ARIZONA DEPARTMENT OF TRANSPORTATION

REPORT NUMBER: FHWA-AZ00-489

SURVEY OF METHODS AND PRACTICES OF HIGH PERFORMING STATE HIGHWAY AGENCIES

Final Report

Prepared by:

Robert Moreno Cory Spencer Dr. Cliff Schexnayder Arizona State University College of Engineering and Applied Sciences Del Webb School of Construction Tempe, Arizona 85287

July 2000

Prepared for: Arizona Department of Transportation 206 South 17th Avenue Phoenix, Arizona 85007 in cooperation with U.S. Department of Transportation Federal Highway Administration The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Arizona Department of Transportation or the Federal Highways Administration. This report does not constitute a standard, specification, or regulation. Trade or manufacturer's names which may appear herein are cited only because they are considered essential to the objectives of the report. The U.S. Government and the State of Arizona do not endorse products or manufacturers.

Technical Report Documentation Page

1. Report No. FHWA-AZ-00-489	2. Government A	Accession No.	3. Recipient's C	atalog No.	
4. Title and Subtitle			5. Report Date July 2000	5. Report Date July 2000	
Survey of Methods and Practices of High Performing State Highway Agencies		6. Performing O	rganization Code		
7. Authors Robert Moreno, Cory Spencer and Dr. Cliff Schexnayder				rganization Report No.	
9. Performing Organization Nar	ne and Address		10. Work Unit N	0.	
College of Engineering & Applied Sciences Del Webb School of Construction Arizona State University, Tempe, AZ 85287			11. Contract or SPR-PL-	11. Contract or Grant No. SPR-PL-1-(55) 489	
12. Sponsoring Agency Name a ARIZONA DEPARTM 206 S. 17TH AVENU	and Address ENT OF TRANSPORTAT	ION	13.Type of Repo	ort & Period Covered	
PHOENIX, ARIZONA	85007		14. Sponsoring	Agency Code	
Project Manager: John	n Semmens				
Prepared in cooperatio	n with the U.S. Departm	ent of Transporta	ation, Federal Hig	hway Administration	
16. Abstract					
The literature review identified several methodologies used to measure performance, each having advantages and disadvantages. From this review a new methodology was created in an effort to sustain most the advantages identified in the previous studies while eliminating many of the disadvantages. The primary concern was to eliminate the state comparison methodology and focus on measurement of improvement over time.					
The new methodology primarily uses the same measurement categories identified in a study by David Hartgen from the University of North Carolina at Charlotte. Data from 1992 to 1998 was obtained from the FHWA's annual book of <i>Highway Statistics</i> and entered into a three year rolling average formula. This formula created five data points by averaging each three-year group of data from 1992 to 1998. Then an average annua percentage change in each category was calculated. The five states showing the largest percentage improvement in each of the output categories were identified as "high performing."					
The high perform improvement in the respe- methodologies. These me	ing states were probed in active categories. The prob ethodologies are identified	an effort to identify bes resulted in the i in the body of the	methodologies an dentification of sev report.	d strategies that caused reral successful	
17. Key Words 18. Distribution Statemen			ment	23. Registrant's Seal	
highway agency performance U. Na Se		U.S. public thro National Techni Service, Spring 22161	ugh the ical Information field, Virginia		
19. Security Classification	20. Security Classification	21. No. of Pages	22. Price		
Unclassified Unclassified 70					

<i>(</i>			METRIC (SI	') CON	VERSION	FACTORS			
APPROXIMATE CONVERSIONS TO SI UNITS			APPROXIMATE CONVERSIONS TO SI UNITS						
Symbol	When You Know	Multiply By	To Find	Symbol	Symbol	When You Know	Multiply By	To Find	Symbol
	-	LENGTH	'				LENGTH	·	
In ft yd ml in ² ft ² yd ² yd ²	inches feet yards miles square inches square feet square yards	2.54 0.3048 0.914 1.61 AREA 6.452 0.0929 0.836	centimeters meters kilometers centimeters squared meters squared	cm m km cm ² m ² m ²	mm' m yd km m ² yd ²	millimeters meters meters kilometers millimeters squared meters squared kilometers squared	0.039 3.28 1.09 0.621 AREA 0.0016 10.764 0.39	inches feet yards miles square Inches square feet square miles	In It yd mi In ² ft ² mi ²
MI AC	square miles acres	2.59 0.395 MASS (weight)	kilometers squared hectares	km ⁻ ha	ha	hectares (10,000 m ²)	2.53 MASS (weight)	BCI95	AC
oz ib T	ounces pounds short tons (2000 lb)	28.35 0.454 0.907 VOLUME	grams kilograms megagrams	g kg Mg	g kg Mg	grams kilograms megagrams (1000 kg) 	0.0353 2.205 1.103 VOLUME	ounces pounds short tons	oz Ib T
fioz gai ft³ yd³ Note: V	fluid ounces galions cubic feet cubic yards foiumes greater than 1000 L	29.57 3.765 0.0328 0.765 . shall be shown in	millimeters liters meters cubed meters cubed m ^a .	mL L m³ m³	mL L m³ m³	millimeters liters meters cubed meters cubed	0.034 0.264 35.315 1.308	fluid ounces gallons cubic feet cubic yards	floz gal ft³ yd³
		MPERATURE (*)	kact)			TE	MPERATURE (•x	act)	
°₽	Fahrenheit temperature	5/9 (atter subtracting 32)	Celsius temperature	• C	°C	Celsius temperature	9/5 (then add 32)	Fahrenheit temperature	۰F
T1 •	hese factors conform to SI is the symbol for the	the requirement International Sy	of FHWA Order 5190.1 stem of Measurements	i A '		32 40°F 0 40 1 1 1 1 1 1 1 - 40°C 20 0	98.6 80 120 1 1 1 1 20 40 37	212°F 160 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	'

Table of Contents

Executive Summary	. 1
I. Overview and Statement of Problem	. 2
Performance Measurement	. 2
Measurement of State Highway Agency Performance	. 2
SHA Performance Data	. 3
A Better SHA Performance Measurement Methodology	. 4
Summary	. 4
II. Literature Review	. 6
Introduction to Literature Review	. 6
Comparative Analyses of States	. 6
Highway Users Federation Reports	. 8
Individual Special Purpose Studies	. 9
Nebraska	. 9
New Jersey	. 9
Texas	10
Summary	10
III. Criteria Selection and Methodology	11
Selection of Measurement Criteria	11
Desired Results	11
Resources	11
Measurement Criteria	12
Resources	12
Results	12
Statistical Data	12
Federal Highway Administration Statistics	13
Three Year Rolling Average	16
High Performing States	17
IV. Results and Analysis	18
Selection of High Performing State Highway Agencies	18
Probing the State Highway Agencies	18
Rural Interstate Pavement Condition	19
Florida	19
Maryland	20
Virginia	20
Texas	21
Indiana	22
Summary	22
Urban Interstate Pavement Condition	23
Hawaii	23
Texas	23
Wyoming	23
Minnesota	24

Alabama	25
Summary	25
Rural Other Principal Arterial Pavement Condition	26
Idaho	26
Mississippi	27
Delaware	27
Oklahoma	28
Kentucky	28
Summary	29
Urban Interstate Congestion	30
West Virginia	30
Alaska	31
Idaho	31
Utah	31
Nebraska	31
Summary	32
Bridge Condition	32
Nevada	32
Wisconsin	33
Connecticut	33
New Jersey	34
Maine	34
Summary	34
Fatal Accident Rate	35
Alaska	35
New York	35
West Virginia	36
Massachusetts	36
California	37
Summary	38
Rural Other Principle Arterial Lane Width	39
Alaska	
New Jersev	
Rhode Island	39
Alabama	40
Idaho	40
Summary	40
V Conclusions and Recommendations	42
Conclusions	42
Recommendations	42
Pavement Condition – Rural & Urban Interstate & Rural Other Principal Arterial	42
Urban Interstate Congestion	43
Bridge Condition	44
Fatal Accident Rate	44
Rural Other Principal Arterial Narrow Lane Width	
Future Studies	

References	
Appendix A: Input Data	
Appendix B: Output Data	57

List of Tables

	Page
4.1 Rural Interstate Pavement Condition	19
4.2 Urban Interstate Pavement Condition	23
4.3 Rural Other Principal Arterial Pavement Condition	26
4.4 Urban Interstate Congestion	30
4.5 Bridge Condition	32
4.6 Fatal Accident Rate	39
4.7 Rural Other Principal Arterial Lane Width	40

List of Figures

Page
14
15

Executive Summary

The purpose of this research was:

- 1. Evaluate current research in the area of state highway agency performance measurement.
- 2. Create an effective performance measurement methodology for state highway agencies.
- 3. Identify state highway agencies with the most improved performance.
- 4. Probe these state highway agencies to determine what methodologies and strategies were utilized to achieve the performance improvement.

The literature review identified several methodologies used to measure performance, each having advantages and disadvantages. From this review a new methodology was created in an effort to sustain most of the advantages identified in the previous studies while eliminating many of the disadvantages. The primary concern was to eliminate the state comparison methodology and focus on measurement of improvement over time.

The new methodology primarily uses the same measurement categories identified in a study by David Hartgen from the University of North Carolina at Charlotte. Data from 1992 to 1998 was obtained from the FHWA's *Highway Statistics* and entered into a three year rolling average formula. This formula created five data points by averaging each three year group of data from 1992 to 1998. Then a percentage change in each category was calculated. The five states showing the largest percentage improvement in each of the output categories were identified as high performing.

The high performing states were probed in an effort to identify methodologies and strategies that caused improvement in the respective categories. The probes resulted in the identification of several successful methodologies. These methodologies are identified in the body of this report.

I. Overview and Statement of Problem

Performance Measurement

Performance measurement is one of the most important support tools managers need to guide their organizations. The ability to assess performance provides a picture of the past and affords guidance as to how to proceed in the future. It can highlight success and failure, and can cause the manager to completely reassess the methods and strategies currently in use. Unfortunately, as beneficial as it may be, the measurement of performance is very complex and often controversial.

Performance measurement, in theory, should be used as a tool to identify the accomplishment of goals or the lack thereof. It should tell the manager where things were done correctly and where performance is not to expected levels. But to truly understand the idea behind performance measurement, it is necessary to have a clear definition of performance.

Performance, for the purposes of this research, is defined as the accomplishment of desired goals. A critical question then is how can performance be measured? The first step is to identify "desired goals" and determine how feasible these goals are in relation to available resources. The second step, measurement, is also important to performance appraisal as it determines the evaluation process that defines goal attainment.

The identification of goals varies by specific situations. Because of this, controversy often results when measurements are compared. This fact is manifested in the case of trying to measure the performance of state highway agencies (SHA). There are fifty states and probably fifty sets of individual goals. These goals are based upon a variety of conditions, unique to each state. With such diversity how can one system be used to measure all of the SHAs?

Measurement of State Highway Agency Performance

Currently there are several schools of thought concerning the measurement of SHA performance. The most popular measurement system (not to be confused with the most widely accepted) is to select a set of criteria, measure each state at a point in time, and develop a ranking from 1 to 50 of each state's relative performance. David Hartgen of the University of North Carolina at Charlotte (UNCC) has been publishing a study of this type yearly since 1992. His study measures twelve criteria on an input versus output basis.

The Hartgen study uses the total miles of roadway under state control to identify the size of the roadway system in each state. The system size data is used to normalize the output data. The base data for the UNCC research is taken from the Federal Highway Administration's (FHWA) *Highway Statistics*. This data is collected by the Federal Highway Administration, but the raw data is provided by each individual state.

The UNCC approach has several inherent problems. First and foremost is the idea of ranking state highway agencies against one another. There is no need to create a competitive atmosphere among the states. If it is performance that is to be measured then the states should be

measured individually because each state has its own unique individual goals. It is conceivable that one state would accept a downturn in certain performance categories for a potential upswing in others. As an example, if a state has significant commercial growth it may put more money into new construction. This may increase the traffic congestion for the short term which in turn may lower its ranking in the UNCC study. The position change in the UNCC study then is a result of the state setting goals at improving roadway conditions at the expense of near term congestion.

The goals of each state are not identified or considered in the UNCC study and because of this it is not known if a state is actually making strides at improvement. Very little is known about how the states are doing things differently. The results may reflect a difference of opinion as to appropriate goals instead of actual improvements in performance.

A second problem with this study and others of this type is that the techniques, information, and methodologies used to achieve improvements are not reported. In the UNCC report a state could make a jump of 10 places in the ranking one year and the reader would be provided with no more information as to why other than the statement that "success can be attributed to slight, but important, improvements in nine of twelve measuring categories." What is this really saying? That the SHA improved in nine categories of course, but what caused the improvement? The purpose of measuring performance is to provide guidance for management decisions. But the UNCC study does not provide causal information. The report discloses that a SHA's relative position is changing, but the key question of why, is not addressed.

The third issue that is not addressed in the UNCC report or any report of this type is the issue of external factors. Each state has its own set of goals and this is primarily because each state is different. Each state has to deal with varying conditions that include weather, natural disasters, sources of funding, labor cost and many other external factors. Because of these external factors, the data must be analyzed very carefully.

SHA Performance Data

SHA ranking studies depend on data that is reported by each state to the Federal Highway Administration. Therefore, there is always the issue of discrepancies in the way the data is recorded and reported. Often, the data reported to the FHWA is not the most accurate and sometimes it is not even comparable between states. For instance, when examining roadway conditions there are several ways of measuring this criterion and many states use different methods. Although all states are required to use some type of mechanical device, equipment technology varies tremendously. Some states use profilographs or profilometers that are nearly 20 years old while others use newer and more accurate equipment. Obviously the introduction of newer equipment, with better precision, will cause a state to report very different roadway conditions than were reported in previous years. This is not because the roadway conditions have changed drastically, but rather it is because the equipment now in use is more sensitive and has better precision. However, when the state reports this new data it will essentially be reporting what appears to be a decrease in roadway conditions. Obviously this does not mean that the roads are worse, but that is what the FHWA data conveys to a casual reader.

A Better SHA Performance Measurement Methodology

How can these problems be remedied? The first step to eliminating these problems is to develop a better measurement methodology. It is important to develop a performance measurement tool for SHAs that measures performance changes across time. Criteria are also a serious issue that must be evaluated and data sources must be carefully selected. Finally, how to measure actual performance must be carefully defined.

The methodology must look at each state individually. Additionally, it must take into consideration differences in external factors that might affect performance measures, and it must recognize that the data obtained from the FHWA may not always be correct.

An "across time" type of study can use the same general input/output criteria utilized in the UNCC study. This type of analysis will measure changes in performance and identify how the SHA is accomplishing its goals. In situations where there are large distributions of money towards certain tasks, or situations in which a SHA has previously shown poor results in a category, it will be possible to see if efforts at improvement are succeeding. The success will be measured as a percentage improvement from the prior year of measurement. A three year averaging of the data can be employed to provide a leveling of one time events or impacts by removing or lessening the data "noise."

Upon completion of an initial study of all states, those states showing the largest improvement in each category can be probed to discover the possible reasons for their performance improvements. This is an integral part of the study because this is the portion that will allow a SHA to learn what causes superior performance. The probing of high performing SHAs will hopefully identify the reason for their improvements. However, it is conceivable that in some cases a valid reason may not be available. In these cases this situation will be noted in the report.

The data used will still be from the FHWA's annual book *Highway Statistics* used in previous SHA studies. This may cause some problems, but this issue will be addressed in the form of a brief analysis of the sources of the data and suggestions to improve data accuracy. Hopefully, the existence of a report such as this will spur the improvement of the state submitted raw data.

Summary

Ultimately, the goal of this research is to reduce the controversy surrounding existing SHA performance measurement methodologies by creating a new and better methodology for measuring SHA performance. The basic approach will be to:

- 1. Evaluate and select measurement criteria
- 2. Measure, over time, SHA performance in each of the selected categories.
- 3. Determine which SHAs have shown significant improvement in each of the measurement categories

4. Probe high performing SHAs to determine the causes driving performance improvement.

II. Literature Review

Introduction to Literature Review

A review of literature related to the development of SHA performance measurement methodologies focused on three types of literature:

- *1.* Comparative Analyses of States. These are reports that evaluate SHAs on a national level by comparing SHAs to one another and to national averages.
- 2. Highway Users Federation (HUF) Studies. These reports focus on the performance of individual states.
- *3.* Special Purpose Studies. These are special studies funded by individual states but usually completed by external organizations.

Comparative Analyses of States

The idea of comparing SHAs to each other using reported results in several categories of measurement criteria is one type of SHA performance measurement methodology. A report issued annually by a team at the University of North Carolina Charlotte (UNCC) may be the most controversial of such efforts.

In 1992 David Hartgen of the Center for Interdisciplinary Transportation Studies at the University of North Carolina Charlotte (UNCC) published a report on SHA performance using a competitive ranking system. The UNCC report rank orders state highway agencies based on a variety of inputs and outputs. The inputs are identified as "Resources" and the outputs as "Results." The resources and results used in the UNCC study are:

Inputs

- 1. Receipts for State Owned Highways
- 2. Capital and Bridge Disbursements
- 3. Maintenance Disbursements
- 4. Administrative Disbursements
- 5. Total Disbursements

Outputs

- 1. Rural Interstate Pavement Conditions
- 2. Urban Interstate Pavement Conditions
- 3. Rural Other Principal Arterial Pavement Conditions
- 4. Urban Interstate Congestion
- 5. Bridge Condition
- 6. Fatal Accident Rate
- 7. Rural Other Principal Arterial Narrow Lane Width

Hartgen obtained the data for the UNCC report from the Federal Highway Administration's (FHWA) *Highway Statistics* (FHWA 1992-1998). The FHWA's *Highway Statistics* is a compilation of data submitted by the individual states.

The purpose of the UNCC comparison is to identify how the states are performing in relation to one another. The FHWA data used to compile the report is normalized using total miles of roadway under state control. This factor is used to identify "system size" in order to make the statistics comparable between large and small system states. The ranking is developed based on the normalized statistics. States showing large increases or decreases in ranked position from the previous year's report are specifically noted and the categories to which the gains/losses are attributed are noted. The UNCC report however, offers no explanation to the nature of or causes contributing to a change in ranking.

This is one of the limitations inherent to this type of study. The author outlines several other limitations that he claims are "neither fatal nor preemptive," (Hartgen 1999) but they do require consideration before conclusions are drawn from the report. Hartgen's noted limitations include:

- 1. No use of lagged variables
- 2. No consideration of travel from neighboring states
- 3. No consideration of differing labor and material costs nationwide
- 4. Errors or omissions in the source of the data (FHWA State Reported Statistics)
- 5. Selection of analysis criteria
- 6. No analysis of external factors affecting each state such as population increases, natural disasters, etc.

Criticisms of this study are rooted in these limitations. Many believe that these limitations have drastic effects on the outcome of the study (Humphrey, et al. 1993). The primary criticism to the report, however, deals with the lack of explanation when a state makes a large move in either direction on the ranking scale. The categories that exhibited a large change are identified, yet the reasons for the changes are never addressed. The use of lagged variables would partly address this issue by identifying changes in rank caused by implementation of new policy. Due to the long lead time in many cases between implementation of a policy change and the change in performance results, states often exhibit an unexplained rise or drop in their ranking (Hartgen 1998). The lagged variables would identify this delayed effect, however, the specific policy change implemented by the SHA would still not be identified.

It can be argued, very effectively, that labor and material costs vary tremendously across states and in different regions of the country. Recent studies have shown that labor costs alone can differ by nearly 100% from one region of the country to another (Nationwide Variations in Cost of Highway Construction. 1990). The UNCC normalization procedure does not address this issue.

Another concern is data inconsistency within the FHWA's *Highway Statistics*. This inconsistency is caused by a lack of standards for the reporting of state data to the FHWA. The FHWA provides guidelines, to better conform the data of each state to FHWA databases, but

these guidelines do not ensure that the actual measurement of the data is consistent (Humphrey, *et al.* 1993). Variables include the level of technology used by each state to measure and record data, the personnel employed to measure and record the data, and the internal performance standards that are set by individual states. As an example, large differences occur in the way states report road condition. Some states use very new and accurate technology to measure road condition, and others use antiquated and inaccurate equipment to measure the same parameter (Sissel 1999). Such discrepancies are not addressed in the UNCC methodology.

Finally, the issues of "spill over" traffic and high interstate through travel are not addressed. The condition of roadways and bridges, traffic congestion and fatalities are all drastically affected where neighboring states provide large amounts of "spill over" or through traffic. The higher traffic volumes cause deteriorated road conditions, a higher number of fatalities and increased congestion.

Even with the above limitations, the UNCC study is still considered useful (Humphrey, *et al.* 1993) as it is the only national report of its kind. The study is rooted in solid principles, but is lacking in many specifics. The inability to address the issues of "spill over" traffic, differing labor costs, inaccuracy of reference data, and the delayed effect of policy implementation cause skepticism about supposed conclusions.

Highway Users Federation Reports

During recent years the Highway Users Federation (HUF) has been employed by many states to perform effectiveness studies of individual SHAs and transportation programs. The HUF studies are primarily concerned with the extent to which the SHA meets the needs of the state's citizens with respect to time effectiveness, cost effectiveness, and safety. These studies involve in-depth analyses of the state's program taken as a whole. They often include internal audit reports as well as in-depth interviews with members of the SHA of interest. Often, members of the State Legislature are also interviewed.

These studies differ from the comparative type UNCC study in many aspects. Each study performed by HUF is undertaken not only to evaluate the performance of the individual state, but to additionally consider the individual needs and unique characteristics of the state. In essence, these studies deal solely with one individual state. In some cases information about peer SHAs is reviewed and used for comparative comments.

To complete a peer review HUF identifies states that are similar with respect to the state being studied. The peer states are then evaluated in various statistical categories and the peer data is compared to the state in question (Humphrey, *et al.* 1993).

The other primary difference between the HUF studies and the completely comparative UNCC study is that HUF reports are very detailed and are used primarily as a management tool. The HUF studies identify potential improvement measures and courses of action that could improve the SHA efficiency and effectiveness. These suggestions are based solely on the data from the state analyzed and the suggestions clearly reference the differing demographic, social, financial, and geographic needs of the state. HUF sees this step as a necessity and clearly states

that the comparison of states may even be unnecessary because such investigations do not or can not consider the individuality of each state (Lamm, *et al.* 1993).

There are limitations even with this type of individual SHA study. HUF only performs individual studies for states when requested to do so, and a requested study is only a single point in time "snapshot" of conditions. Not every state has access to the results of studies performed for other states, nor do states request their own studies on a regular basis.

Individual Special Purpose Studies

Individual special purpose studies are undertaken by individual states. They are usually performed by an impartial, independent agency. These studies are undertaken primarily to identify the causes of specific problems or to assess the current level of SHA performance. A private agency is usually commissioned to perform the study but, in some cases, the SHA self performs the work. The reports generated from these studies are similar to the previously discussed HUF reports.

There are several advantages to this type of study. The primary advantage is that the focus of the study is to solve a particular problem. Each state contracts the independent agency for a specific reason that affects only their SHA. Another advantage is that usually a private agency will perform the study and will present an objective view of the agency being studied. However, this methodology can also be a disadvantage as the study is relevant only to the state in question.

Nebraska

Based on independent research the Nebraska Department of Roads prepared a report to the Governor's office in order to respond to the issue of high taxes (primarily gasoline taxes) in the state. This study took an approach similar to the HUF studies by comparing Nebraska to several "peer" states. The study compared raw statistics of categories such as condition of roadways, fiscal information and demographics (Nebraska Department of Roads 1986). Unfortunately this study had a methodology problem in that the "peer" states selected were not necessarily equivalent peers. Only neighboring states were used for the comparison and these do not necessarily have the same social, demographic or geographic characteristics as Nebraska.

New Jersey

New Jersey published a report dealing with the differing costs of highway construction nationwide. This study was conducted primarily to make a case to the U.S. Congress that costs of construction and maintenance are tremendously different across the country due to varying socioeconomic and labor conditions (Nationwide Variations in the Cost of Highway Construction 1990). At the time of publication the New Jersey Transportation Coordinating Council felt that the cost of construction was so high in New Jersey that the state was not receiving proper consideration during the allocation of ISTEA¹ funds (Humphrey, *et al.* 1993).

¹ ISTEA is the common name for the Intermodal Surface Transportation Efficiency Act if 1991. ISTEA was enacted to establish a new

approach to transportation planning. For the first time Federal Transportation Law called for long range multi-modal planning, active

The New Jersey study used the FHWA statistics reported by each state to measure construction and maintenance costs and concluded that not only do construction costs differ significantly around the country, but in some cases costs can differ by as much as 100% between states. This is an extremely important factor when considering the effectiveness and efficiency of SHAs in meeting the needs of their citizens.

Texas

Texas has undertaken several studies regarding SHA performance measurement. The studies have used what is called the Analytic Hierarchy Process (AHP). This is a system similar to the FHWA's Highway Performance Monitoring System (HPMS). The basic idea of this system is to select criteria for measurement, collect raw data in each of the measurement categories and weight each criterion prior to creating a composite study.

