies and laboratory research yields more improved methods. This interim solution would organize existing methodologies into a design manual format that would explain the type of environment under which a specific procedure should be used, the end product that would be expected from the procedure, and any limitations associated with the procedure.
Preparation of such a manual should focus on some type of standardized approach that would provide consistent results and simplify the design process for engineers and the review process for regulatory agencies. This might consist of some type of matrix approach that would contain uniform, regionalized methods, along with selection criteria and limitations for their use.

3. Investigations to examine the potential for contamination of alluvial fan aquifers, as a result of ground water recharge in urban areas. The potential for this problem is described by James, et al. (1980):

"......... the greatest reason for reducing land use intensity on alluvial fans is that of protecting ground water recharge areas. Most ground water recharge in desert climates occurs on fans. Care needs to be exercised that flood control systems do not unnecessarily restrict recharge and that flood waters do not become polluted with heavy metals, carcinogens, or other highly toxic materials and contaminate underground aquifers."

This issue should be given consideration when deciding to construct detention/retention basins on urbanized alluvial fans.

10.1.3 Cost Estimates

This section of the report will only address cost estimates for the technical research recommendations. It is believed that the general recommendations can be implemented within the present operational mode of most regulatory agencies and professional societies, without incurring any significant costs.
Cost estimates for specific alluvial fan recommendations are presented in Tables 10.1, 10.2, 10.3, 10.4, and 10.5. These cost estimates have been developed with the specific intent of requiring a substantial manhour commitment at the senior level. The author is of the opinion that the products to be derived from the proposed research need to reflect this enhanced level of experience.

The following cost estimates should be considered very approximate and subject to revision as part of developing a detailed scope of work, should any of the recommendations be pursued beyond this research report. It is important to note that the cost estimates were initially developed on the basis of hourly labor rates that were considered representative of university-sponsored research teams. Should the work be conducted by private consultants, the labor costs would be approximately three times greater than those shown for university rates. This difference reflects the profit and overhead costs that must be charged by private consultants. For comparative purposes, the bottom of each table shows "Grand Total" costs for both university rates and private rates. The hourly rates shown in the tables are university rates.
Table 10.1
Estimated Cost to Install Data Collection System & Develop Historical Profile for One Alluvial Fan Site

<table>
<thead>
<tr>
<th>LABOR</th>
<th>Manhours</th>
<th>Hourly Rate</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Engineer(s)</td>
<td>960</td>
<td>$20</td>
<td>$19,200</td>
</tr>
<tr>
<td>Technician</td>
<td>960</td>
<td>16</td>
<td>15,360</td>
</tr>
<tr>
<td>Geologist</td>
<td>320</td>
<td>20</td>
<td>6,400</td>
</tr>
<tr>
<td>Survey Crew</td>
<td>40</td>
<td>100</td>
<td>4,000</td>
</tr>
<tr>
<td>Clerical</td>
<td>320</td>
<td>12</td>
<td>3,840</td>
</tr>
<tr>
<td>sub-total:</td>
<td></td>
<td></td>
<td>$48,800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>Number</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rain Gage</td>
<td>10</td>
<td>$1,200</td>
<td>$12,000</td>
</tr>
<tr>
<td>(continuously recording)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stream Gage</td>
<td>3</td>
<td>5,000</td>
<td>15,000</td>
</tr>
<tr>
<td>(continuously recording)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scour Gage</td>
<td>5</td>
<td>1,500</td>
<td>7,500</td>
</tr>
<tr>
<td>Sedimentation Poles</td>
<td>15</td>
<td>500</td>
<td>7,500</td>
</tr>
<tr>
<td>sub-total:</td>
<td></td>
<td></td>
<td>$42,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerial Mapping</td>
<td>$30,000</td>
</tr>
<tr>
<td>Small Equipment & Supplies</td>
<td>3,000</td>
</tr>
<tr>
<td>Travel</td>
<td>3,000</td>
</tr>
<tr>
<td>Reproduction</td>
<td>1,000</td>
</tr>
<tr>
<td>sub-total:</td>
<td>$37,000</td>
</tr>
</tbody>
</table>

Grand Total (University): $127,800
(Private): 225,400
Table 10.2
Estimated Annual Cost to Operate & Maintain Data Collection System for One Alluvial Fan Site

<table>
<thead>
<tr>
<th>LABOR</th>
<th>Manhours</th>
<th>Hourly Rate</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Engineer(s)</td>
<td>160</td>
<td>$20</td>
<td>$3,200</td>
</tr>
<tr>
<td>Technician</td>
<td>400</td>
<td>16</td>
<td>6,400</td>
</tr>
<tr>
<td>Geologist</td>
<td>80</td>
<td>20</td>
<td>1,600</td>
</tr>
<tr>
<td>Clerical</td>
<td>80</td>
<td>12</td>
<td>960</td>
</tr>
<tr>
<td>sub-total:</td>
<td></td>
<td></td>
<td>$12,160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>Number</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace Damaged Rain Gages</td>
<td>2</td>
<td>$1,200</td>
<td>$2,400</td>
</tr>
<tr>
<td>Replace Damaged Sedimentation Poles</td>
<td>2</td>
<td>500</td>
<td>1,000</td>
</tr>
<tr>
<td>sub-total:</td>
<td></td>
<td></td>
<td>$3,400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerial Photography</td>
<td>$1,000</td>
</tr>
<tr>
<td>Small Equipment & Supplies</td>
<td>1,000</td>
</tr>
<tr>
<td>Travel</td>
<td>1,000</td>
</tr>
<tr>
<td>Reproduction</td>
<td>200</td>
</tr>
<tr>
<td>sub-total:</td>
<td>$3,200</td>
</tr>
</tbody>
</table>

Grand Total (University): $18,760
(Private): 43,080
<table>
<thead>
<tr>
<th>LABOR</th>
<th>Manhours</th>
<th>Hourly Rate</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Investigator(s)</td>
<td>960</td>
<td>$25</td>
<td>$24,000</td>
</tr>
<tr>
<td>Research Assistant</td>
<td>400</td>
<td>16</td>
<td>7,680</td>
</tr>
<tr>
<td>Clerical</td>
<td>160</td>
<td>12</td>
<td>1,920</td>
</tr>
<tr>
<td>sub-total:</td>
<td></td>
<td></td>
<td>$33,600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construct and Operate Model (labor & modeling facility)</td>
<td>$150,000</td>
</tr>
<tr>
<td>Small Equipment & Supplies</td>
<td>1,500</td>
</tr>
<tr>
<td>Travel</td>
<td>1,000</td>
</tr>
<tr>
<td>Reproduction</td>
<td>1,500</td>
</tr>
<tr>
<td>sub-total:</td>
<td>$154,000</td>
</tr>
</tbody>
</table>

<p>| Grand Total (University): | $187,600 |
| (Private): | 254,800 |</p>
<table>
<thead>
<tr>
<th>LABOR</th>
<th>Manhours</th>
<th>Hourly Rate</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Investigator(s)</td>
<td>960</td>
<td>$25</td>
<td>$24,000</td>
</tr>
<tr>
<td>Research Assistant</td>
<td>640</td>
<td>16</td>
<td>10,240</td>
</tr>
<tr>
<td>Clerical</td>
<td>160</td>
<td>12</td>
<td>1,920</td>
</tr>
<tr>
<td>sub-total:</td>
<td></td>
<td></td>
<td>$36,160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplies</td>
<td>500</td>
</tr>
<tr>
<td>Travel</td>
<td>1,000</td>
</tr>
<tr>
<td>Reproduction</td>
<td>1,500</td>
</tr>
<tr>
<td>sub-total:</td>
<td>$3,000</td>
</tr>
</tbody>
</table>

Grand Total (University): $39,160

(Private): $111,480
Table 10.6
Estimated Cost to Determine Potential for Aquifer Contamination on Urbanizing Alluvial Fan Sites

<table>
<thead>
<tr>
<th>LABOR</th>
<th>Manhours</th>
<th>Hourly Rate</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Investigator(s)</td>
<td>960</td>
<td>$25</td>
<td>$24,000</td>
</tr>
<tr>
<td>Research Assistant</td>
<td>640</td>
<td>16</td>
<td>10,240</td>
</tr>
<tr>
<td>Clerical</td>
<td>160</td>
<td>12</td>
<td>1,920</td>
</tr>
<tr>
<td>sub-total:</td>
<td></td>
<td></td>
<td>$36,160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well Testing and Laboratory Analysis</td>
<td>$10,000</td>
</tr>
<tr>
<td>Supplies</td>
<td>1,000</td>
</tr>
<tr>
<td>Travel</td>
<td>2,000</td>
</tr>
<tr>
<td>Reproduction</td>
<td>1,000</td>
</tr>
<tr>
<td>sub-total:</td>
<td>$14,000</td>
</tr>
</tbody>
</table>

Grand Total (University): $50,160
(Private): 122,480
10.2 **Section 404 Recommendations**

Although application of Section 404 of the *Clean Water Act* to the desert washes of Arizona has created an additional administrative burden (as well as occasional cost increases and project delays) on both public and private entities, the existence of Nationwide Permit No. 26 provides a mechanism to minimize this burden for most projects.

Under the present structure of the "404" program, ADOT has established permitting procedures that function very well. No reasons were found to recommend changes to these procedures. However, ADOT voiced frustration over the inability to easily and consistently identify the "ordinary high water mark" that is used to establish jurisdictional limits of the program.

The Arizona Floodplain Management Association (AFMA) has also voiced frustration over the Corps interpretation and application of "404" program criteria to the ephemeral washes in Arizona. AFMA has opened formal communications with the Corps that critiques the program on the basis of: 1) too broad a jurisdiction; 2) excessive regulation; 3) increased project costs; 4) project time delays; and 5) inability to consistently identify the ordinary high water mark.

Sufficient criticisms and "gray areas" exist to justify a re-evaluation of the program as it is applied to the desert environment of the southwestern United States. Although the program is a worthwhile environmental protection package, its jurisdictional limits should be re-evaluated with respect to ephemeral streams; this may include nothing more than a more precise and measurable definition of the "ordinary high water mark", as it relates to a desert wash.

It is recommended that a task force, commission, or similar group be officially sanctioned by the State of Arizona to initiate formal discussions with the Corps to investigate ways in which the "404" program could be amended to acknowledge the unique characteristics of the desert environment. Such a task force should include representation from state, county, and municipal agencies. Environmental agencies should also be included in this group.
As stated previously, AFMA has already established dialogue with the Corps, in hopes of achieving revisions to the "404" program. The AFMA membership is composed of representatives from nearly all major communities and counties within the State. Accordingly, this organization is capable of voicing the concerns of a large cross-section of public agencies within Arizona and, therefore, would be a valuable participant in any State sanctioned task force.

Task force discussions should focus on specific problems that the various organizations perceive as being related to compliance with the program. Efforts should be made during these discussions to establish criteria for a "regional permit" that would be an acceptable compromise to all parties. The jurisdictional limits of this permit should be defined in terms of easily understood and measurable parameters that can readily be established in the field. These parameters should reflect the characteristics of the desert fluvial system.

The pursuit of direct, officially sanctioned discussions with the Corps of Engineers will provide a forum for a frank exchange of ideas that could be used to improve compliance with the "404" program in Arizona.
Bibliography

Federal Insurance Administration (FIS), *Federal Emergency Management Agency (FEMA), Risk Studies Completion and Full Program Status*, 1984

French, R.H., *Flood Hazard Assessment on Alluvial Fans: An Examination of the Methodology*, University of Nevada Desert Research Institute Publication No. 45040

Kumar, S., *Engineering Methodology For Delineating Debris Flow Hazards In Los Angeles County*, Water Forum 86, ASCE.

Pima County Department of Transportation & Flood Control District, *Appeal to the Restudy of the Pima County Flood Insurance Study*, 1987.

Sabol, G.V., *Urban Flood Channels in the Southwest*, Water Forum 81, ASCE.

U.S. Army Corps of Engineers (Los Angeles District), *Engineering Standards For Flood Protection Of Single Lot Developments on Alluvial Fans*, Draft Report

248
Water Resources Associates, Inc. & Robert L. Ward, Consulting Engineer,

Wasson, R.J., *Catchment Processes and the Evolution of Alluvial Fans in

Wasson, R.J., *Last Glacial Alluvial Fan Sedimentation in the Lower Derwent

CASE STUDIES OF ALLUVIAL FAN DEVELOPMENT

This section of the report presents an overview of three unique locales within Arizona for which large scale drainage studies have recently been initiated. The study locations are:

1. North Scottsdale area;
2. Tortolita Mountains (north of Tucson);
3. Bullhead City

All three sites contain landforms associated with alluvial fan processes and are either undergoing, or on the verge of undergoing, major urbanization.

The following summaries will address the activities that have led to the initiation of the project studies and outline the management techniques and technical procedures that have, or may be, employed to develop a flood control plan for each site.
8.1 North Scottsdale General Drainage Plan

In recent years the City of Scottsdale has extended its city limits to include a large area of the Sonoran Desert north of the Central Arizona Project (CAP) aqueduct and west of the McDowell Mountains drainage divide. This expansion encompasses approximately 115 square miles of watershed that contribute runoff to both Cave Creek (26 square miles) and upper Indian Bend Wash (90 square miles).

The physical character of the area includes steep mountain hillsides, alluvial fans and fan terraces, and literally thousands of ephemeral washes exhibiting various degrees of hydraulic capacity and stability.

Although this area is very sparsely developed at the present time, the natural desert beauty has attracted substantial interest from developers. Accordingly, the area is on the verge of undergoing major urbanization, in fact, some development is already underway.

In order to promote orderly development of the area and preserve the natural character of the land, the City of Scottsdale has published the Tonto Foothills Background Study and the Land Use Element, General Plan. Although these publications discuss proposed land use densities, environmental issues, physical watershed characteristics, and a general assessment of flood hazards, there are presently no recommendations on how specific drainage and flood control issues should be addressed.

8.1.1 Floodplain Management Approach

In recognition of the urgent need for a comprehensive investigation of the drainage problems within this area, the City commissioned a "General Drainage Plan" study in January 1988 (Water Resources Associates, Inc. & Robert L. Ward, Consulting Engineer, 1988). The primary goals of this study were to quantify the existing flooding problems within the watershed boundaries and then superimpose the forecast land use densities onto the watershed and develop an integrated drainage plan to safely dispose of the increased runoff.
that is predicted to accompany future development. Completion of the "General Drainage Plan" will provide the basis for regulating development of the area in accordance with an approved "Master Plan" that anticipates, and plans for, the drainage response of the entire watershed under a fully developed condition. Such a plan also eliminates flooding problems that might be created by random construction of individual drainage systems that do not acknowledge the potential impacts on adjacent properties.

The floodplain management approach being pursued by the City is in agreement with the guidelines recommended in the Anderson-Nichols study for floodplain management on alluvial fans (see Section 7.7), i.e., 1) identify flood hazard areas; 2) develop a Master Plan for urbanization; 3) evaluate and select drainage concepts (floodplain management tools); and 4) regulate future development in accordance with the Master Plan and selected drainage concepts. Justifiably, the development of this "General Drainage Plan" embodies the "whole fan approach" to floodplain management.

8.1.2 Technical Approach

The engineering analysis that was used to develop the "General Drainage Plan" consisted of three primary phases:

1. Quantify existing runoff response and identify severe hazard areas.
2. Quantify runoff response that will result from complete development of the watershed.
3. Based on the information from Phases 1 and 2, develop management tools and an integrated drainage plan that will limit peak discharge values to magnitudes that are no greater than those occurring under existing conditions.

The hydrologic analysis of such a large project requires the use of a methodology that can:
reflect the hydrologic dissimilarities of different regions of the watershed;
* evaluate variable storm distributions;
* perform routing operations to hydraulically link the watershed sub-basins together;
* accommodate flow diversions;
* conduct reservoir routing operations for the evaluation of detention basin concepts;
* be easily modified to allow the user to quickly conduct "what if" scenarios for different land uses and floodplain management.

To acknowledge these criteria, a computerized rainfall/runoff model (HEC-1) was developed for the watershed. Extensive field work was conducted in order develop realistic input data for this model. Field investigations were supplemented with the use of aerial photographs, USGS topographic quadrangle maps, and SCS soil survey maps.

Relative to this research study, perhaps the most interesting aspect of the technical analysis concerns the manner in which the alluvial fan flows were routed through the HEC-1 model. Considerable emphasis and time were devoted to field investigations in order to identify the probable flow patterns on the alluvial fans and fan terraces. A key element of these investigations was to identify those fans which were considered to be active in terms of not being confined to a stable, well-incised channel capable of conveying the flow from the fan apex to the toe. This was a critical issue in developing channel routing parameters across the fan and in determining the potential flood risk for urbanization of the fan surface.

The selection of channel routing parameters across the fan surface is also a very important parameter in the attenuation of peak discharge as the flood wave moves from the apex to the toe of the fan. For those fans that do not have a stable, incised channel to carry the flow across the fan, the
water will begin to spread across the fan surface in a shallow, braided, sheetflow fashion. Such a flow pattern is capable of causing substantial hydrograph attenuation through both: 1) increased surface area available for infiltration losses; and 2) overbank storage effects. This is an important process to consider if there is a need for accurate peak discharge information on the lower portions of the fan.

In addressing the potential for hydrograph attenuation, field investigations revealed three distinct variations of alluvial fan formations:

1. dissected fans along the south side of the McDowell Mountains;
2. a broad alluvial fan terrace southwest of the Pinnacle Peak area;
3. an active alluvial fan apex (no major incised, downstream channel) at the east end of Pinnacle Peak Road, adjacent to the west side of the McDowell Mountains.

The following paragraphs present a discussion of the analysis techniques used for each of these landforms.

dissected fans

The first of these three landforms (dissected fans) were characterized by stable, incised channels leading from the apex to beyond the project limits. These fans also exhibited well-defined drainage swales for local runoff that was generated on the fan surface. These swales were not hydraulically connected to the apex channel.

The following procedure was used to model dissected fans:

1. Field investigations were made to measure approximate channel geometry at several locations along the length of the incised channels. Such measurements provided input data for the HEC-1 model, but more importantly, identified any location at which a
specific channel might begin to lose substantial hydraulic capacity and transition to a shallow, braided flow pattern. These field investigations also served to identify the stability of the channels, i.e., did the banks exhibit signs of frequent erosion and did overbank areas display indications of inundation/sediment deposition.

2. Using the channel geometry developed from Step 1, the HEC-1 model was run for the 100-year storm. The peak discharge values from the model were noted at selected concentration points along the channel alignments. Using these discharge values and the measured channel geometry, Mannings Equation was used to compute the depth, velocity, and Froude Number associated with the flow. The flow depth (along with a bank stability assessment) was then used to determine if the channel capacity would be exceeded. Flow velocity and Froude Number were also monitored to insure that reasonable values were being maintained. In accordance with previous research, an attempt was made to utilize channel parameters that would maintain flows at critical, or slightly supercritical, conditions.

3. At any locations where the flow was found to exceed channel capacity, an adjustment was made in the channel geometry, to reflect the lateral spread of water, and the model was re-run.

alluvial fan terrace

As defined in a recently published SCS soil survey for this watershed, an alluvial fan terrace is an inactive remnant of an old alluvial fan which is no longer a site of active deposition.

Geographically, this terrace is located west and southwest of Pinnacle Peak. The mountain source area for this terrace has completely eroded and
is no longer in existence, with the exception of Pinnacle Peak, which is only a small token remnant of what was probably once a northern extension of the present day McDowell Mountains.

This fan terrace is characterized by hundreds of small, braided washes which are one to two feet deep and have average top-widths ranging from 4 to 30 feet. The bankfull capacity of these washes ranges from approximately 25 to 250 cfs.

Certain portions of this terrace are subjected to relatively large inflows at the upstream end of the terrace where more well-defined drainage systems are capable of delivering 100-year peak discharges of approximately 8,000 to 14,000 cfs. Flows of this magnitude are not capable of being conveyed across the fan terrace within the bankfull capacity of the braided washes. Accordingly, large portions of the terrace can be expected to be inundated by shallow sheet-flow during these large floods. As indicated previously, this type of flow condition can be expected to produce substantial hydrograph attention due to infiltration losses and overbank storage effects. This attenuation was artificially simulated in the HEC-1 model by using a very wide channel bottomwidth to route water down the fan terrace. The following steps were used to select suitable channel geometry:

1. Cross-sections were surveyed for several typical washes on the fan terrace. Manning's Equation was then applied to the surveyed channel geometry in order to compute a bankfull discharge for each wash. From this data, an average bankfull capacity was determined for a "typical" wash.

2. Using aerial photographs, lines were drawn perpendicular to the average flow pattern through each sub-basin. The number of washes intersected by this line was then counted from the photo.
As many as two or three lines were drawn on some sub-basins in order to establish an average number of washes for that particular area.

3. The average bankfull capacity from Step 1 was then multiplied by the average number of washes from Step 2 in order to determine the total bankfull capacity of all the washes within a given sub-basin.

4. Once the total channel capacity per sub-basin was known (from Step 3), the HEC-1 model was executed (using estimated channel geometry for the fan terrace) to determine how much water would be delivered to the upstream end of each sub-basin on the terrace. If this rate of flow was found to be in excess of the total bankfull capacity of the sub-basin, then the water was assumed to spread across the sub-basin as wide, shallow sheet-flow. The channel geometry for the sub-basin was then adjusted to simulate this condition and the model re-run.

When sheetflow was predicted for a sub-basin, the channel geometry was selected so as to provide realistic depths and velocities of flow across the terrace. For these wide sheet-flow areas, realistic depths of flow (within the artificial channel used for the simulation) were considered to be on the order of 1.5 feet or less, while average velocities were assumed to range from 3 to 6 fps, with the higher velocities being encountered in the steeper, upper portions of the terrace. As the water moved down the terrace, it was assumed to spread laterally in a widening fan shape. This resulted in a slight decrease in both depth and velocity of flow in the down-terrace direction. Flow was maintained near critical
conditions on the steeper parts of the terrace and was allowed to go subcritical as flatter slopes were encountered on the lower portions of the terrace.

5. For those sub-basins on the terrace that were found to have total wash capacities approximately equal to the incoming flow, a trapezoidal cross-section with a 50-foot bottomwidth was used. Side-slopes for this artificial channel were varied from 50:1 to 200:1, as the water was routed down the terrace. The side-slopes were flattened in order to keep the depth of flow to less than 2-feet (the approximate maximum depth of a typical wash) and the average velocities in the 3 to 5 fps range. Due to the dense braiding pattern on the terrace, and the fact that additional runoff was being intercepted in the down-terrace direction, it was assumed that as the water moved down-slope, it would feed into more and more small washes, thus causing an increase in the total channel perimeter and width of flow. The flattening of channel side-slopes in adjacent downstream sub-basins provides a degree of simulation of this phenomenon, since such channel geometry also produces an increase in perimeter and topwidth.

The preceding discussion of channel routing procedures obviously has no means of physically simulating the increase in infiltration losses that will undoubtedly occur as floodwaters transition into a sheet-flow condition; however, the procedure may provide a crude approximation of attenuation due to overbank storage, since the wide channels cause a reduction in average flow velocities. Although the kinematic wave routing option, which was used in this study, is reportedly not capable of simulating hydrograph attenuation due to channel storage effects, the manipulation of channel geometry can artificially induce such attenuation. The only problem with this technique
is the non-availability of measured flow data that could be used to calibrate these adjustments to provide a proper degree of attenuation to correlate with actual flood events on fan terraces.

In the absence of such data, extensive engineering judgement must be used, in combination with empirical peak discharge equations, to make such adjustments.

active alluvial fan apex

As part of the existing flood hazard identification process, one alluvial fan apex was identified which was not entrenched across the fan surface. This apex is located at the east end of Pinnacle Peak Road, adjacent to the McDowell Mountains.

The fan surface below this apex exhibits a classic braided pattern. A cross-section measurement at a location approximately 1000 feet downstream of the apex revealed a channel bottomwidth of 57 feet and a bankfull depth of 2 feet. The estimated 100-year peak discharge at this location is approximately 13,500 cfs, while the bankfull channel capacity is about 1,000 cfs. Under these conditions, a major flood would cause widespread inundation below the fan apex, and perhaps cause a channel avulsion which might shift the major thrust of the flow to a different location on the fan.

Unfortunately, development is already underway within 3,000 feet of this apex location, and in the author's opinion, is exposed to a substantial risk of flood damage should a large storm occur.

The unstable flow pattern that presently exists at this apex is capable of directing flood waters in a wide arc. Depending on the flow direction that might accompany a specific storm, the outflows from this apex could impact a large downstream area that is composed of several sub-basins. Although the analysis of this fan apex is not yet complete, the author is considering combinations of "divert routines" which would divert different proportions of the apex discharge to different sub-basins. As a worst-case
scenario, the entire apex outflow might be diverted to each of the downstream sub-basins in order to evaluate the potential impact to different downstream areas. Routing such large flows across the fan surface will be accomplished with the procedures previously described for the fan terrace.

8.1.3 Management Tools

As stated previously, the "General Drainage Plan" analysis is not yet complete. However, a preliminary drainage concept has been developed and is presently being refined.