The Texas studies concluded that not all of the criteria measured are equally important when dealing with performance measurement. The AHP studies have dealt primarily with determining how the criteria should be weighted. The Analytical Hierarchy Process shows how to weigh measured criteria when considering economics, geographic conditions, demographics, and social differences (Hagguist 1992).

Summary

It is clear that each of the three types of studies reviewed have limitations and flaws, but it is also clear that each has value as a performance measurement tool.

Ignoring the differences among states when creating a composite study not only skews conclusions, but it leaves out the key component of understanding how to improve performance at the individual state level.

Probing each SHA in depth is very important for gaining understanding about how changes in policy and/or strategy will affect the transportation system as a whole. This is a necessary step in any evaluation because it answers the question of "why?" The idea of identifying what criteria holds priority is a necessary function in order to realize what factors are important in measuring performance. And finally, the idea of addressing the differences from state to state that cause a comparison to become invalid is important.

Ultimately an effective study would be one that combines the three types of studies, eliminating most of the limitations that makes each incomplete.

environmental responsibility in order to qualify for Federal funds.

involvement of local governments and the public at large, greater attention to the existing system, social equity, fiscal accountability and

III. Criteria Selection and Methodology

Selection of Measurement Criteria

To measure performance it is necessary to select equitable measurement criteria that satisfy the definition of performance. Performance, for the purposes of this research, is defined as the efficiency and effectiveness by which desired results are achieved using available resources. To adequately measure criteria that satisfy this definition two items must be scrutinized.

Desired Results

The desired results of the state highway agency activities must be specified. The desired results are defined as the areas in which the SHA wishes to show improvement or growth. This is dictated by the customers, or taxpayers, within the state and from whom the funding for the agency is derived.

Taxpayers and the FHWA often identify several areas in which a state highway agency must perform and these areas therefore establish measurements of performance (Beuchner 1999).

- 1. Roadway Safety. This includes the fatal accident rate, the condition of bridges and pavements throughout the state, and lane width of roadways (particularly rural roads).
- 2. Traffic Congestion. This deals primarily with commuter traffic issues and focuses on Urban roadways.
- 3. Pavement Condition. This refers to the smoothness of the roadways as smoothness can have a large effect on the vehicles that travel upon these roadways. To a lesser extent it is a safety issue because poor pavement condition can result in unsafe driving conditions.

Resources

The resources are the funds that the SHA uses to build and operate the state's transportation system. The way in which the money is distributed can dictate the effectiveness of strategies used to obtain desired results. Therefore the resources are identified as the following (Hartgen 1998):

- 1. Total Funds Available. This statistic is identified by FHWA as Total Receipts for State Owned Highways. This identifies the total amount of money available to the SHA.
- 2. Capital and Bridge Disbursements. This identifies the allocation of funds for the construction of bridges, new roadway construction, widening, engineering design, right-of-way, and safety.
- 3. Maintenance Disbursements. This includes all funds allocated to improving the condition of existing roadways and bridges, equipment for the maintenance, and programs such as snow removal.

- 4. Administrative Disbursement. This identifies all funds allocated to general administration, planning and research that is not related to specific projects.
- 5. Total Disbursements. This is the sum of the four disbursement categories listed above and also includes law enforcement agency costs, bond interest and bond retirement.

These items are the major points of comparison to measure efficiency and effectiveness. The amount of money supplied in relation to the size of the system, as well as where the funds are allocated, will identify possible strategies that SHA is using to achieve desired results. Disbursement allocations provide an indication of state goals and priorities.

Measurement Criteria

In the case of this study the following criteria have been selected to measure state highway agency (SHA) performance. This selection of criteria follows that used in the ranking studies at UNCC. The same criteria were chosen because the items measured in the UNCC study are sound and they do allow for measurement of performance over time. The criteria are identified in two categories: Resources, which focuses on the resources available to the SHA, and results, which measures the efficiency and effectiveness of the use of the SHA resources.

Resources

- 1. Receipts for State Owned Highways
- 2. Capital and Bridge Disbursements
- 3. Maintenance Disbursements
- 4. Administrative Disbursements
- 5. Total Disbursements

Results

- 1. Rural Interstate Pavement Conditions
- 2. Urban Interstate Pavement Condition
- 3. Rural Other Principal Arterial Pavement Conditions
- 4. Urban Interstate Congestion
- 5. Bridge Condition
- 6. Fatal Accident Rate
- 7. Rural Other Principal Arterial Narrow Lane Width

The focus of this research will be on the results. The seven results selected will be analyzed using a percentage change methodology. However, an analysis of the input data will be included for selected high performing SHAs.

Statistical Data

This research relies on data from two sources:

- 1. The Federal Highway Administration's *Highway Statistics* (FHWA 1992 1998) and,
- 2. Better Roads Magazine (Better Roads 1992-1998).

Federal Highway Administration Statistics

The Federal Highway Administration annually publishes *Highway Statistics*. The raw data for this highway statistics book is provided by the individual states. The FHWA book is separated into six sections, the focus of which for the purposes of this research, is Section IV: Highway Finance, and Section V: Roadway Extent, Characteristics, and Performance (FHWA 1998).

The data for the measurement criteria used in this research are reported in these two sections on an individual state basis. Because of this, the reliability and accuracy of the data must be addressed. The first step to doing so is to identify the "chain" involved in data reporting. Figure 3.1 identifies the data sequence for the FHWA Book *Highway Statistics* and Figure 3.2 identifies the data sequence for *Better Roads Magazine*.

Figure 3.1: FHWA Highway Statistics Data Sequence

Step 1. SHAs are provided with format requirements by the FHWA for recording and reporting annual data. This information package is delivered to the individual state highway agencies. It outlines a methodology for reporting the data to the FHWA. Specific requirements about the measurements used to derive the data are not included in this package. The purpose of this package is solely to identify the categories of data to be reported and the manner in which each state must organize the data in order to aid in data synthesis.

Figure 3.2: Better Roads Magazine Bridge Condition Data Sequence

Step 1. SHAs are provided with format requirements by the FHWA for recording and reporting annual data. This information package is delivered to the individual state highway agencies. It outlines a methodology for reporting the data to the FHWA. Specific requirements about the measurements used to derive the data are not included in this package. The purpose of this package is solely to identify the categories of data to be reported and the manner in which each state must organize their data in order to aid in data synthesis. Step 2. Individual SHAs divide and delegate the data reporting tasks among departments both within the SHA and among local municipalities. The execution of this task is at the discretion of each individual state agency and no limitations or guidelines are provided by the FHWA. Step 3. Data is collected by the designated departments or local municipalities, and returned to the SHA Headquarters. Data is then reviewed and entered on the official FHWA reporting forms. Step 4. Official state data is delivered to the FHWA. This data is reviewed and re-entered into the FHWA publishing format. The data is also formatted to conform to the FHWA summary requirements for the National Bridge Inventory. Step 5. Individual state data is summarized to create the "National Average" data published in Highway Statistics. Step 6. The publisher of the *Better Roads Magazine* collects the individual state data and national average data from the FHWA and publishes the findings annually in the November issue of the magazine.

In both the FHWA book and the *Better Roads* publication, the data passes through a minimum of four points of entry. Each point of entry is defined as a point in time at which the data must be entered into a different system to pass to the next step. This essentially means that a person (s), computer or computer scanning device must read the data and re-enter it a minimum of four times. Each data handling step increases the chance of errors in the data.

A second issue is that of the reliability and accuracy in recording and reporting the data. Because there are no limitations on the way the state highway agency delegates the process of data collection, each agency can record and report the data in different ways, as long as it ultimately conforms to the FHWA reporting requirements and format. Therefore, states can be measuring, recording and reporting their data differently, and agencies within a state may, also, be reporting data differently. At the state level the problem exists both between internal departments and with external municipal agencies. A good example of this problem is the case of Arizona. The Arizona Department of Transportation (ADOT) reported a 400% increase in the category of "Rural Other Principle Arterial Lane Width Greater Than 12 ft Wide." When questioned, ADOT reported that this spike was attributed to nothing more than a data reporting error from a smaller municipality.

The third issue is that there are no specific data measurement requirements. The FHWA outlines the categories to be measured, but does not specify any methodology for measurement. As an example, the measurement of roadway conditions is dependent upon "Mechanical Means" according to the FHWA. The FHWA, however, does not set forth any requirements regarding the quality of equipment to be used in measuring roadway condition. Because of this, some agencies may be using technology with better precision than others. There is also the potential for different pieces of equipment to be used within states. Therefore, the statistics book includes information having many different levels of data precision.

Each of these problems could be solved with a simple directive from the FHWA. The FHWA should clearly outline a methodology for maintaining consistency among measurements. The publication of some type of standard guideline addressing the internal measurement and reporting of data among states would help to standardize the way in which the states measure and report data, and would increase the reliability of the data. Another key issue is the number of times the data must change hands. The process can today be improved by the construction of a consistent electronic data format to be used by all states.

Three Year Rolling Average

To address the effect of one time events causing data spikes, a three year rolling average method is proposed. This technique will provide a smoothing of data so that one time events do not unduly influence performance measurement. These events could include natural disasters, periodic climatic changes, major alterations of state spending, or other external circumstances.

The three year rolling average data smoothing technique is a method whereby the data from a specific year is grouped with the data from the previous and following years. These three data points are then averaged to create a single data point identified as the "three year rolling average" for the median year of the group. To determine the three year rolling average data point

for the year 1992, data is collected from the 1991, 1992 and 1993 statistics, and the three points are averaged to create a new data value for 1992.

The three year rolling average decreases the effects of data spikes. It is a procedure that helps identify real trends in each agency by lessening the impact of one time events. However, the three year rolling average method is only effective when performing an archival study. The three year rolling average data point will not be indicative of current conditions, but rather will display data trends related to the two years prior to the current year.

High Performing States

High performing states will be identified as those showing the largest percentage improvement in a particular measurement category across the time span of 1992 to 1998. To identify the percentage change across the time span of 1992 to 1998 a simple formula is employed. The formula is:

$$i = ((P-F)/P) \times 100$$

where

 \mathbf{i} = the percentage change

 \mathbf{F} = the three year rolling average data value for 1998

 \mathbf{P} = the three year rolling average data value for 1992

This equation calculates the percentage change over the specified time period. In some cases the value "P" may be zero, and in such a case the equation will produce an infinite value. In those situations the results are not included in the list of high performing states because of suspicions about data reliability. In addition, those states where the value "F" is at or near zero are also excluded from the study because of suspicions of data reliability.

The high performing states will be used as reference from which performance strategies are extracted. A probe of the high performing states will be executed to determine the causes driving their performance improvement. The causes will then be analyzed to determine the feasibility of implementation in other SHAs. Furthermore, the resource/disbursement or "input" data will be used to identify potential financial trends during this period. The financial, or input, analysis will help to determine the implementation feasibility, but will also serve to identify the financial background supporting SHA strategies.

The original and three year rolling average data for both "input" and "output" categories, using the above system of measurement, can be found in Appendix 'A' for Input Data and Appendix 'B' for Output Data.

IV. Results and Analysis

Selection of High Performing State Highway Agencies

To identify high performing SHAs, statistical data from the FHWA's *Highway Statistics* was analyzed using a three year rolling average and percentage change formula described in the previous section. The percentage change in each measurement category was determined and the five states showing the largest rate of improvement in each category were selected for the next phase of research, probing the states for improvement methodologies.

The following tables for each measurement category show the three year rolling average data for the five SHAs showing the largest percentage improvement over the time period from 1992 to 1998. Arizona DOT data is also presented. Values in the tables below are rounded to the nearest tenth.

Probing the State Highway Agencies

The high performing SHAs for each measurement category were probed, via email and phone surveys, to determine the cause for their improvement. The primary goal for this probe was to identify innovative methodologies that could be used by other state highway agencies to improve their own performance. In some cases this goal was accomplished and specific details of processes leading to improvement are identified, however in other cases the causes for improvement could not be specifically identified. The results of these probes are described here, organized by category and identified by state.

Rural Interstate Pavement Condition

Table 4.1: Rural Interstate Pavement Condition *					
	1993	1997	Improvement		
Florida	3.8%	0.1%	97.2%		
Maryland	9.3%	0.3%	96.8%		
Virginia	3.9%	0.5%	87.9%		
Texas	2.7%	0.4%	84.7%		
Indiana	1.5%	0.2%	83.9%		
Arizona	0.9%	0.8%	17.6%		
National Average	5.8%	4.01%	30.3%		
*The percentage of each state's Rural Interstate miles rated at greater than 171 inches/mile of roughness based on the International Roughness Index.					

Florida

Florida displayed the largest improvement in the area of Rural Interstate Pavement Condition from 1992 to 1998. When contacted Bruce Dietrich, the State's Pavement Design Engineer, suggested several reasons for this change. The largest contributing factor was the Interstate 10 (I-10) improvement project which took place from 1993 to 1996. This project involved the grinding of the concrete pavement on the entire length of I-10 in North Florida. Since the I-10 interstate highway constitutes a large percentage of Florida's Rural Interstate Pavement, the improvement of this highway lead to a significant overall improvement of the Interstate system in Florida.

A second contributing factor was better data from their pavement management system. This was the result of better measuring technology. Prior to 1993 Florida was utilizing bumper profiling devices to measure the ride roughness on the interstate. This technology was replaced with laser sensors and digital imaging systems that not only measure roughness in a different way, but are also much more complex. This change may have caused the measurement process to incur somewhat of a "learning curve" according to Mr. Dietrich, and may have caused the data from those years to skew slightly. However, once the new technology was assimilated into the pavement management system the data output by the new equipment was truly indicative of the actual pavement conditions.

The new technology, while providing better data, had no real physical effect on the system and the rate of improvement can be largely attributed to the grinding and overlay on Interstate 10.

Maryland

Maryland showed the second largest improvement in the area of Rural Interstate Pavement condition for several reasons. Pete Stephanos, Maryland's Pavement Design Chief, was able to identify both methodological changes as well as physical improvement projects that contributed to the improvement of Maryland's rural interstate.

Primarily, the milling and overlaying of their open grade friction course pavements caused the physical improvement during the period of 1992 to 1996. This was a result of an initiative by the Maryland Department of Transportation to improve the ride on their roads. The milling and overlaying produced the desired results at the time, which, of course, was to improve the ride.

However, an additional initiative to improve ride came in 1997. According to Mr Stephanos, it was at that time that the Maryland Department of Transportation focused more support and funding towards the maintenance and construction of roads. The additional funding afforded more resources for the rehabilitation of the interstate system. The open grade friction course, over a number of years, cracks and contributes to a rougher ride. The new initiative allowed for the replacement of the open grade friction course with Stone Matrix Asphalt (SMA) and Superpave mix pavements. This applied not only to the rehabilitation of the Interstates, but to all new road construction in Maryland as the state construction specifications were changed to specify only SMA or Superpave mix designs².

As with Florida, Maryland's improvement can be attributed primarily to the "quick fix" of milling and overlaying their interstate roadways. However, Mr. Stephanos, and others at the Maryland Department of Transportation, believe that the new specifications and methodologies will allow them to build better roads for the future.

Virginia

Virginia showed the third largest improvement of their Rural Interstate Pavement from 1992 to 1998. Chuck Larson, the State Pavement Engineer, attributed this improvement to both the structure and the aggressiveness of the Construction and Maintenance Programs in Virginia.

The Pavement Management System (PMS) in Virginia is very decentralized. Virginia's PMS is organized by district with each district having a dedicated Pavement Management Engineer. The district engineer is responsible for the roadway condition evaluation as well as the needs assessment for the district pavement as a whole. The district engineers report their findings at monthly meetings of a statewide pavement management team called the "Maintenance Program Leadership Group." The team is comprised of one representative from each district as well as the State Maintenance Engineer. This team is responsible for the collaborative evaluation of every mile of roadway in the state and ultimately, the allocation of the funds for maintenance

² For descriptions of Superpave and Stone Matrix Asphalt Mix Designs consult pages 232-243 in *Materials For Civil and Construction Engineers* by Michael S. Mamlouk and John P. Zaniewski, Addison Wesley, Menlo Park, California, 1999.

and repair. The funding source is also unique in Virginia as the maintenance and rehabilitation programs are supported entirely with state funds. Because of this the "Maintenance Program Leadership Group" can often be more aggressive with the needs evaluation and funds distribution process.

In addition to their unique structure and aggressiveness with regards to maintenance and rehabilitation, Virginia is very aggressive with the new construction of roadways. Virginia utilizes either the Stone Matrix Asphalt or Superpave mix designs for all new construction.

Texas

Texas was included as a high performing SHA in both the areas of Rural Interstate Pavement Condition and Urban Interstate Pavement Condition. Joe Graph, Texas' Director of Maintenance, attributed this high level of performance to their Pavement Management System (PMS) and its structure.

Texas has a Pavement Management System (PMS) that reflects the relative size of the state. The PMS is very decentralized and is organized by district (twenty five total) across the state. Because Texas is so large each district office operates with essentially the same organizational structure, responsibilities, and in some cases, comparable geography as a state department of transportation.

Within the district offices, the Pavement Management System manages all pavement, both interstate and rural other principal arterial, and is responsible for needs assessment and conditions analysis for the roadways. Each district office PMS evaluates the roadway conditions visually and creates a conditions analysis report. In this report recommendations are made to the state Department of Transportation for the purposes of funds allocation. The funds allocation process is completed at the state departmental level and each district office is allocated funds based on the recommendations made by each of its 'sub-departments.' However, each main district office is given full discretion with the allocation of the budgeted funds within the district. As an example, if the district office was allocated funds for the purposes of mowing and a drought made mowing unnecessary the district could chose to use those funds for roadway maintenance. This is a key factor to the success of the Texas Department of Transportation, according to Mr. Graff. Essentially, this structure allows each district office to manage their areas with minimal interference at the state departmental level. This ensures that the decisions being made for each district are made by those who know the district best.

In addition to its PMS and unique structure, the Texas Department of Transportation has made several initiatives, in recent years, to improve their maintenance and construction programs. According to Mr. Graff the maintenance budget in Texas remained at \$650 million a year from 1987 to 1997 but has increased tremendously in the last two years. The 2000 maintenance budget is close to \$900 million.

Concerning new construction, in the late 1980's Texas began using a coarser mix design for new asphalt construction, moving from 1/2" aggregates to 5/8" aggregates. This Coarse Matrix High Binder (CMHB) mix is similar to the Stone Matrix Asphalt mix design currently

being utilized by other high performing SHAs and has significantly improved the condition and life span of the roadways in Texas.

Indiana

Indiana demonstrated the fifth largest improvement in this category for the period of 1992 to 1998. William Flora, the State's Pavement Engineer, attributes this improvement to the existence of the Pavement Management System and the focus of the PMS towards interstate roadways.

Indiana's pavement management follows a complex, but very effective process. Roadway condition data is collected, through outsourcing, and a condition report is created identifying the condition of all interstate roadways in the state. Upon completion of this data collection phase, Indiana utilizes a software program that analyzes the data and creates a list of projects based on selected criteria. The project list is then prioritized and field studies are performed to determine the specific conditions of the selected projects. The scope of each project is then identified and used as a basic outline for the work to be performed. This process allows the Indiana DOT to effectively identify the projects that are truly high priorities and those that are not. In addition, because this process is performed at the state level, the project selection process is usually more effective in contributing to the accomplishment of the state goals.

Summary

Several key elements to successful Rural Interstate Pavement Management were outlined by each of the states contacted. These methodologies include:

- a. Pavement Management System (PMS). This system, whether entirely at the state level or organized by district, is critical to conditions analysis and needs assessment. Typically a PMS will include data collection, reporting of the conditions data, the identification of high priority projects.
- b. Aggressive Maintenance Program. The SHAs showing the largest improvements were those who focused on maintenance in recent years. This includes milling, grinding, thin overlays and crack seals.
- c. Superpave and Stone Matrix Asphalt Mixes. Many successful SHAs are changing their construction specifications to require Superpave and Stone Matrix Asphalt Mixes. These mixes are readily accepted by most experts as having a longer life span and being vastly superior overall to mixes used in the past.
- d. Decentralized Decision Making for Large States. Some large states have been very successful by organizing their SHA into districts and allowing each district to operate individually with full budgetary discretion.
- *e*. New Construction. Any new construction initiatives that comprise a significant amount of the state's proportion of interstates will contribute to significant improvement in pavement condition.

Urban Interstate Pavement Condition

Table 4.2: Urban Interstate Pavement Condition *					
	1993	1997	Improvement		
Hawaii	31.8%	1.5%	95.4%		
Texas	17.1%	0.9%	94.3%		
Wyoming	14.9%	1.2%	92.3%		
Minnesota	19.2%	1.9%	90.3%		
Alabama	14.7%	1.6%	88.9%		
Arizona	1.8%	0.8%	56.9%		
National Average	13.1%	8.58%	34.3%		
*The percentage of each state's Urban Interstate miles rated at greater than 171 inches/mile of roughness based on the International Roughness Index.					

Hawaii

Hawaii did not respond to queries in time to be included in the study. However, research shows that a discrepancy exists in the way Hawaii recognizes and reports the existence of Urban Interstate roadways. According to the FHWA's *Highway Statistics* (FHWA 1992-1998) Hawaii reported forty four miles of Urban Interstate in 1992 yet only three miles in 1998. This being the case it is unlikely that the percentage improvement Hawaii displayed during this period is due to anything other than a change in the roadway mileage classification.

Texas

Texas was the second highest performing agency in this category and attributed their improvement to the same programs described in the Rural Interstate Pavement Condition category. Texas utilizes decentralized decision making (via districts) and a pavement management system. For further information about these programs in Texas, refer to the previous section under the "Texas" heading.

Wyoming

Ken Shulz, Wyoming's Maintenance Engineer, attributed Wyoming's improvement to a focus on preventative maintenance, both during construction and after. Because Wyoming has so few people, in relation to states with similar lane mileage, damage caused by volume isn't the biggest issue regarding roadway maintenance. In some 'Urban' areas roadways only get 30,000

vehicles per day as a maximum volume. Some other 'Urban' areas of the country get that volume by the end of the morning traffic peak. The biggest issues facing the Wyoming DOT are freeze/thaw damage and truck traffic statewide.

Wyoming contains a highly traveled trucking route from the Mid-West to California and in some areas trucks comprise 50% of the daily volume. Both the high truck volume ratio and the freeze/thaw damage can create critical maintenance issues. However, these particular maintenance issues can be dealt with in the design process with moderate success, which is why Wyoming focuses more on preventative maintenance than repair.

Another reason Wyoming adopted a preventative attitude is that "We are a 'Donor State.' Funding has been down in the 90's so we don't always have the money for big maintenance and construction (Shulz 1999)." This is evident in Table A4 in Appendix A as it demonstrates that Wyoming's maintenance budget has been decreasing since 1993 and the capital and bridge disbursements have been increasing.

It would seem that the Wyoming philosophy of "preventative maintenance" has been successful. Even in periods of lower funding Wyoming has continued to improve their Urban Interstate conditions without a new major maintenance initiative.

Minnesota

Minnesota demonstrated the fourth largest improvement in the condition of their Urban Interstate from 1992 to 1998. Gary Thompson, Minnesota's Metro Maintenance Engineer, attributes this improvement primarily to the large repair initiative in recent years. Minnesota has been repairing large segments of their Urban Interstate by milling and thin overlays. There has been a 36% increase in maintenance disbursements from 1993 to 1997.

Thin overlays are typically used for short-term repairs in most areas and will remedy such defects as minor to moderate cracking and unevenness of surfaces, with a life expectancy of approximately eight years. The Minnesota Pavement Management System has been utilizing thin overlays as the primary method of repair.

Upon realizing the potential cost effectiveness of this methodology Minnesota increased the number of projects subject to the overlaying process and decreased the need, in the short term, for complete rehabilitation or reconstruction. However, according to Mr. Thompson, in the coming years it will be necessary to completely reconstruct many of the roadways in Minnesota as the remaining life of the temporary repairs grows shorter.

In addition to this repair methodology, Minnesota has implemented a requirement of a sixty year concrete design for all new roadways. This concrete mix is similar to a Superpave asphalt mix design and has a life expectancy, without major rehabilitation requirements, of sixty years. This change in construction specifications did not occur during the time period of interest to this study, however, it is the hope of the Minnesota DOT that it will foster continued improvement in roadway conditions in the future.

Alabama

Alabama demonstrated the fifth largest improvement in Urban Interstate Pavement Condition and Larry Lockett, the State's Materials and Tests Engineer, attributes this improvement to Alabama's Pavement Management System.

Alabama has a dedicated Pavement Management System organized by nine districts. This district organization aids the centralized Pavement Management System through the State Maintenance Team. This team is comprised of the State Maintenance Engineer, the State Materials and Tests Engineer, the State FHWA Pavement Operations Engineer, the State Assistant Maintenance Engineer, the District Maintenance Engineers, and the District FHWA Operations Engineers. This team is responsible for the needs assessment and project prioritization for all state roadways. During team meetings it is the responsibility of the two district representatives, from each district, to report their conditions analysis and their individual needs assessments. This system gives each district an equal voice at the state level and allows for a cooperative effort throughout the state.

In addition to the success of their managerial structure, the Alabama DOT focuses on preventative maintenance through quality control of construction materials. Beginning in 1989 a reliability specification was required for the quality control of all hot mix asphalt used in the state. In addition Alabama has been moving toward meeting their goal of using 100% Superpave mixes in all construction, a goal which they met in 1999. They are also beginning to utilize Stone Matrix Asphalt mix designs, in an effort to reduce maintenance needs while prolonging roadway life.

Summary

Many of the key items identified in successful Rural Interstate Pavement management apply to Urban Interstate Pavement management. Methodologies of high performing SHAs include:

- a. Pavement Management System (PMS). This system, whether entirely on the state level or organized by district, is critical to conditions analysis and needs assessment. Typically a PMS will be responsible for conditions data collection, reporting of the conditions data, and the selection of high priority projects.
- b. Superpave and Stone Matrix Asphalt Mixes. Many successful SHAs are changing their construction specifications to require Superpave and Stone Matrix Asphalt Mixes. These mixes are readily accepted by most experts as having a longer life span and being vastly superior overall to mixes used in the past, and should reduce future maintenance costs.
- c. Decentralized Pavement Management System with a Centralized Group Decision Process. Some states have been successful by delegating the functional tasks of the PMS to the district level while maintaining a centralized decision making process.

- d. Quality Control. As a part of having new construction programs SHAs are utilizing quality control specifications. These specifications are used to ensure that all materials meet requirements set forth in preventative maintenance efforts.
- e. Aggressive Maintenance Program. Milling, grinding, thin overlays and crack seals provide immediate short-term benefits. This philosophy is only a temporary solution, but in some cases is only being used to prepare for new construction in coming years.

Table 4.3: Rural Other Principal Arterial Pavement Condition *					
	1993	1997	Improvement		
Idaho	3.4%	0.3%	92.3%		
Mississippi	4.5%	0.4%	91.9%		
Delaware	38.3%	3.4%	91.2%		
Oklahoma	15.1%	1.7%	88.9%		
Kentucky	0.6%	0.1%	88.8%		
Arizona	1.4%	0.7%	50.1%		
National Average	3.1%	1.7%	42.3%		
*The percentage of each state's Rural Other Principal Arterial miles rated at greater than 221 inches/mile of roughness based on the International Roughness Index.					

Rural Other Principal Arterial Pavement Condition

Idaho

Idaho demonstrated the largest improvement in this category primarily due to a challenge issued by the director of the Idaho DOT stated Michael Santi, the state's Pavement Engineer. Each year a percentage improvement goal of roadway conditions is set forth by the Director of the Idaho DOT. This challenge is indicative of the focus on pavement management in Idaho. To aide in this initiative a gas tax increase was passed in 1995 that contributes directly to the maintenance program for roadway surface improvements. As a result the Idaho maintenance budget (Table A4 Appendix A) increased nearly 20% that year and has remained steady since. However, in 1992 and 1993 the maintenance budget was even higher than in 1996 and 1997. Therefore, the data supports that the gas tax did cause an increase in the maintenance budget, but the reasons for the disbursement drop-off in 1994 is unclear.

In addition to the high support level for maintenance of roadways, Idaho maintains a decentralized organizational structure. Idaho is organized into six districts that operate primarily as independent units. Conditions analysis is done on the state level, but only for the purposes of

providing the State DOT and the districts with the conditions data. It is the responsibility of each district to use the data to formulate needs assessments and prioritize project lists. The districts are also responsible for the complete management of all funds allocated to the district and have almost complete discretion in doing so. However, there is a checks and balances system in place. This is the primary responsibility of the State DOT organization with respect to the districts. Each district must submit their plans for approval by the state office. In addition, the state office is responsible for all dealings with the FHWA, allowing each district more time to focus on the development of their programs.

Mississippi

Mississippi demonstrated the second largest improvement in the category of Rural Other Principal Arterial Pavement Condition caused primarily by a new construction initiative, says George Devaugn, Mississippi's Assistant State Construction Engineer.

In 1987 a four-lane road program was initiated by the Mississippi Department of Transportation. This program called for the widening of many of the state's rural roadways, from two lanes to four, nearly doubling the lane miles of Rural Other Principal Arterial Pavement in the state. In addition, the state construction specifications were changed in 1990 to call for 100% Superpave mixes in all new construction. This specification change, coupled with the large amount of new construction in rural areas, vastly improved the condition of the pavements across the state.

Grinding and thin overlays are often used to rehabilitate and repair existing roadways, however, because of the amount of recent roadway construction in rural areas the need for maintenance on the newer roads is minimal. Repair of pre-existing roadways has occurred throughout the period of 1992 to 1998 using overlays, however, these repairs to existing roadways did not affect the statistics nearly as much as the new construction initiative. Appendix 'B' shows that capital and bridge disbursements were up 34% from 1992 to 1998 and maintenance disbursements were up 53% for the period.

Delaware

Delaware demonstrated more than an 80% improvement in this category. This is due largely to the reconstruction of two major rural roadways and the new construction of a stretch of Rural Other Principal Arterial (ROPA) Pavement. The capital and bridge disbursments were up 81% from the period of 1992 to 1998.

According to Al Guckes, the State's Pavement Management Engineer, since 1993 US 113 and State Route 896 were both dualized adding nearly eighty lane miles to Delaware's ROPA Pavement. In addition, State Route 1 was constructed during that time period adding over one hundred and thirty five lane miles to Delaware's ROPA Pavement. These three projects comprised a large percentage of the ROPA pavement and because of this, they led to a dramatic improvement in pavement condition.

In addition to the reconstruction and new construction initiatives, the Delaware DOT has a dedicated Pavement Management System (PMS). The structure reflects the small size of the state as Delaware's PMS is mostly centralized. It is organized by three districts, however all conditions analysis is outsourced by the state department of transportation. Funds are allocated at the state departmental level, although each district office is involved in the needs assessment process and does make recommendations to the state level.

Oklahoma

Oklahoma demonstrated the third largest improvement in this category but according to Masoud Pajoh, the state's Pavement Engineer, this improvement is due only to a change in the way data was reported to the FHWA.

Oklahoma does not have a dedicated pavement management system and until 1993 had been collecting data in a manner different than the International Roughness Index (IRI) required by FHWA. Because of this the data reported to the FHWA was extrapolated from the data collected by the Oklahoma DOT and, according to Masoud, it was not comparable to actual IRI data. However, in 1993 the Oklahoma DOT began collecting the IRI data with the intention of implementing a dedicated pavement management program in the near future.

Kentucky

Kentucky demonstrated several strategies that contributed to the improvement in the condition of their Rural Other Principal Arterial Pavement. Dexter Newman, Kentucky's Director of Construction, helped to identify these strategies.

Kentucky has a dedicated pavement management system that is organized by district yet remains fairly centralized in operations, according to Mr. Newman. Kentucky has twelve districts that each report to the state Pavement Management Section. The district offices are responsible for conditions measurement as well as making needs recommendations to the state level; however, decisions regarding allocation of maintenance and construction funds are made at the state level. Because of the representation of each district, at the state level, the needs assessment of the state as a whole is more accurate than if the system were totally centralized or totally decentralized. As a result the pavement management system is more effective.

In addition to their interesting structure, Kentucky has supported initiatives for repair and resurfacing. In recent years a \$55 million resurfacing program was approved for the resurfacing of non-interstate roadways. This effort has substantially improved the condition of the rural roadways in Kentucky. Using the three year rolling average data, Kentucky's maintenance disbursements have increased 70% from the period of 1993 to 1997.

Kentucky utilizes a system of construction evaluation and education. The pavement management system includes a pavement management team. This team is comprised of representatives from all agencies involved with Kentucky's roadway construction.
Summary

Rural Other Principal Arterial Pavement Management, in most states, is part of the same program as Interstate Pavement Management. Because of this many of the same strategies are successful in this category. Methodologies of high performing SHAs include:

- Pavement Management System (PMS). This system, whether entirely on the state level or organized by district, is critical to conditions analysis and needs assessment. Typically a PMS will be responsible for conditions data collection, reporting of the conditions data, the selection of high priority projects.
- b. Superpave and Stone Matrix Asphalt Mixes. Many successful SHAs are changing their construction specifications to require Superpave and Stone Matrix Asphalt Mixes. These mixes are readily accepted by most experts as having a longer life span and being vastly superior overall to mixes used in the past, and should reduce future maintenance costs.
- c. New Construction / Widening Initiatives. Many successful SHAs are widening and reconstructing many of their Rural Other Principal Arterial roadways. The widening adds to the overall lane mileage of the state, thereby lessening the percentage of low quality pavement. The new construction dilutes the percentage of substandard roads by both adding more total lane mileage and adding high quality lane mileage.
- d. Decentralized Decision Making for Large States. Some states have been very successful by organizing their SHA into districts and allowing each district to operate individually with full discretion with their budgets. This type of organizational structure is typically utilized by those states that have relatively large roadway systems and are decentralized in population.
- e. Centralization of the state highway agency. Some states have also shown success by managing at the state level. Districts are still involved with the process but usually only as advocates or representatives on state level committees. This structure is typically utilized by those states that have relatively small roadway systems and a centralized population.

Urban Interstate Congestion

Table 4.4: Urban Interstate Congestion *												
	1993	1997	Improvement									
West Virginia	27.2%	8.4%	69.3%									
Alaska	46.3%	15.1%	67.4%									
Idaho	53.8%	18.2%	66.2%									
Utah	54.9%	27.7%	49.5%									
Nebraska	45.9%	25.6%	44.2%									
Arizona	22.9%	15.9%	30.8%									
National Average	47.7%	36.4%	23.4%									
*The percentage of each state's Urban Interstate mileage that has a volume/capacity ratio of 0.71 or higher.												

West Virginia

West Virginia demonstrated the largest improvement in the category of Urban Interstate Congestion. Robert Watson, West Virginia's Intermodal Unit Manager, attributed this improvement to two things:

- Changes in their Highway Capacity Manual
- Expansion of roadways that were at or near capacity

In 1994 West Virginia's Highway Capacity Manual, which is used to regulate traffic flow and volume capacity, was changed. "Capacity on three lane Interstates was increased from 2000 pc/ph/pl (passenger cars / per hour / per lane) to 2200 pc/ph/pl. This technical change would reduce the amount of mileage recorded with a volume/capacity ratio of 0.71, since the capacity definition was changed to allow more vehicles."

West Virginia has been and is currently expanding the number of lanes on portions of its Interstate System. Many of these projects address areas that are rated at or near capacity. These expansions are typically from two lanes to three lanes per direction. These improvements not only improve the statistics through the addition of physical capacity, but also improve theoretically since capacity calculations on the improved facility(3 lane) will be based on 2200 pc/ph/pl rather than a 2 lane 2000 pc/ph/pl (Watson 2000).

Alaska

Alaska demonstrated the second largest improvement in Urban Interstate Congestion but did not respond to inquiries about this matter.

Idaho

Idaho demonstrated the third largest improvement in Urban Interstate Congestion. When contacted Gary Sanderson, P.E., Planning Services Manager, Idaho Transportation attributed the success to the interstate improvements around Boise and Pocatello.

In 1993 the Idaho DOT widened I-84 from two lanes to three lanes in the five miles through Boise. In 1997 they improved the portion of I-15 through Pocatello for two lanes to three. This improvement has had a significant impact on the interstate congestion around these two cities.

Utah

Utah demonstrated the fourth largest improvement in Urban Interstate Congestion. When contacted Walter Steinvoch, Urban Transportation Planning Manager at the Utah Department of Transportation, explained that the improvement was related to the extensive construction on the interstates through Salt Lake City. This construction in effect has shut down most of the Urban Interstate mileage and detoured the traffic onto alternate routes, thus the significant improvement in Urban Interstate Congestion is really an illusion.

Nebraska

Nebraska demonstrated the fifth largest improvement in Urban Interstate Congestion. When contacted Terry Gibson, Nebraska's Assistant Roadway Design Engineer, attributes the improvement to a major reconstructive effort on the Urban Interstate around Omaha.

The interstate around Omaha has been an ongoing project for 17 years. In 1983 planning started for the reconstruction of the interstate and the first contracts were let in 1987. The project is budgeted at over \$320 million with a completion date of Spring 2000. The project included rebuilding all on and off ramps onto the interstate, along with widening it from two lanes in each direction to four lanes in each direction. Two major interchanges were rebuilt. These were the I-180 to I-480 interchange and the I-680 to I-80 interchange. This work has significantly improved the traffic flow in and around the city of Omaha.

Summary

Because Alaska did not respond to queries and Utah did not provide a methodology for improvement, effective strategies that can be reported in this category are somewhat limited. However, methodologies utilized by the other three states inlcude:

- a. Changes in Volume/Capacity Specifications. This technical change would reduce the amount of mileage recorded with a volume/capacity ratio of 0.71, since the capacity definition was changed to allow more vehicles.
- b. Widening of Existing Interstates. This increases the total lane mileage on the interstates thus increasing total capacity.
- c. New Construction. In addition to the widening of existing roads the construction of new Interstates is necessary to keep up with population growth.

Table 4.5: Bridge Condition *												
	1993	1997	Improvement									
Nevada	10.0%	6.7%	33.3%									
Wisconsin	29.3%	21.0%	28.4%									
Connecticut	13.0%	9.7%	25.6%									
New Jersey	40.6%	31.0%	23.8%									
Maine	43.3%	33.7%	22.3%									
Arizona	6.3%	6.0%	5.3%									
National Average	31.1%	29.4%	5.5%									
*The percentage of each state's highway bridges that are rated as substandard or deficient based on the federal bridge rating system.												

Bridge Condition

Nevada

Nevada displayed the largest improvement in the area of Bridge Condition from 1992 to 1998. When contacted Marc Grenert, Nevada's Principal Bridge Engineer, suggested several reasons for this change. The largest factor is that Clark County (Las Vegas) is experiencing massive growth. This county alone has added between 200-300 bridges to the state network in the last eight years. This large induction of new bridges has resulted in a dilution of the impact existing substandard bridges have on the state's rankings.

The Nevada bridge network is relatively new. The majority of its bridges being build in the last 30-40 years. This is well under the 50-75 year lifespan for bridges and results in very few bridges being added to the substandard list each year.

Wisconsin

Wisconsin demonstrated the second largest improvement in this category. When contacted Jose Aldayvrez, Wisconsin's Bridge Management Engineer, attributed the success to a partnership between the counties. Wisconsin has decentralized its bridge maintenance to their individual counties.

The district managers take direct responsibility for the bridges in their counties/districts. The district managers then maximize their funds for bridge maintenance by utilizing county forces to do most of the work. The district managers have a scheduled meeting twice a year where they share current problems and successful strategies with their fellow district managers. From these meetings the managers gain insight on how to most effectively and efficiently manage their bridges.

Connecticut

Connecticut displayed the third largest improvement in the area of Bridge Condition. According to Sandy Capodasi, Secretary II at the Connecticut DOT, the start of their program goes back to June of 1983 when the Mianus River Bridge carrying I-95 over the Mainaus River in Greenwich collapsed. After this collapse the Connecticut General Assembly, in a special session, established the State's Special Transportation Fund and provided the funding to sustain a Ten-Year Transportation Infrastructure Program and particularly the State Bridge Program.

Connecticut Department of Transportation has two major programs that they use to address bridge needs. The first program is the Infrastructure Renewal Program (IRP) and the second is ongoing highway projects. The goal of the IRB is to rehabilitate, restore, and/or replace a projected 1620 of the more than 3800 bridges on the state system. It was estimated that this program would require \$1.1 billion in State Bridge bonds to be matched with approximately \$534 million in Federal Highway Bridge Funds. This ten-year program was scheduled through fiscal year 1994. After 1994 it was anticipated that the program would reach a more manageable level being continued at \$20 million annually in State Bridge Bonds, and a matching Federal Bridge allotment. This money was to improve the federally eligible bridges as well as the non-federally eligible bridges identified as deficient in any given year.

To date the IRP has rehabilitated, restored, or replaced 2,788 of the 3,733 bridges on the state highway system at a cost of almost \$2.3 billion. Of these 2,788 bridges work on 1,675 was completed under a department-established program to permanently repair and restore, by vendor contracts, specific structural elements. Elements such as the parapets, bearing pads, abutments, underwater footings, and the deck were included in the initiative. The other 1,113 bridges were rehabilitated under the contract rehabilitation and replacement program in which bridges listed in "poor" condition were advertised for competitive construction bids.

New Jersey

New Jersey demonstrated the fourth largest improvement in Bridge Condition. When contacted, Harry Capers, of the New Jersey Department of Transportation Structural Engineering Department, attributes the success to a program that was started in 1988. Before the new program was started they had a "first in – first out" system for scheduling work. They would fund the first proposals that made it through the system and would continue to allocate funding in this manner until funds ran out. This resulted in a system that did not allocate funds by need or priority, but rather by the speed in which the proposals arrived. Because of this many bridges in need of repair were left in poor condition while other bridges, in better condition, were repaired.

This changed when a priority based system was implemented in 1988. This program began with the evaluation and categorization of all bridges in the state. A priority listing was then compiled to use for project selection.

They then looked at how to get the "most bang for the buck." In prior years the institutional processes of doing things did not always lead to an efficient means of allocating funds, but after some changes in leadership, new and innovated methods were implemented. For example, funds were allocated to start a massive deck rehabilitation program, which gave them the highest impact for the lowest investment.

Maine

Maine rounds out the top five states in most improved Bridge Condition. However, Steve Abbot, Maine's Bridge Management Engineer, believes they should not be ranked as an improving state. The ranking of bridges as substandard are based on two criteria depending on the state's desire for federal funds to repair the bridge. If the state desires the federal dollars then the measurement criteria are more stringent. Utilizing the more stringent standard Maine upgraded 225 bridges in their condition report. This contributed to most of the improvement shown by the state for the period on discussion.

Maine started a capital improvement plan in 1996 to work on their bridge system. Their system currently has an average age of 70 years. They feel that starting in 2005-2010 many of their bridges will approach the end of their lifespan and the number of substandard and deficient bridges will increase.

Summary

Several strategies were identified by the contacted SHAs however, much of the improvement noted was due to nothing more than system growth or the reclassification of deficient bridges. The significant points are:

a. A bridge classification system that ensures that those bridges in the worst condition have priority for repairs.

- b. Parts of the country experiencing growth have built many new bridges thus increasing the bridge population and diluting the significance of deficient bridges.
- c. Decentralization of the management throughout the state. This gives each district more control over the repair process and allows for the potential maximization of funds when district labor is utilized.
- d. In the early 1990's the criteria for a bridge to be classified as substandard changed and many bridges previously considered substandard were then reclassified as standard. This resulted in an improvement in the data without any physical improvement to the bridges.

Fatal Accident Rate

Table 4.6: Fatal Accident Rate *													
	1993	1996	Improvement										
Alaska	2.09	1.70	18.8%										
New York	1.43	1.27	11.7%										
West Virginia	2.12	1.88	11.2%										
Massachusetts	0.93	0.83	11.2%										
California	1.40	1.25	10.3%										
Arizona	1.95	2.09	-7.4%										
National Average	1.6	1.6	2.9%										
*The graph of fotel and	danta non 100 millio	n vahiala milaa (for an all state as a										

*The number of fatal accidents per 100 million vehicle miles for each state as a whole. Three year rolling average data for 1997 was not included as the measurement systems used prior to that year do not produce comparable statistics.

Alaska

Alaska displayed the largest improvement rate in the area of Fatal Accident Rate. Carl Gonder, of the Alaska Department of Transportation Operations Research Analyst Highway Data Section, attributed this improvement to Alaska's strict enforcement of speeding, driving while intoxicated, and other public safety laws.

New York

New York showed the second best improvement in the Fatal Accident Rate. When contacted Robert Limgoes, Civil Engineer II at the New York DOT Traffic Engineering and Highway Safety Department, attributed the improvement to a variety of programs implemented by the State DOT and other state agencies such as the Department of Motor Vehicles and the State Highway Patrol. Contributing to the improvement were:

- Safety Shoulder Rumble Strips (SAFESTRIP) program which involved the installing of audible shoulder rumble strips to alert drivers when their vehicles are leaving the roadway.
- Skid Accident Reduction Program aimed at educating drivers on how to avoid slippery pavement accidents.
- Safety Appurtenance Program (SAFETAP) that addresses roadside safety in all resurfacing projects.

In addition, the enforcement of the mandatory seat belt use law that was enacted in 1984 (the first state to mandate the use of seat belts for the front occupant), and the state's renewed strict enforcement of the driving while intoxicated laws contribute.

New York continues to constantly pursue safety-related actions such as design, work zone safety, and roadway access. A concentrated effort of all state agencies in the area of safety seems to be successful.

West Virginia

West Virginia ranks third in the Fatal Accident Rate improvement. When contacted, Roger Russel, West Virginia's Traffic Operations Section Engineer, attributes the improvement to the state's aggressive construction of two lane highways and the state's 1993 seat belt law.

West Virginia is a rural state having topography that lends itself to difficult driving. Most of the states fatal accidents occur on State Numbered Routes (31%), US Numbered Routes (27%), and County Routes (25%). These are mostly two lane routes that were constructed using older standards. The West Virginia's Division of Highways has, for the past several years, had an aggressive program of reconstructing two lane roads to new standards and of replacing old roadways with new four lane highways. These new four lane roads, in many cases, resulted in much shorter travel paths for motorists. The new roads have shortened what were long trips on multiple, dangerous, two lane highways.

In September of 1993 the West Virginia state government passed a seat belt law mandating the use of seat belts for all front seat passengers and all rear seat passenger under 18 years of age.

Massachusetts

Massachusetts ranked fourth in improvement of fatal accident rate. When contacted Bill Bent, of the Massachusetts Department of Transportation Safety Management Division, attributed their success to several new programs and enhancements to existing programs. Programs making the most significant impact are:

Improved Air Medical Ambulance Teams

- Rumble Strip Installation
- Radar Drone Activators
- Governor's Safety Outreach Program.

In the last ten years the medical community has upgraded the air ambulance system in the state. With the state's heavy traffic volume and geography traditional ambulances were taking too long to get to the accident scene and were slow in delivering patients to the hospitals. The addition of air medical ambulances has significantly shortened the transport time. They are now used whenever a life is in danger.

The state has completed an extensive rumble strip installation plan. Rumble strips have been installed on the shoulders of all interstates. Massachusetts has also installed rumble strips in the center of some very high volume two lane roads. Route 88, that goes to the beach at Cape Cod, and Route 20, going to Chaftin. These are two of the state's busiest recreation areas and the roads into both have been the scene of many fatalities. Rumble strips have been extremely effective in waking sleepy drivers who are crossing the centerline and headed towards a head-on collision.

On major interstates Massachusetts has installed radar drones. These radar drones alert large vehicles (Semi-Trailer Trucks) that are attempting to exit the interstate system at a dangerously fast speed. By slowing these large vehicles Massachusetts has substantially decreased the rollover accident rate.

Finally the Massachusetts Governor intimated a Safety/Outreach campaign. This campaign is focused on many issues. The use of seatbelts and the use of child seats. It focuses on the danger of driving while intoxicated (DUI). A unique aspect of this program is that it is directed at high school age drivers, and specifically calls attention to the driving dangers on Prom nights. Massachusetts has implemented a strong media campaign to ensure that safe driving is on the mind of these young drivers during this specific night.

California

California rates fifth in this category. Steve Kohler, of the California Highway Patrol, attributes California's success to improved automotive technology and to several programs that have been enacted in the last several years. Such programs included:

- Safety Belt Compliance
- DUI Enforcement
- Speed Enforcement
- Grass Root Education Efforts

The Safety Belt compliance law that was a secondary law in 1986 became a primary law in 1993. The full enforcement of this law and the Child Safety Seat law passed in 1983 have increased compliance enormously, in addition a high visibility media campaign has been advantageous.

Driving Under the Influence Enforcement has substantially increased with the California Highway Patrol (CHIP) mounting a broad statewide public awareness campaign coupled with a strong enforcement component.

CHIP has committed a large percentage of its personnel and resources to speed enforcement. These include specifically anti-lock breaks and airbags.

Finally the Grass Root efforts of organizations such as MADD, Buckle-Up Baby, and Safety Belt Safe USA have contributed to safety awareness. All of these programs together have helped to reduce the fatality rate in California. The technological improvements in automobiles are also a major contributor to fatality reduction.

Summary

Improvement of Fatal Accident Rates has been accomplished by utilizing the following methodologies:

- a. The increased enforcement of driving while intoxicated (DUI) laws.
- b. The enforcement of seatbelt laws. Many seatbelt laws were enacted in the early 1980's so new drivers have grown-up with having to use them.
- c. Rumble Strips installed on roadway shoulders to alert sleepy drivers that their vehicle is leaving the roadway.
- d. Improved medial evacuation equipment, most significantly air ambulances (helicopters).
- e. Organization such has Mother's Against Drunk Driving (MADD) and Student's Against Drunk Driving (SADD) that have educated drivers on the dangers of drinking and driving.

Rural Other Principle Arterial Lane Width

Table 4.7: Rural Other Principal Arterial Lane Width *												
	1993	1997	Improvement									
Alaska	3.1%	0.4%	87.9%									
New Jersey	12.1%	2.9%	75.7%									
Rhode Island	28.0%	9.6%	65.7%									
Alabama	10.0%	4.0%	59.9%									
Idaho	3.9%	1.7%	56.7%									
Arizona	0.3%	0.6%	-142.5%									
National Average	14.4%	12.4%	17.0%									
*The percentage of each state's Rural Other Principal Arterial Lane mileage that has lane widths of less than 12 feet wide.												