In recognition of the City's desire to preserve the natural beauty of the area, solutions are being considered that will minimize the need for man-made channels. As a result, detention basins are being proposed as a major element in the overall drainage plan. These proposed basins will be located across some of the major, well-defined washes in the project watershed. Their design will be somewhat unique in that they will be constructed in a manner that will allow unobstructed passage of sediment flows. This will eliminate the potential for downstream degradation that would occur if the basins were to trap the sediment inflow and create a deficit in sediment supply to downstream reaches of the natural washes. Such degradation is usually accompanied by bank sloughing, which in turn causes lateral channel bank movement.

In order to minimize sediment trapping, proportional weirs are being considered as a potential candidate for use as an outlet structure in these basins. Lateral overflow weirs may also be considered for use along the edge of channels.

Substantial portions of the watershed contain natural channels that have adequate hydraulic capacity to contain the peak discharge that is anticipated for the fully developed watershed condition. Field inspections and reviews of historical photographs indicate that these washes are stable and not prone to shifts in alignment. For these areas, a recommendation is
made that the washes be left in their natural state and that development
be set back an appropriate distance from the edge of such channels.

For those areas of the watershed where topographic limitations make
detention basins infeasible, and where natural washes are not sufficiently
large to contain any significant amount of runoff, man-made channels are
being proposed.

In order to acknowledge the environmental sensitivities of the project
area, these channels will be designed to blend with the natural setting as
much as possible. Since these channels will intercept a large swath of the
small washes across the fan terrace, they will incorporate low-flow outlets
that will allow a certain amount of water to leave the man-made channel
and continue along the course of the natural washes. This will promote
preservation of the natural vegetation community along these small washes.

As indicated previously, with one exception, the true alluvial fan portions
of the watershed contain entrenched, stable, channel systems capable of
conveying large flows across the fan surface. These systems will be left in
their natural state. However, the remaining active alluvial fan apex at the
east end of Pinnacle Peak Road will in all probability be controlled by a
system of one or more detention basins placed at strategic locations within
upstream portions of the source area. The large water and sediment inflows
to this apex may cause problems in attempting to design a structure that
will provide the desired hydrograph attenuation and still allow free passage
of the sediment discharge. However, unless the flood waters are controlled
at the apex, an extensive downstream flood control system will undoubtedly
be required. Although design details are not part of the "General Drainage
Plan" scope of work, it would appear that the most feasible and economic
solution would be the pursuit of an apex detention basin (or multiple upstream
basins).

Completion of the "General Drainage Plan" for the north Scottsdale area
will provide the first step towards the development of a total watershed
management plan that can be used to analyze the drainage impact of different land use proposals. The computerized hydrologic model of the watershed will provide planners and drainage engineers with a valuable tool that can be used to analyze endless combinations of land-use changes and flood control alternatives. Since the model provides a continuous link among the sub-basins comprising the watershed, the impact of any changes in one area can quickly be determined for adjacent or downstream areas.

Undoubtedly, the preliminary concepts proposed in the "General Drainage Plan" will undergo revisions as development actually occurs in the watershed. However, the fact that the City is pursuing this urban expansion by employing the "whole fan" approach indicates that they are well aware of the hazards that would occur if the area was left to develop in a random, uncoordinated fashion. Continued pursuit of this approach should insure successful development of the watershed and eliminate the potential for any major flooding problems.
8.2 Tortolita Mountains

The Tortolita Mountains are located in Pima County, approximately 20 miles north-northwest of Tucson, Arizona. This small mountain range contains several canyons which outlet onto alluvial fans. Varying degrees of channel entrenchment exist at the fan apices, and in some cases, well out onto the fan surface. This is undoubtedly due to the fact that these mountains are not presently considered to be tectonically active. As discussed in Section 2.2.4 of this report, the absence of mountain uplift activity will promote downcutting in the mountain area and onto the fan surface. Beyond the areas of entrenchment, the fans exhibit a typical dense network of shallow, braided channels.

The majority of this area has a rural zoning classification and presently exhibits very sparse development. Planning projections by Pima County indicate that urban expansion from Tucson will eventually reach this area. In anticipation of this pending urbanization, Pima County adopted the Tortolita Area Plan (TAP) in 1977. This plan identifies general land use classifications for the project area. A large block of the TAP was designated as the Tortolita Community Plan (TCP). The TCP, which was adopted in 1982, projects specific zoning densities for an approximate 65 square mile area.

In recognition of the severe flooding problems that can accompany urbanization of an alluvial fan area, Pima County has initiated floodplain management studies that will ultimately lead to an integrated flood control/drainage plan for the entire area. Designated the "Tortolita Fan Area Basin Management Plan" (Cella Barr Associates, 1986), this project will address the flooding and erosion problems associated with nine major drainage basins located within a 154 square mile section of the Tortolita Mountains.

8.2.1 Floodplain Management Approach

The Tortolita Fan Area Basin Management Plan (TFAP), which will be conducted in three phases, is another excellent example of a regulatory agency having the foresight to initiate advance planning studies that will
employ the "whole fan" approach to develop a coordinated drainage plan for the urbanization of an alluvial fan environment. The three phases of this project are described as follows:

* Phase I consists of a broad-brush analysis of existing watershed hydrology and flooding problems, as well as a limited assessment of the increase in runoff that would accompany urbanization of the area.

Typical tasks to be conducted during this phase include field inspections, review of aerial photographs, topographic maps, well logs, and existing drainage studies, as well as conducting an inventory of existing drainage facilities and projected land use densities.

Since some development has already been initiated within the study area, and more is expected to occur prior to the completion of the three phases of the study, Phase I also included a Phase IA to produce interim floodplain management policies that could be used to guide new development that might be initiated prior to the completion of Phase III. These interim policies are to be revised and updated as more detailed information is available from the completion of Phase II and Phase III. Phases I and IA were completed in November 1987.

* Phase II will be used to develop a comprehensive flood control management plan for the study area. This plan will be based on an analysis of specific structural and non-structural management tools to mitigate the flooding and erosion hazards in the watershed. Phase II, which is estimated to be completed in the fall of 1988,
will also employ more detailed analyses of the hydrologic, hydraulic, and sediment transport issues that must be considered in the analysis of specific structural measures.

* Phase III will include final approval of the recommended management plan, the development of a financing scheme for the plan, and the initiation of construction for the recommended plan. Phase III is scheduled for completion in late 1989.

Prior to proceeding to a discussion of the technical procedures used in Phase I, it is worthwhile to outline the interim floodplain management policies that were developed during Phase IA of the TFAP. These policies, which were grouped into three general categories, are summarized as follows:

Interim Floodplain Management Policies For The Tortolita Fan Area

1. General Management Criteria
 a. leave major washes \((Q_{100} > 1000 \text{ cfs}) \) in a natural condition and prohibit the installation of utility lines on a parallel alignment within a major wash.

 b. designate the Tortolita Fan Area as a "critical" basin, i.e., a basin in which the natural channels are not capable of containing the runoff from a 100-year event.

 c. require master drainage plans for any proposed development that will exceed specified acreage limitations or abut a major wash.
2. General Management Policies
 a. rezoning densities should not exceed densities stipulated in the Tortolita Community Plan or the Tortolita Area Plan.

 b. engineering studies must consider the potential for an upstream channel avulsion that might divert runoff from one watershed to another.

3. Specific Development Policies
 a. detention/retention structures are not allowed on major washes. For a 5-year event, retention basins must reduce the runoff volume from a development to less than that occurring under existing conditions.

 b. flooding from major offsite sources should be routed through developments rather than being diverted around the perimeter of the development.

 c. all channels shall have an earth bottom unless an alternative is approved by the Board of Supervisors.

 d. sediment transport must be considered in all drainage designs.

 e. unless exceptional circumstances dictate otherwise, channelization of major washes is prohibited.
f. groundwater recharge is encouraged and water quality standards should be maintained and enhanced, if possible.

Note: Items 3.g and 3.h apply to the Ruelas, Wild Burro, and Cochle Canyon basins.

g. maintain existing channel alignments to allow the use of Pima County methods and standards in the determination of design criteria for onsite drainage improvements.

h. recognize the instability of alluvial fan channels and, where appropriate, use the FEMA alluvial fan methodology to establish design parameters for urban improvements.

Note: Items 3.i, 3.j, 3.k, 3.l apply to floodplain encroachments in all other basins in the study area where the 100-year peak discharge of a wash exceeds 1000 cfs.

i. based on an arithmetic mean, floodplain encroachments may not create more than a one-half foot rise in the 100-year water surface profile, or create a maximum increase at any one location of more than 1-foot if the entire floodplain is contained on the proposed development site.
j. if the entire floodplain is not contained on the proposed development site, a floodplain encroachment may not cause more than a 0.1 foot rise in the 100-year water surface profile.

k. based on an arithmetic mean, a floodplain encroachment may not create more than a 0.1 foot rise in the 2-year water surface profile.

l. a floodplain encroachment may not cause more than a 10 percent increase in the flow velocities associated with the 10-year flood.

In summary, the floodplain management approach being pursued by Pima County for the Tortolita Fan Area conforms to the general recommendations presented in the Anderson-Nichols study, i.e., a comprehensive master drainage plan is being developed in advance of any substantial urbanization, and special emphasis is being directed towards the unique hazards and floodplain mitigation measures that must be considered on alluvial fans. The County's adherence to this approach should minimize flood control and drainage problems as the area undergoes urbanization.

8.2.2 Technical Approach

As indicated previously, Phase I of the TFAP is a broad-brush approach that does not use any sophisticated methodologies to analysis specific aspects of fan behavior. The hydrology analysis was based on peak discharge calculations using the empirical equation presented in the Hydrology Manual for Engineering Design and Floodplain Management Within Pima County, Arizona. This equation was applied to concentration points located at:
1. the confluence of waterways;
2. canyon exits at the base of the mountain front;
3. the termination of a defined waterway;
4. the termination of a sub-basin;
5. selected intervals in areas of sheet-flow.

No channel routing procedures were utilized to simulate peak discharge attenuation that would accompany sheet-flow across the fan surfaces. However, adjustments were made in the basin roughness factor to account for the difference in hydraulic resistance that would occur in: 1) mountain areas ($n_b=0.046$); 2) shallow flooding areas ($n_b=0.070$); and 3) contained channel flow ($n_b=0.035$). Where appropriate, weighted basin factors were used to simulate a mixture of these conditions within a given sub-basin.

The Phase I report does not contain any other quantitative calculations specifically related to alluvial fan analyses. The report does reference the results of the November 1986 Flood Insurance Study (FIS) that utilized the FEMA alluvial fan procedure for the Tortolita Fan Area. A detailed discussion of this procedure, as well as its application to the Tortolita Fan, was previously presented in Section 6.1 of this report. The FEMA alluvial fan model, that was used for the FIS, is presently being reviewed and revised by FEMA (Michael Baker, Jr., Inc.) in response to the appeal that was filed by Pima County in March 1987 (see Section 6.1).

The revised flood insurance maps are not expected to be completed until late summer 1988. Some of this revised data may be available for use in Phase II of the TFAP.

Discussions with representatives of Pima County (5/19/88) indicate that Phase II of the TFAP will utilize HEC-1 to provide a more detailed hydrologic assessment of the watershed; however, at the present time, this model has not yet been configured to the watershed characteristics.
8.2.3 Management Tools

Recommendations for specific flood control measures are to be developed as part of Phase II of the TFAP. Since work was only recently initiated on this phase, no management tools have yet been evaluated. Phase II recommendations are expected to be available in October 1988.

Although Phase I did not evaluate floodplain management tools, it did provide a brief discussion on criteria that should be considered in the selection of sites for detention/retention basins. These criteria include such factors as: 1) potential for groundwater recharge; 2) natural ponding areas; and 3) geologic suitability. Such a discussion indicates that detention/retention basins will receive substantial consideration as effective floodplain management tools during Phase II. A review of the "interim floodplain management policies" also indicates that there will be considerable emphasis placed on minimizing man-made channelization or other disturbances to natural washes.

Although the Tortolita Fan Area Basin Management Plan is still in the formative stages, its ultimate completion should provide an excellent foundation for the successful development of the Tortolita Fan Area.
8.3 Bullhead City

Bullhead City is located in Mohave County, along the east side of the Colorado River. Until 1984, Bullhead City was an unincorporated community that originated in 1946 as a construction camp for nearby Davis Dam. The scenic and recreational attractions along the Colorado River have made this area a popular attraction for tourists. This attraction has been greatly enhanced by the construction of several gambling casinos on the Nevada side of the river. As a result of these features, the area is experiencing rapid growth and urbanization.