Alaska

Alaska displayed the largest improvement in the Rural Other Principle Arterial Lane Width (ROPA). When contacted Carl Gonder, of the Alaska Department of Transportation, stated they have no specific program to improve these roads. His only thought is they have been converting gravel roads to paved roads thus increasing the quantity of ROPA roads.

New Jersey

New Jersey showed the second largest improvement in ROPA Lane Width. When contacted Harry Capers, a Structural Engineer at the New Jersey Department of Transportation, attributes the improvement not to a single program, but rather to two things working in combination. First is a redesignation of the rural other principle arterial roadways to urban roads. This coupled with their ongoing maintenance has drastically improved the data reported to FHWA. A road classification change unfortunately does not mean an improved road.

Rhode Island

Rhode Island demonstrated the third largest improvement in this category. When contacted Joe Bucci of the Rhode Island Department of Transportation identified no specific programs to improve the width of the ROPA roads but offered some thought on other programs and policy changes that have effected this area. During this time period Rhode Island expanded urban boundaries resulting in a reduction of ROPA mileage. In addition Rhode Island has undergone numerous resurfacing and striping projects which did not necessarily widen the actual paved roadway, but due to re-stripping the marked travel lanes have been made wider at the expense of the paved shoulder.

Rhode Island conducted a major update to the Highway Performance Monitoring System (HPMS) with old data corrected and changed as needed. The lane widths being a measured item in the HPMS and any field data update surveys taken after a resurfacing or stripping contract would reflect the change in lane width from eleven feet to 12 feet.

Mr. Bucci stated that since Rhode Island does not have much mileage in the ROPA category, any change in data reported would result in a large percentage change.

Alabama

Alabama demonstrated the fourth largest improvement in this category. However, Stephen Walker, of the Alabama Department of Transportation, stated that Alabama has no specific program targeting ROPA mileage, but rather treats all roads equally. Mr. Walker attributes most of the improvement to new construction and resurfacing projects that have recently improved substandard roads to meet Alabama's criteria regarding pavement condition.

Idaho

Idaho is the fifth most improved state in ROPA Lane Width. When contacted Gary Sanderson, the Planning Services Manager at the Idaho Department of Transportation states they have no "magical program" that accounts for the improvement. They use, as part of the HPMS data gathering and the Pavement Management System, a unique way to show management why they need the money. They put the lane widths into a laptop computer data-recording program in the field or in the office from a video of the roadway. One of the Pavement Management reports is a listing of all roadway sections that are deficient in width or pavement condition. The information is then forwarded to the management team that schedules the projects and appropriates the money for widening or other roadway construction projects. The program, though not "magical," is effective for their state.

Summary

Top performing states in this category focused on bringing the ROPA roads to a lane width of 12 ft. Methodologies that resulted in improvements include:

- a. Ensuring that management understands what roads need to be widened
- b. During road re-striping the roadways are striped at the standard width while the road is not widened thus adding additional roadway width by eliminating part of the paved shoulder.
- c. The addition of more mileage to the program. Existing gravel roads have been paved to the new standard. This increases the total mileage thus diluting the impact of the non-standard roads.

d. The re-designation of the ROPA roads to Urban roads.

V. Conclusions and Recommendations

Conclusions

The purpose of this research was:

- 1. Evaluate current research in the area of state highway agency performance measurement.
- 2. Create an effective performance measurement methodology for state highway agencies.
- 3. Identify high performing state highway agencies.
- 4. Probe the high performing state highway agencies to determine what methodologies and strategies are being utilized to maintain a high level of performance improvement.

The literature review identified several methodologies used to measure performance, each having advantages and disadvantages. From this review a new methodology was created in an effort to sustain most of the advantages identified in the previous studies while eliminating many of the disadvantages. The primary concern was to eliminate the state comparison methodology and focus on measurement of improvement over time.

The new methodology primarily uses the same measurement categories identified in a study by David Hartgen from the University of North Carolina at Charlotte. Data from 1992 to 1998 was obtained from the FHWA's *Highway Statistics* and entered into a three year rolling average formula. This formula created five data points by averaging each three year group of data from 1992 to 1998. Then an average annual percentage change in each category was calculated. The five states showing the largest percentage improvement in each of the output categories were identified as high performing.

The high performing states were probed in an effort to identify methodologies and strategies that caused improvement in the respective categories. The probes resulted in the identification of several successful methodologies.

Recommendations

Several different methodologies are being utilized successfully by high performing states. The following is a list of recommendations, organized by the seven output measurement categories, to improve state highway agency performance.

Pavement Condition – Rural and Urban Interstate and Rural Other Principal Arterial

Pavement management techniques utilized by the high performing states are not typically different for the type of roadway. In most cases all roadway maintenance is treated on a conditions priority basis and roads are repaired accordingly. Methodologies that have attributed to the success of the high performing agencies in the area of pavement condition include:

- a. Pavement Management System (PMS). Several types of management systems were identified, both centralized and district oriented. These systems are typically responsible for the roadway condition data collection, whether through outsourcing or self performance, analysis of this data, needs assessment for all pavement, and in some cases the creation of project scopes and recommendations of priority projects.
- b. Aggressive Maintenance Program. The SHAs showing the largest improvements were those who focused on maintenance in recent years. This includes milling, grinding, thin overlays and crack seals. This philosophy is only a temporary solution, but in some cases is only being used to prepare for new construction in coming years at the end of the life span of current pavement.
- c. Superpave and Stone Matrix Asphalt Mixes. Many successful SHAs are changing their construction specifications to require Superpave and Stone Matrix Asphalt Mixes. These mixes are readily accepted by most experts as having a longer life span and being vastly superior overall to mixes used in the past. In addition, quality control initiatives are typically included in the more successful construction programs. This often includes procurement control, which analyzes both vendor quality and materials quality, and performance based procurement for contractors, which includes stringent evaluation of previous contractor performance.
- d. Decentralized Decision Making in Large States. Some states have been very successful by organizing their SHA into districts and allowing each district to operate individually with full budgetary discretion.
- e. New Construction. Any new construction or complete reconstruction initiatives that comprise a significant amount of the state's proportion of roadways will contribute to significant improvement in this category. This is obviously a better alternative than high volumes of maintenance from the value engineering standpoint, however, funds available do not always support the need for new construction.

Urban Interstate Congestion

Because one of the five high performing states did not respond to queries improvement methodologies in this category are somewhat limited. However, recommended methodologies utilized by the states include:

- a. Widening of Existing Interstates. This increases the total lane mileage on the interstates thus increasing physical capacity.
- b. New Construction. In addition to the widening of existing roads the construction of new Interstates is necessary to keep up with population growth.
- c. Changes in Volume/Capacity Specifications. This technical change would reduce the amount of mileage recorded with a volume/capacity ratio of 0.71, since the capacity definition was changed to allow more vehicles.

Bridge Condition

Probes in the area of Bridge Condition did not yield many useful strategies, but did reveal several circumstances that may have contributed to the improvement of the conditions data. For instance, in the early 1990's a change in classification criteria resulted in the reclassification of many bridges throughout the country. This factor led to significant changes in data when no actual changes had been made to the actual condition of the bridges.

Growth increases across the country resulted in the construction of many new bridges which diluted the number of substandard bridges.

However, in some cases strategies were identified but were very similar to those regarding Pavement Management. These methodologies include:

- a. A bridge condition management system that ensure that those bridges in the greatest need of repair are first on the list to receive attention. The key to this is establishing a system by which all bridges are evaluated on a schedule and conditions data is analyzed regularly to identify deterioration and the need for repair.
- b. Decentralization of the state highway agency. Some states have been very successful by organizing their SHA into districts and allowing each district to operate individually with full discretion with their bridge budgets.
- c. New Construction. Any new construction or complete reconstruction initiatives that comprise a significant amount of the state's proportion of bridges will contribute to significant improvement in this category. This is obviously a better alternative than high volumes of maintenance from the value engineering standpoint, however, funds available do not always support new construction.

Fatal Accident Rate

Several strategies were identified in this category, however many have existed for decades. In most cases the strict enforcement of existing laws was suggested. Enforcement increases most often occurred in the areas of Driving Under the Influence (DUI) Laws, Driving While Intoxicated (DWI) Laws, and Mandatory Seatbelt Laws. Additional initiatives involved education and training for safe driving, however, these initiatives and increased law enforcement typically involved increased funding allocation to the Department of Public Safety or Police Departments, which may not involve the state highway agency. Updating and increasing the availability of medical evacuation equipment such as helicopters also contributed to the decrease, but is also not usually a state highway agency action.

However, in addition to the increased enforcement of existing laws, several SHAs are constructing "Rumble Strips." These strips are installed on shoulders and in some cases medians, and are designed as divots in the roadway that create both sounds and vibrations to alert sleepy drivers when they are driving off course.

Rural Other Principal Arterial Narrow Lane Width

Probes in this category, much like Bridge Condition, resulted in few strategies for improvement. In most cases population expansion resulted in the reclassification of ROPA roads to Urban roads. Population growth also contributed to a high percentage of new construction, which diluted the percentage of ROPA roadways less than twelve feet wide. Also, re-striping of roadways to standard width often leads to data supporting a wider roadway when there was no physical pavement width change. Unfortunately, this strategy does not actually widen the road, it just eliminates the shoulder.

Future Studies

Probes of the high performing states identified in this study further validated the relevance of the criteria used to define high performance, however, the probes also revealed some of the inadequacies of the FHWA's *Highway Statistics* and the redundancy of the measurement categories used in the UNCC study.

Flaws exist in the FHWA statistics process because the data collection process lacks in structure. Each state is responsible for reporting their own data with minimal guidelines for both gathering and reporting data. Improvements must be made to this process so that the statistics are more reliable. The FHWA should mandate specific criteria and methodologies for data collection and should improve the data reporting process, perhaps by moving to electronic database submissions.

In addition, the criteria by which performance is measured should be reevaluated. The seven output criteria used in this study were used because they were believed to be an equitable measure of performance, however, upon probing the high performing agencies it was determined that several criteria could be combined. High performing SHAs did not make the distinction between rural and urban interstate, or rural other principal arterial pavement during data collection. The classification of the pavement was not typically as much of a concern for the states as was the condition of the pavement. For this reason one category for pavement condition should encompass all classifications and utilize only one evaluation measurement range on the International Roughness Index.

Future studies of this type should reevaluate the measurement criteria and statistics to be used. The FHWA's *Highway Statistics* reports many other categories than those used in this study and each should be considered. The book is an equitable beginning, but must not be considered entirely accurate as the statistics reported may not necessarily be indicative of actual conditions.

Finally, a comparison should be made between the strategies of the high performing SHAs and the strategies of the low performing SHAs. Probes of the five states in each category that displayed the lowest rate of improvement would serve as a tool to further validate the methodologies of the high performing states. However, it is conceivable that a low performing state may be utilizing the same strategies as a high performer, yet yielding different results. In these cases it would be necessary to again probe the high performing states and compare their

methodologies with those of the low performing states to discern specific differences in each methodology.

References

- Abbott, Steve. Bridge Management Engineer, Maine Department of Transportation. Telephone Interview. 18 February 2000. (202) 287-2228
- Aldayruz, Jose. Bridge Management Engineer. Wisconsin Department of Transportation. Telephone Interview. 13 March 2000. (608) 266-5097
- Bent, Bill. Safety Management Division Manager, Massachusetts Department of Transportation. Telephone Interview. 13 March 2000. (617) 973-7000

Bridge Inventory 1992, Better Roads, Park Ridge, IL, November 1992.

Bridge Inventory 1993, Better Roads, Park Ridge, IL, November 1993.

Bridge Inventory 1994, Better Roads, Park Ridge, IL, November 1994.

Bridge Inventory 1995, Better Roads, Park Ridge, IL, November 1995.

Bridge Inventory 1996, Better Roads, Park Ridge, IL, November 1996.

Bridge Inventory 1997, Better Roads, Park Ridge, IL, November 1997.

Bridge Inventory 1998, Better Roads, Park Ridge, IL, November 1998.

- Bucci, Joe. Chief Civil Engineer, Rhode Island Department of Transportation. Email to author. 9 February 2000. jbucci@dot.state.ri.us
- Buechner, William R., (1999) "Fix It First" Fatally Flawed. A Response to the Surface Transportation Policy Project's Misuse of Highway Investment Data. Washington, D.C. American Road and Transportation Builders Association.
- Caper, Harry. Structural Engineer, New Jersey Department of Transportation. Telephone Interview. 3 February 2000. (609) 530-2557
- Copadasi, Sandy. Secretary II, Connecticut Department of Transportation. Telephone Interview. 3. February 2000. sandra.copodagli@po.state.ct.us, 860 594-2504
- Devaugn, George. Assistant Construction Engineer, Mississippi Department of Transportation. Telephone Interview. 15 March 2000. (601) 359-7001
- Dietrich, Bruce. Pavement Design Engineer, Florida Department of Transportation. Telephone Interview. 25 February 2000. (850) 414-4370
- Flora, William. Pavement Management Engineer, Indiana Department of Transportation. Telephone Interview. 23 March 2000. (317) 233-1060

- Gibson, Terry. Assistant Roadway Design Engineer, Nebraska Department of Roads. Telephone Interview. 15 March 2000. (402) 479-4573
- Grenert, Marc. Principal Bridge Engineer, Nevada Department of Transportation. Telephone Interview. 3 February 2000. mgrunert@dot.state.nv.us
- Gonder, Carl. Operations Research Analyst, Alaska Department of Transportation and Public Facilities. Email to author. 8 February 2000. carl_gonder@dot.state.ak.us
- Graff, Joe. Director of Maintenance, Maintenance Section, Texas Department of Transportation. Telephone Interview. 20 March 2000. (512) 416-3195
- Guckes, Albert. Pavement Management Engineer, Delaware Department of Transportation. Telephone Interview. 20 March 2000. (302) 760-2388
- Hagguist, Ronald F., (1992). *High Precision Determination of State HPMS Component* Weighting Factors Using the Analytical Hierarchy Process. Texas DOT
- Hartgen, David T. and Nicholas J. Lindeman (1999). *The ISTEA Legacy: Comparative Performance of State Highway Systems: 1984-1997.* North Carolina: University of North Carolina at Charlotte.

Highway Statistics, (1992). United States Government Printing Office, Washington DC.

Highway Statistics, (1993). United States Government Printing Office, Washington DC.

Highway Statistics, (1994). United States Government Printing Office, Washington DC.

Highway Statistics, (1995). United States Government Printing Office, Washington DC.

Highway Statistics, (1996). United States Government Printing Office, Washington DC.

Highway Statistics, (1997). United States Government Printing Office, Washington DC.

Highway Statistics, (1998). United States Government Printing Office, Washington DC.

Highway Statistics, (1997). United States Government Printing Office, Washington DC.

Highway Statistics, (1998). United States Government Printing Office, Washington DC.

Humphrey, T.F., M.D. Meyer, and C.M. Walton, (1993). Supplement to NCHRP: Report 357 Exploring Methodologies for Comparing State Highway Performance. Washington, D.C.: National Academy Press

Kohler, Steve. Information Officer, California Highway Patrol Public Affairs. Email to

author. 3 February 2000. SKohler@chp.ca.gov

- Lamm, L.P., R.F. Luettich, and M.F. Reed, (1993). *Report 357: Measuring State Transportation Program Performance*. Washington, D.C. : National Academy Press.
- Larson, Chuck. State Pavement Engineer, Virginia Department of Transportation. Telephone Interview. 15 March 2000. (504) 328-3026
- Limgoes, Robert. Civil Engineer II, New York Department of Transportation. Email to author. 2 February 2000. RLIMOGES@gw.dot.state.ny.us
- Lockett, Larry. Materials and Tests Engineer, Alabama Department of Roads. Telephone Interview. 23 March 2000. (334) 206-2201
- Nationwide Variations in the Cost of Highway Construction: Implication for Future Surface Transportation Policy., (1990) New Jersey Transportation Coordinating Council (NJTCC), Committee on Transportation Financing,. New Jersey T.C.C. : 1990.
- Nebraska Department of Roads (N.D.O.R.), (1986). *Report to the State Board of Equalization*. Nebraska D.O.R. : 1986.
- Newman, Dexter. Director of Construction, Kentucky Department of Transportation. Telephone Interview. 15 March 2000. (502) 564-4780
- Pajoh, Masoud. Pavement Engineer, Oklahoma Department of Transportation. Telephone Interview. 20 March 2000. (405) 521-2704
- Russell, Roger. Traffic Operations Section Engineer, West Virginia Division of Highways. Telephone Interview. 1 February 2000. rrussel@dot.state.wv.us
- Sanderson, Gary. Planning Services Manager, Idaho Department of Transportation. Email to author. 2 February 2000. Gsander@itd.state.id.us
- Santi, Michael. Pavement Engineer, Idaho Department of Transportation. Telephone Interview. 23 March 2000. (208) 334-8440
- Shultz, Ken. Maintenance Engineer, Wyoming Department of Transportation. Telephone Interview. 06 March 2000. (307) 777-4458
- Sissel, Stephen. Pavement Management Engineer, Nebraska Department of Roads. Telephone Interview. 24 Sep. 1999. (402) 479-3816
- Steinvoch, Walter. Urban Transportation Planning Manager, Utah Department of Transportation. Email to author. 15 March 2000. msteinvo@dot.state.ut.us

Stephanos, Pete. Pavement Design Chief, Maryland Department of Transportation.

Telephone Interview. 15 March 2000. (888) 713-1414

- Thompson, Gary. Metro Maintenance Engineer, Minnesota Department of Transportation. Telephone Interview. 20 March 2000. (651) 582-1345
- Walker, Stephen. Assistant Design Engineer, Alabama Department of Roads. Telephone Interview. 13 March 2000. walkers@dot.state.al.us
- Watson, Robert C. Intermodal Unit Manager, West Virginia Department of Transportation. Email to Author. 15 March 2000. rcwatson@dot.state.wv.us

Appendix A: Input Data

This section presents the 'Resource' data for all fifty states. Information presented includes: Receipts for State Owned Highways, Capital and Bridge Disbursements, Maintenance Disbursements, Administrative Disbursements, and Total Disbursements.

Table 1 Appendix A

Receipts for State Owned Highways (in thousands of \$)

Original Data								Three Year Rolling Average						
											ī			
	1992	1993	1994	1995	1996	1997	1998		1993	1994	1995	1996	1997	Improvement
Alabama	679,748	816,704	405810	829,949	846,092	810,476	808,976	Kentucky	634,087	684,154	693,950	828,839	821,848	-29.61%
Alaska	389,618	428,437	44111	432,146	447,752	430,459	399,697	New Hampshire	287,389	301,565	308,003	436,786	425,969	-48.22%
Arizona	994,174	1,092,628	282209	787 ,079	1,220,525	934,629	937,693	Hawaii	789,670	720,639	763,271	980,744	1,030,949	-30.55%
Arkansas	491,747	542,138	284224	582,806	622,752	671,983	634,442	Kansas	439,370	469,723	496,594	625,847	643,059	-46.36%
California	4,429,148	3,791,025	2000876	4,651,644	4,915,638	4,887,127	5,404,162	Vermont	3,407,016	3,481,182	3,856,053	4,818,136	5,068,976	-48.78%
Colorado	566,435	644,799	317473	672,364	672,959	731,838	964,915	Wisconsin	509,569	544,879	554,265	692,387	789,904	-55.01%
Connecticut	1,346,902	1,576,453	433449	1,201,142	1,393,305	1,211,089	1,340,577	Rhode Island	1,118,935	1,070,348	1,009,299	1,268,512	1,314,990	-17.52%
Delaware	515,800	500,942	124500	426,296	463,438	417,678	692,993	Pennsylvania	380,414	350,579	338,078	435,804	524,703	-37.93%
Florida	2,238,906	3,810,193	1192787	2,873,051	3,250,882	3,486,983	4,286,878	Connecticut	2,413,962	2,625,344	2,438,907	3,203,639	3,674,914	-52.24%
Georgia	1,394,634	1,292,031	475853	1,366,466	1,450,337	1,560,079	1,718,360	Illinois	1,054,173	1,044,783	1,097,552	1,458,961	1,576,259	-49.53%
Hawaii	364,320	385,394	89517	466,971	351,288	335,844	235,976	Minnesota	279,744	313,961	302,592	384,701	307,703	-9.99%
Idaho	225,599	237,154	130584	246,858	276,708	304,423	263,438	New Jersey	197,779	204,865	218,050	275,996	281,523	-42.34%
Illinois	2,410,734	2,573,234	1004410	2,411,828	2,353,386	2,169,369	2,678,221	Montana	1,996,126	1,996,491	1,923,208	2,311,528	2,400,325	-20.25%
Indiana	991,964	1,059,665	352353	963,059	922,492	1,093,666	1,503,489	Alabama	801,327	791,692	745,968	993,072	1,173,216	-46.41%
lowa	609,168	645,744	266649	696,539	674,251	722,331	699,281	Maryland	507,187	536,311	545,813	697,707	698,621	-37.74%
Kansas	961,778	1,106,106	201788	702,689	767,995	754,003	1,040,056	Tennessee	756,557	670,194	557,491	741,562	854,018	-12.88%
Kentucky	899,284	1,752,216	573067	1,275,565	996,680	1.022.128	1,164,470	West Virginia	1.074.856	1,200,283	948,437	1.098,124	1.061.093	1.28%
Louisiana	1,056,231	792,935	586716	1,192,059	1,325,249	1,297,172	1,380,754	Arizona	811,961	857,237	1,034,675	1,271,493	1,334,392	-64.34%
Maine	347,480	310,756	170908	354,400	432,508	425,526	477.328	Oregon	276,381	278.688	319.272	404,145	445,121	-61.05%
Marvland	941.846	1.076.820	434530	1.074.490	1.014.799	1.051.181	1.115.290	New Mexico	817,732	861,947	841.273	1.046.823	1.060.423	-29.68%
Massachusetts	1.667.962	2.126.288	529079	2.220.766	2.260.727	3,984,677	2.518.736	lowa	1.441.110	1.625.378	1.670.191	2.822.057	2.921.380	-102.72%
Michigan	1.361.245	976.609	480113	1.077.695	1.191.854	1.315.592	1.741.413	Delaware	939.322	844,806	916.554	1.195.047	1.416.286	-50.78%
Minnesota	825 748	860 844	547320	808 440	851 011	928 596	933 036	Washington	744 637	738,868	735,590	862 682	904 214	-21 43%
Mississippi	453 644	466,380	286671	554 186	551 102	594 993	618 486	 Idaho	402 232	435 746	463,986	566,760	588 194	-46 23%
Missouri	875.312	915.599	575965	1.074.583	1.158.108	1.179.977	1.154.409	 Nebraska	788.959	855,382	936,219	1.137.556	1.164.165	-47.56%
Montana	264 421	401 425	163292	316 971	353 761	346 712	354 525	Texas	276.379	293,896	278,008	339 148	351,666	-27.24%
Nehraska	306 816	383.088	196446	374 887	437 592	413 730	425,338	Mississinni	295 450	318 140	336,308	408 736	425 553	-44 04%
Nevada	327 778	328 190	229175	391,868	403 516	436 144	465.081	Arkansas	295.048	316 411	341 520	410 509	434 914	-47 40%
New Hampshire	399 099	319 151	122157	294 899	285,301	313 873	302 166	Indiana	280,136	245 402	234 119	298 024	300 447	-7 25%
New Jersey	3 306 505	2 455 834	449349	1 600 604	3 371 637	2 109 599	2 129 823	South Carolina	2 070 563	1 501 929	1 807 197	2 360 613	2 537 020	-22.53%
New Mexico	383,707	451 719	282135	457 936	470 525	584 773	457 129	Nevada	372 520	397 263	403 532	504 411	504 142	-35.33%
New York	3 124 313	3 906 490	1116140	4 384 986	3 652 071	4 528 842	4 698 524	Missouri	2 715 648	3 135 872	3 051 066	4 188 633	4 293 146	-58.09%
North Carolina	1 489 842	1 599 243	1040844	1 860 652	1 816 071	1 935 879	2 393 544	Virginia	1.376.643	1,500,246	1 572 522	1 870 867	2 048 498	-48.80%
North Dakota	161 812	162,099	53233	183 322	182 440	221 590	221 133	Alaska	125 715	132 885	139,665	195 784	208 388	-65.76%
Ohio	1 596 499	1 637 471	1001840	1 872 422	2 256 202	2 183 850	2 492 262	California	1 411 937	1 503 911	1 710 155	2 104 158	2 310 771	-63.66%
Oklahoma	1 126 394	526 501	196423	586 217	656 053	704 873	1 408 613	 North Carolina	616 439	436 380	479 564	649 048	923 180	-49.76%
Oregon	586 766	584 751	345041	590,035	678 682	651 273	717 135	Georgia	505 519	506,609	537 919	639,997	682,363	-34.98%
Pennsylvania	3 297 837	3 462 296	1719828	3 273 912	2 843 637	3 237 805	3 798 956	Oklahoma	2 826 654	2 818 679	2 612 459	3 118 451	3 293 466	-16 51%
Rhode Island	270 199	338,960	151055	289 434	299 673	232 202	339,506	Michigan	253 405	259 816	246 721	273 770	290,460	-14 62%
South Carolina	584 657	589,558	266515	606 784	653 726	725 139	742 239	Florida	480 243	487 619	509,008	661,883	707,035	-47 22%
South Dakota	205.087	244 948	87747	248 228	246 947	298,838	299 584	Colorado	179 261	193 641	194 307	264 671	281,790	-57 20%
Tennessee	1 112 844	959 289	486712	976 231	1 023 386	1 092 905	1 205 306	 Wyoming	852 948	807 411	828,776	1 030 841	1 107 199	-29.81%
Техас	3 001 156	3 378 034	2164320	3 447 695	4 256 215	4 032 607	4 042 195	 South Dakota	2 847 837	2 996 683	3 289 410	3 912 172	4 110 339	-44 33%
Litah	213 905	324 845	160626	399 648	455 462	1 135 887	808,000	 New York	233 125	295 040	338 579	663,666	799 783	-243.07%
Vermont	178.643	197 124	78587	167,506	153 300	193 183	168,813	Maine	151 451	1/7 739	133 131	171 330	171 765	-13 /1%
Virginia	1.662.693	1 928 936	771406	2 000 954	2 037 826	2 186 592	2 240 379	Ohio	1 454 345	1 567 099	1 603 395	2 075 124	2 154 932	-48 17%
Washington	1 1/0 616	1 148 498	722137	1 416 006	1 386 736	1 477 999	1 290 1/2	 Louisiana	1 003 750	1 095 547	1 17/ 960	1 426 914	1 384 959	-37 98%
Weet Virginia	709 134	899 3/0	463018	786 3/1	861.062	945 698	890 365	North Dakota	690 497	716 233	703 474	864 367	899,042	-30.20%
Wieconein	1 118 522	212 CAP	30/602	858 207	965 710	000,040	876 799	Maeeachueatte	818 596	731.814	739 604	929 712	935 910	-14 33%
Wyoming	221 864	241 300	623/8	261 165	259 891	271 406	289 120	l Itah	175 171	188 271	194 468	264 154	273 472	-14.3370
**yoning	221,004	241,000	02340	201,103	200,001	Zr 1,400	203,120	Stan	119,111	100,271	104,400	204,104	213,472	-00.1270
National Average	1,076,611	1,143,857	490,319	1,131,800	1,208,385	1,270,969	1,355,395	National Average	903,595	921,992	943,501	1,203,718	1,278,250	-41.46%

Table 2 Appendix A Capital and Bridge Disbursements (in thousands of \$)

			Original [Data				Three Year Rolling Average Data						
			_											
	1992	1993	1994	1995	1996	1997	1998		1993	1994	1995	1996	1997	Improvement
Alabama	327,518	470,233	384,292	436,663	469,574	439,077	535,282	Alabama	394,014	430,396	430,176	448,438	481,311	-22.16%
Alaska	213,000	242,000	240,417	254,068	270,591	251,881	224,607	Alaska	231,806	245,495	255,025	258,847	249,026	-7.43%
Arizona	488,274	454,634	468,587	430,605	562,387	516,319	616,493	Arizona	470,498	451,275	487,193	503,104	565,066	-20.10%
Arkansas	325,826	345,648	368,078	359,411	439,680	507,686	481,334	Arkansas	346,517	357,712	389,056	435,592	476,233	-37.43%
California	2,089,004	2,090,728	2,385,554	2,223,505	2,319,581	2,556,213	2,533,949	California	2,188,429	2,233,262	2,309,547	2,366,433	2,469,914	-12.86%
Colorado	386,491	341,276	377,943	378,603	425,454	405,556	573,632	Colorado	368,570	365,941	394,000	403,204	468,214	-27.04%
Connecticut	691,154	588,046	631,524	596,585	543,216	580,407	493,498	Connecticut	636,908	605,385	590,442	573,403	539,040	15.37%
Delaware	193,959	205,535	223,266	240,412	223,464	213,453	248,520	Delaware	207,587	223,071	229,047	225,776	228,479	-10.06%
Florida	1,440,203	1,675,637	1,800,280	2,088,012	2,140,695	2,110,615	2,427,630	Florida	1,638,707	1,854,643	2,009,662	2,113,107	2,226,313	-35.86%
Georgia	699,149	737,696	729,928	881,235	1,067,286	602,207	1,046,659	Georgia	722,258	782,953	892,816	850,243	905,384	-25.35%
Hawaii	316,797	300,561	300,561	212,288	225,642	251,731	194,523	Hawaii	305,973	271,137	246,164	229,887	223,965	26.80%
Idaho	111,528	124,933	151,259	143,008	152,683	175,454	173,947	Idaho	129,240	139,733	148,983	157,048	167,361	-29.50%
Illinois	1,443,338	1,300,146	1,115,904	1,321,367	1,123,375	1,236,335	1,234,146	Illinois	1,286,463	1,245,806	1,186,882	1,227,026	1,197,952	6.88%
Indiana	567,006	560,516	523,871	508,280	524,973	577,280	785,504	Indiana	550,464	530,889	519,041	536,844	629,252	-14.31%
lowa	400,691	412,640	413,456	459,382	471,432	488,070	505,566	lowa	408,929	428,493	448,090	472,961	488,356	-19.42%
Kansas	352,267	379,849	491,551	559,875	691,346	605.028	569.036	Kansas	407,889	477.092	580,924	618,750	621,803	-52.44%
Kentucky	683,377	482,610	636,465	561,870	576,251	599,653	656,549	Kentucky	600,817	560.315	591,529	579,258	610,818	-1.66%
Louisiana	650,766	598,835	594,918	552,283	544,885	486,455	643,033	Louisiana	614,840	582,012	564,029	527,874	558,124	9.22%
Maine	143,850	136,176	153.053	156.027	264,316	210.921	182,268	Maine	144,360	148,419	191,132	210.421	219,168	-51.82%
Marvland	511,583	471.633	406.514	540,932	611.652	688,734	588,224	Marvland	463,243	473.026	519.699	613,773	629,537	-35.90%
Massachusetts	871,763	821,113	1.198.735	1.346.997	1.381.369	1.292.750	1.751.205	Massachusetts	963.870	1.122.282	1.309.034	1.340.372	1.475.108	-53.04%
Michigan	546 839	555 849	607 830	728,919	692 425	711 738	870.085	Michigan	570 173	630,866	676 391	711 027	758 083	-32.96%
Minnesota	587,390	520,364	440 122	426.081	426 669	450 414	472,511	Minnesota	515 959	462 189	430,957	434,388	449 865	12.81%
Mississinni	332,638	317 850	302 181	342,328	453 949	467 867	481.578	Mississinni	317 556	320,786	366 153	421.381	467 798	-47.31%
Missouri	464 531	497,980	623,366	631,104	699.981	788 264	741.430	Missouri	528,626	584 150	651 484	706.450	743 225	-40.60%
Montana	191.070	190 349	196,416	183 346	212 829	205 288	211 567	Montana	192,612	190.037	197,530	200,488	209,895	-8.97%
Nehraska	244 117	264 521	334 578	279.909	303,781	298,901	265,811	Nebraska	281.072	293 003	306.089	294 197	289 498	-3.00%
Nevada	168 487	187 941	272 170	292 183	266,727	226,552	218 907	Nevada	209,533	250,565	277 027	261,821	237 395	-13.30%
New Hamnshire	86,815	167 893	121 556	129 216	130 233	129,002	147 780	New Hamnshire	125,421	139 555	127 002	129 523	135 711	-8 20%
New Jersey	1 250 419	953 446	916 404	730,561	687,466	729.364	720 772	New Jersey	1 040 090	866 804	778 144	715 797	712 534	31.49%
New Mexico	245 616	312 089	290,816	310,607	249 988	271.001	261.029	New Mexico	282 840	304 504	283,804	277 199	260,673	7.84%
New York	1 172 069	1 974 911	1 999 040	1 847 891	1 759 409	1 989 341	2 255 865	New York	1 715 340	1 940 614	1 868 780	1 865 547	2 001 538	-16.68%
North Carolina	772 594	817 921	937 932	1,008,170	1 021 271	1 162 323	1 322 466	North Carolina	842 816	921 341	989 124	1,063,921	1 168 687	-38.66%
North Dakota	93,070	95 501	116 333	120 314	105 111	153,018	155 137	North Dakota	101,635	110 716	113 919	126 148	137 755	-35 54%
Obio	679,950	741.026	927,496	964 441	91/ 203	1 059 826	1 263 858	Ohio	782,824	877.654	935 380	979 /90	1 079 296	-37.87%
Oklahoma	320,609	252,354	269,912	328,286	385 319	346,616	400 131	Oklahoma	280,958	283 517	327,839	353,407	377 355	-34 31%
Oregon	335,881	317 1/8	352 162	315 752	353 368	384,468	460,131	Oregon	335,064	328 354	340,427	351,196	396 219	-18 25%
Pennsylvania	1 223 271	1 285 148	1 562 771	1 443 354	1 351 022	1 792 605	1 546 071	Pennsylvania	1 357 063	1 430 424	1 452 382	1 528 994	1 563 233	-15 19%
Phode Island	136 323	221 563	244 794	197,663	166 423	125 747	180 173	Rhode Island	200 893	221 340	202,960	163 278	157 448	21.63%
South Carolina	332,967	396,059	400.063	256, 101	386.001	432.016	441.828	South Carolina	376 363	384.074	390 721	391 372	/19 9/8	-11 58%
South Dakota	159,907	196,898	179 176	169 0/9	180.048	210.264	176 604	South Dakota	175 293	178 371	176 091	186.454	188 972	-7.80%
Tenneccee	613 159	547,498	564,117	587,009	627,635	664,066	7/6,063	Tannaceaa	574 924	566,208	592,920	626,237	679,565	-18 20%
Terressee	1 710 015	1 979 910	1 009 011	1 902 125	2 459 767	2 194 642	230,047	Toxoo	1 965 613	1 996 6/9	2,056,634	2 152 179	2 340 499	-10.2070 DE 46%
I BAdo	10,015	1,370,012	1,300,011	1,003,123	2,400,707	Z,134,04Z	2,300,030	18Ado Litob	100,013	1,030,045	2,000,004	2,132,170	2,340,403	104 200/
Vermont	97 1 40	212,354 05 001	001,161	214,400	230,500	97,034	02,030	Verment	137,707	200,000	214,200	77.040	90.077	3 3/104
Vermoni	640.073	50,051 CDE 70E	014 052	74,730	1 010 007	1 110 201	1 744 212	Virginio	02,047 COC 507	20,00	014 104	1.015.000	1 100,077	3.34 70 C1 770/
Virgifila Weekington	E01 600	676 200	701 105	700,091	1,019,907	701 000	1,244,313	Virginia Mochington	090,097	715 303	914,204	000,010,1	1,120,007	-01.77%
washington Weet Virginie	256 770	467,400	470,240	/ 00,33/	1 22,307 000 207	610,096	1007,375	Washington	626,379	/ 15,204	7 30,033 515 000	101,100 EE0 700	/ JU,/46	-10.00%
west virginia	300,770	407,439	479,340	457,244	551 242	610,464 500,670	499,433	vvest virginia	434,516	400,008	515,060	500,000	572,031	-31.03%
vvisconsin Moremine	626,822	563,034	561,027	527,999	551,312	592,673	599,797	VVISCONSIN	583,628	550,687	546,779	557,328	581,261	U.41%
vvyuming	127,015	140,931	168,617	151,824	159,092	160,289	189,597	vvyoming	145,521	153,791	159,844	157,068	169,669	-16.59%
National Average	542,141	566.101	603.033	611.005	644,573	669,508	725,305	National Average	570.425	593,380	619.537	641.695	679,795	-19.17%

Table 3 Appendix A Maintenance Disbursements (in thousands of \$)

Original Data								Three Year Rolling Average Data						
	1000	1002	1004	1005	1000	1007	1000		1002	1004	1005	1000	1007	Improvement
Alahama	1332	1533	170 200	1990	1990	210 197	172 492	Alahawa	1553	1994	212 100	1990	210 610	improvement
Alabama	134,450	107,000	179,320	221,002	239,100	219,107	173,403	Alabama	107,210	100,092	213,199	220,400	210,019	-33.97 %
Alaska	121,900 69.007	74 471	120,490	123,101	05 150	124,490	122,000	Alaska	129,790	74 122	123,394	77 166	70 000	2.30%
Arizona	112 121	111 442	104 751	110,200	101,042	10,109	120,059	Anzona	100,000	110 070	114 270	100	10,009	-9.0470
Arkarisas	E11.077	C10,443	04,751	FC2 004	121,943 C01,521	620,021	130,053	Arkansas	575,009	F00.545	F00.000	122,326	120,072	-15.54%
California	100.000	154,007	104,005	171 212	122 471	167.140	104,729	California	070,207 125,714	150,009	143,000	157,375	154,005	-12.37 %
Colorado	128,060	154,997	124,065	171,212	133,471	167,142	161,402	Colorado	135,714	74,046	142,923	157,275	154,005	-13.40%
Delevere	60,753	72,304	62,510	07,000	79.000	72,079	19,536	Connecticut	71,070	74,240		74,160	70,053	-0.59%
Deraware	00,002	09,/00	070,60	100,007	70,000	10,001	100,737	Delaware	01,450	02,900	404,507	71,602	400,102	-30.00%
Florida	202,012	311,412	375,355	425,667	463,498	413,780	423,879	Fiorida	323,193	370,811	421,507	434,315	433,719	-34.20%
Georgia	185,909	224,490	227,073	256,364	281,872	297,131	139,499	Georgia	212,491	235,976	255,103	278,456	239,501	-12.71%
Hawali	19,763	19,813	19,813	17,469	19,843	37,740	21,861	Hawaii	19,796	19,032	19,042	25,017	26,481	-33.77%
Idano	49,296	58,6/3	59,035	57,632	60,604	54,780	55,062	Idano	55,668	58,447	59,090	57,672	56,815	-2.06%
Illinois	291,073	325,017	321,144	337,326	313,919	322,931	360,700	Illinois	312,411	327,829	324,130	324,725	332,517	-6.44%
Indiana	201,342	209,589	198,168	208,483	236,356	226,539	300,951	Indiana	203,033	205,413	214,336	223,793	254,615	-25.41%
lowa	100,801	110,692	100,227	116,465	120,146	128,157	119,699	lowa	103,907	109,128	112,279	121,589	122,667	-18.06%
Kansas	81,227	104,387	94,798	106,755	98,165	103,171	115,699	Kansas	93,471	101,980	99,903	102,694	105,675	-13.06%
Kentucky	152,045	154,157	175,554	194,427	187,779	181,977	192,700	Kentucky	160,585	174,713	185,920	188,061	187,485	-16.75%
Louisiana	59,191	121,414	150,064	135,863	150,169	131,855	150,762	Louisiana	110,223	135,780	145,365	139,296	144,262	-30.88%
Maine	114,900	116,580	105,013	115,913	137,848	143,333	130,782	Maine	112,164	112,502	119,591	132,365	137,321	-22.43%
Maryland	149,131	158,492	195,572	153,552	198,746	179,911	180,052	Maryland	167,732	169,205	182,623	177,403	186,236	-11.03%
Massachusetts	146,150	155,638	159,507	123,484	233,224	156,413	209,644	Massachusetts	153,765	146,210	172,072	171,040	199,760	-29.91%
Michigan	138,763	145,051	196,613	201,078	207,084	210,572	194,985	Michigan	160,142	180,914	201,592	206,245	204,214	-27.52%
Minnesota	144,894	161,489	150,321	150,436	223,692	268,519	233,789	Minnesota	152,235	154,082	174,816	214,216	242,000	-58.97%
Mississippi	54,704	57,397	65,312	65,727	66,227	69,928	73,354	Mississippi	59,138	62,812	65,755	67,294	69,836	-18.09%
Missouri	210,439	218,493	275,994	251,071	287,519	281,421	253,895	Missouri	234,975	248,519	271,528	273,337	274,278	-16.73%
Montana	42,087	53,339	61,176	66,800	61,778	61,632	66,663	Montana	52,201	60,438	63,251	63,403	63,358	-21.37%
Nebraska	51,993	55,918	56,782	58,682	44,526	62,580	63,144	Nebraska	54,898	57,127	53,330	55,263	56,750	-3.37%
Nevada	58,785	60,342	64,330	57,283	61,478	63,845	78,158	Nevada	61,152	60,652	61,030	60,869	67,827	-10.91%
New Hampshire	98,469	84,585	89,028	80,184	91,969	100,645	86,214	New Hampshire	90,694	84,599	87,060	90,933	92,943	-2.48%
New Jersey	358,862	328,351	322,665	335,496	327,246	389,000	362,205	New Jersey	336,626	328,837	328,469	350,581	359,484	-6.79%
New Mexico	63,812	59,565	115,306	71,731	89,312	74,512	62,266	New Mexico	79,561	82,201	92,116	78,518	75,363	5.28%
New York	606,776	641,591	820,040	848,487	866,149	772,577	784,817	New York	689,469	770,039	844,892	829,071	807,848	-17.17%
North Carolina	362,139	407,864	436,718	447,896	447,497	473,145	565,572	North Carolina	402,240	430,826	444,037	456,179	495,405	-23.16%
North Dakota	34,178	35,210	37,574	36,564	36,698	46,026	25,597	North Dakota	35,654	36,449	36,945	39,763	36,107	-1.27%
Ohio	460,687	440,968	372,777	419,478	421,397	402,568	309,543	Ohio	424,811	411,074	404,551	414,481	377,836	11.06%
Oklahoma	88,492	112,237	113,458	113,093	127,538	138,936	138,663	Oklahoma	104,729	112,929	118,030	126,522	135,046	-28.95%
Oregon	120,773	160,585	103,730	124,043	173,805	155,084	169,911	Oregon	128,363	129,453	133,859	150,977	166,267	-29.53%
Pennsylvania	764,351	802,039	813,511	789,490	875,269	999,149	1,194,673	Pennsylvania	793,300	801,680	826,090	887,969	1,023,030	-28.96%
Rhode Island	23,710	41,771	57,114	43,309	56,730	47 ,055	47,010	Rhode Island	40,865	47,398	52,384	49,031	265, 50	-23.00%
South Carolina	156,266	136,028	137,044	131,337	139,534	149,053	143,806	South Carolina	143,113	134,803	135,972	139,975	144,131	-0.71%
South Dakota	33,371	38,619	41,209	39,955	37,974	47,590	40,208	South Dakota	37,733	39,928	39,713	41,840	41,924	-11.11%
Tennessee	192,392	185,130	180,825	219,049	216,049	249,143	223,131	Tennessee	186,116	195,001	205,308	228,080	229,441	-23.28%
Texas	564,131	674,529	657,718	768,466	773,737	797,728	820,661	Texas	632,126	700,238	733,307	779,977	797,375	-26.14%
Utah	59,893	66,850	68,400	72,000	74,525	78,971	88,408	Utah	65,048	69,083	71,642	75,165	80,635	-23.96%
Vermont	36,024	22,539	36,080	38,565	39,795	45,173	49,306	Vermont	31,548	32,395	38,147	41,178	44,758	-41.87%
Virginia	468,402	509,428	686,415	688,408	654,685	694,852	676,989	Virginia	554,748	628,084	676,503	679,315	675,509	-21.77%
Washington	193,795	193,348	202,148	197,949	227,643	222,105	238,753	Washington	196,430	197,815	209,247	215,899	229,500	-16.84%
West Virginia	161,301	165,529	175,210	190,589	196,566	218,124	271,228	West Virginia	167,347	177,109	187,455	201,760	228,639	-36.63%
Wisconsin	116,788	123,971	132,435	134,425	140,649	146,905	143,407	Wisconsin	124,398	130,277	135,836	140,660	143,654	-15.48%
Wyoming	52,018	52,084	63,451	67,841	68,018	71,834	78,300	Wyoming	55,851	61,125	66,437	69,231	72,717	-30.20%
										.				
National Average	174,936	189,566	201,463	207,177	219,995	224,165	228,785	National Average	188,655	199,402	209,545	217,112	224,315	-18.90%

Table 4 Appendix A Administrative Disbursements (in thousand of \$)

Orignal Data							Three Year Rolling Average Data Ir					Improvement		
	1992	1993	1994	1995	1996	1997	1998		1993	1994	1995	1996	1997	•
Alabama	62,387	55,532	63,396	61,533	67,160	59,698	70,040	Alabama	60,438	60,154	64,030	62,797	65,633	-8.59%
Alaska	20,900	28,900	26,825	27,330	28,220	28,298	27,000	Alaska	25,542	27,685	27,458	27,949	27,839	-9.00%
Arizona	46,570	54,606	61,154	45,872	55,137	38,118	45,845	Arizona	54,110	53,877	54,054	46,376	46,367	14.31%
Arkansas	16,311	19,665	19,857	19,713	19,531	16,618	20,859	Arkansas	18,611	19,745	19,700	18,621	19,003	-2.10%
California	643,092	687,771	670,973	593,511	539,352	540,315	717.350	California	667.279	650,752	601,279	557,726	599.006	10.23%
Colorado	14,320	32,813	91,909	57,480	57,418	35,986	43,843	Colorado	46,347	60,734	68,936	50,295	45,749	1.29%
Connecticut	56,593	64,163	68,447	62.672	61.008	62,111	67.027	Connecticut	63,068	65.094	64.042	61,930	63,382	-0.50%
Delaware	50,489	18.621	25.574	37,456	36,478	39,740	40,105	Delaware	31,561	27.217	33,169	37.891	38,774	-22.85%
Florida	198.063	139.635	140,902	163,751	193,644	239.526	185.088	Florida	159,533	148.096	166.099	198,974	206.086	-29.18%
Georgia	70.845	79.274	85,607	93,437	107,136	112.641	63,349	Georgia	78,575	86,106	95,393	104,405	94,375	-20.11%
Hawaii	23 175	22 879	22 879	24 122	24 621	24 667	29 238	Hawaji	22,978	23 293	23,874	24 470	26 175	-13.92%
Idaho	26,800	26,265	16,666	20.628	21,382	19 040	19 415	Idaho	23 244	21,186	19 559	20,350	19 946	14 19%
Illinois	188.024	204 262	179,950	221 807	242 195	265,864	182,337	Illinois	190 745	202.006	214 651	243 289	230 132	-20.65%
Indiana	56 257	60,665	54 395	63,468	64 465	66 348	91 471	Indiana	57 106	59,509	60,776	64 760	74 095	-29 75%
lowa	72 179	42,995	43 022	47 466	42,556	41 476	42 518	lowa	52 732	44 494	44 348	43,833	42 183	20.00%
Kansas	84 961	35 339	35,600	48 126	47 056	49 942	52,908	Kansas	51,967	39,688	43 594	48,375	49,100	3.84%
Kantucky	338.93	48 141	55,632	56 536	102,966	83 701	108 988	Kentucky	57,880	53,436	71 711	81.068	98 552	-70 27%
Louiciana	48,663	69.274	82,474	87 718	134,978	155 219	100,000	Louieiana	000,000	79,822	101 690	125,938	136 775	-104 74%
Maina	12 182	15 388	13 959	18.078	17 973	22,435	8 6 2 9	Maina	13.8/3	15 808	16 653	19 //79	16 329	-17.96%
Maryland	66 124	83,413	137 388	1/2 579	/17 ,020	49.875	54.051	Maryland	95,643	121 127	10,000	80 194	50,684	47.01%
Maccachucotte	157 244	160 179	173,000	192,575	192.055	179,073	184,001	Maccachucotte	163,768	171 937	182,503	184 342	185 133	13.05%
Michigon	156 692	167 344	97 288	91 590	102,000	52,5221	62,122	Michigan	140 438	118 741	99,572	84,630	74.846	46 71%
Minnocoto	75 463	107,J44 66,433	39,200	67 665	99.175	70,302	96 617	Minnocoto	60.025	57 202	64 973	75 3/9	91 600	26 11%
Minnesota	75,465	20,400	39,170	27.000	34 365	200,00	46.944	Micciccinni	26,023	37,352	25 494	75,345	29,774	970%
Mississippi	117 500	116 104	07.047	32,040	34,000	20,023	40,344	Miccouri	107,052	100,000	72 010	55,075	35,774	-0.70%
Montono	17,500	12 000	17 205	30,320	34,203	1023	40,320	Montono	14,000	100,230	75,010	22,004	25,040	124 000/
Nebreeke	10,000	13,335	17,395	10 701	15 000	42,070	25,013	Nobrooko	14,500	10,720	23,131	16 650	10,203	-134.3070 25 500/
Neuraska	14 750	15,200	10.004	21 124	10,009	13,017	2010	Neuraska	16,001	10,000	14,750	10,002	75,000	-33.3370
Nevaua New Hompshire	77 766	10,303	20,004	21,134	21,000	24,334	32,227	New Hompshire	10,342	22,122	20,000	22,133	23,030	40.26%
New Jaroov	21/ 512	19,000	23,103	106 024	121,510	120 691	20,374	New Jaroay	42,000	23,122	20,001	150,000	174 425	43.30%
New Mexico	56 670	20 6 41	204,130	E0 007	67.007	67,760	202,121	New Maxiao	202,000	40 223,404	204,100	60,000	04,014	00 770/
New Wexico	20,072	444.000	477.540	400,007	200,00	275,703	110,270	New Wextco	44,272	42,327	460,090	410 200	254,014	10 200/
New TURK North Corolino	102 210	115 100	477,343	409,333	120,303	323,472	210,343	New FURK	435,100	443,001	409,002	410,330	152,412	13.30 %
North Dakata	14 7 4 4	17.004	10,071	10,904	130,327	109,001	101,049	North Carolina	10.049	10,700	10,400	141,047	192,412	-37.07.76
Obio	772 457	17,204 DEE 76E	751 049	10,037	141.057	20,337 167.556	20,402 154,400	Obio	10,040	217.745	176 176	149.045	154 240	-20.30%
Olilo	272,407	200,700	201,940	100,022 20 040	E1 007	107,000	104,400	Olio	203,330	217,743	E7 21E	50 051	104,340	41.4070
Okianoma	37,740	04,000	74.527	70 240	02,000	70,004	72 704	Okianoma	1205	60.057	07,310	03,001	02,303	01 170/
Dependularia	20,002	27,007	74,007	70,340	110 000	144.005	107 710	Denneukonia	43,025	101,207	104.035	100,770	102,230	-31.1270
Pennsylvania Dhodo Jolond	00,002	6 6 6 6 6 1 1	96,407	30,501	119,000	144,023	11 050	Pennsylvania Dhada Jaland	97,546	7 ECE	0 0 7 1	0.105	123,070	-20.9976
Rhode Island Rewth Cavaline	7,100	50,000	0,370	7,090	44,005	40,005	11,000	Rhode Island	175 242	7,000	0,271	9,165	45,000	-43.0176
South Carolina Routh Dalvata	446,219		20,259	17,000	44,095	42,929	40,109	South Carolina South Dalvata	175,242	49,200	44,501	02,000	45,336	74.13%
South Dakota	10,027	10,000	17,907	17,909	10,247	20,224	20,790		17,190	71.450	17,400	10,155	19,090	-11.05%
Tennessee	00,400	241,505	62,429	400,009	94,431	00,144	201,203	Tennessee	224,60	71,453	00,200	00,021	200,004	-40.00%
Texas	265,972	341,505	307,771	426,196	340,275	277,141	301,227	l exas	331,749	305,157	307,414	350,537	300,001	0.09%
Vamaant	27,131	30,182	25,062	33,047	34,784	30,449	44,608	Utan	27,458	29,430	30,964	35,427	39,260	-43.05%
Vermont	110,919	12,134	19,515	19,827	15,538	147.405	17,706	Vermont	14,189	17,159	19,627	19,519	18,812	-32.58%
virginia Monahimatan	116,231	138,704	157,466	157,866	154,097	147,135	183,985	Virginia	137,467	151,345	156,476	153,033	161,739	-17.66%
vvasnington	126,056	138,493	148,812	189,315	142,654	168,997	149,175	VVasnington	137,787	158,873	160,260	166,989	153,609	-11.48%
vvest virginia	28,878	49,826	42,047	57,699	56,640	43,911	57,045	VVest Virginia	40,250	49,857	52,129	52,750	52,532	-30.51%
VVISCONSIN	54,620	65,148	79,840	/3,03/	/1,310	76,098	76,120	VVisconsin	66,536	/2,6/5	/4,/29	73,482	74,509	-11.98%
vvyoming	20,293	22,551	18,554	17,653	16,808	14,448	15,165	vvyoming	20,466	19,586	17,672	16,303	15,4/4	24.39%
National Average	100.627	92,485	96.085	95.306	95,277	90,963	93,735	National Average	96.399	94.625	95,556	93,849	93,325	3.19%