Of the three case studies presented in this report, Bullhead City is somewhat unique, in that it is not situated on what would be described as a typical alluvial fan. The community is located approximately 10 miles from the watershed divide of the Black Mountains, which provides the headwaters and sediment source for the fluvial system that passes through the city. At the present time, the alluvial plain extending west from the mountains to the river does not exhibit the fan-shaped deposits and shallow, braided channel pattern that is commonly associated with alluvial fans. Instead, the land surface is highly incised with relatively deep (10'-50') channels. Near the Colorado River, some of these incisions exhibit bottomwidths that are several hundred to a thousand feet wide.

Although a detailed geological history of the area was not reviewed, it is the author's opinion that the incised land surface is probably due to a base-level lowering in the Colorado River, and possibly due to a lack of continued tectonic activity in the Black Mountains.

Even though the site is not the classic alluvial fan, the following discussion of the flood control plan projected for the area indicates the need to address some of the same problems that are found on more conventional fans.
8.3.1 Floodplain Management Approach

The rapid growth of the Bullhead City area, coupled with the absence of a master development plan, has created serious flooding problems. Portions of the community, both commercial and residential, are located in the very bottom of the floodplains for Black Wash and Bullhead Wash. A municipal airport has also been constructed across the floodplains of Highland Wash, Thumb Butte Wash, and Buck Wash. The only flood protection provided to these developments are small, non-engineered, sand and gravel diversion levees. Such structures are highly prone to erosion, overtopping, and failure when subjected to the high velocity flows emanating from these relatively steep-sloped (approximately 4% bedslope) washes.

The development pressure on this area led to the creation of an interagency state task force in 1984. This task force, which was composed of the Department of Water Resources, Department of Transportation, State Land Department, and the Office of Economic Planning and Development, was created to undertake an engineering evaluation of flood control problems related to transportation, airport expansion, and future land development in the Bullhead City/Riviera communities. This was the first step towards a master plan that could provide a coordinated approach to the resolution of the area's flooding problems.

To pursue the stated objectives, a reconnaissance study of flood control alternatives was commissioned by the task force in October 1984. This study, which was completed in April 1986, provided concept plans and benefit:cost analyses for flood control projects on 13 washes within the Bullhead City/Riviera area.

In November 1986, the State Land Department auctioned 1287 acres of land in this area to Mr. Don Laughlin. Of this amount, 433 acres were deeded to Mohave County for expansion of the Bullhead City Airport. This sale included a stipulation that flood control improvements be constructed to
protect the airport and State Route 95 from the 100-year flood. The purchaser had the option of constructing such improvements in accordance with the concept plans presented in the task force study or of developing an alternate flood control plan that would be subject to approval by several state and federal agencies. The Mohave County Flood Control District opted to develop an alternative flood control plan that would increase the level of flood control benefits to the area. Accordingly, a revised plan (Kaminski-Hubbard Engineering, Inc., 1987) was created for Davis Wash, Highland Wash, Green Wash, Thumb Butte Wash, Buck Wash, Unnamed Wash #1, Bullhead Wash, and Secret Pass Wash. Two years were allotted for installation of the approved plan.

The development of this new plan addressed the possible interaction of flows from adjacent sub-drainage areas and considered the increase in runoff that would occur as 17 square miles of the watershed undergoes future urbanization. As a result, the proposed flood control improvements consist of an integrated system of diversion dikes, channels, and sediment basins which function in harmony with each other and incorporate the necessary hydraulic capacity to provide effective flood control benefits as the watershed undergoes future development. The recommended plan also considers the increase in concentrated sediment discharge that might occur in the Colorado River due to the diversion and combination of flows from several sub-drainage areas into a single outlet channel to the river.

The design of this system is another example of the "whole fan concept" being used to develop a master drainage plan for an entire watershed. Construction of the recommended flood control plan is already underway and its successful completion should provide substantial relief from the flooding problems that have historically plagued Bullhead City.
8.3.2 Technical Approach

The design of the recommended plan involved three primary phases of analyses: 1) develop watershed hydrology; 2) size channel and levee systems to safely convey the forecast runoff to the river; and 3) conduct sediment transport calculations to determine potential changes in streambed profile, toe-down depths for bank protection measures, and required dimensions for sediment basins.

The hydrology analysis utilized the SCS computer program, TR-20. The watershed was divided into homogeneous sub-basins which were hydraulically linked together in order to provide a continuous routing of floodwaters through the drainage basin. The incised nature of the alluvial plain, situated between the Black Mountains and the Colorado River, precludes the probability of a wide, shallow sheetflow pattern that was previously discussed for the north Scottsdale area. However, many of these incised channels are too wide (several hundred feet) to expect a uniform distribution of flow across the channel bottom. Existing low-flow channels, within these larger channels, will probably be enlarged to carry more water during major floods. As with HEC-1, the hydrograph routing calculations in TR-20 can be significantly influenced by the parameters used to describe the channel geometry. Hydrograph attenuation and translation are provided in TR-20 by the Modified Att-Kin routing procedure, which utilizes two parameters, \(x \) and \(m \), to control the degree of attenuation and translation, respectively.

In order to accurately simulate the routing characteristics of these very wide, incised channels, an assumption was made that an effective channel geometry would be created (during a flood) that would stabilize when a reduction in flow depth produced a two-hundred fold increase in flow width. The reader will recall that this concept, which was previously referenced on numerous occasions in Section 6 of this report, was based on field evidence, and is related to the affinity for alluvial fan channels to erode their channel
boundaries in an attempt to achieve critical flow conditions.

Using the peak discharge values generated by the TR-20 model, an iteration procedure was employed to identify the point at which a reduction in channel depth caused a two-hundred fold increase in channel width (discharge was held constant during this iteration, only depth and width were varied. The resulting channel geometry was then used to compute appropriate x and m values for use in the Att-Kin routing procedure.

Another feature of this analysis which is related to alluvial fan characteristics is the potential for channel avulsions. A cursory glance at an aerial photograph of the dissected land surface would cause one to dismiss the potential for channel avulsions. However, close inspection of the drainage area reveals several instances where cuts exist through the natural ridges that separate the incised channels. These cuts provide alternate flow paths that may, or may not, be activated during a given flood event. Accordingly, flood waters have the potential, in some instances, to take different flow paths (similar to avulsions) when traversing this dissected alluvial plain. The potential for these flow-splits was eliminated by constructing man-made levees to block flow through these natural cuts.

The sediment transport analysis that accompanied the project design was based on a water and sediment routing model, FLUVIAL 12 (Chang, 1988). No special modeling techniques were required to simulate alluvial fan characteristics. The primary input parameters used to describe the physical properties of the watershed were the flood hydrograph from TR-20 and bed-material gradations.

In addition to providing information on changes in the stream bed profile during passage of the flood hydrograph, FLUVIAL 12 was also used to size a large sediment basin. This was accomplished by treating the proposed sediment basin as a large expansion in the channel routing geometry. This abrupt enlargement in cross-sectional area caused a corresponding abrupt decrease in channel velocity, which in turn created a substantial drop in
sediment transport capacity through the basin. With the natural sediment inflow to the basin being unaltered, this flow expansion causes a substantial amount of sediment deposition within the basin. Flood hydrographs for different return intervals were routed through this basin in order to determine basin dimensions and volume that would provide the most satisfactory results. The final configuration was approximately 10 feet deep, 400 feet long, and 90 to 160 feet wide. The total basin volume, below the outflow spillway crest, is 37,000 cubic yards.

The sediment basin was not provided with a low-flow outlet. Accordingly, the only means of evacuating water from the basin is through ground infiltration. It is the author's opinion that this could create a problem, since the bottom of the basin may become "sealed" as fine sediments settle from the water and cover the basin invert. Obviously, prolonged water ponding could create a health and safety hazard.

8.3.3 Management Tools

The flood control plan for this project has been defined as the "source to river" concept by the design consultant. The objective of this plan is to direct the path of flood water at its source toward a wash where the water will have a minimal impact on downstream development and a minimal need for flood control improvements.

This plan was pursued by constructing a series of diversion dikes (and in some cases, ridge cuts) at strategic locations to divert water from one sub-drainage area to another. As discussed previously, some of these dikes were placed at natural cuts between ridgelines to prevent potential channel avulsions. The well-incised land surface minimized the need for channelization. Accordingly, once floodwaters are diverted into a drainage path of minimal damage, only an occasional dike or levee is required at certain low-spots along the drainage alignment to prevent a break-out.

In order to protect the new airport, approximately 8,000 lineal feet of
combined levee/channel works are required. This structure intercepts water from four natural washes and diverts the flow to the proposed sediment basin located at the north end of the airport.

Rock riprap is proposed as a bank protection measure to prevent erosion of the levee embankments. The design criteria stipulated that the riprap be placed above the energy grade line for the design flood (100-year event) and below the embankment toe for scour protection. Toe-down depths were based on the maximum general scour predicted by the FLUVIAL 12 model plus one-half the antidune wave height. An additional four feet was then added to this total in order to provide a factor of safety. No specific analyses were performed relative to the potential magnitude of long-term aggradation/degradation, low-flow incision, or bend scour. No bridges were included in the proposed plan that would warrant an investigation of local scour at pier structures.

Some of the levee structures recommended for this plan are offset approximately 44 feet from an excavated low-flow channel. In these cases, the riprap bank protection is only placed along the levee embankment and may not be toed down to an elevation that is below the low-flow channel invert elevation. Accordingly, should the low-flow channel ever migrate (through lateral erosion) into the levee embankment, there might be a potential for undercutting and a possible failure of the bank protection. However, the 44 foot wide bench provides a substantial buffer that would probably not be totally eroded during a single flood, unless it were being attacked by flow around a severe bend. Certainly, a thorough inspection and maintenance plan will be an integral component to the successful, long-term operation of this project, as it is to all drainage projects located within the dynamic fluvial systems of the southwestern United States.

The remaining major element of the proposed plan consists of the sediment basin and outlet channel to the Colorado River. The majority of the drainage area upstream of the proposed airport expansion will be funneled into this
basin. As a sediment trap, this basin will serve to reduce the potential for a concentrated sediment discharge into the river, thus minimizing the possibility of a large delta formation which might cause localized disruption to existing river flow patterns. The outlet of this structure will consist of a concrete weir-crest spillway, which discharges to a lined channel (some sections have an earth bottom) that will convey outflows to the Colorado River. This outlet channel will include an energy dissipater to reduce the high flow velocities that will exist at the toe of the spillway outlet chute.

It should be noted that at the time (May 1988) the author reviewed the design reports for this project, all design details were not yet finalized. Accordingly, those readers who wish to field inspect the Bullhead City flood control project might find certain features that are different from those described herein.
9 SECTION 404 OF THE CLEAN WATER ACT

Section 404 of the Clean Water Act of 1977 was originally created as a 1972 amendment to the Federal Water Pollution Control Act. During the last 16 years, this program, which regulates the discharge of dredged or fill materials into waters of the United States, has created substantial controversy, debate, and frustration in both governmental and private sectors.

Application of these regulations to the normally dry washes and arroyos of Arizona has often created confusion regarding certain definitions in the regulations, and raised serious doubts on the part of prospective permit applicants as to the necessity and practicality of applying such a program to a desert environment. These problems, along with a brief history of the program and its implementation in Arizona, are addressed in the following subsections of this report.
9.1 Evolution of the "404" Program

The "404" program can trace its ancestry to the Rivers and Harbors Appropriation Act of 1899, which combined several earlier laws and court decisions to authorize federal regulation over navigable waterways of the United States. The primary intent of this original Act was to protect and maintain the navigability of the nation's waterways. The Corps of Engineers was assigned the responsibility for administering this program.

Over the last 88 years, several new laws and court decisions have created significant changes in the Corps' assigned responsibilities for maintaining the navigability of the nation's waterways. These changes have seen the Corps' responsibilities evolve from preserving the navigability of major transportation waterways, such as the Mississippi River, to regulating the placement of fill in a dry desert wash.

Highlights of legislative, judicial, and administrative acts leading to the present day "404" program are summarized in the following paragraphs. This historical information is based on a report by Barnett (1982).

* 1899 - Congress passed the Rivers and Harbors Act of 1899, which authorized the Corps of Engineers to regulate activities that might influence the navigability of the nation's waterways. Section 9 of this Act regulated the construction of bridges, dams, dikes, or causeways, while Section 10 prohibited the unauthorized "obstruction or modification" of any navigable waterway. Section 13 of this Act also prohibited the discharge of refuse matter (unless authorized by the Secretary of War) which might affect a navigable waterway.

In administering Section 10 of this Act, "obstruction or modification" was generally understood to include excavation, fill, or any work
affecting the course, location, condition, or capacity of navigable waters. "Navigable waters was in turn interpreted to be those waterways with the capability or potential for public use as a route of interstate commerce.