Table 5 Appendix A Total Disbursements (in thousands of \$)

Original Data								Three Year Rolling Average Data							
	1000	1003	1001	1005	1006	1997	1009			1993	100/	1005	1006	1997	Improvement
Alahama	635 190	752.004	704 900	900 949	969 769	972 973	949 746		Alahama	697 361	753 594	701 669	921 360	947 336	71 5%
Alaeka	399,619	428,437	/04,300	432,146	447 752	430,459	300,740		Alaeka	/12 799	102,004	/31,003	436,786	475,920	-21.37%
Arizona	897 469	1 194 325	1 226,510	795.076	1 112 557	884 604	1 000 398		Arizona	1 106 165	1 072 024	1 044 768	930,700	900 196	9.7%
Arkaneae	482,354	518 859	529,072	534 302	619.070	692 104	674 986		Arkaneae	510 163	507 J79	560,882	615 159	662,053	-79.8%
California	3 848 398	3 880 552	4 395 001	4 073 114	4 262 484	4 496 297	4 877 977		California	4 041 317	A 116 222	4 243 533	4 077 098	4 528 918	12.0%
Calarada	5,040,350	568,836	661.548	PEN C33	680 167	686,824	4,027,372		Colorado	4,041,317 500 777	620,025	668 045	676.470	739,766	73.3%
Connecticut	1 295 979	1 573 699	1 333 294	1 132 185	1 182 034	1 153 459	1 395 339		Connecticut	1 /00 957	1 346 393	1 215 838	1 155 993	1 2/3 577	11 7%
Delawara	297 794	551.017	EE9 373	1,132,103	1,102,034	1,100,400	E42,235		Delewere	1,400,507	515 937	/91 790	444 278	E10 /79	2.0%
Elorido	2 295 644	2 767 479	2 972 991	3 061 472	3 106 014	3 454 210	3 747 670		Elorido	3.045.701	2 267 644	2 077 222	2 227 200	2 /66 021	12.0%
Georgia	1 241 954	1 297 9/6	2,373,301	1 /21 227	1 667 600	1 262 001	1 549 907		Fiorida Georgio	1 296 495	1 216 296	1 //2 925	1 /97 202	1 606 602	-13.0 %
Howoii	402 202	410 727	272,003	2/0 220	221,007,002	271 610	207 200		Georgia Howoji	200,433	200,200	251 440	260,796	220,000	-10.7 /o 1E E0/.
Idaha	403,203	13,737	373,400	720,000	351,303		307,330		i lawan Idobo	330,007	300,043	331,440	350,700	000,000	17.7%
Illinoio	202,021 1 200 076	224,731	244,371	205,005	204,000	200,403	200,920		Illinoio	223,774	200,000	240,250	204,270	203,345	-17.770
Indiana	2,000,070	2,047,373	2,030,777	2,202,420	2,320,037	1 121 242	1 105 707		Indiana	2,303,077	2,323,001	2,210,014	1.011.756	2,00,773	-1.3 %
Inuiaria	520,115 640,566	640.035	600,000	700.055	716 114	720.007	740 050		Inuiaria	527,023 626,670	542,121	520,200 CO1 OCE	715 600	720,727	-20.070
IUwa	640,000	040,323	715 076	700,956	710,114	730,007	1 000 400		IUwa	745 104	705 401	001,000	710,092	074 541	-14.070
Kanisas	1 317 703	1 400 270	1 000 074	1 162 000	1 000 004	1.000.005	1,090,420		Kansas Kentueluu	1 101 745	1 00,401	1 117 202	1 100 257	1 100 070	-30.070
Kentucky	1,217,703	1,400,370	1,050,074	1,103,222	1,030,004	1 1002,000	1,200,709		Kentucky Leuisiene	1,202,743	1,244,330	1 102 177	1,100,307	1,120,073	11.270
Louisiana	1,033,072	216 071	1,000,001	1,150,090	1,370,072	1,133,030	461,401		Louisiana	200,000	222.467	200 500	1,210,270	1,200,007	-23.070
Manulanal	319,437	1.049.004	327,207	334,063	404,309	447,040	461,491		Manuland	320,923	332,407	300,300	420,760	404,309	-44.070
Maaaahuaatta	931,310	1,040,294	1.950.040	907,000	1,065,905	1,001,300	3,050,345		iviaryianu Maaaaabuaatta	952,299 4 700 070	971,000	970,950	1,045,047	1,079,067	-13.3%
Massachusetts	1,002,122	1,047,309	1,000,910	2,243,324	2,204,700	2,929,322	3,050,345		Massachusetts	1,700,070	1,902,010	2,120,342	2,404,477	2,790,191	-34.170
Michigan	1,110,900	051 071	704.475	710,094	1,253,170	1,244,920	1,740,000		Michigan	1,101,000	707,400	7/043	1,242,097	1,414,901	-20.4%
Minnesota	900,312	402,542	734,175	7 10,000	017,000	002,709	001,001		Minnesota	400,000	/0/,402	750,147	005,005	000,070	-3.5%
Mississippi	464,300	492,542	404,960	519,334	1 140 202	034,190	1 1 47 054		Mississippi	400,003	490,945	1.000,300	007,120	1 400 507	-36.0%
Mantana	074,490	914,270	1,003,900	1,079,005	1,146,263	1,214,304	1,147,954		Mantana	950,909	1,019,106	1,096,436	1,140,571	1,109,527	-23.0%
Nontana	277,000	415,707	307,707	359,745	346,650	349,929	347,091		iviontana Nakasala	333,020	301,100	330,001	352,100	347,090	-4.2%
Nebraska	334,062	361,590	428,171	305,503	391,559	408,168	377,647		Nebraska	374,608	391,781	401,771	395,103	392,458	-4.0%
Nevada	279,130	312,569	401,490	437,948	419,293	360,524	300,090		Nevada	331,063	364,002	419,577	412,566	396,171	-19.7%
New Hampshire	419,833	353,456	327,754	297,778	312,653	319,625	325,384		New Hampshire	367,014	326,329	312,728	310,019	319,221	13.0%
New Jersey	2,990,888	2,423,222	2,222,995	1,926,269	2,631,964	1,992,966	2,253,775		New Jersey	2,545,702	2,190,829	2,260,409	2,183,733	2,292,902	9.9%
New Mexico	383,706	451,719	483,717	479,824	455,878	462,175	512,123		New Mexico	439,714	4/1,/53	473,140	465,959	4/6,/25	-8.4%
New York	2,847,266	3,933,113	4,010,793	3,931,632	3,852,098	3,961,708	5,017,704		New York	3,597,057	3,958,513	3,931,508	3,915,146	4,277,170	-18.9%
North Carolina	1,372,941	1,000,000	1,714,020	1,769,501	1,030,900	1,900,352	2,235,343		North Carolina	1,540,760	1,072,900	1,771,470	1,002,201	2,017,532	-30.9%
North Dakota	152,543	157,007	101,925	1 002 402	173,159	231,504	215,930		North Dakota	104,052	175,401	1 010,550	197,005	200,004	-20.1%
Ohio	1,716,764	1,670,069	1,020,200	1,002,102	1,800,804	1,963,364	2,315,246		Ohio	1,730,374	1,766,640	1,810,418	1,855,450	2,026,471	-10.0%
Oklanoma	1,208,296	512,000	533,508	570,570	660,630	648,902	669,261		Oklanoma	751,564	550,922	606,903	645,367	67.3,004	10.5%
Oregon	6/4,608	555,771	566,514	579,569	6/8,682	680,232	755,904		Oregon Description	606,298	5/4,618	015,566	040,101	704,939	-16.3%
Pennsylvania	3,370,596	3,441,441	3,216,832	2,980,817	2,942,165	3,586,541	3,718,273		Pennsylvania Dhada Jaland	3,342,956	3,213,030	3,046,605	3,169,841	3,415,660	-2.2%
Rhode Island	255,764	341,265	347,955	287,123	295,477	225,334	339,227		Rhode Island	314,995	325,448	310,185	269,311	286,679	9.0%
South Carolina	590,276	656,284	610,585	610,040	632,956	695,987	711,616		South Carolina	619,048	625,636	617,860	646,328	680,186	-9.9%
South Dakota	222,423	255,693	250,762	240,379	247,049	298,874	248,704		South Dakota	242,959	248,945	246,063	262,101	264,876	-9.0%
Tennessee	928,074	865,495	875,683	961,261	1,009,477	1,071,868	1,132,372		Tennessee	889,751	900,813	948,807	1,014,202	1,071,239	-20.4%
Texas	2,791,038	3,374,192	3,399,000	3,275,438	3,968,872	3,889,522	3,926,454		lexas	3,188,077	3,349,543	3,547,770	3,711,277	3,928,283	-23.2%
Utan	293,197	330,382	314,405	344,/51	365,669	697,896	994,058		Utan	312,661	329,846	341,608	469,439	685,874	-119.4%
Vermont	162,753	1/9,3/4	157,789	161,152	161,780	1/5,556	182,230		vermönt	166,639	166,105	160,240	166,163	173,189	-3.9%
virginia	1,628,449	1,580,194	1,858,6/6	1,930,067	2,130,843	2,162,633	2,418,908		virginia	1,689,106	1,789,646	1,973,195	2,074,514	2,237,461	-32.5%
vvashington	1,0/1,645	1,401,690	1,241,997	1,420,347	1,324,422	1,395,861	1,309,287		vvasnington	1,238,444	1,354,6/8	1,328,922	1,380,210	1,343,190	-8.5%
vvest Virginia	684,991	889,546	//5,/24	780,879	935,405	940,327	892,392		vvest Virginia	783,420	815,383	830,669	885,537	922,708	-17.8%
VVISCONSIN	1,044,689	988,536	889,436	854,153	891,980	940,795	958,929		vvisconsin	974,220	910,708	878,523	895,643	930,568	4.5%
vvyoming	214,570	232,985	264,207	251,804	259,497	263,154	296,163		vvyoming	237,254	249,665	258,503	258,152	272,938	-15.0%
National Average	1,038,849	1,130,708	1,095,051	1,100,373	1,178,725	1,208,530	1,327,485		National Average	1,088,203	1,108,711	1,124,716	1,162,543	1,238,247	-13.79%

Appendix B: Output Data

This section presents the 'output' data for all fifty states. Information presented includes: Rural Interstate Pavement Condition, Urban Interstate Pavement Condition, Rural Other Principal Arterial Pavement Condition, Bridge Condition, Urban Interstate Congestion, Fatal Accident Rate, and Rural Other Principal Arterial Narrow Lane Width.

Table 1 Append	ix B													
Rural Interstate	Paveme	ent Condi	tion											
(% of Rural Inte	retate n	iles rate	d > 171 in	chesimi	ile of rou	appes)								
()) of Rula inte	- state ii	mesiace		iene anni		grinessj								
		01	ininal Da	ta				Thre	o Vear F		verade D	ata		
	1992	1993	1001	1005	1996	1997	1998		1993	1001	1995	1996	1007	Improvement
Alahama	8.80%	6 15%	0.67%	0.67%	0.00%	0.00%	0.00%	Alahama	5 21%	2 49%	D 44%	0.22%	0.00%	100.00%
Alaska	29.53%	22.36%	18 10%	9.01%	9.68%	9.57%	8 45%	Alaska	23.33%	16 49%	12.26%	9.42%	9.23%	60.42%
Arizona	0.58%	1.52%	0.71%	1.51%	0.20%	0.70%	1.41%	Arizona	0.94%	1.25%	0.81%	0.81%	0.77%	17.68%
Arkansas	4.53%	31.80%	31.27%	30.75%	30.50%	28.28%	42.24%	Arkansas	22.53%	31.27%	30.84%	29.84%	33.67%	-49.45%
California	5.60%	2.88%	5.83%	8.32%	5.95%	5.91%	5.90%	California	4.77%	5.68%	6.70%	6.73%	5.92%	-24.08%
Colorado	3.78%	18.49%	18.10%	33.72%	23.05%	19.27%	13.67%	Colorado	13.45%	23.44%	24.96%	25.35%	18.66%	-38.71%
Connecticut	14.85%	14.85%	12.87%	12.87%	4.95%	4.95%	2.97%	Connecticut	14.19%	13.53%	10.23%	7.59%	4.29%	69.77%
Delaware	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	Delaware	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Dist. of Columbia	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	Dist. of Columbia	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Florida	8.51%	1.67%	1.15%	0.42%	0.31%	0.00%	0.00%	Florida	3.78%	1.08%	0.63%	0.25%	0.10%	97.24%
Georgia	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	Georgia	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Hawaii	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	Hawaii	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Idaho	8.65%	8.27%	4.70%	4.70%	3.20%	1.51%	1.52%	Idaho	7.21%	5.89%	4.20%	3.13%	2.08%	71.20%
Illinois	0.73%	2.32%	3.52%	3.34%	1.97%	1.58%	0.00%	Illinois	2.19%	3.06%	2.94%	2.30%	1.18%	45.95%
Indiana	1.09%	1.45%	1.82%	1.64%	0.59%	0.12%	0.00%	Indiana	1.45%	1.64%	1.35%	0.78%	0.23%	83.88%
lowa	0.94%	0.94%	0.47%	0.47%	0.79%	0.00%	0.16%	lowa	0.79%	0.63%	0.58%	0.42%	0.32%	59.87%
Kansas	0.57%	4.87%	4.58%	1.00%	0.00%	2.44%	1.00%	Kansas	3.34%	3.49%	1.86%	1.15%	1.15%	65.71%
Kentucky	0.73%	0.74%	5.22%	7.65%	0.00%	0.00%	0.00%	Kentucky	2.23%	4.54%	4.29%	2.55%	0.00%	100.00%
Louisiana	8.33%	8.39%	5.76%	0.16%	3.93%	6.37%	9.15%	Louisiana	7.49%	4.77%	3.28%	3.49%	6.48%	13.47%
Maine	1.28%	0.32%	0.32%	0.00%	0.00%	0.00%	0.00%	Maine	0.64%	0.21%	0.11%	0.00%	0.00%	100.00%
Maryland	11.01%	9.69%	7.05%	0.44%	0.44%	0.00%	0.44%	Maryland	9.25%	5.73%	2.64%	0.29%	0.29%	96.84%
Massachusetts	5.88%	0.62%	0.62%	2.47%	2.47%	1.85%	0.62%	Massachusetts	2.37%	1.23%	1.85%	2.26%	1.65%	30.61%
Michigan	3.91%	3.24%	4.19%	2.97%	4.32%	4.32%	8.91%	Michigan	3.78%	3.47%	3.83%	3.87%	5.85%	-54.86%
Minnesota	21.26%	32.60%	38.18%	53.30%	6.31%	3.38%	8.08%	Minnesota	30.68%	41.36%	32.60%	21.00%	5.92%	80.70%
Mississippi	0.72%	43.55%	7.89%	7.89%	5.38%	5.91%	5.21%	Mississippi	17.38%	19.77%	7.05%	6.39%	5.50%	68.37%
Missouri	0.00%	4.80%	0.74%	0.25%	0.25%	2.22%	2.11%	Missouri	1.85%	1.93%	0.41%	0.91%	1.53%	17.36%
Montana	6.92%	8.44%	8.44%	3.78%	3.78%	0.88%	0.88%	Montana	7.94%	6.89%	5.34%	2.81%	1.85%	76.72%
Nebraska	0.00%	16.25%	16.25%	12.36%	0.00%	4.35%	5.72%	Nebraska	10.83%	14.95%	9.53%	5.57%	3.36%	69.01%
Nevada	6.30%	0.00%	0.00%	0.00%	3.75%	6.04%	6.04%	Nevada	2.10%	0.00%	1.25%	3.26%	5.28%	-151.22%
New Hampshire	0.56%	0.57%	0.00%	0.00%	0.00%	0.00%	0.00%	New Hampshire	0.38%	0.19%	0.00%	0.00%	0.00%	100.00%
New Jersey	0.00%	0.00%	7.02%	11.11%	10.92%	19.33%	19.33%	New Jersey	2.34%	6.04%	9.68%	13.79%	16.53%	-606.51%
New Mexico	5.95%	5.40%	6.49%	8.97%	4.04%	10.87%	2.69%	New Mexico	5.95%	6.96%	6.50%	7.96%	5.87%	1.40%
New York	4.74%	3.51%	3.51%	4.77%	4.77%	2.38%	2.38%	New York	3.92%	3.93%	4.35%	3.98%	3.18%	18.94%
North Carolina	11.10%	0.40%	6.03%	9.35%	E 27%	14.50%	13.39%	North Carolina	10.20%	9.59%	E 01%	13.40%	14.75%	-44.59%
North Dakota	0.00%	3.50%	0.23%	0.23%	5.27%	0.00%	0.00%	North Dakota	3.27%	5.34%	5.91%	3.83%	1.76%	40.22%
Ohlohama	2.01%	1.53%	0.00%	4.00%	4.00%	0.00%	0.00%	Oklahama	1.10%	0.51%	4 179/	0.00%	0.00%	22.00%
Okianoma	0.00%	2.3270	2.52.70	4.99%	4.99%	3.33%	2.33%	Oklanoma	2.9270	3.34%	4.17.70	4.44 %	10 70%	-33.09%
Depreuluenie	16 24%	10.00%	11 200/	10 6 4 %	0.34 %	C 020/	0.04%	Depeculuonia	12 400/	11 579/	10.1170	0.1176	E 370/	CO 159/
Pennsylvania Dhodo Jolond	0.00%	0.00%	4 7694	10.04 %	4 76%	0.03%	0.00%	Pennsylvania Dhodo Jolond	1 5.40 %	2 170	10.24 %	2 170	1 50%	0.13%
South Corolino	4.64%	2.00%	4.70%	4.70%	4.70%	0.00%	0.00%	South Carolina	2.50%	0.05%	4.70%	0.00%	0.00%	100.00%
South Dakota	2.69%	7.61%	6.52%	4.61%	4.61%	7 79%	5 72%	South Dakota	5.61%	6.25%	5.25%	5.67%	6.04%	-7 78%
Toppoccoo	2.03%	1.99%	0.52 %	4.01%	4.01%	0.00%	0.00%	Toppoccoo	0.01%	0.23%	0.36%	0.05%	0.04%	100.00%
Tavac	0.00%	0.00%	7 94%	6 17%	0.00%	0.00%	0.00%	Tevee	2.66%	4 71%	1.89%	2.42%	0.00%	84.68%
Litah	0.52%	0.00%	0.04%	0.17%	0.04%	0.04%	2.08%	Litah	0.17%	0.00%	0.00%	0.00%	0.41%	-298.96%
Vermont	1.06%	0.00%	0.36%	0.36%	0.00%	0.00%	0.00%	Vermont	0.17 %	0.36%	0.00%	0.00%	0.05%	100.00%
Virginia	1.00%	0.50%	10.03%	7 63%	0.00%	0.00%	0.00%	Virginia	3.85%	6.05%	6.03%	2 82%	0.00%	87 89%
Washington	11.38%	3.99%	3.39%	3 19%	4 99%	4 59%	0.00%	Washington	6 25%	3.53%	3.86%	4 26%	3.33%	46.81%
West Virginia	3.06%	2.85%	3.05%	7.63%	7 19%	1.31%	1 10%	West Virginia	2.99%	4 51%	5.95%	5.37%	3.20%	-7 12%
Wisconsin	5,03%	3.03%	1.84%	1.84%	1.04%	0.87%	1.57%	Wisconsin	3,30%	2.23%	1.57%	1.25%	1.16%	64,81%
Wyoming	6.89%	7.01%	8.95%	0.00%	0.00%	0.00%	0.00%	Wyoming	7.62%	5.32%	2.98%	0.00%	0.00%	100.00%
	0.00 //		0.0070	0.0070	0.00 //	0.0070	0.0070		1.0270	0.0270	2.00 %	0.00 //	0.0070	
National Average	4.85%	6.39%	6.04%	6.01%	3.86%	3.72%	4.47%	National Average	5.8%	6.15%	5.30%	4.53%	4.01%	30.32%

Table 2 Appendix B Urban Interstate Pavement Condition

(% of Urban Interstate miles rated > 171 inches/mile of roughness)