- 1966 - Supreme Court decision expands the scope of Section 13 (refuse matter) of the 1899 Act to include the regulation of industrial discharges, regardless of their impact upon the navigability of a waterway. Under this decision, the court ruled that the word refuse "includes all foreign substances and pollutants apart from those flowing from streets and sewers and passing therefrom in a liquid state."

- 1967 - The Secretaries of the Army and Interior sign a "memorandum of understanding" outlining procedures for consultation, public hearings, and conflict resolution on Section 10 (1899 Act) permit actions. This resulted in the Corps making a revision to its permit regulations whereby the Corps essentially stopped issuing Section 10 permits when objections were voiced by the Fish and Wildlife Service.

- 1969 - The National Environmental Policy Act of 1969 required that federal agencies consider the environmental impacts when making decisions relative to an activity regulated by a federal agency.

- 1970 - The Water Quality Improvement Act of 1970 required that any federal agency issuing a permit involving activities in the navigable waters of the United States must ensure that such activities would not violate applicable water quality standards.
* 1970 – By Executive Order 11574, President Nixon established the Refuse Act Permit Program (RAPP) in December 1970. The objective of this program was to insure that industrial wastes, not conforming to water quality standards, would not be discharged into the nation's waterways.

The responsibility for administering this new permitting program was given to the Corps of Engineers, while the Environmental Protection Agency (EPA) was to have complete responsibility for determining whether discharges conformed to water quality standards. In the face of significant controversy, a 1971 court decision brought the program to a halt.

* 1972 – The Federal Water Pollution Control Act was amended in 1972 to establish two separate programs to replace RAPP. One program was established under Section 402 to regulate point source discharges from both industry and municipalities. The second program was established under Section 404 to regulate the discharge of dredged or fill material into navigable waters.

Section 402 was to be administered by EPA, while the administration of Section 404 was delegated to the Corps of Engineers. However, the Corps' administration of Section 404 was subject to veto action by EPA, if the administrator of EPA determined that the proposed discharge would have an unacceptable adverse impact on municipal water supplies, shellfish beds, fishery areas, and wildlife or recreational areas.
These 1972 amendments also rejected use of the term "navigable waters" for the Section 402 and 404 programs. This term was replaced with "waters of the United States," which had a much broader meaning than "navigable waters."

* 1973 - Enactment of the *Fish and Wildlife Coordination Act of 1973* required the Corps to consult with the U.S. Fish and Wildlife Service, as well as state fish and wildlife agencies, prior to issuing permits (under Section 10 of the 1899 Act) for work in navigable waters. This consultation requirement, which was oriented towards the conservation of wildlife resources, did not, however, require the Corps to accept the recommendations of the wildlife agencies, i.e., the Corps could legally issue a permit over the objection of these consulting agencies.

* 1974 - The Corps published a final regulation for the administration of the "404" program. However, in response to public comment and a review of judicial precedents, the Corps regulation was based on the traditional definition of "navigable waters", not the prescribed definition of "waters of the United States", which was being used by EPA in administering the Section 402 program.

* 1975 - The "navigable water" issue led to a court decision in 1975 that ordered the Corps to rescind that portion of their 1974 regulations that used the limited definition of navigable waters in administering the "404" program. In compliance with this order, the Corps published four new alternatives for the administration of Section 404. These alternatives were circulated for public and agency comment.
On July 26, 1976, the Corps published an interim final regulation which included an expanded definition of "navigable waters". The Corps recommended that this new regulation be implemented over a two-year "phase-in" process.

* 1977 - The revisions proposed by the Corps to the Section 404 regulations became effective on July 19, 1977. These new regulations completely eliminated the term "navigable waters" and made exclusive reference to the term "waters of the United States." These revisions also included wetlands within Section 404 jurisdiction and established the "nationwide permit" to streamline the permitting process for "routine activities."

* 1978 - On December 28, 1978, President Carter signed into law the Clean Water Act of 1977. This law created several significant changes in the "404" program; these changes are summarized as follows:

1. The Secretary of the Army was given authority to issue "general permits".
2. Exemptions were allowed for routine activities that were considered to have insignificant impacts.
3. Exemption of any discharge of dredged or fill material, which is determined to be a "best management practice" under an approved Section 208 plan.
4. Procedures for a state to assume administration of the "404" program.
5. Procedures to expedite permit processing.
6. Exemption of certain federal projects involving the discharge of dredged or fill material.
7. Procedures for handling violations and establishing penalties.
8. Recognition of a state's authority to control discharges of dredged or fill material within its jurisdiction.
9.2 Section 404 Permitting Process

As can be inferred from the historical data presented in Section 9.1, the Corps of Engineers has been given the responsibility for regulating a diverse range of activities in both "navigable waters" and "waters of the United States". Some of these activities fall under the Section 404 program, while other activities are regulated under different programs. Specifically, 33 CFR, Part 320.2 (Department of Defense, 1986) lists seven authorities under which the Corps may issue permits:

1. Section 9 of the Rivers and Harbors Act of 1899.

2. Section 10 of the Rivers and Harbors Act of 1899.

5. Section 14 of the Rivers and Harbors Act of 1899.

Depending upon the nature of the proposed work, a project may require permits under more than one of these authorities; e.g., an applicant for a "404" permit may find that a proposed bank stabilization project will also require a Section 10 permit.

In the interest of efficiency, the Corps has developed a permit processing
program which follows the same or very similar steps for all of the permitting authorities assigned to the Corps. The Corps has developed the following categories of permits that may be used to satisfy federal regulations:

1. Individual Permits

 a. *Standard permit*, which has been subjected to the complete permitting process, including the public notice and comment phase.

 b. *Letters of permission* may be issued through an abbreviated permitting process if the proposed activity is of a minor or routine nature and adverse public comments are unlikely. A public notice is not required for this form of an individual permit.

2. General Permits

 a. *Regional permits* may be issued by the Corps to authorize specific activities within a certain region of the country. For example, a regional permit was issued by the Corps in 1982 to allow construction of minor boat docks and related activities in the more highly developed areas of the Colorado River.

 b. *Nationwide permits* are issued by the Corps to allow specified activities on a nationwide basis.

 c. *Programmatic permits* are based on an existing state, local, or other federal agency program. The primary purpose of this permit is to avoid duplication of effort in the lengthy processing of permits.
3. Section 9 Permits

This permit relates to the construction of a dam or dike across any navigable water of the United States. The permit title refers to Section 9 of the Rivers and Harbors Act of 1899. Other sections of the 1899 Act are covered under either individual permits or general permits.

Individual permits are issued when the proposed activity does not fall into a category of work for which a general permit has already been issued. Applicants must apply to the Corps for an individual permit, and work on such a project cannot commence until the application process is completed and a written permit issued.

In some cases, a general permit may have already been issued by the Corps for specified types of routine activities in certain regions of the country, or even on a nationwide basis. If the proposed activity meets the criteria of an existing general permit, an application for a Corps permit is not required. However, there may be certain cases where the Corps must be notified of the proposed activity prior to initiation of work on such activity.

As published under 33 CFR, Part 330.6 (Federal Register, Volume 51, No. 219, November 13, 1986) the Corps has presently authorized 26 nationwide permits. Of this total, 10 permits apply to Section 10 of the Rivers and Harbors Act of 1899, 6 permits apply to Section 404 of the Clean Water Act, and 10 permits address both Section 10 and Section 404 activities.

When a general permit is not applicable to a proposed activity, the project sponsor must initiate the process to obtain an individual permit from the Corps. To assist applicants in this task, the Corps has published an information pamphlet entitled: "United States Army Corps of Engineers, Regulatory Program, Applicant Information" (EP 1145-2-1, May 1985). This document provides background information on the permitting process, defines certain terminology, identifies the steps in the permitting procedure (along with an estimated time-table), lists
the evaluation factors that will be used in deciding to approve or deny the permit, and provides a sample application form, along with step-by-step instructions on completing the form.

Basically, the pertinent information requested on the permit application deals with the applicant's name and address, a very detailed description (including drawings) of the proposed activity, and the location of the activity. The completed application is sent to the appropriate District Regulatory Office of the Corps of Engineers.

Upon receipt of the application, the Corps will determine whether the abbreviated "letter of permission" option is applicable or whether a formal public notice is required as part of issuing an "individual permit". From a time perspective, the Corps' pamphlet states:

"Most applications involving Public Notices are completed within four months and many are completed within 60 days."

Obviously, the processing time, will to some degree, be dependent upon the complexity of the proposed activity and the number and magnitude of impacts that the activity will create on the environment. The Corps' pamphlet indicates that the following factors will be considered in processing a permit:

- conservation
- economics
- aesthetics
- general environmental concerns
- wetlands
- cultural values
- fish and wildlife values
- flood hazards
- floodplain values
Three general evaluation criteria are also listed as being considered in the processing of every permit:

- the relative extent of the public and private need for the proposed activity;
- the practicability of using reasonable alternative locations and methods to accomplish the objective of the proposed activity; and
- the extent and permanence of the beneficial and/or detrimental effects which the proposed activity is likely to have on the public and private uses to which the area is suited.

It is important to note the authorities of both the Corps and EPA during the processing of a Section 404 permit. Specifically, 33 CFR Part 320.2 (f) states:
"The selection and use of disposal sites will be in accordance with guidelines developed by the Administrator of EPA in conjunction with the Secretary of the Army and published in 40 CFR Part 230. If these guidelines prohibit the selection and use of a disposal site, the Chief of Engineers shall consider the economic impact on navigation and anchorage of such a prohibition in reaching his decision. Furthermore, the Administrator, (EPA) can deny, prohibit, restrict or withdraw the use of any defined area as a disposal site whenever he determines, after notice and opportunity for public hearing and after consultation with the Secretary of the Army, that the discharge of such materials into such areas will have an unacceptable adverse effect on municipal water supplies, shellfish beds and fishery areas, wildlife, or recreational areas."

Obviously, this statement indicates that the Corps does not have absolute control over the approval of a "404" permit. If conditions warrant, the EPA has the authority to initiate proceedings to veto a Corps' approved "404" permit.

Certainly, the foregoing evaluation criteria may pose a formidable first impression to an applicant's thoughts of ever receiving an approved permit. However, the Corps indicates that only 3% of all permit requests are denied.
9.3 Monitoring and Enforcement of the Section 404 Program

Enforcement of the permitting programs delegated to the Corps is very dependent upon a monitoring program to identify those who are performing regulated activities without a permit or those who may be exceeding the limitations of a general or individual permit. Certainly an effective monitoring program would require substantial staff to perform the necessary field investigations to identify violations.

To provide such "staff", the Corps not only relies on its own employees, but encourages members of the public and representatives of state, local, and other federal agencies to report suspected violations.

Enforcement guidelines are outlined in 33 CFR Part 326. Once an offending party has been identified, the federal code requires that steps be taken to notify the party responsible for the illegal activities. Depending on the status of the activity, this notification may take the form of a "cease and desist" order, and may include a directive that certain "initial corrective action" be undertaken within a specified time frame.

Upon completion of the specified "initial corrective action", or if a project was already completed when the violation was discovered, the Corps may direct that an "after-the-fact" permit application be pursued. The processing of this application may identify the need for additional corrective action before a permit will be issued.

If the applicant refuses to perform the prescribed corrective action, the Corps is authorized to initiate legal action as specified in 33 CFR Part 326.5. Both civil and criminal actions are available to enforce the provisions of the regulatory program. Maximum penalties for failure to obtain a permit prior to discharging dredged or fill material into waters of the United States, or for violation of the conditions of a permit once issued, are $60,000 per day in criminal fines, up to three years imprisonment, and $25,000 per day in civil penalties (personal communication, Corps/AFMA 9/2/87).
9.4 Section 404 Problems in Arizona

When reviewing the "family tree" of the "404" program (Section 9.1), it is obvious that its ancestral roots are linked to the regulation of true navigable waterways that were historically used for commercial purposes. Such waterways maintain a perennial flow and are sufficiently large to accommodate shipping traffic.

Through the years these regulatory programs have been broadened to cover not only navigational issues, but also an extensive list of environmental topics. During this process of evolution, terminology has been added to the programs which seems oddly out of place when applied to a desert environment composed primarily of dry washes. Perhaps the majority of the frustrations and problems associated with the "404" program in Arizona revolves around the jurisdictional limits of the program as defined by two key terms:

* "waters of the United States"; and
* "ordinary high water mark"

As stated under 33 CFR Part 320.2 (f), the "404" program applies to ".............the discharge of dredged or fill material into waters of the United States.............", while 33 CFR Part 328.4 (c.1) establishes jurisdictional limits along these waters as extending "............. to the ordinary high water mark." These key terms are defined as follows:

waters of the United States

This term has an extremely lengthy definition in 33 CFR Part 328.3 (a). An important excerpt from this definition states: "............. all other waters such a intrastate lakes, rivers, streams (including intermittent
streams), mudflats, sandflats, wetlands, sloughs, prairie potholes, wet meadows, playa lakes, or natural ponds, the use, degradation or destruction of which could affect interstate or foreign commerce including:"

ordinary high water mark

As defined under 33 CFR Part 328.3 (e): "...... that line on the shore established by the fluctuations of water and indicated by physical characteristics such as clear, natural line impressed on the bank, shelving changes in the character of the soil, destruction of terrestrial vegetation, the presence of litter and debris, or other appropriate means that consider the characteristics of the surrounding areas."

As a matter of interest and clarification, it should be noted that 33 CFR also uses the term "navigable waters of the United States", which is defined as:

"those waters that are subject to the ebb and flow of the tide and/or are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. A determination of navigability, once made, applies laterally over the entire surface of the waterbody, and is not extinguished by later actions or events which impede or destroy navigable capacity." (Reference: 33 CFR Part 329.4).

This term, (navigable waters of the United States) which refers to streams that are navigable in the traditional sense, only applies to permits issued under the Rivers and Harbors Act of 1899 (primarily Sections 9 and 10 of that Act), and does not apply to Section 404 of the Clean Water Act.

A key phrase in the definition of "waters of the United States" is the inclusion of "intermittent streams". This phrase essentially brings all of Arizona's dry washes and arroyos into the regulatory program. As a result, any project
that will involve the placement of dredged or fill material into one of these intermittent or ephemeral streams is a potential candidate for a "404" program permit. Such projects might include culverted road crossings of small washes, bank protection projects, or flood control projects that would require the construction of levees, training dikes, or other types of fill within the jurisdictional limits of a waterway. Under current definitions, the channels on an alluvial fan would also be subject to "404" regulation.

The broad extent of "404" program jurisdiction is perceived by many state and local agencies to be an unnecessary and impractical requirement for federal regulation. Such a broad jurisdiction generates additional costs and delays in getting floodplain related projects completed. Undoubtedly, numerous private individuals and corporations have experienced similar frustration when attempting to develop floodplain property. Unless notified by a local governmental agency, most private individuals are probably not aware of the "404" program. This can often lead to unintentional violations of "404" program requirements.

In order to obtain local input relative to compliance with "404" program requirements, a questionnaire was developed and sent to 44 public agencies and 5 private consultants. This was part of the same questionnaire previously discussed under the alluvial fan sections of this report. Relative to the "404" program, responses were received from 17 government agencies and 2 private consultants.

The questionnaire was structured to solicit a response to the following issues:

* familiarity with the "404" program
* compliance with the program
* problems encountered with the program
* project delays caused by the program
additional project costs caused by the program
* recommended changes to the program
* benefits attributed to program compliance

A summary of respondent comments is provided in the following paragraphs.

familiarity

Fourteen of the 17 responding government agencies indicated they were familiar with the "404" program. Each of the two responding consulting firms also indicated familiarity with the program.

As a matter of interest, it should be noted that the author's review of the responses to this question indicated that, even though an agency stated familiarity with the program, their response to some questions raised doubts as to whether they truly understood the program requirements.

compliance

Of the 14 agencies indicating familiarity with the program, 13 stated that they comply with program requirements. One agency did not know if they had any activities that were in non-compliance. Both consulting firms indicated that they design projects to be in compliance with "404" program requirements. The remaining 3 respondents expressed no opinion on this category.

problems with compliance

Five government agencies and one private consulting firm indicated problems had been encountered in complying with "404" program criteria, while eight agencies and one consulting firm stated that no problems had been encountered. Four respondents voiced no opinion on this issue. Typical comments and problems are summarized as follows:

* "..... the Corps of Engineers doesn't have any hard and fast
rules as to where to apply their program."

"The main difficulty is in trying to mitigate the riparian habitat that other federal agencies feel we should mitigate."

"They have asked us to stop construction because of presence of some endangered fish species (in dry streams) and also some endangered riparian vegetation which there is no existence of."

"Resource agencies (e.g. U.S. Fish and Wildlife Service and Arizona Game and Fish Department) make recommendations for design changes that are often expensive, impractical from an engineering standpoint or which require revisions to engineering designs."

delays

Five agencies and one private consulting firm stated that compliance with the "404" program criteria had created project delays, while five agencies and one consultant also indicated no delays had been experienced. The remaining 7 respondents voiced no opinion on this issue.

Estimates of the magnitude of these delays ranged from "minor" to 20%-100%.

Typical comments were:

"Sometimes it appears that the regulatory division lacks any firm guidelines on scheduling the processing of applications. We are certainly not receiving permits in anything like the time prescribed in the Code of Federal Regulations. In one project, it caused a six month delay for a portion of the project. That delay became the basis of a lawsuit filed by a contractor against the County for violation of contract."
extra costs

Six public agencies and one private consulting firm indicated that the cost of a project had increased because of measures taken to comply with "404" requirements, and the remaining 9 respondents had no opinion on this issue. Estimated cost increases ranged from "minimal" to 5%-50%.

The only comment received on this issue was:

"Additional costs are encountered in mitigation of riparian habitat. Nobody seems to want to give any credit for there being any water available for wildlife."

(Note: Presumably, this comment is directed towards the reservoirs that are created as part of dam construction).

need for program changes

Six public agencies and one consultant expressed a need for "404" program changes. The remaining 12 respondents had no comment on this matter. Recommended changes are summarized as follows:

- "A Nationwide Permit for minor drainages (desert washes that rarely flow) would be helpful."

- "Recommend that a local COE employee who is familiar with Section 404 be available for assistance."

- "Introduce a standardized permit based on amount of land area disturbed."

- "Find ways to cut down the amount of time taken for approval."

- "Standardize the process so it is easy to implement."

215
• "Provide examples of what is needed to comply."

• "Jurisdictional area should be narrowed and mapped."

• "Jurisdictional intent and procedure should be published."

• "Regional/Agency type permits should be granted for flood control, highway department and public utility projects."

• Program places too much emphasis on environmental issues, while not giving any concessions to reduced property damage and potential loss of life resulting from the construction of flood control projects.

• "Define very clearly those selected streams in Arizona for which the regulations should apply, thus eliminating the "nth" tributary application of the regulations which is currently being used."

• "If they want to regulate environmental mitigation in ephemeral washes, specific legislation should be passed."

• "We feel that the natural resource agencies will often make comments about technical issues that are outside of their area of jurisdiction and expertise. We feel that either the Corps should instruct the natural resource agencies to confine their comments to what they are supposed to know best or not make the applicant respond to these "extra-territorial" comments."
As part of their flood control program, some agencies have acquired large tracts of floodplain property, which provides prime riparian habitat. A comment was made that the "404" program should be changed to allow mitigation credit towards such lands.

Several respondents emphasized the need for a better definition of "ordinary high water mark", as it is applied to the dry washes in Arizona.

Program benefits

Three government agencies and one consultant felt that the "404" program provided certain benefits, while seven government agencies stated that the program produced no benefits. Eight respondents offered no opinion on program benefits.

Some of the benefits/comments related by the respondents are listed as follows:

* "...... ultimately encourages preservation and/or restoration of riparian habitat as an element of design for flood control projects."

* "...... anything that requires an agency to take a closer look at what their project is doing to floodplains, watersheds, and riparian habitat is important in maintaining a quality environment."

* "We find that going through the "404" permit process slows the project down, does not provide or promote any better design and does not promote a better regulatory environment for the general
public. This permitting process is only a way for other agencies, of the environmental type, to have a say in your floodplain project."

- "The program tends to promote more environmentally sensitive design for both public and private projects."

- "Better design and effective regulation."

- "It does provide more effective regulatory environment and keeps the developers honest. Also, the public administrators."

In summary, the relatively minimal response to the "404" questionnaire would tend to suggest that, on a statewide basis, the "404" program is not viewed as a major problem by local government agencies. This conclusion is based on the fact that only 17 of 49 potential respondents felt the program was of sufficient importance to warrant a response. Additionally, only six of the 17 respondents indicated that they had encountered problems in complying with the program.

It may be that many of the smaller municipalities and counties in Arizona are not acquainted with the "404" program and its broad jurisdictional limits. As a result, many projects may be constructed without any knowledge that the project is subject to Corps' regulatory criteria. If these "possible" unreported violations were brought to the Corp's attention, there might be much more opposition to the program than the questionnaire survey indicated.
9.5 Nationwide Permits

The Corps of Engineers has approved 26 Nationwide Permits that authorize the pursuit of certain routine and relatively minor activities that would fall within the jurisdiction of either Section 10 of the Rivers and Harbors Act of 1899 and/or Section 404 of the Clean Water Act. The primary intent of such permits is to eliminate the delays, paperwork, and expenditure of man-power that would otherwise accompany the processing of an individual permit for these minor projects.

As stated previously, 16 of these Nationwide Permits relate to activities normally regulated under the "404" program. Several of these permits are directly applicable to activities that frequently occur in the dry washes of the desert. Examples of such permits are summarized as follows:

Nationwide Permit No. 13

This permit authorizes the placement of a limited amount of bank stabilization to prevent erosion along a watercourse. For application to a dry desert wash, the major limitations are:

a. The bank stabilization activity must be less than 500 feet in length.

b. The activity is limited to less than an average of one cubic yard per running foot placed along the bank.

Nationwide Permit No. 14

The placement of fill for "minor road crossings" of a wash or stream is authorized under this permit. Limitations require that the crossing be culverted, bridged, or otherwise designed to prevent the restriction of, and to withstand, expected high flows.

A "minor road crossing fill" is defined as a crossing that involves the discharge of less than 200 cubic yards of fill material below the plane of ordinary high water.
Nationwide Permit No.18

This permit authorizes the placement of up to 10 cubic yards of fill into any waters of the United States, with the exception of wetlands. However, the fill cannot be placed for the purpose of stream diversion.

Nationwide Permit No.26

Up to 10 acres of surface area of certain waters may be filled under this permit. However, there are numerous restrictions regarding the placement of such fill. Some of the more prominent restrictions are listed as follows:

a. If the fill will impact between 1 to 10 acres of waters of the United States, the Corps' District Engineer must be notified prior to initiation of work.

b. The permit is only applicable to non-tidal rivers, streams, and their lakes and impoundments, including adjacent wetlands, that are located above the headwaters, and other non-tidal waters of the United States that are not part of a surface tributary system to interstate waters on navigable waters of the United States. (Note: As of April 1988, the Colorado River is the only waterway in Arizona that is classified as a "navigable water").

c. There are numerous (14) conditions that must be complied with when operating under this, or any of the other nationwide permits. These conditions relate to environmental, navigation, maintenance, tribal rights, historic properties, and water quality issues.

d. Under certain circumstances, work cannot begin until notification to proceed is received from the Corps.
Of all the nationwide permits, #26 has probably received the most attention and use within Arizona. However, with all the "conditions" attached to this permit, its usefulness would appear to be very limited. The value of this permit is potentially diminished by the condition that it only applies to waters located above the "headwaters" of a stream. This term is defined as follows:

headwaters

The point on a non-tidal stream above which the average annual flow is less than five cubic feet per second. For streams that are dry for long periods of the year, district engineers may establish the "headwaters" as that point on the stream where a flow of five cubic feet per second is equaled or exceeded 50 percent of the time. (Reference: 33 CFR Part 330.2 b)

The use of this term to establish a jurisdictional limit for Nationwide Permit No.26 injects the same type of uncertainty that is associated with defining the "ordinary high water mark" as the lateral limit of waters of the United States.

By referencing the definition of "headwaters" to an average annual flow of 5 cfs, hydrologic calculations must be performed to determine the location on a stream where this threshold is exceeded. Given the numerous hydrologic variables that influence the average annual flow, and the multitude of hydrologic methodologies that could be employed in calculating such a parameter, it would be nearly impossible to achieve consistency in identifying headwater locations if standardized procedures were not adopted.

Personal correspondence (February 29, 1988 and April 4, 1988) between the author and the Los Angeles District Corps of Engineers revealed that the Corps has delineated headwater limits for most of the major streams within the jurisdiction of the Los Angeles District. Headwater limits were based on a statistical analysis of hydrologic data. The Corps published a list of these streams, and their headwater limits, in March 1982. This list is presently used
by the Corps when decisions related to headwater limits are required.

For Arizona, this list of streams and headwater limits is very conservative, in that it shows the vast majority of streams and ephemeral washes as lying above the headwaters of the state’s major river systems. Accordingly, if less than 1 acre of surface area of fill is contemplated in a wash above these headwater limits, and no historic properties will be impacted, the work may proceed under Nationwide Permit No.26 without having to notify the Corps. However, project activities that would impact between 1 and 10 acres of surface area would still require that a formal notice be sent to the Corps and that any construction activity not be initiated until authorized by the Corps.