Original Data								1	Thre	e Year R	olling Av	/erage D)ata		
	1992	1993	1994	1995	1996	1997	1998			1993	1994	1995	1996	1997	Improvement
Alabama	33.22%	10.77%	0.00%	0.00%	1.64%	1.64%	1.64%		Alabama	14.67%	3.59%	0.55%	1.09%	1.64%	88.80%
Alaska	7.27%	5.56%	5.66%	7.41%	3.77%	0.00%	0.00%		Alaska	6.16%	6.21%	5.61%	3.73%	1.26%	79.59%
Arizona	3.76%	0.50%	1.12%	0.00%	1.16%	0.00%	1.16%		Arizona	1.79%	0.54%	0.76%	0.39%	0.77%	56.88%
Arkansas	5.69%	22.90%	23.57%	25.00%	24.11%	24.00%	30.20%		Arkansas	17.39%	23.82%	24.23%	24.37%	26.10%	-50.13%
California	1.56%	0.94%	8.68%	12.27%	15.29%	17.17%	17.12%		California	3.72%	7.29%	12.08%	14.91%	16.53%	-343.89%
Colorado	0.00%	3.23%	3.23%	17.30%	12.37%	10.81%	8.70%		Colorado	2.15%	7.92%	10.96%	13.49%	10.62%	-394.02%
Connecticut	17.50%	21.07%	19.18%	19.18%	10.70%	8.16%	7.76%		Connecticut	19.25%	19.81%	16.36%	12.68%	8.87%	53.91%
Delaware	100.00%	29.27%	29.27%	30.00%	29.27%	29.27%	29.27%		Delaware	52.85%	29.51%	29.51%	29.51%	29.27%	44.62%
Dist. of Columbia	66.67%	78.57%	66.67%	66.67%	23.08%	36.36%	41.67%		Dist. of Columbia	70.63%	70.63%	52.14%	42.04%	33.70%	52.29%
Florida	10.07%	3.54%	2.50%	1.90%	1.95%	0.58%	0.00%		Florida	5.37%	2.65%	2.12%	1.48%	0.84%	84.31%
Georgia	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		Georgia	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Hawaii	56.82%	36.36%	2.33%	2.33%	2.33%	2.04%	0.00%		Hawaii	31.84%	13.67%	2.33%	2.23%	1.46%	95.43%
Idaho	5.00%	3.80%	1.27%	2.47%	1.27%	1.22%	1.18%		Idaho	3.35%	2.51%	1.67%	1.65%	1.22%	63.61%
Illinois	7.59%	10.16%	18.80%	17.95%	11.84%	10.66%	0.00%		Illinois	12.18%	15.64%	16.20%	13.49%	7.50%	38.44%
Indiana	10.48%	10.22%	11.82%	13.79%	13.48%	12.54%	4.08%		Indiana	10.84%	11.95%	13.03%	13.27%	10.03%	7.46%
lowa	4.08%	3.40%	8.11%	8.16%	10.20%	12.24%	14.29%		lowa	5.20%	6.56%	8.83%	10.20%	12.24%	-135.61%
Kansas	2.30%	0.00%	0.57%	0.00%	0.00%	0.00%	0.00%		Kansas	0.96%	0.19%	0.19%	0.00%	0.00%	100.00%
Kentucky	17.97%	10.86%	15.49%	16.81%	3.54%	2.65%	3.98%		Kentucky	14.77%	14.39%	11.95%	7.67%	3.39%	77.04%
Louisiana	13.12%	11.79%	10.00%	2.21%	7.09%	12.77%	21.99%		Louisiana	11.64%	8.00%	6.43%	7.35%	13.95%	-19.87%
Maine	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		Maine	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Maryland	20.08%	12.94%	10.98%	8.63%	8.63%	8.33%	9.92%		Maryland	14.67%	10.85%	9.41%	8.53%	8.96%	38.91%
Massachusetts	5.79%	2.48%	1.74%	1.99%	2.23%	1.73%	0.99%		Massachusetts	3.34%	2.07%	1.99%	1.98%	1.65%	50.50%
Michigan	3.41%	7.41%	4.82%	5.20%	6.61%	6.60%	14.80%		Michigan	5.22%	5.81%	5.54%	6.14%	9.34%	-79.02%
Minnesota	9.96%	23.61%	24.03%	28.76%	2.59%	0.43%	2.59%		Minnesota	19.20%	25.46%	18.46%	10.59%	1.87%	90.27%
Mississippi	7.03%	74.02%	5.51%	7.87%	7.87%	6.35%	7.03%		Mississippi	28.85%	29.13%	7.09%	7.37%	7.08%	75.45%
Missouri	5.74%	9.84%	4.08%	4.35%	4.34%	6.23%	7.53%		Missouri	6.55%	6.09%	4.25%	4.97%	6.03%	7.91%
Montana	0.00%	1.89%	1.89%	13.21%	13.21%	1.85%	1.75%		Montana	1.26%	5.66%	9.43%	9.42%	5.60%	-345.57%
Nebraska	45.45%	45.45%	44.44%	27.91%	2.33%	11.11%	11.11%		Nebraska	45.12%	39.27%	24.89%	13.78%	8.18%	81.86%
Nevada	30.43%	1.54%	1.25%	1.20%	4.82%	1.25%	1.16%		Nevada	11.07%	1.33%	2.42%	2.42%	2.41%	78.23%
New Hampshire	0.00%	27.08%	0.00%	0.00%	0.00%	0.00%	2.08%		New Hampshire	9.03%	9.03%	0.00%	0.00%	0.69%	92.31%
New Jersey	0.00%	0.00%	0.33%	11.88%	11.88%	35.55%	35.55%		New Jersey	0.11%	4.07%	8.03%	19.77%	27.66%	-25291.13%
New Mexico	16.48%	18.68%	21.50%	12.96%	9.26%	27.78%	12.04%		New Mexico	18.89%	17.71%	14.57%	16.67%	16.36%	13.39%
New York	34.82%	23.33%	23.82%	20.80%	20.80%	23.36%	23.50%		New York	27.32%	22.65%	21.81%	21.65%	22.55%	17.45%
North Carolina	22.16%	15.73%	22.55%	18.58%	24.85%	19.48%	15.86%		North Carolina	20.14%	18.95%	22.00%	20.97%	20.07%	0.38%
North Dakota	7.50%	0.00%	0.00%	0.00%	2.50%	0.00%	0.00%		North Dakota	2.50%	0.00%	0.83%	0.83%	0.83%	66.67%
Ohio	3.44%	1.24%	2.02%	2.56%	2.56%	1.21%	0.67%		Ohio	2.23%	1.94%	2.38%	2.11%	1.48%	33.73%
Oklahoma	11.33%	14.02%	14.02%	32.06%	32.06%	18.66%	18.66%		Oklahoma	13.12%	20.03%	26.04%	27.59%	23.13%	-76.23%
Oregon	2.27%	0.68%	2.05%	0.68%	1.37%	0.68%	63.01%		Oregon	1.67%	1.14%	1.37%	0.91%	21.69%	-1198.14%
Pennsylvania	15.29%	8.84%	10.41%	14.79%	9.58%	8.74%	3.45%		Pennsylvania	11.52%	11.35%	11.59%	11.04%	7.26%	36.97%
Rhode Island	0.00%	0.00%	4.08%	4.17%	4.17%	0.00%	2.13%		Rhode Island	1.36%	2.75%	4.14%	2.78%	2.10%	-54.21%
South Carolina	9.86%	8.45%	4.23%	0.00%	0.63%	0.64%	1.91%		South Carolina	7.51%	4.23%	1.62%	0.42%	1.06%	85.89%
South Dakota	39.13%	31.91%	16.33%	18.37%	14.29%	6.12%	12.24%		South Dakota	29.12%	22.20%	16.33%	12.93%	10.88%	62.63%
Tennessee	0.00%	6.83%	8.67%	8.98%	2.48%	2.37%	1.47%		Tennessee	5.17%	8.16%	6.71%	4.61%	2.11%	59.24%
Texas	4.98%	3.10%	43.16%	4.46%	0.39%	0.59%	1.96%		Texas	17.08%	16.91%	16.00%	1.81%	0.98%	94.27%
Utah	13.10%	0.00%	0.00%	0.00%	0.00%	0.00%	8.38%		Utah	4.37%	0.00%	0.00%	0.00%	2.79%	35.98%
Vermont	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		Vermont	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Virginia	12.58%	6.88%	6.78%	10.05%	4.56%	4.59%	4.74%		Virginia	8.75%	7.90%	7.13%	6.40%	4.63%	47.08%
Washington	14.18%	17.94%	11.45%	13.74%	19.47%	17.11%	3.42%		Washington	14.52%	14.38%	14.89%	16.77%	13.33%	8.19%
West Virginia	10.87%	12.77%	11.11%	10.99%	9.89%	4.44%	4.26%		West Virginia	11.58%	11.62%	10.66%	8.44%	6.20%	46.50%
Wisconsin	19.15%	6.99%	9.46%	10.74%	11.18%	11.05%	11.76%		Wisconsin	11.87%	9.06%	10.46%	10.99%	11.33%	4.53%
Wyoming	12.79%	14.94%	17.24%	3.45%	1.15%	1.15%	1.15%		Wyoming	14.99%	11.88%	7.28%	1.92%	1.15%	92.33%
National Average	14.82%	13.23%	11.12%	10.84%	8.17%	8.19%	9.36%		National Average	13.06%	11.73%	10.05%	9.07%	8.58%	34.32%

Table 3 Appendix B Rural Other Principle Arterial Pavement Condidtion (% of ROPA miles rated > 221 inches/mile of roughness)

Original Data									Three Year	Rolling Av	erage Dat	a		
	1992	1993	1994	1995	1996	1997	1998		1993	1994	1995	1996	1997	Improvement
Alabama	0.000%	0.000%	1.212%	1.214%	0.339%	0.338%	0.337%	Alabama	0.40%	0.81%	0.92%	0.63%	0.34%	16.36%
Alaska	6.728%	2.446%	0.612%	0.617%	0.864%	0.370%	0.000%	Alaska	3.26%	1.23%	0.70%	0.62%	0.41%	87.38%
Arizona	2.107%	1.174%	0.778%	0.258%	0.000%	0.169%	1.855%	Arizona	1.35%	0.74%	0.35%	0.14%	0.67%	50.14%
Arkansas	0.000%	0.000%	0.413%	0.046%	0.591%	0.538%	0.672%	Arkansas	0.14%	0.15%	0.35%	0.39%	0.60%	-335.87%
California	0.105%	0.000%	0.052%	0.298%	0.081%	0.081%	0.108%	California	0.05%	0.12%	0.14%	0.15%	0.09%	-72.37%
Colorado	0.000%	0.000%	0.000%	12.636%	#########	14.364%	11.636%	Colorado	0.00%	4.21%	9.81%	14.60%	14.27%	0.00%
Connecticut	4.580%	0.760%	0.760%	0.758%	1.901%	1.141%	1.145%	Connecticut	2.03%	0.76%	1.14%	1.27%	1.40%	31.37%
Delaware	97.596%	8.571%	8.612%	8.333%	8.333%	0.913%	0.913%	Delaware	38.26%	8.51%	8.43%	5.86%	3.39%	91.15%
Dist. of Columbia	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	Dist. of Columbia	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Florida	0.274%	0.274%	0.952%	1.365%	0.968%	1.290%	0.646%	Florida	0.50%	0.86%	1.10%	1.21%	0.97%	-93.63%
Georgia	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	Georgia	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Hawaii	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	Hawaii	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Idaho	6.695%	2.258%	1.129%	0.832%	0.119%	0.476%	0.179%	Idaho	3.36%	1.41%	0.69%	0.48%	0.26%	92.32%
Illinois	2.234%	3.378%	3.509%	2.012%	2.009%	3.086%	0.000%	Illinois	3.04%	2.97%	2.51%	2.37%	1.70%	44.14%
Indiana	0.000%	0.058%	1.457%	1.882%	2.354%	0.762%	0.117%	Indiana	0.51%	1.13%	1.90%	1.67%	1.08%	-113.41%
lowa	0.264%	0.529%	0.206%	0.206%	0.059%	1.551%	2.013%	lowa	0.33%	0.31%	0.16%	0.60%	1.21%	-262.70%
Kansas	0.095%	0.727%	0.316%	0.158%	0.126%	0.346%	0.095%	Kansas	0.38%	0.40%	0.20%	0.21%	0.19%	50.17%
Kentucky	0.000%	1.452%	0.307%	0.298%	0.050%	0.049%	0.098%	Kentuckv	0.59%	0.69%	0.22%	0.13%	0.07%	88.84%
Louisiana	17 729%	9 959%	9.308%	0.000%	1 236%	9 406%	2 508%	 Louisiana	12.33%	6.42%	3.51%	3.55%	4.38%	64 46%
Maine	3.083%	1.370%	0.779%	0.767%	0.635%	0.762%	0.889%	Maine	1.74%	0.97%	0.73%	0.72%	0.76%	56.28%
Marvland	6.022%	2.737%	0.912%	1.093%	1.093%	1.093%	0.548%	 Marvland	3.22%	1.58%	1.03%	1.09%	0.91%	71.73%
Massachusetts	0.413%	0.617%	0.313%	0.314%	2 508%	1 597 %	0.641%	 Massachusetts	0.45%	0.42%	1.05%	1 47%	1.58%	-253 15%
Michigan	0.400%	0.655%	0.583%	0.472%	0.799%	0.762%	1.303%	Michigan	0.55%	0.57%	0.62%	0.68%	0.95%	-74 81%
Minnesota	3.804%	17 876%	15 486%	25.356%	2.631%	1 483%	2 153%	 Minnesota	12.39%	19.57%	14 49%	9.82%	2 09%	83.14%
Mississinni	0.401%	11 785%	1 184%	2 786%	0.272%	0.109%	0.702%	Mississinni	4 46%	5 25%	1 41%	1.06%	0.36%	91.90%
Missouri	4 479%	2 160%	0.625%	0.164%	0.197%	1 213%	0.839%	Missouri	2.42%	0.98%	0.33%	0.52%	0.75%	69.05%
Montana	0.618%	0.496%	1 487%	1 449%	0.191%	0.191%	0.343%	 Montana	0.87%	1 14%	1 04%	0.61%	0.24%	72.14%
Nehraska	1.605%	1 494%	1 494%	6.375%	2.015%	1.872%	1.767%	Nehraska	1.53%	3.12%	3 29%	3.42%	1.88%	-23.12%
Nevada	3 730%	0.000%	0.000%	0.000%	0.504%	0.144%	0.144%	 Nevada	1.24%	0.00%	0.17%	0.22%	0.26%	78 78%
New Hampshire	0.000%	6 100%	2 208%	1.542%	1.542%	1.535%	1.094%	 New Hampshire	2.77%	3.28%	1.76%	1.54%	1.39%	49 79%
New Jersey	0.000%	0.000%	4.461%	0.000%	0.000%	11.445%	11.466%	 New Jersev	1.49%	1.49%	1.49%	3.81%	7.64%	-413.58%
New Mexico	2 471%	3.613%	8.926%	7.650%	5 175%	4 616%	4 503%	 New Mexico	5.00%	673%	7 25%	5.81%	4 76%	4 77%
New York	2 728%	6.480%	6.514%	4 200%	4 200%	4 652%	4 655%	New York	5 24%	5.73%	4 97%	4.35%	4 50%	14 09%
North Carolina	4 278%	2.566%	4 153%	3.025%	3.615%	2 795%	1.880%	 North Carolina	3.67%	3 25%	3.60%	3 15%	2.76%	24.62%
North Dakota	0.000%	2 150%	2 287%	2 287%	0.546%	0.068%	0.068%	 North Dakota	1.48%	2 24%	1 71%	0.97%	0.23%	84 62%
Ohio	0.178%	0.059%	0.136%	0.180%	0.316%	0.135%	0.180%	 Ohio	0.12%	0.13%	0.21%	0.21%	0.21%	-69.10%
Oklahoma	18.332%	13.656%	13.348%	3.507%	3.507%	0.760%	0.761%	 Oklahoma	15.11%	10.17%	6 79%	2 59%	1.68%	88.91%
Oregon	1.958%	1.126%	0.346%	49.347%	1.095%	0.106%	1.694%	 Oregon	1.14%	16.94%	16.93%	16.85%	0.97%	15.59%
Pennsylvania	7 400%	4 470%	1 454%	2 181%	2.662%	1.932%	1 123%	 Pennsylvania	4 44%	2.70%	2 10%	2.26%	1.91%	57 09%
Rhode Island	2,703%	1.613%	26.984%	26.984%	##########	0.000%	0.000%	 Rhode Island	10.43%	18.53%	26.98%	17.99%	8.99%	13.79%
South Carolina	0.000%	0.207%	0.346%	0.277%	0 277%	0.344%	1.376%	South Carolina	0.18%	0.28%	0.30%	0.30%	0.67%	-260.92%
South Dakota	1 979%	1 258%	1 416%	0.866%	0.787%	4 134%	2 283%	 South Dakota	1.55%	1 18%	1.02%	1.93%	2 40%	-54 82%
Tennessee	0.000%	0.000%	0.343%	0.616%	0.000%	0.000%	0.000%	Tennessee	0.11%	0.32%	0.32%	0.21%	0.00%	100.00%
Texas	0.000%	0.000%	1 854%	2.641%	0.089%	0.192%	0.350%	Texas	0.62%	1.50%	1.53%	0.97%	0.00%	65.99%
Utah	0.112%	0.099%	0.000%	0.099%	0.000 %	0.099%	0.198%	Utah	0.02%	0.07%	0.07%	0.01%	0.13%	-87 45%
Vermont	2.034%	1.887%	0.631%	0.629%	3.470%	3 470%	5 994%	Vermont	1.52%	1.05%	1.58%	2.52%	4.31%	-184 16%
Virginia	0.000%	0.000%	0.532%	1.505%	1.304%	1.603%	1.350%	 Virginia	0.18%	0.68%	1 11%	1 47%	1 42%	-699 75%
Washington	0.189%	0.568%	1.028%	0.096%	0 144%	0.096%	0.096%	Washington	0.60%	0.56%	0.42%	0.11%	0.11%	81 17%
West Virginia	0.206%	0.307%	0.391%	0.760%	0.665%	0.665%	0.740%	West Virginia	0.30%	0.49%	0.61%	0.70%	0.69%	-129.04%
Wisconsin	2.075%	0.527%	0.177%	0.670%	0.893%	1.817%	3.630%	Wisconsin	0.93%	0.46%	0.58%	1.13%	2.11%	-128.15%
Wyoming	0.000%	1.530%	1.041%	0.061%	0.551%	0.000%	0,000%	Wyoming	0.86%	0.88%	0.55%	0.20%	0.18%	78.55%
	2.30070			2.201.70	2.2.2.7.70	2.220.70	2.20070		2.0070		2.30 %	2.2070	2.1070	. 2.3070
National Average	4.19%	2.35%	2.60%	3.58%	2.08%	1.69%	1.50%	National average	3.05%	2.84%	2.75%	2.45%	1.76%	42.31%

Table 4 Appendix B Urban Interstate Congestion (% of Urban Interstate miles Volume/Capacity Ratio>.071)

Original Data								1	Three Year Rolling Average Data						
	1992	1993	1994	1995	1996	1997	1998			1993	1994	1995	1996	1997	Improvement
Alabama	36.91%	45.79%	50.17%	31.02%	27.54%	30.59%	34.21%		Alabama	44.29%	42.33%	36.24%	29.72%	30.78%	30.50%
Alaska	54.55%	37.04%	47.17%	11.11%	11.32%	13.21%	20.75%		Alaska	46.25%	31.77%	23.20%	11.88%	15.09%	67.36%
Arizona	42.11%	14.36%	12.36%	6.18%	13.87%	13.37%	20.35%		Arizona	22.94%	10.97%	10.80%	11.14%	15.86%	30.84%
Arkansas	21.95%	35.11%	34.29%	23.61%	26.95%	27.33%	24.16%		Arkansas	30.45%	31.00%	28.28%	25.96%	26.15%	14.13%
California	83.56%	82.85%	78.82%	78.81%	68.30%	66.32%	69.88%		California	81.74%	80.16%	75.31%	71.15%	68.17%	16.61%
Colorado	48.63%	48.39%	44 09%	47.57%	46 24%	43.24%	47.83%		Colorado	47 04%	46.68%	45.96%	45.68%	45.77%	2.69%
Connecticut	82.92%	83.47%	81.22%	56.73%	56.79%	64.90%	58,78%		Connecticut	82.54%	73.81%	64.92%	59.47%	60.15%	27.12%
Delaware	58.54%	60.98%	65.85%	57.50%	34.15%	41.46%	34.15%		Delaware	61.79%	61.44%	52.50%	44.37%	36.59%	40.79%
Dist. of Columbia	91.67%	92.86%	91.67%	91.67%	61.54%	72.73%	66.67%		Dist. of Columbia	92.06%	92.06%	81.62%	75.31%	66.98%	27.25%
Florida	60.67%	61.08%	62.43%	48.10%	53.61%	54.83%	47.88%		Florida	61.39%	57.20%	54.71%	52.18%	52.10%	15.13%
Georgia	37.56%	48.16%	65.52%	67.82%	72.35%	68.88%	29.29%		Georgia	50.41%	60.50%	68.56%	69.68%	56.84%	-12.75%
Hawaii	54.55%	54.55%	58.14%	55.81%	41.86%	44.90%	38.78%		Hawaii	55.74%	56.17%	51.94%	47.52%	41.84%	24.93%
Idaho	55.00%	53.16%	53.16%	11.11%	12.66%	18.29%	23.53%		Idaho	53.78%	39.15%	25.64%	14.02%	18.16%	66.23%
Illinois	52.44%	48.89%	51.66%	45.04%	45.17%	46.52%	47.76%		Illinois	51.00%	48.53%	47.29%	45.58%	46.48%	8.85%
Indiana	20.95%	20.77%	26.84%	17.24%	20.38%	19.75%	15.05%		Indiana	22.85%	21.62%	21.48%	19.12%	18.39%	19.52%
lowa	17.69%	21.09%	21.62%	23.13%	17.69%	17.69%	21.09%		lowa	20.13%	21.95%	20.81%	19.50%	18.82%	6.51%
Kansas	43.10%	13.29%	19.54%	13.22%	15.52%	16.09%	18.97%		Kansas	25.31%	15.35%	16.09%	14.94%	16.86%	33.40%
Kentucky	41.94%	16.74%	36.73%	44.69%	50.00%	49.56%	45.13%		Kentucky	31.80%	32.72%	43.81%	48.08%	48.23%	-51.66%
Louisiana	38.91%	36.88%	48.89%	29.41%	23.76%	26.24%	26.60%		Louisiana	41.56%	38.39%	34.02%	26.47%	25.53%	38.57%
Maine	16.98%	18.52%	12.96%	9.09%	10.91%	11.11%	9.26%		Maine	16.15%	13.52%	10.99%	10.37%	10.43%	35.46%
Maryland	91.34%	#######	75.69%	64.71%	64.31%	65.08%	70.24%		Maryland	90.58%	81.70%	68.24%	64.70%	66.54%	26.53%
Massachusetts	53.40%	55.33%	56.58%	36.72%	36.97%	43.32%	46.78%		Massachusetts	55.10%	49.55%	43.42%	39.00%	42.36%	23.13%
Michigan	72.09%	70.14%	59.44%	42.60%	43.09%	45.20%	51.40%		Michigan	67.22%	57.39%	48.37%	43.63%	46.56%	30.73%
Minnesota	54.11%	58.80%	73.39%	63.09%	68.10%	65.09%	71.12%		Minnesota	62.10%	65.09%	68.19%	65.43%	68.10%	-9.67%
Mississippi	12.50%	22.05%	36.22%	29.92%	24.41%	21.43%	27.34%		Mississippi	23.59%	29.40%	30.18%	25.25%	24.39%	-3.41%
Missouri	71.04%	69.40%	72.83%	72.55%	49.59%	49.86%	51.88%		Missouri	71.09%	71.59%	64.99%	57.34%	50.45%	29.04%
Montana	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		Montana	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Nebraska	56.82%	40.91%	40.00%	34.88%	30.23%	24.44%	22.22%		Nebraska	45.91%	38.60%	35.04%	29.85%	25.63%	44.17%
Nevada	42.03%	41.54%	53.75%	37.35%	48.19%	50.00%	48.84%		Nevada	45.77%	44.21%	46.43%	45.18%	49.01%	-7.07%
New Hampshire	29.79%	33.33%	50.00%	29.17%	33.33%	33.33%	43.75%		New Hampshire	37.71%	37.50%	37.50%	31.94%	36.81%	2.39%
New Jersey	62.63%	64.00%	75.82%	43.56%	49.83%	50.50%	57.81%		New Jersey	67.48%	61.13%	56.41%	47.97%	52.71%	21.89%
New Mexico	28.57%	25.27%	20.56%	16.67%	20.37%	20.37%	22.22%		New Mexico	24.80%	20.83%	19.20%	19.14%	20.99%	15.38%
New York	61.44%	58.61%	63.34%	33.90%	38.32%	37.61%	37.18%		New York	61.13%	51.95%	45.19%	36.61%	37.70%	38.32%
North Carolina	58.08%	60.83%	66.17%	46.31%	46.78%	45.56%	52.69%		North Carolina	61.70%	57.77%	53.09%	46.22%	48.34%	21.64%
North Dakota	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		North Dakota	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Ohio	50.28%	50.55%	64.74%	51.89%	56.93%	60.70%	61.91%		Ohio	55.19%	55.73%	57.85%	56.51%	59.85%	-8.44%
Oklahoma	24.63%	26.64%	26.64%	27.75%	26.79%	28.23%	29.19%		Oklahoma	25.97%	27.01%	27.06%	27.59%	28.07%	-8.10%
Oregon	60.61%	57.53%	58.90%	47.95%	52.74%	54.79%	53.42%		Oregon	59.01%	54.79%	53.20%	51.83%	53.65%	9.09%
Pennsylvania	39.41%	44.79%	44.60%	28.60%	26.89%	29.87%	30.18%		Pennsylvania	42.93%	39.33%	33.36%	28.45%	28.98%	32.50%
Rhode Island	75.51%	71.43%	77.55%	54.17%	45.83%	51.06%	53.19%		Rhode Island	74.83%	67.72%	59.18%	50.35%	50.03%	33.14%
South Carolina	67.61%	61.27%	66.20%	46.20%	46.84%	50.32%	56.69%		South Carolina	65.02%	57.89%	53.08%	47.79%	59.80%	40.53%
South Dakota	43.48%	40.43%	40.82%	42.86%	0.00%	0.00%	0.00%		South Dakota	41.57%	41.37%	27.89%	14.29%	0.00%	100.00%
Tennessee	55.32%	54.04%	61.92%	54.80%	57.28%	53.25%	55.75%		Tennessee	57.09%	56.92%	58.00%	55.11%	55.43%	2.92%
Texas	54.87%	51.31%	53.93%	40.64%	43.79%	46.34%	54.42%		Texas	53.37%	48.63%	46.12%	43.59%	48.18%	9.72%
Utah	67.26%	62.50%	34.91%	18.34%	28.99%	31.36%	22.75%		Utah	54.89%	38.58%	27.42%	26.23%	27.70%	49.53%
Vermont	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	L	Vermont	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Virginia	64.47%	93.58%	74.37%	40.20%	46.84%	47.45%	49.63%		Virginia	77.47%	69.38%	53.80%	44.83%	47.97%	38.08%
VVashington	50.19%	74.43%	76.34%	59.92%	58.78%	65.02%	66.54%		Washington	66.98%	70.23%	65.01%	61.24%	63.45%	5.28%
West Virginia	28.26%	27.66%	25.56%	14.29%	15.38%	2.22%	7.45%		West Virginia	27.16%	22.50%	18.41%	10.63%	8.35%	69.25%
Wisconsin	65.25%	67.13%	65.54%	50.34%	44.12%	41.28%	42.35%		Wisconsin	65.97%	61.00%	53.33%	45.24%	42.58%	35.45%
Wyoming	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		VVyoming	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
National average	47.09%	46.71%	48.61%	37.22%	35.59%	36.48%	37.00%		National Average	47.47%	44.18%	40.47%	36.43%	36.36%	23.40%