Use of the Corps' 1982 list of headwater delineations for Arizona substantially improves the utility of Nationwide Permit No.26 for small-scale projects on desert washes and alluvial fans. The Arizona Department of Transportation (ADOT) has successfully utilized this nationwide permit for the majority of their projects which require compliance with "404" program criteria.
9.6 ADOT Policy for "404" Program Compliance

All "404" program investigations for ADOT projects are coordinated by the office of Environmental Planning Services (EPS). Discussions with the manager of this office revealed that compliance with this regulatory program is not presently a major hindrance to ADOT projects. Most of the "404" program activity directed to this office has been disposed of under Nationwide Permit No. 26 which allows, with certain restrictions, the discharge of dredged or fill material into not more than 10 acres of non-tidal waters of the United States. As discussed in Section 9.6, a special category of this nationwide permit essentially exempts those projects which impact less than 1 acre of such waters. The majority of ADOT projects meet the criteria of this special category.

EPS has adopted a standardized procedure to address "404" program requirements for ADOT projects. This procedure, which also includes those ADOT projects contracted to private consultants, is standardized through the use of an ADOT evaluation form entitled "INITIAL PROJECT ENVIRONMENTAL DETERMINATIONS". This form serves as a checklist to insure that: 1) socioeconomic; 2) cultural; 3) natural environment; 4) physical; and 5) construction impacts, associated with the proposed project, are identified.

The evaluation form concludes with a list of recommended actions, one of which is the possible requirement for a "404" program permit.

Relative to "404" program criteria, every ADOT project is approached as follows:

1. Each project is evaluated to determine if more than 1 acre of surface area of waters of the United States will be impacted. If less than 1 acre is involved, a written "memo to file" is prepared documenting the investigation and no further action is required under Nationwide Permit 26.
2. If the project is found to impact between 1 and 10 acres of waters of the United States, EPS requests investigations of the project by the State Game and Fish Department and the Arizona Commission of Agriculture and Horticulture. These two agencies assess the environmental impact to wildlife and plants, respectively. Contract consultants are also used to provide a "cultural resources investigation" of the project to determine any archaeological impacts. In accordance with the Arizona State Historic Preservation Act of 1982, an assessment of any historical value of the project site is also prepared. A "visual qualities" assessment is also made of the site to determine if there would be any adverse impact to scenic and recreational values.

The information obtained from these investigations is then transmitted to the Corps in accordance with the notification requirements of Nationwide Permit No. 26.

When federal funding is involved in a project, ADOT follows these same procedures, but additionally requests an investigation from the federal Fish and Wildlife Service.

For those projects which lie beyond the authorization of any nationwide permits, ADOT submits an application for an individual "404" permit.

The procedure adopted by ADOT for screening projects to determine eligibility for "404" program requirements is a thorough, consistent approach which appears to function very well. ADOT personnel indicate that this standardized approach, along with extensive application of Nationwide Permit No. 26, has resulted in minimal manhour costs to insure compliance with the "404" program. Discussions with local Corps' representatives indicates that the Corps also feels the present ADOT procedures provide a reliable and functional approach for the determination of "404" permit processing requirements.

The fact that this screening process is applied to all ADOT projects has undoubtedly produced a keen awareness of "404" program criteria with all ADOT
design engineers. This may well explain ADOT's comment that "Section 404 has not been the cause of any significant design changes." Accordingly, it does not appear that the "404" program is presently creating an obstacle to highway planning and development in Arizona.

A consensus opinion from ADOT personnel, who were interviewed during the course of this research study, indicates their major criticism of the "404" program is the difficulty in establishing the "ordinary high water mark" when trying to determine the lateral extent of "waters of the United States." ADOT staff also expressed a strong desire to see some type of regional or nationwide permit adopted that would totally exempt the smaller desert washes from "404" program jurisdiction.
9.7 **Summary of Section 404 Issues**

It does not appear that enactment of Section 404 of the *Clean Water Act* gave substantial consideration to how it might be applied in a desert region. The "404" program has evolved from previous federal acts and laws that were based primarily on preserving the navigability of a riverine environment that was subject to perennial stream flow. Accordingly, some of the key terminology used in the "404" program to determine jurisdictional limits is very awkward when applied to a dry desert wash.

As presently structured, the "404" program is an environmental protection package; it does not contain any provisions for being a floodplain management or flood control program. In the author's opinion, the criticisms of the program in Arizona may largely be traced to four factors:

1. Application of a traditional riverine program to a non-riverine, desert environment that is characterized by normally dry streams that are prone to rapid shifts in alignment during flash flood events.

2. Use of key program terminology that is poorly suited to the fluvial systems of the southwestern United States. For example, "waters of the United States" and "ordinary high water mark" are simply not descriptive terms to apply to a dry, sandy arroyo in the desert.

3. A possible misperception, by both local government and the private sector, that the program was primarily intended to be a floodplain management oriented program, rather than environmentally oriented. Many people are undoubtedly surprised to learn that such factors as endangered plant and animal species, historical sites, food and fiber production, cultural values, etc. are major issues that will decide the fate of a permit application.
The title "Clean Water Act" does not readily cause one to think in terms of historical and cultural issues. Perhaps a title such as the "River System Environmental Protection Act" would be more consistent with the true purpose of the "404" program.

4. Regulatory programs, whether they be federal, state, or local, are often greeted with resistance and viewed as another bureaucratic obstacle to the efficient accomplishment of some task. Undoubtedly, the paperwork associated with "404" program compliance, as well an occasional project delay or cost increase, have generated a negative reaction on the part of some agencies and individuals.

In summary, the "404" program provides a useful function in protecting and preserving the environment along the nation's river systems and wetland areas. Within Arizona, certain elements of the program have received criticism, but not on a scale that suggests a need for massive changes. The Corps of Engineers is aware of these shortcomings and is receptive to considering changes in the program that would make it more adaptable to the unique river system characteristics of the Arizona desert.
10 RESEARCH RECOMMENDATIONS

The two primary objectives of this report are to: 1) present an overview of the status of floodplain management and engineering analysis techniques on alluvial fans in Arizona; and 2) evaluate application of Section 404 of the Clean Water Act to the ephemeral washes in Arizona. Concluding comments and specific recommendations relative to each of these objectives are presented in the following subsections of this report.
10.1 Alluvial Fans

To date, Arizona has been spared a major flood disaster on an active alluvial fan. This is primarily due to the fact that there has historically been very little urbanization of alluvial fans in Arizona. However, this trend is beginning to change, as major metropolitan areas such as Tucson and Phoenix expand into the surrounding desert foothills. In order to avoid the potential for flood disasters, this urban expansion onto alluvial fans must be based on a master drainage plan that considers the unique flooding hazards that exist on fans. Such a plan should be based on the "whole fan" approach in order to anticipate and mitigate the impacts that development on flood control systems will impart to adjacent or downstream properties.

Information presented in this report indicates the availability of several technical procedures that may have application to portions, or all, of an alluvial fan analysis. The selection of a specific technique will depend on the needs of the project. These procedures are not represented as being a complete solution to the analysis of alluvial fan problems; however, when used with sound engineering judgement, they can provide reasonable design data.

From a floodplain management perspective, the alluvial fan management study prepared for FEMA by Anderson-Nichols & Company, Inc., provides practical guidelines for the successful urbanization of a fan environment. Communities that are faced with the impending development of an alluvial fan should review the FEMA study and proceed in accordance with the recommendations presented therein.

The following recommendations for alluvial fan issues are divided into two categories. General recommendations are provided as guidelines for tasks that can be performed without the need or delays associated with further research. A second category outlines technical recommendations that will outline needed research to improve the technical accuracy of methodologies used to quantify alluvial fan process.
10.1.1 General Recommendations

The awareness of alluvial fan problems in Arizona and techniques for improving the accuracy of technical studies for such landforms could be enhanced by adopting the following recommendations:

- **Education** - One of the most effective ways to prevent flooding disasters on alluvial fans is to insure that regulatory agencies, professional engineers, and the general public are made aware of the problems associated with these landforms.

 Short-courses, seminars, and newsletters would provide ideal mechanisms for distributing such information. These events could be sponsored by FEMA, the Arizona Department of Water Resources, the Arizona Transportation Research Center, the Arizona Floodplain Management Association, county flood control districts, and local chapters of professional societies.

 Special emphasis should be given to requiring non-technical administrators, who may be involved in decisions regarding zoning or floodplain management policies, to participate in this education process.

- **Information Exchange** - This concept is actually an extension of the recommendation for education on alluvial fan issues. As public agencies, engineers, and planners gain more experience with alluvial fans, forums should be established where a free exchange of
information can take place. Topics could include public awareness programs, design standards, actual performance levels of installed management tools, and risk assessment.

* **Existing Management Policies & Tools** - As stated previously, FEMA has already published excellent guidelines for floodplain management on alluvial fans. Several technical methodologies have also been presented for use on alluvial fans. Agencies should be made aware of this literature and encouraged to read it. Development of a master plan and use of the "whole fan" concept should be emphasized to any agencies or developers who are faced with the urbanization of an alluvial fan.

This research report presents a compendium of pertinent alluvial fan issues and literature reviews. Distribution of this report to regulatory agencies would provide an excellent foundation upon which new ideas, concepts, and expanded literature reviews could be based.

* **Knowledgeable Design Professionals** - Public agencies and developers should be encouraged to utilize professionals who understand alluvial fan processes and have prior experience in the analysis of these landforms. It is highly recommended that a qualified geologist be a key member of the project team. Emphasis should be placed on extensive field work in order to develop an accurate profile of the physical characteristics of the specific alluvial fan under investigation.
10.1.2 Technical Recommendations

The following recommendations pertain to technical research that would require funding by a public agency. A brief discussion of the suggested research plan is followed with an estimated budget and performance time.

* Primary Research Goal—Data Collection - One of the consistent, major omissions noted by the author during a review of the technical literature used for this research study, was the lack of measured data taken from actual flood events on alluvial fans. If such data were available, significant improvements could be made in the accuracy and calibration of mathematical relationships that are presently used to quantify the hydrologic, hydraulic, and sediment transport processes on alluvial fans.

Accordingly, three or four test sites should be selected for installation of monitoring systems. These systems would include:

1. continuously recording rain gages
2. continuously recording stream gages
3. scour gages
4. sediment transport measurements
5. sedimentation "poles" to measure sediment deposition on the fan surface.
6. photographic surveillance

The data collected from such a system would be used to: 1) quantify the degree of hydrograph attenuation that accompanies movement of a flood wave across the fan surface; 2) quantify scour processes; 3) quantify sediment deposition patterns; 4) quantify sediment
yields; and 5) monitor changes in flow patterns and the occurrence of channel avulsions. The collection of such data would be used to develop new and more accurate modeling procedures for use on alluvial fans.

Both undeveloped fans and fans that are about to undergo major urbanization should be included in the test sites. The inclusion of urbanizing fans would provide valuable data on the actual performance of floodplain management tools and identify the fluvial system impacts that urbanization causes to the alluvial fan environment.

For the sites that are ultimately selected for instrumentation, a historical profile should be developed that would include aerial photographs, topographic maps, any available flooding reports, and a geologic history. A new topographic map should also be prepared for the site in order to establish a baseline condition for the monitoring program. Rectified aerial photographs should be made after any major flow event in order to identify changes to the overall fan surface.

* Secondary Research Goals – Although the author considers a data collection system to be the most important research need at the present time, there are also other issues that warrant investigation. These include:

1. Expand the FEMA/Anderson-Nichols' physical model studies to investigate more complex urbanized settings, in order to develop
more definitive design standards and performance curves for specific flood-hazard mitigation measures. Use this data to develop a "design manual" for alluvial fan management tools.

This modeling should also include an analysis of highway design criteria that could be used to promote more functional and economic cross-drainage systems for roadways located on an alluvial fan.

In addition to evaluating the effectiveness of structural mitigation measures, the laboratory models should also be used to develop and test numerical models that might more accurately predict flow characteristics across alluvial fans (e.g., 2-dimensional models).

2. Continued literature search and technical evaluations to provide practical guidelines on existing technical procedures that could be used for both better floodplain delineations and the design of floodplain management tools on alluvial fans. Although the goal of new, improved technical procedures is already included in the higher priority recommendation for "data collection", an interim solution would be the compilation and publication of existing techniques that could be used on alluvial fans until field studies and laboratory research yields more improved methods. This interim solution would organize existing methodologies into a design manual format that would explain the type of environment under which a specific procedure should be used, the end product that would be expected from the procedure, and any limitations associated with the procedure.
Preparation of such a manual should focus on some type of standardized approach that would provide consistent results and simplify the design process for engineers and the review process for regulatory agencies. This might consist of some type of matrix approach that would contain uniform, regionalized methods, along with selection criteria and limitations for their use.

3. Investigations to examine the potential for contamination of alluvial fan aquifers, as a result of ground water recharge in urban areas. The potential for this problem is described by James, et al. (1980):

"........ the greatest reason for reducing land use intensity on alluvial fans is that of protecting ground water recharge areas. Most ground water recharge in desert climates occurs on fans. Care needs to be exercised that flood control systems do not unnecessarily restrict recharge and that flood waters do not become polluted with heavy metals, carcinogens, or other highly toxic materials and contaminate underground aquifers."

This issue should be given consideration when deciding to construct detention/retention basins on urbanized alluvial fans.

10.1.3 Cost Estimates

This section of the report will only address cost estimates for the technical research recommendations. It is believed that the general recommendations can be implemented within the present operational mode of most regulatory agencies and professional societies, without incurring any significant costs.
Cost estimates for specific alluvial fan recommendations are presented in Tables 10.1, 10.2, 10.3, 10.4, and 10.5. These cost estimates have been developed with the specific intent of requiring a substantial manhour commitment at the senior level. The author is of the opinion that the products to be derived from the proposed research need to reflect this enhanced level of experience.

The following cost estimates should be considered very approximate and subject to revision as part of developing a detailed scope of work, should any of the recommendations be pursued beyond this research report. It is important to note that the cost estimates were initially developed on the basis of hourly labor rates that were considered representative of university-sponsored research teams. Should the work be conducted by private consultants, the labor costs would be approximately three times greater than those shown for university rates. This difference reflects the profit and overhead costs that must be charged by private consultants. For comparative purposes, the bottom of each table shows "Grand Total" costs for both university rates and private rates. The hourly rates shown in the tables are university rates.
Table 10.1

Estimated Cost to Install Data Collection System & Develop Historical Profile for One Alluvial Fan Site

<table>
<thead>
<tr>
<th>LABOR</th>
<th>Manhours</th>
<th>Hourly Rate</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Engineer(s)</td>
<td>960</td>
<td>$20</td>
<td>$19,200</td>
</tr>
<tr>
<td>Technician</td>
<td>960</td>
<td>16</td>
<td>15,360</td>
</tr>
<tr>
<td>Geologist</td>
<td>320</td>
<td>20</td>
<td>6,400</td>
</tr>
<tr>
<td>Survey Crew</td>
<td>40</td>
<td>100</td>
<td>4,000</td>
</tr>
<tr>
<td>Clerical</td>
<td>320</td>
<td>12</td>
<td>3,840</td>
</tr>
<tr>
<td>sub-total:</td>
<td></td>
<td></td>
<td>$48,800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>Number</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rain Gage (continuously recording)</td>
<td>10</td>
<td>$1,200</td>
<td>$12,000</td>
</tr>
<tr>
<td>Stream Gage (continuously recording)</td>
<td>3</td>
<td>5,000</td>
<td>15,000</td>
</tr>
<tr>
<td>Scour Gage</td>
<td>5</td>
<td>1,500</td>
<td>7,500</td>
</tr>
<tr>
<td>Sedimentation Poles</td>
<td>15</td>
<td>500</td>
<td>7,500</td>
</tr>
<tr>
<td>sub-total:</td>
<td></td>
<td></td>
<td>$42,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerial Mapping</td>
<td>$30,000</td>
</tr>
<tr>
<td>Small Equipment & Supplies</td>
<td>3,000</td>
</tr>
<tr>
<td>Travel</td>
<td>3,000</td>
</tr>
<tr>
<td>Reproduction</td>
<td>1,000</td>
</tr>
<tr>
<td>sub-total:</td>
<td>$37,000</td>
</tr>
</tbody>
</table>

Grand Total (University): $127,800
(Private): $225,400
Table 10.2
Estimated Annual Cost to Operate & Maintain Data Collection System for One Alluvial Fan Site

<table>
<thead>
<tr>
<th>LABOR</th>
<th>Manhours</th>
<th>Hourly Rate</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Engineer(s)</td>
<td>160</td>
<td>$20</td>
<td>$3,200</td>
</tr>
<tr>
<td>Technician</td>
<td>400</td>
<td>16</td>
<td>6,400</td>
</tr>
<tr>
<td>Geologist</td>
<td>80</td>
<td>20</td>
<td>1,600</td>
</tr>
<tr>
<td>Clerical</td>
<td>80</td>
<td>12</td>
<td>960</td>
</tr>
<tr>
<td>sub-total:</td>
<td></td>
<td></td>
<td>$12,160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>Number</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace Damaged Rain Gages</td>
<td>2</td>
<td>$1,200</td>
<td>$2,400</td>
</tr>
<tr>
<td>Replace Damaged Sedimentation Poles</td>
<td>2</td>
<td>500</td>
<td>1,000</td>
</tr>
<tr>
<td>sub-total:</td>
<td></td>
<td></td>
<td>$3,400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerial Photography</td>
<td>$1,000</td>
</tr>
<tr>
<td>Small Equipment & Supplies</td>
<td>1,000</td>
</tr>
<tr>
<td>Travel</td>
<td>1,000</td>
</tr>
<tr>
<td>Reproduction</td>
<td>200</td>
</tr>
<tr>
<td>sub-total:</td>
<td>$3,200</td>
</tr>
</tbody>
</table>

| Grand Total (University): | $18,760 |
| (Private): | 43,080 |
Table 10.3
Estimated Cost to Conduct Physical Model Studies of Floodplain Management Tools for Alluvial Fan Sites

<table>
<thead>
<tr>
<th>LABOR</th>
<th>Manhours</th>
<th>Hourly Rate</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Investigator(s)</td>
<td>960</td>
<td>$25</td>
<td>$24,000</td>
</tr>
<tr>
<td>Research Assistant</td>
<td>400</td>
<td>16</td>
<td>7,680</td>
</tr>
<tr>
<td>Clerical</td>
<td>160</td>
<td>12</td>
<td>1,920</td>
</tr>
<tr>
<td>sub-total:</td>
<td></td>
<td></td>
<td>$33,600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construct and Operate Model (labor & modeling facility)</td>
<td>$150,000</td>
</tr>
<tr>
<td>Small Equipment & Supplies</td>
<td>1,500</td>
</tr>
<tr>
<td>Travel</td>
<td>1,000</td>
</tr>
<tr>
<td>Reproduction</td>
<td>1,500</td>
</tr>
<tr>
<td>sub-total:</td>
<td>$154,000</td>
</tr>
<tr>
<td>Grand Total (University):</td>
<td>$187,600</td>
</tr>
<tr>
<td>(Private):</td>
<td>254,800</td>
</tr>
</tbody>
</table>
Table 10.4
Estimated Cost to Develop Guidelines for the Use of Technical Procedures to Conduct Engineering Analyses of Alluvial Fan Sites

<table>
<thead>
<tr>
<th>LABOR</th>
<th>Manhours</th>
<th>Hourly Rate</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Investigator(s)</td>
<td>960</td>
<td>$25</td>
<td>$24,000</td>
</tr>
<tr>
<td>Research Assistant</td>
<td>640</td>
<td>16</td>
<td>10,240</td>
</tr>
<tr>
<td>Clerical</td>
<td>160</td>
<td>12</td>
<td>1,920</td>
</tr>
<tr>
<td>sub-total:</td>
<td></td>
<td></td>
<td>$36,160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
<th></th>
<th></th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplies</td>
<td></td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>Travel</td>
<td></td>
<td></td>
<td>1,000</td>
</tr>
<tr>
<td>Reproduction</td>
<td></td>
<td></td>
<td>1,500</td>
</tr>
<tr>
<td>sub-total:</td>
<td></td>
<td></td>
<td>$3,000</td>
</tr>
</tbody>
</table>

Grand Total (University): $39,160
(Private): $111,480
Table 10.6
Estimated Cost to Determine Potential for Aquifer Contamination on Urbanizing Alluvial Fan Sites

<table>
<thead>
<tr>
<th>LABOR</th>
<th>Manhours</th>
<th>Hourly Rate</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Investigator(s)</td>
<td>960</td>
<td>$25</td>
<td>$24,000</td>
</tr>
<tr>
<td>Research Assistant</td>
<td>640</td>
<td>16</td>
<td>10,240</td>
</tr>
<tr>
<td>Clerical</td>
<td>160</td>
<td>12</td>
<td>1,920</td>
</tr>
<tr>
<td>sub-total:</td>
<td></td>
<td></td>
<td>$36,160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
<th></th>
<th></th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well Testing and Laboratory Analysis</td>
<td></td>
<td></td>
<td>$10,000</td>
</tr>
<tr>
<td>Supplies</td>
<td></td>
<td></td>
<td>1,000</td>
</tr>
<tr>
<td>Travel</td>
<td></td>
<td></td>
<td>2,000</td>
</tr>
<tr>
<td>Reproduction</td>
<td></td>
<td></td>
<td>1,000</td>
</tr>
<tr>
<td>sub-total:</td>
<td></td>
<td></td>
<td>$14,000</td>
</tr>
</tbody>
</table>

| Grand Total (University): | $ 50,160 |
| (Private): | 122,480 |
10.2 Section 404 Recommendations

Although application of Section 404 of the Clean Water Act to the desert washes of Arizona has created an additional administrative burden (as well as occasional cost increases and project delays) on both public and private entities, the existence of Nationwide Permit No. 26 provides a mechanism to minimize this burden for most projects.

Under the present structure of the "404" program, ADOT has established permitting procedures that function very well. No reasons were found to recommend changes to these procedures. However, ADOT voiced frustration over the inability to easily and consistently identify the "ordinary high water mark" that is used to establish jurisdictional limits of the program.

The Arizona Floodplain Management Association (AFMA) has also voiced frustration over the Corps interpretation and application of "404" program criteria to the ephemeral washes in Arizona. AFMA has opened formal communications with the Corps that critiques the program on the basis of: 1) too broad a jurisdiction; 2) excessive regulation; 3) increased project costs; 4) project time delays; and 5) inability to consistently identify the ordinary high water mark.

Sufficient criticisms and "gray areas" exist to justify a re-evaluation of the program as it is applied to the desert environment of the southwestern United States. Although the program is a worthwhile environmental protection package, its jurisdictional limits should be re-evaluated with respect to ephemeral streams; this may include nothing more than a more precise and measurable definition of the "ordinary high water mark", as it relates to a desert wash.

It is recommended that a task force, commission, or similar group be officially sanctioned by the State of Arizona to initiate formal discussions with the Corps to investigate ways in which the "404" program could be amended to acknowledge the unique characteristics of the desert environment. Such a task force should include representation from state, county, and municipal agencies. Environmental agencies should also be included in this group.
As stated previously, AFMA has already established dialogue with the Corps, in hopes of achieving revisions to the "404" program. The AFMA membership is composed of representatives from nearly all major communities and counties within the State. Accordingly, this organization is capable of voicing the concerns of a large cross-section of public agencies within Arizona and, therefore, would be a valuable participant in any State sanctioned task force.

Task force discussions should focus on specific problems that the various organizations perceive as being related to compliance with the program. Efforts should be made during these discussions to establish criteria for a "regional permit" that would be an acceptable compromise to all parties. The jurisdictional limits of this permit should be defined in terms of easily understood and measurable parameters that can readily be established in the field. These parameters should reflect the characteristics of the desert fluvial system.

The pursuit of direct, officially sanctioned discussions with the Corps of Engineers will provide a forum for a frank exchange of ideas that could be used to improve compliance with the "404" program in Arizona.
Bibliography

Bull, W.B., *Geomorphology of Segmented Alluvial Fans in Western Fresno County, California*, USGS Professional Paper 352-E, 1964

Federal Insurance Administration (FIS), *Federal Emergency Management Agency (FEMA), Risk Studies Completion and Full Program Status*, 1984

French, R.H., *Flood Hazard Assessment on Alluvial Fans: An Examination of the Methodology*, University of Nevada Desert Research Institute Publication No. 45040

Kumar, S., *Engineering Methodology For Delineating Debris Flow Hazards In Los Angeles County*, Water Forum 86, ASCE.

Pima County Department of Transportation & Flood Control District, *Appeal to the Restudy of the Pima County Flood Insurance Study*, 1987.

Sabol, G.V., *Urban Flood Channels In the Southwest*, Water Forum 81, ASCE.

U.S. Army Corps of Engineers (Los Angeles District), *Engineering Standards For Flood Protection Of Single Lot Developments on Alluvial Fans*, Draft Report