Table 5 Appendix B Bridge Condition (% Deficient Bridges)

		Orig	ginal Data	a			Three Year Rolling Average Data							
	1992	1993	1994	1995	1996	1997	1998		1993	1994	1995	1996	1997	Improvement
Alabama	40	38	35	31	31	30	30	Alabama	37.7	34.7	32.3	30.7	30.3	19.47%
Alaska	24	23	31	24	22	24	23	Alaska	26.0	26.0	25.7	23.3	23.0	11.54%
Arizona	7	6	6	6	7	6	5	Arizona	6.3	6.0	6.3	6.3	6.0	5.26%
Arkansas	34	30	30	29	28	27	28	Arkansas	31.3	29.7	29.0	28.0	27.7	11.70%
California	19	19	18	19	18	17	18	California	18.7	18.7	18.3	18.0	17.7	5.36%
Colorado	22	20	21	20	18	18	16	Colorado	21.0	20.3	19.7	18.7	17.3	17.46%
Connecticut	15	13	11	12	10	10	9	Connecticut	13.0	12.0	11.0	10.7	9.7	25.64%
Delaware	28	21	23	22	22	20	19	Delaware	24.0	22.0	22.3	21.3	20.3	15.28%
Dist. of Columbia	20	28	30	34	36	38	37	Dist. of Columbia	26.0	30.7	33.3	36.0	37.0	-42.31%
Florida	27	27	27	25	25	26	26	Florida	27.0	26.3	25.7	25.3	25.7	4.94%
Georgia	27	27	27	26	23	25	24	Georgia	27.0	26.7	25.3	24.7	24.0	11.11%
Hawaii	50	50	49	49	49	48	48	Hawaii	49.7	49.3	49.0	48.7	48.3	2.68%
Idaho	10	10	9	35	19	16	19	Idaho	9.7	18.0	21.0	23.3	18.0	-86.21%
Illinois	29	28	26	25	25	23	22	Illinois	27.7	26.3	25.3	24.3	23.3	15.66%
Indiana	37	34	29	28	27	26	26	Indiana	33.3	30.3	28.0	27.0	26.3	21.00%
lowa	34	30	30	30	29	29	28	lowa	31.3	30.0	29.7	29.3	28.7	8.51%
Kansas	36	34	34	30	29	28	26	Kansas	34.7	32.7	31.0	29.0	27.7	20.19%
Kentucky	38	37	36	35	34	35	33	Kentucky	37.0	36.0	35.0	34.7	34.0	8.11%
Louisiana	42	38	37	37	37	37	36	Louisiana	39.0	37.3	37.0	37.0	36.Z	5.98%
Maine	51	39	40	38	34	34	33	 Maine	43.3	39.0	37.3	35.3	33.7	22.31%
Marvland	23	35	35	35	31	31	29	Marvland	31.0	35.0	33.7	32.3	30.3	2.15%
Massachusetts	55	31	42	42	41	41	37	Massachusetts	42.7	38.3	41.7	41.3	39.7	7.03%
Michigan	47	38	35	44	39	41	32	Michigan	40.0	39.0	39.3	41.3	37.3	6.67%
Minnesota	22	21	21	20	19	18	16	Minnesota	21.3	20.7	20.0	19.0	17.7	17 19%
Mississinni	51	56	56	44	51	45	36	Mississinni	54.3	52.0	50.3	46.7	44 በ	19.02%
Missouri	47	45	44	43	42	40	38	Missouri	45.3	44 0	43.0	41.7	40.0	11.76%
Montana	20	20	20	20	21	21	21	Montana	20.0	20.0	20.3	20.7	21.0	-5.00%
Nehraska	37	35	34	33	32	31	30	Nehraska	35.3	34.0	33.0	32.0	31.0	12.26%
Nevada	11	10	9	9	6	7	7	Nevada	10.0	9.3	8.0	7.3	6.7	33.33%
New Hampshire	43	42	43	51	36	35		New Hampshire	42.7	45.3	43.3	40.7	34.3	19.53%
New Jersey	41	41	40	38	32	32	29	New Jersey	40.7	39.7	36.Z	34.0	31.0	23.77%
New Mexico	33	35	34	35	35	35	35	New Mexico	34.0	34.7	34.7	35.0	35.0	-2.94%
New York	46	45	44	43	42	41	39	New York	45.0	44 0	43.0	42.0	40.7	9.63%
North Carolina	39	.38	37	36	35	34	35	North Carolina	38.0	37.0	36.0	35.0	34.7	8 77%
North Dakota	32	30	29	28	30	28	26	North Dakota	30.3	29.0	29.0	28.7	28.0	7 69%
Ohio	29	29	28	44	43	41	40	Ohio	28.7	33.7	38.3	42.7	41.3	-44 19%
Oklahoma	44	42	39	39	41	42	40	Oklahoma	41.7	40.0	39.7	40.7	41.0	1.60%
Oregon	22	24	23	21	20	20	23	Oregon	23.0	22.7	21.3	20.3	21.0	8.70%
Pennsylvania	40	40	40	41	41	40	39	Pennsylvania	40.0	40.3	40.7	40.7	40.0	0.00%
Rhode Island	45	47	47	52	61	61	62	Rhode Island	46.3	48.7	53.3	58.0	61.3	-32.37%
South Carolina	21	21	22	22	23	23	22	South Carolina	21.3	21.7	22.3	22.7	22.7	-6.25%
South Dakota	30	30	29	27	26	25	30	South Dakota	29.7	28.7	27.3	26.0	27.0	8.99%
Tennessee	36	33	29	28	27	26	27	Tennessee	32.7	30.0	28.0	27.0	26.7	18.37%
Texas	35	30	30	29	28	28	26	Texas	31.7	29.7	29.0	28.3	27.3	13.68%
Utah	12	11	11	11	35	37	27	Utah	11.3	11.0	19.0	27.7	33.0	-191 18%
Vermont	38	37	38	38	41	40	38	Vermont	37.7	37.7	39.0	39.7	39.7	-5.31%
Virginia	30	30	29	31	32	.0	25	Virginia	29.7	30.0	30 Z	31.3	29.3	1.12%
Washington	39	24	25	24	24	24	22	Washington	29.3	24.3	24.3	24.0	23.3	20.45%
West Virginia	55	47	46	46	45	43	42	West Virginia	49.3	46.3	45.7	44.7	43.3	12.16%
Wisconsin	31	30	27	24	23	21	19	Wisconsin	29.3	27.0	24.7	22.7	21.0	28.41%
Wyoming	12	13	12	16	17	16	16	Wyoming	12.3	13.7	15.0	16.3	16.3	-32.43%
									.2.0	10.1			.0.0	02.1070
National Average	32.47	30.63	30.33	30.76	30.24	29.71	28.35	National Average	31.1	30.6	30.4	30.2	29.4	5.50%

Table 6 Appendix B Fatal Accident Rate

(fatalities/100 million vehicle miles)

		Original	Data			Three Ye						
	1992	1993	1994	1995	1996	1997		1993	1994	1995	1996	Improvement
Alabama	2.01	1.93	1.95	1.96	1.99	1.96	Alabama	2.0	1.9	2.0	2.0	-0.24%
Alaska	2.32	2.27	1.69	1.82	1.73	1.55	Alaska	2.1	1.9	1.7	1.7	18.84%
Arizona	2	1.8	2.05	2.30	2.03	1.95	Arizona	1.9	2.1	2.1	2.1	-7.43%
Arkansas	2.22	2.17	2.14	2.02	1.94	2.00	Arkansas	2.2	2.1	2.0	2.0	8.81%
California	1.42	1.38	1.39	1.33	1.29	1.15	California	1.4	1.4	1.3	1.3	10.26%
Colorado	1.65	1.56	1.55	1.63	1.54	1.41	Colorado	1.6	1.6	1.6	1.5	3.71%
Connecticut	1.01	1.2	1.05	1.02	1.05	1.10	Connecticut	1.1	1.1	1.0	1.1	2.50%
Delaware	1.71	1.51	1.49	1.49	1.37	1.50	Delaware	1.6	1.5	1.5	1.5	7.55%
Dist. of Columbia	1.32	1.58	1.89	1.56	1.75	1.71	Dist. of Columbia	1.6	1.7	1.7	1.7	-4.94%
Florida	1.9	1.97	1.98	1.99	1.92	1.88	Florida	2.0	2.0	2.0	1.9	0.97%
Georgia	1.52	1.59	1.55	1.56	1.57	1.51	Georgia	1.6	1.6	1.6	1.5	0.37%
Hawaii	1.51	1.51	1.39	1.52	1.67	1.47	Hawaii	1.5	1.5	1.5	1.6	-5.85%
Idaho	1.92	1.71	1.87	1.89	1.76	1.71	Idaho	1.8	1.8	1.8	1.8	2.52%
Illinois	1.43	1.39	1.51	1.49	1.36	2.00	Illinois	1.4	1.5	1.5	1.6	-11.86%
Indiana	1.4	1.29	1.40	1.33	1.32	1.23	Indiana	1.4	1.3	1.4	1.3	5.18%
lowa	1.62	1.6	1.61	1.72	1.53	1.47	lowa	1.6	1.6	1.6	1.6	2.45%
Kansas	1.39	1.56	1.54	1.57	1.71	1.58	Kansas	1.5	1.6	1.6	1.6	-8.01%
Kentucky	1.89	1.92	1.74	1.78	1.72	1.73	Kentuckv	1.9	1.8	1.7	1.7	5.74%
Louisiana	2.33	2.11	1.99	1.99	1.84	2.10	Louisiana	2.1	2.0	1.9	2.0	7.73%
Maine	1.56	1.38	1.33	1.35	1.22	1.30	Maine	1.4	1.4	1.3	1.3	9.31%
Maryland	1.39	1.38	1.36	1.34	1.21	1.22	Maryland	1.4	1.4	1.3	1.3	8.88%
Massachusetts	0.97	0.96	0.86	0.87	0.78	0.82	Massachusetts	0.9	0.9	0.8	0.8	11.21%
Michigan	1.4	1.48	1.48	1.61	1.48	1.40	Michigan	1.5	1.5	1.5	1.5	-2.98%
Minnesota	1.2	1.13	1.27	1.17	1.13	1.09	Minnesota	1.2	1.2	1.2	1.1	5.78%
Mississippi	2.47	2.59	2.41	2.50	2.27	2.35	Mississippi	2.5	2.5	2.4	2.4	4.71%
Missouri	1.64	1.53	1.65	1.66	1.64	1.63	Missouri	1.6	1.6	1.7	1.6	-2.39%
Montana	2.02	1.94	2.00	1.98	1.89	2.37	Montana	2.0	2.0	2.0	2.1	-4.90%
Nebraska	1.52	1.51	1.48	1.43	1.48	1.53	Nebraska	1.5	1.5	1.5	1.5	1.65%
Nevada	2.06	2.01	2.09	1.98	2.22	1.97	Nevada	2.1	2.0	2.1	2.1	-0.36%
New Hampshire	1.09	1.04	1.00	1.01	1.14	1.07	New Hampshire	1.0	1.0	1.0	1.1	-2.70%
New Jersey	1.17	1.21	1.14	1.18	1.21	1.10	New Jersey	1.2	1.2	1.2	1.2	0.78%
New Mexico	2.16	2.04	1.89	2.01	1.92	1.82	New Mexico	2.0	2.0	1.9	1.9	5.68%
New York	1.51	1.45	1.34	1.36	1.20	1.24	New York	1.4	1.4	1.3	1.3	11.74%
North Carolina	1.66	1.77	1.74	1.72	1.68	1.58	North Carolina	1.7	1.7	1.7	1.7	3.86%
North Dakota	1.3	1.32	1.20	0.99	1.19	1.25	North Dakota	1.3	1.2	1.1	1.1	10.21%
Ohio	1.37	1.37	1.23	1.21	1.21	1.22	Ohio	1.3	1.3	1.2	1.2	8.21%
Oklahoma	1.52	1.64	1.64	1.55	1.70	1.74	Oklahoma	1.6	1.6	1.6	1.7	-4.03%
Oregon	1.48	1.61	1.49	1.66	1.52	1.43	Oregon	1.5	1.6	1.6	1.5	-0.44%
Pennsylvania	1.55	1.55	1.43	1.41	1.40	1.44	Pennsylvania	1.5	1.5	1.4	1.4	6.06%
Rhode Island	0.95	0.97	0.87	0.93	0.91	0.93	Rhode Island	0.9	0.9	0.9	0.9	0.70%
South Carolina	2.05	2.15	2.02	2.02	2.07	1.93	South Carolina	2.1	2.1	2.0	2.0	3.32%
South Dakota	1.95	1.59	1.85	1.83	1.82	1.61	South Dakota	1.8	1.8	1.8	1.8	2.47%
Tennessee	2.05	2	2.03	2.01	1.92	1.82	Tennessee	2.0	2.0	2.0	1.9	5.53%
Texas	1.65	1.61	1.54	1.54	1.75	1.55	Texas	1.6	1.6	1.6	1.6	-0.93%
Utah	1.44	1.52	1.67	1.52	1.45	1.51	Utah	1.5	1.6	1.5	1.5	2.97%
Vermont	1.45	1.69	1.12	1.53	1.16	1.36	Vermont	1.4	1.4	1.3	1.4	4.91%
Virginia	1.2	1.23	1.22	1.18	1.13	1.28	Virginia	1.2	1.2	1.2	1.2	1.64%
Washington	1.2	1.26	1.21	1.17	1.30	1.16	Washington	1.2	1.2	1.2	1.2	1.12%
West Virginia	2.22	2.21	1.93	1.99	1.80	1.86	West Virginia	2.1	2.0	1.9	1.9	11.23%
Wisconsin	1.23	1.27	1.24	1.29	1.25	1.17	Wisconsin	1.2	1.3	1.3	1.2	0.89%
Wyoming	1.59	1.48	1.94	1.96	1.64	1.54	Wyoming	1.7	1.8	1.8	1.7	-2.67%
National Average	1.62	1.61	1.58	1.59	1.54	1.54	National Average	1.6	1.6	1.6	1.6	2.85%

Table 7 Appendix C Rural Other Principle Arterial Narrow Lane Width (% of ROPA miles w/ lane width < 12 FT wide)

Original Data									Three Year Rolling Average Data						
	1992	1993	1994	1995	1996	1997	1998			1993	1994	1995	1996	1997	Improvement
Alabama	10.90%	10.57%	8.63%	6.31%	4.07%	4.05%	3.95%		Alabama	10.03%	8.50%	6.34%	4.81%	4.02%	59.89%
Alaska	1.53%	5.50%	2.14%	1.23%	0.37%	0.37%	0.37%		Alaska	3.06%	2.96%	1.25%	0.66%	0.37%	87.88%
Arizona	0.00%	0.42%	0.35%	0.34%	1.18%	0.42%	0.25%		Arizona	0.25%	0.37%	0.62%	0.65%	0.62%	-142.53%
Arkansas	42.54%	41.76%	42.47%	40.46%	42.27%	41.06%	40.30%		Arkansas	42.26%	41.56%	41.73%	41.26%	41.21%	2.48%
California	5.70%	5.90%	5.78%	5.23%	5.23%	5.29%	5.21%		California	5.79%	5.64%	5.41%	5.25%	5.24%	9.48%
Colorado	15.83%	15.24%	11.55%	9.82%	9.76%	9.09%	11.95%		Colorado	14.21%	12.20%	10.38%	9.56%	10.27%	27.72%
Connecticut	6.49%	2.28%	0.38%	0.00%	0.00%	0.00%	0.00%		Connecticut	3.05%	0.89%	0.13%	0.00%	0.00%	100.00%
Delaware	0.48%	1.43%	1.91%	1.39%	0.46%	0.91%	0.91%		Delaware	1.27%	1.58%	1.26%	0.92%	0.76%	40.12%
Dist. of Columbia	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		Dist. of Columbia	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Florida	16.13%	13.85%	12.59%	9.93%	6.54%	6.88%	6.80%		Florida	14.19%	12.12%	9.68%	7.78%	6.74%	52.50%
Georgia	3.55%	1.20%	1.59%	1.47%	1.65%	1.65%	2.19%		Georgia	2.11%	1.42%	1.57%	1.59%	1.83%	13.41%
Hawaii	80.00%	80.00%	30.08%	35.20%	28.80%	32.00%	39.20%		Hawaii	63.36%	48.43%	31.36%	32.00%	33.33%	47.39%
Idaho	4.87%	3.57%	3.39%	2.73%	2.49%	1.43%	1.20%		Idaho	3.94%	3.23%	2.87%	2.22%	1.71%	56.70%
Illinois	12.08%	15.62%	16.01%	20.27%	19.98%	19.96%	19.92%		Illinois	14.57%	17.30%	18.75%	20.07%	19.95%	-36.93%
Indiana	4.61%	6.87%	6.24%	6.18%	6.12%	6.21%	6.32%		Indiana	5.91%	6.43%	6.18%	6.17%	6.22%	-5.30%
lowa	9.34%	8.96%	8.75%	8.75%	9.87%	11.82%	9.83%		lowa	9.02%	8.82%	9.13%	10.15%	10.51%	-16.55%
Kansas	8.19%	8.13%	7.96%	8.11%	6.84%	4.75%	5.01%		Kansas	8.09%	8.07%	7.64%	6.57%	5.54%	31.57%
Kentucky	20.10%	22.87%	17.25%	15.84%	14.71%	16.25%	16.16%		Kentucky	20.07%	18.65%	15.93%	15.60%	15.71%	21.74%
Louisiana	7.48%	14.90%	14.99%	15.09%	14.83%	14.27%	14.32%		Louisiana	12.46%	14.99%	14.97%	14.73%	14.47%	-16.20%
Maine	26.76%	27.40%	26.75%	26.60%	27.06%	27.19%	27.19%		Maine	26.97%	26.92%	26.81%	26.95%	27.15%	-0.67%
Maryland	4.93%	5.29%	3.65%	3.10%	3.10%	2.91%	5.85%		Maryland	4.62%	4.01%	3.28%	3.04%	3.95%	14.48%
Massachusetts	3.31%	6.48%	11.29%	5.97%	6.58%	6.39%	5.45%		Massachusetts	7.02%	7.91%	7.95%	6.32%	6.14%	12.58%
Michigan	23.40%	25.23%	22.44%	20.45%	21.42%	24.03%	22.88%		Michigan	23.69%	22.71%	21.44%	21.97%	22.78%	3.86%
Minnesota	12.00%	11.74%	11.06%	8.72%	7.00%	8.68%	8.61%		Minnesota	11.60%	10.51%	8.93%	8.13%	8.10%	30.22%
Mississippi	3.04%	2.69%	1.47%	1.39%	2.07%	2.07%	0.05%		Mississippi	2.40%	1.85%	1.64%	1.84%	1.40%	41.69%
Missouri	18.33%	16.95%	14.25%	14.26%	14.25%	14.52%	14.45%		Missouri	16.51%	15.15%	14.25%	14.35%	14.41%	12.73%
Montana	6.56%	6.56%	4.65%	4.27%	3.81%	2.94%	2.97%		Montana	5.92%	5.16%	4.25%	3.67%	3.24%	45.27%
Nebraska	5.62%	4.77%	4.77%	4.74%	4.73%	4.70%	4.79%		Nebraska	5.05%	4.76%	4.75%	4.72%	4.74%	6.28%
Nevada	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		Nevada	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
New Hampshire	3.76%	4.58%	5.08%	5.29%	4.41%	4.39%	4.38%		New Hampshire	4.47%	4.98%	4.92%	4.69%	4.39%	1.84%
New Jersey	7.17%	17.02%	12.08%	6.25%	3.75%	3.38%	1.69%		New Jersey	12.09%	11.78%	7.36%	4.46%	2.94%	75.68%
New Mexico	6.45%	10.23%	10.25%	6.49%	7.40%	7.34%	6.73%		New Mexico	8.98%	8.99%	8.04%	7.08%	7.16%	20.27%
New York	23.62%	23.16%	23.62%	23.60%	23.60%	23.81%	22.42%		New York	23.47%	23.46%	23.61%	23.67%	23.28%	0.81%
North Carolina	18.26%	18.65%	18.15%	17.20%	16.31%	15.64%	14.73%		North Carolina	18.35%	18.00%	17.22%	16.39%	15.56%	15.22%
North Dakota	6.50%	6.55%	6.55%	5.90%	5.94%	4.33%	4.33%		North Dakota	6.54%	6.34%	6.13%	5.39%	4.87%	25.51%
Ohio	22.90%	22.90%	24.43%	22.89%	22.65%	20.94%	20.09%		Ohio	23.41%	23.41%	23.33%	22.16%	21.23%	9.32%
Oklahoma	2.85%	5.68%	5.68%	4.52%	3.51%	4.60%	3.63%		Oklahoma	4.74%	5.30%	4.57%	4.21%	3.92%	17.36%
Oregon	7.55%	8.41%	8.48%	8.96%	9.65%	7.59%	7.24%		Oregon	8.15%	8.62%	9.03%	8.73%	8.16%	-0.12%
Pennsylvania	42.46%	41.54%	42.67%	42.59%	46.43%	42.91%	37.25%		Pennsylvania	42.23%	42.27%	43.90%	43.98%	42.20%	0.07%
Rhode Island	39.19%	22.58%	22.22%	7.94%	7.94%	10.45%	10.45%		Rhode Island	28.00%	17.58%	12.70%	8.77%	9.61%	65.67%
South Carolina	6.32%	6.22%	6.36%	6.71%	6.43%	5.64%	5.57%		South Carolina	6.30%	6.43%	6.50%	6.26%	5.88%	6.67%
South Dakota	3.23%	3.94%	3.70%	3.62%	2.99%	2.48%	1.50%		South Dakota	3.62%	3.75%	3.44%	3.03%	2.32%	35.86%
Tennessee	34.03%	27.90%	29.46%	30.25%	29.28%	26.79%	24.64%		Tennessee	30.46%	29.20%	29.66%	28.77%	26.90%	11.69%
Texas	5.77%	5.60%	5.25%	5.19%	5.28%	5.27%	5.01%		Texas	5.54%	5.35%	5.24%	5.25%	5.19%	6.35%
Utah	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		Utah	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Vermont	17.29%	18.55%	19.24%	22.01%	22.40%	22.08%	27.13%		Vermont	18.36%	19.94%	21.22%	22.16%	23.87%	-30.00%
Virginia	28.41%	29.27%	27.48%	28.60%	29.73%	29.74%	27.33%		Virginia	28.39%	28.45%	28.60%	29.36%	28.93%	-1.93%
Washington	38.01%	39.51%	36.45%	32.47%	32.07%	31.78%	31.30%		Washington	37.99%	36.14%	33.66%	32.11%	31.72%	16.51%
West Virginia	23.46%	23.36%	49.46%	49.81%	48.67%	48.19%	47.09%		West Virginia	32.09%	40.88%	49.31%	48.89%	47.98%	-49.51%
Wisconsin	11.14%	10.98%	9.45%	9.47%	9.98%	8.64%	7.20%		Wisconsin	10.53%	9.97%	9.63%	9.36%	8.61%	18.24%
Wyoming	0.30%	1.84%	1.84%	1.84%	1.84%	1.84%	1.76%		Wyoming	1.32%	1.84%	1.84%	1.84%	1.81%	-36.86%
National Average	13.91%	14.13%	12.49%	11.63%	11.35%	11.23%	11.07%		National Average	13.51%	12.75%	11.83%	11.41%	11.22%	16.96%